JP2006258149A - Combined slide member - Google Patents

Combined slide member Download PDF

Info

Publication number
JP2006258149A
JP2006258149A JP2005074181A JP2005074181A JP2006258149A JP 2006258149 A JP2006258149 A JP 2006258149A JP 2005074181 A JP2005074181 A JP 2005074181A JP 2005074181 A JP2005074181 A JP 2005074181A JP 2006258149 A JP2006258149 A JP 2006258149A
Authority
JP
Japan
Prior art keywords
sliding
shift fork
hub sleeve
slide
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005074181A
Other languages
Japanese (ja)
Inventor
Masataka Kaido
昌孝 海道
Yoshio Fuwa
良雄 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005074181A priority Critical patent/JP2006258149A/en
Publication of JP2006258149A publication Critical patent/JP2006258149A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/32Gear shift yokes, e.g. shift forks
    • F16H2063/324Gear shift yokes, e.g. shift forks characterised by slide shoes, or similar means to transfer shift force to sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/32Gear shift yokes, e.g. shift forks

Landscapes

  • Gear-Shifting Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide combined slide members not only improving wear resistance of the both combined slide members sliding to each other but also improving slide characteristics of the combined members in comprehensive consideration of the slide characteristics such as seize resistance, friction action on the counterpart member and friction coefficients of the both slide members. <P>SOLUTION: The combined slide members have a groove part 21 of a hub sleeve 20 in which a slide surface is formed with a film composed of amorphous carbon material, and pawls 13 of a shift fork 10 that are formed with surface hardened layers of surface hardness of from Hv 1000 to Hv 2000 by oxidation treatment of aluminum material or its alloy material on slide surfaces sliding with the slide surface of the groove part 21 of the hub sleeve 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面に非晶質炭素材料からなる被膜を形成した部材と、この部材の摺動面と摺動する摺動面にアルミニウム材料又はその合金材料からなる部材と、を組合せた組合せ摺動部材に係り、特に、これら部材の摺動面の摺動特性が向上する組合せ摺動部材に関する。   The present invention relates to a combination slide in which a member formed with a film made of an amorphous carbon material on the surface and a member made of an aluminum material or an alloy material thereof on the sliding surface of the member and the sliding surface are combined. The present invention relates to a moving member, and more particularly to a combination sliding member that improves the sliding characteristics of the sliding surfaces of these members.

従来から、自動車において、エンジン、トランスミッションなど様々な機器に摺動部材が用いられており、この摺動部材の摺動特性を向上させるために様々な開発がされてきている。   Conventionally, sliding members have been used in various devices such as engines and transmissions in automobiles, and various developments have been made to improve the sliding characteristics of the sliding members.

例えば、この摺動特性を向上させた摺動部材として、図4及び5に示すような、車両のトランスミッションのシフトフォークが提案されている。このトランスミッション100のシフトフォーク10は、運転者のシフトレバー(図示せず)の操作に合わせて、高速回転しているハブスリーブ20の溝部21に係合して、出力軸50の方向にこの溝部21を押圧する。そして、この押圧により、シンクロナイザリング30を介して、出力軸50の回転が同期して、ギア40に動力を伝達することができる。   For example, a shift fork of a vehicle transmission as shown in FIGS. 4 and 5 has been proposed as a sliding member with improved sliding characteristics. The shift fork 10 of the transmission 100 is engaged with the groove portion 21 of the hub sleeve 20 rotating at high speed in accordance with the operation of the shift lever (not shown) by the driver, and this groove portion in the direction of the output shaft 50 is engaged. 21 is pressed. By this pressing, the rotation of the output shaft 50 is synchronized via the synchronizer ring 30 and power can be transmitted to the gear 40.

このようなシフトフォーク10は、基端部11から2股状に分岐されたフォーク部12有している。このフォーク部12は、その先端の爪部13を備えており、前記押圧時には、この爪部13が、高速回転するハブスリーブ20の溝部21に接触する。そこで、爪部13の耐摩耗性を向上させるため、その爪部13は、その摺動面13aにニッケルもしくはその合金にセラミック微粒子が分散されためっき皮膜を被覆している(特許文献1参照)。   Such a shift fork 10 has a fork portion 12 branched from the base end portion 11 in a bifurcated manner. The fork portion 12 includes a claw portion 13 at the tip thereof, and the claw portion 13 contacts the groove portion 21 of the hub sleeve 20 that rotates at a high speed during the pressing. Therefore, in order to improve the wear resistance of the claw part 13, the claw part 13 covers the sliding surface 13a with a plating film in which ceramic fine particles are dispersed in nickel or an alloy thereof (see Patent Document 1). .

またこの他にも、摺動部材の耐摩耗性を向上させるために、Siを含有させたアルミニウム合金からなるシリンダと、ダイヤモンドライクカーボン(非晶質炭素材料)を表面に被覆したピストンリングと、を組合せた組合せ摺動部材が提案されている(特許文献2参照)。   In addition to this, in order to improve the wear resistance of the sliding member, a cylinder made of an aluminum alloy containing Si, a piston ring whose surface is coated with diamond-like carbon (amorphous carbon material), A combination sliding member combining the above has been proposed (see Patent Document 2).

特開平1−42580号公報JP-A-1-42580 特開2001−280497号公報JP 2001-280497 A

しかし、例えば上述したようなトランスミッションの場合には、シフトフォークの爪部の摺動面の耐摩耗性を向上させることを目的としているものであって、シフトフォークの爪部とハブスリーブの溝部との関係において耐焼付き性、相手攻撃性、及び摩擦係数を考慮したものではない。   However, in the case of the transmission as described above, for example, the purpose is to improve the wear resistance of the sliding surface of the shift fork claw, and the shift fork claw and the hub sleeve groove Therefore, the seizure resistance, the opponent aggression, and the friction coefficient are not considered.

すなわち、ハブスリーブの溝部に対するシフトフォークの爪部の焼付き性が高く、相手攻撃性が大きいと、シフトフォークの爪部及びハブスリーブの溝部の両者が摩耗することになり、その結果、シフト操作時にガタつきが大きくなり、シフト抜けが発生する虞がある。   That is, if the seizure part of the shift fork against the groove part of the hub sleeve is high and the attack of the other party is large, both the claw part of the shift fork and the groove part of the hub sleeve will be worn. There is a possibility that the backlash is sometimes increased and the shift is lost.

また、シフトフォークの爪部とハブスリーブの溝部との摩擦力が大きい(摩擦係数が大きい)と、シフトフォークがハブスリーブを押圧するシフト操作力も大きくなり、シフトフィーリングが悪化する虞がある。   Further, if the frictional force between the claw portion of the shift fork and the groove portion of the hub sleeve is large (the friction coefficient is large), the shift operating force with which the shift fork presses the hub sleeve also increases, which may deteriorate the shift feeling.

本発明は、このような課題に鑑みてなされたものであって、その目的とするところは、互いに摺動する組合せ摺動部材の双方の耐摩耗性を向上させるばかりでなく、双方の摺動部材の耐焼付き性、相手攻撃性、摩擦係数等の摺動特性を総合的に考慮して、この組合せた部材の摺動特性を向上させることができる組合せ摺動部材を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is not only to improve the wear resistance of both of the combination sliding members that slide on each other, but also to slide both of them. It is an object of the present invention to provide a combined sliding member capable of improving the sliding characteristics of the combined members by comprehensively considering the sliding characteristics such as seizure resistance of the members, opponent attack, and friction coefficient.

本発明者らは、上記の課題を解決すべく多くの実験と研究を行うことにより、摺動性の良い材料の組合せとしては、表面に非晶質炭素材料(ダイヤモンドライクカーボン)と、アルミニウム材料又はその合金材料との組合せが優れており、さらにアルミニウム材料またはその合金材料の摺動面に所定の硬度の酸化皮膜を設けることにより、双方の部材の摺動面の摺動特性が画期的に向上するとの知見を得た。   The present inventors have conducted many experiments and researches to solve the above problems, and as a combination of materials having good slidability, an amorphous carbon material (diamond-like carbon) and an aluminum material are formed on the surface. Or the combination with the alloy material is excellent, and furthermore, by providing an oxide film with a predetermined hardness on the sliding surface of the aluminum material or the alloy material, the sliding characteristics of the sliding surfaces of both members are revolutionary. I got the knowledge that it would improve.

本発明は、本発明者らが得た上記の新たな知見に基づくものであり、本発明の組合せ摺動部材は、摺動面に非晶質炭素材料からなる被膜を形成した第一部材と、該第一部材の摺動面と摺動する摺動面にアルミニウム材料又はその合金材料を酸化処理することによりHv1000からHv2000の表面硬度を有する表面硬化層を形成した第二部材と、を有することを特徴とする。   The present invention is based on the above-mentioned new knowledge obtained by the present inventors, and the combined sliding member of the present invention includes a first member in which a coating made of an amorphous carbon material is formed on a sliding surface. And a second member in which a hardened surface layer having a surface hardness of Hv1000 to Hv2000 is formed by oxidizing an aluminum material or an alloy material thereof on the sliding surface of the first member and the sliding surface of the first member. It is characterized by that.

本発明の如く、非晶質炭素材料の被膜と、表面硬度がHv1000からHv2000の範囲のアルミニウム材料又はその合金材料の酸化皮膜(酸化処理による表面硬化層)とを組合せて用いることにより、摺動部材の相互の耐摩耗性が向上し、部材が長寿命化するばかりでなく、表面の焼付き性、相手攻撃性が低減され、摩擦係数も小さくなる。   As in the present invention, by using a combination of a film of an amorphous carbon material and an oxide film (surface hardened layer by oxidation treatment) of an aluminum material or an alloy material having a surface hardness in the range of Hv1000 to Hv2000, sliding is achieved. The mutual wear resistance of the members is improved, not only the life of the members is extended, but also the surface seizure property and the opponent attack property are reduced, and the friction coefficient is also reduced.

この第二部材のアルミニウム材料又はその合金材料の表面硬化層の表面硬度がHv1000よりも小さいと、第一部材の非晶質炭素材料の被膜により第二部材の表面硬化層の摩耗が促進し、さらに、この表面硬化層の表面硬度が、Hv2000よりも大きいと、この表面硬化層により非晶質炭素材料の被膜の摩耗が促進する。   When the surface hardness of the surface hardened layer of the aluminum material or the alloy material of the second member is smaller than Hv1000, the coating of the amorphous carbon material of the first member promotes the wear of the surface hardened layer of the second member, Furthermore, if the surface hardness of the surface hardened layer is higher than Hv2000, the surface hardened layer promotes the wear of the amorphous carbon material film.

また、この組合せ摺動部材の第二部材の酸化処理は、プラズマ電解酸化処理であることが好ましい。このように、第二部材のアルミニウム材料またはアルミニウム合金材料の摺動面にプラズマ電解酸化処理を行うことにより、先に示す如き、Hv1000からHv2000の表面硬度を有した表面硬化層を容易に形成することができる。   Moreover, it is preferable that the oxidation process of the 2nd member of this combination sliding member is a plasma electrolytic oxidation process. Thus, by performing plasma electrolytic oxidation treatment on the sliding surface of the aluminum material or aluminum alloy material of the second member, a hardened surface layer having a surface hardness of Hv1000 to Hv2000 as described above can be easily formed. be able to.

さらに、このようなプラズマ電解酸化処理を行う場合には、この処理後の表面は、表面硬化に伴い表面あらさが大きくなるので、この組合せ摺動部材の摺動特性をさらに向上させるためには、この酸化処理した表面を研磨することにより、表面あらさを小さくすることが好ましい。   Furthermore, when performing such plasma electrolytic oxidation treatment, the surface after this treatment has a surface roughness that increases with surface hardening, so in order to further improve the sliding characteristics of this combined sliding member, It is preferable to reduce the surface roughness by polishing the oxidized surface.

さらに、この組合せ摺動部材の第一部材に被覆した非晶質炭素材料の表面硬度は、Hv1000からHv5000であることが好ましく、このような表面硬度の範囲にすることにより、第一部材と第二部材との双方の耐摩耗性を向上させることができる。   Furthermore, the surface hardness of the amorphous carbon material coated on the first member of the combination sliding member is preferably Hv1000 to Hv5000. By setting the surface hardness in such a range, the first member and the first member The wear resistance of both the two members can be improved.

また、この非晶質炭素材料を第一部材に被覆するにあたっては、第一部材の母材とこの被膜との間に、中間層として、クロム(Cr)からなる層を設けることにより、この被膜の密着性を向上させることができる。さらにこのクロムの代わりに、チタン(Ti)またはタングステン(W)を用いてもよい。   Further, when the first member is coated with the amorphous carbon material, a layer made of chromium (Cr) is provided as an intermediate layer between the base material of the first member and the coating. It is possible to improve the adhesion. Further, titanium (Ti) or tungsten (W) may be used instead of the chromium.

このような非晶質炭素材料の表面硬度にすることにより、第一部材及び第二部材の摺動特性をさらに向上することができる。この非晶質炭素材料の表面硬度がHv1000以下の場合には、第二部材の表面硬化層の硬化表面により、この非晶質炭素材料の被膜が大きく摩耗してしまい、この非晶質炭素材料の表面硬度がHv5000以上の場合には、この非晶質炭素材料の被膜により、第二部材の表面硬化層が大きく摩耗してしまう。   By setting the surface hardness of such an amorphous carbon material, the sliding characteristics of the first member and the second member can be further improved. When the surface hardness of the amorphous carbon material is Hv 1000 or less, the coating of the amorphous carbon material is greatly worn by the cured surface of the surface hardened layer of the second member. When the surface hardness of the second member is Hv5000 or more, the surface hardened layer of the second member is greatly worn by the coating of the amorphous carbon material.

また、この組合せ摺動部材の第一部材に被覆した非晶質炭素材料の表面あらさは、十点平均あらさRz0.5μm以下であることが好ましい。   The surface roughness of the amorphous carbon material coated on the first member of the combination sliding member is preferably 10-point average roughness Rz 0.5 μm or less.

このような範囲の表面あらさにすることにより、組合せ摺動部材の耐焼付き性が向上し、摩擦係数も小さくなり、第一部材及び第二部材の摩耗量も小さくなり、摺動特性をさらに向上させることができる。すなわち、第一部材の非晶質炭素材料の表面あらさが、十点平均あらさRz0.5μmよりも大きいと、この表面により、第二部材のアルミニウム材料又はその合金材料の表面硬化層の摩耗が促進され、組合せ摺動部材としての寿命が低下する。   By making the surface roughness in this range, the seizure resistance of the combined sliding member is improved, the friction coefficient is reduced, the wear amount of the first member and the second member is also reduced, and the sliding characteristics are further improved. Can be made. That is, when the surface roughness of the amorphous carbon material of the first member is larger than the ten-point average roughness Rz 0.5 μm, this surface promotes wear of the surface hardened layer of the aluminum material of the second member or its alloy material. As a result, the life as a combination sliding member is reduced.

アルミニウム材料又はその合金材料を酸化処理することにより得られる表面硬化層の層厚み(酸化皮膜の厚み)は、非晶質炭素材料の被膜厚みに比べて厚くすることができることから、このような組合せ摺動部材を先に示したトランスミッションに用いる場合には、この組合せ摺動部材の第一部材を、このトランスミッションを構成するハブスリーブの溝部の摺動面に用い、この組合せ摺動部材の第二部材を、シフトフォークの爪部の摺動面に用いることが好適である。   Such a combination is possible because the thickness of the hardened surface layer (thickness of the oxide film) obtained by oxidizing the aluminum material or its alloy material can be made larger than the film thickness of the amorphous carbon material. When the sliding member is used for the transmission shown above, the first member of the combined sliding member is used for the sliding surface of the groove portion of the hub sleeve constituting the transmission, and the second member of the combined sliding member is used. The member is preferably used for the sliding surface of the claw portion of the shift fork.

このように、摩耗量の多いシフトフォークの爪部に、表面硬化層の厚みが厚いアルミニウム材料又はその合金材料を使用するので、シフトフォークの寿命は延び、さらに、非晶質炭素材料を被覆したハブスリーブの溝部は摩耗しにくいので、結果として組合せ摺動部材としての寿命を長くすることができる。   As described above, since the aluminum material or its alloy material having a thick surface hardened layer is used for the claw portion of the shift fork having a large amount of wear, the life of the shift fork is extended and the amorphous carbon material is further coated. Since the groove portion of the hub sleeve is not easily worn, as a result, the life of the combined sliding member can be extended.

本発明によれば、摺動する摺動部材の耐摩耗性、耐焼付き性、相手攻撃性、及び摩擦係数などの諸特性を向上させることにより、摺動部材の相互の摺動特性を向上させることができる。この結果、摺動部材を用いることにより、摺動面の焼付き、摩耗などによる機器の破損を防止し、機器本体の長寿命化を図ることができる。   According to the present invention, the sliding properties of the sliding members are improved by improving various properties such as wear resistance, seizure resistance, opponent attack, and friction coefficient of the sliding members that slide. be able to. As a result, by using the sliding member, it is possible to prevent damage to the device due to seizure or wear of the sliding surface, and to extend the life of the device body.

以下に、本発明を実施例により説明する。本実施例は、車両のトランスミッション(図4参照)に、本発明に係る組合せ摺動部材を用いた実施例であり、本発明に係る組合せ摺動部材の第一部材をトランスミッションのハブスリーブの摺動面に用い、第二部材をシフトフォークの摺動面に用いた実施例である。   Hereinafter, the present invention will be described by way of examples. The present embodiment is an embodiment in which the combination sliding member according to the present invention is used for a vehicle transmission (see FIG. 4), and the first member of the combination sliding member according to the present invention is used as a slide of the hub sleeve of the transmission. This is an embodiment in which the second member is used for the sliding surface of the shift fork.

(実施例1)
図5に示すようなシフトフォークを、アルミニウム合金鋳物(JIS:AC9C)により製作した。そして、このシフトフォークの爪部を、水酸化カリウムと水とを1:6の重量の割合で混合した電解溶液中に配置し、浴温40℃、処理電圧620V、電流密度5A/dmの条件で、プラズマ電解酸化処理(PEO)により、このシフトフォークの爪部表面に、層厚み100μmの表面硬化層(酸化皮膜)を形成した。
Example 1
A shift fork as shown in FIG. 5 was manufactured from an aluminum alloy casting (JIS: AC9C). And the nail | claw part of this shift fork is arrange | positioned in the electrolyte solution which mixed potassium hydroxide and water in the ratio of the weight of 1: 6, bath temperature 40 degreeC, processing voltage 620V, and current density 5A / dm < 2 >. Under conditions, a surface hardened layer (oxide film) having a layer thickness of 100 μm was formed on the surface of the nail portion of this shift fork by plasma electrolytic oxidation (PEO).

一方、ハブスリーブを、クロムモリブデン鋼(JIS:SCM420)により製作した。さらに、この鋼を浸炭焼入れし、シフトフォークの爪部に接触する溝部の摺動面に、クロムを0.5μm被覆し、さらにそのクロムの層上に、非晶質炭素材料(DLC)の被膜を、膜厚2μm被覆(コーティング)した。このDLCの成膜は、基材温度200℃、バイアス電圧100Vの条件で、原料ガス:メタンガス、雰囲気ガス:アルゴンガスを用いた。なお、DLCの成膜は、PVD処理、CVD処理のどちらでもよい。   On the other hand, the hub sleeve was made of chromium molybdenum steel (JIS: SCM420). Further, this steel was carburized and hardened, and the sliding surface of the groove portion contacting the claw portion of the shift fork was coated with 0.5 μm of chromium, and further, the amorphous carbon material (DLC) film was coated on the chromium layer. Was coated (coated) with a film thickness of 2 μm. The DLC film was formed using a source gas: methane gas and an atmosphere gas: argon gas under the conditions of a substrate temperature of 200 ° C. and a bias voltage of 100 V. DLC film formation may be performed by either PVD processing or CVD processing.

さらに、後述する焼付き試験を行うために、シフトフォークの爪部材料に相当する試験片として、内径20mm、外径25.6mm、高さ17mm、十点平均あらさRz1.6μm、円筒試験片を製作した。また、ハブスリーブの溝部材料に相当する試験片として、30×30×5mm、十点平均あらさRz0.5μmの平板試験片を製作した。   Furthermore, in order to perform the seizure test described later, as a test piece corresponding to the claw material of the shift fork, an inner diameter of 20 mm, an outer diameter of 25.6 mm, a height of 17 mm, a ten-point average roughness Rz 1.6 μm, a cylindrical test piece Produced. Further, as a test piece corresponding to the groove portion material of the hub sleeve, a flat plate test piece having a size of 30 × 30 × 5 mm and an average roughness Rz of 0.5 μm was manufactured.

そして、実施例1のシフトフォークとハブスリーブとからなる組合せ摺動部材に対して摩耗試験を行った。具体的には、これらの部材を実機トランスミッションに組込んで、潤滑剤(ATF DexronII)を充填すると共に、ハブスリーブ回転数4800rpm、油温120℃、シフトフォーク作動荷重100kgの条件下で、シフトフォークの爪部を1sec作動(ハブスリーブに接触状態)−1.5sec休止(ハブスリーブに非接触状態)をさせて、これを1サイクルとして、3000サイクル実施し、シフトフォークの爪部及びハブスリーブの溝部の摩耗量(軸方向の摩耗長さ)を測定した。   And the abrasion test was done with respect to the combination sliding member which consists of the shift fork and hub sleeve of Example 1. FIG. Specifically, these components are incorporated into an actual transmission and filled with a lubricant (ATF Dexron II), and the shift fork under the conditions of a hub sleeve rotation speed of 4800 rpm, an oil temperature of 120 ° C., and a shift fork operating load of 100 kg. The claw part of the fork is operated for 1 sec (contacted with the hub sleeve) -1.5 sec pause (not contacted with the hub sleeve), and this is defined as one cycle, and 3000 cycles are carried out. The amount of wear of the groove (abrasion length in the axial direction) was measured.

さらに、これらの組合せた摺動部材に対して焼付試験を行った。具体的には、円筒試験片(爪部材料)と平板試験片(溝部材料)を用いて、機械試験所型摩耗摩擦試験機により、潤滑剤(ATF DexronII)を用いた飛沫潤滑を行いながら、円筒試験片(爪部材料)を、8600rpm(周速9.6m/sec)で回転させ、押付け荷重を2分間毎に250Nずつ増加させて、平板試験片(溝部材料)に押付けた。そして、摩擦係数が0.2以上になったとき、もしくは、摩耗が極端に大きくなったときの荷重を焼付き荷重として測定し、摩擦係数も求めた。尚、シフトフォークの爪部の表面硬度及びハブスリーブの溝部の表面硬度を測定した。   Further, a seizure test was performed on the combined sliding members. Specifically, using a cylindrical test piece (claw part material) and a flat plate test piece (groove part material), while performing splash lubrication using a lubricant (ATF Dexron II) by a mechanical laboratory type abrasion friction tester, The cylindrical test piece (claw material) was rotated at 8600 rpm (circumferential speed 9.6 m / sec), the pressing load was increased by 250 N every 2 minutes, and pressed against the flat plate test piece (groove material). Then, the load when the friction coefficient became 0.2 or more or when the wear became extremely large was measured as a seizure load, and the friction coefficient was also obtained. The surface hardness of the claw part of the shift fork and the surface hardness of the groove part of the hub sleeve were measured.

この摩耗試験及び焼付き試験の結果を図1及び表1に示す。   The results of this wear test and seizure test are shown in FIG.

Figure 2006258149
Figure 2006258149

表1及び図1に示すように、組合せ摺動部材の焼付き荷重は、4250N、摩擦係数は0.01程度であり、シフトフォークの爪部の摩耗量は、20μmで、ハブスリーブの溝部の摩耗量は、ほとんど無かった。また、シフトフォークの爪部の表面硬度は、Hv1500であり、ハブスリーブの溝部の表面硬度は、Hv3000であった。   As shown in Table 1 and FIG. 1, the seizure load of the combined sliding member is 4250 N, the friction coefficient is about 0.01, the wear amount of the claw part of the shift fork is 20 μm, and the groove part of the hub sleeve is There was almost no wear. The surface hardness of the claw part of the shift fork was Hv1500, and the surface hardness of the groove part of the hub sleeve was Hv3000.

(比較例1)
実施例1と同形状のシフトフォーク及びハブスリーブを作成した。実施例1と異なる点は、シフトフォークをクロム鋼(JIS:SCr420)より製作し、その後浸炭焼入れをした点である。
(Comparative Example 1)
A shift fork and a hub sleeve having the same shape as in Example 1 were prepared. The difference from Example 1 is that the shift fork is manufactured from chrome steel (JIS: SCr420) and then carburized and quenched.

(比較例2)
実施例1と同形状のシフトフォーク及びハブスリーブを作成した。実施例1と異なる点は、シフトフォークをクロム鋼(JIS:SCr420)より製作し、その後浸炭焼入れをし、さらに浸炭焼入れ後のシフトフォークの摺動面に硬質クロムめっきを被覆した点である。
(Comparative Example 2)
A shift fork and a hub sleeve having the same shape as in Example 1 were prepared. The difference from Example 1 is that the shift fork is manufactured from chrome steel (JIS: SCr420), then carburized and quenched, and the sliding surface of the shift fork after carburizing and quenching is coated with hard chrome plating.

(比較例3)
実施例1と同形状のシフトフォーク及びハブスリーブを作成した。実施例1と異なる点は、ハブスリーブを浸炭焼入れ後、DLCを被覆していない点である。
(Comparative Example 3)
A shift fork and a hub sleeve having the same shape as in Example 1 were prepared. The difference from the first embodiment is that the DLC is not coated after the carburizing and quenching of the hub sleeve.

(比較例4)
実施例1と同形状のシフトフォーク及びハブスリーブを作成した。実施例1と異なる点は、シフトフォークをクロム鋼(JIS:SCr420)より製作し、その後浸炭焼入れした点と、ハブスリーブを浸炭焼入れ後、DLCを被覆していない点である。
(Comparative Example 4)
A shift fork and a hub sleeve having the same shape as in Example 1 were prepared. The difference from the first embodiment is that the shift fork is manufactured from chrome steel (JIS: SCr420) and then carburized and quenched, and the hub sleeve is carburized and quenched and is not covered with DLC.

(比較例5)
実施例1と同形状のシフトフォーク及びハブスリーブを作成した。実施例1と異なる点は、シフトフォークをクロム鋼(JIS:SCr420)より製作し、その後浸炭焼入れをし、さらに浸炭焼入れ後のシフトフォークの摺動面に硬質クロムめっきを被覆した点と、ハブスリーブを浸炭焼入れ後、DLCを被覆していない点である。
(Comparative Example 5)
A shift fork and a hub sleeve having the same shape as in Example 1 were prepared. The difference from Example 1 is that the shift fork is manufactured from chrome steel (JIS: SCr420), then carburized and hardened, and the sliding surface of the shift fork after carburizing and hardening is coated with hard chrome plating, and the hub After the carburizing and quenching of the sleeve, the DLC is not covered.

そして、比較例1から比較例5の組合せ摺動部材に対して、実施例1と同様に、摩耗試験及び焼付き試験を行った。その結果を図1及び表1に示す。   Then, the wear test and seizure test were performed on the combination sliding members of Comparative Examples 1 to 5 in the same manner as in Example 1. The results are shown in FIG.

表1及び図1に示すように、比較例1から5の組合せ摺動部材は、実施例1に比べて、摩擦係数も高く、焼付き荷重も小さかった。また、シフトフォークの爪部及びハブスリーブの溝部のどちらも、実施例1に比べて、その摩耗量は多かった。   As shown in Table 1 and FIG. 1, the combined sliding members of Comparative Examples 1 to 5 had a higher coefficient of friction and a smaller seizure load than Example 1. In addition, both the claw part of the shift fork and the groove part of the hub sleeve had a larger amount of wear than Example 1.

(評価1)
この結果から、実施例1の如く、非晶質炭素材料(DLC)と、プラズマ電解酸化処理により表面を硬化させたアルミニウム合金とを、摺動部材に組合せて使用することにより、摺動部材の相互の耐摩耗性が向上し、各部材が長寿命化するばかりでなく、表面の焼付き性、相手攻撃性が低減され、摩擦係数も小さくなったと考えられる。
(Evaluation 1)
From this result, as in Example 1, an amorphous carbon material (DLC) and an aluminum alloy whose surface was hardened by plasma electrolytic oxidation treatment were used in combination with the sliding member. It is considered that not only the mutual wear resistance was improved and the life of each member was prolonged, but also the seizure property of the surface and the opponent attack were reduced, and the friction coefficient was also reduced.

また、アルミニウムを主材とした材料であれば、酸化処理により表面を硬化させることが可能であるので、アルミニウム合金の代わりにアルミニウムを用いた場合であっても、同様の結果が得られると推定される。   In addition, if the material is mainly aluminum, the surface can be hardened by oxidation treatment, so it is estimated that similar results can be obtained even when aluminum is used instead of an aluminum alloy. Is done.

(実施例2から5)
実施例1と同様の組合せ摺動部材を製作した。実施例1と異なる点は、実施例2から5のシフトフォークの爪部のプラズマ電解酸化処理時における処理電圧を以下の表2に示す如き電圧条件で酸化処理を行った点である。
(Examples 2 to 5)
A combination sliding member similar to that in Example 1 was manufactured. The difference from the first embodiment is that the oxidation treatment was performed under the voltage conditions as shown in Table 2 below as the treatment voltage during the plasma electrolytic oxidation treatment of the claw portions of the shift forks of the second to fifth embodiments.

この実施例2から5に示す組合せ摺動部材について、実施例1と同様の摩耗試験を行った。また、これらのシフトフォークの爪部の表面硬化層の表面硬度も測定した。その結果を図2及び表2に示す。   About the combination sliding member shown to these Examples 2-5, the abrasion test similar to Example 1 was done. Moreover, the surface hardness of the surface hardened layer of the nail | claw part of these shift forks was also measured. The results are shown in FIG.

図2及び表2に示すように、シフトフォークの爪部の表面硬化層の表面硬度は、処理電圧を大きくすると共に大きくなった。また、実施例2から5の組合せ摺動部材のシフトフォークの爪部の摩耗量は40μm以下、ハブスリーブの溝部の摩耗量は5μm以下であった。   As shown in FIG. 2 and Table 2, the surface hardness of the surface hardened layer of the claw portion of the shift fork increased as the processing voltage was increased. Further, the wear amount of the claw portion of the shift fork of the combination sliding member of Examples 2 to 5 was 40 μm or less, and the wear amount of the groove portion of the hub sleeve was 5 μm or less.

Figure 2006258149
Figure 2006258149

(比較例6及び7)
実施例1と同様の組合せ摺動部材を製作した。実施例1と異なる点は、比較例6及び7のシフトフォークの爪部の表面のプラズマ電解酸化処理の処理電圧を表2に示す如き電圧条件で、酸化処理を行った点である。
(Comparative Examples 6 and 7)
A combination sliding member similar to that in Example 1 was manufactured. The difference from Example 1 is that the oxidation treatment was performed under the voltage conditions as shown in Table 2 for the plasma electrolytic oxidation treatment voltage on the surface of the claw portion of the shift fork of Comparative Examples 6 and 7.

この比較例6及び7に示す組合せ摺動部材について、実施例1と同様の摩耗試験を行った。また、これらのシフトフォークの爪部の表面硬化層の表面硬度も測定した。その結果を図2及び表2に示す。   About the combination sliding member shown to these comparative examples 6 and 7, the abrasion test similar to Example 1 was done. Moreover, the surface hardness of the surface hardened layer of the nail | claw part of these shift forks was also measured. The results are shown in FIG.

図2及び表2に示すように、比較例6のシフトフォークの爪部の表面硬度が800Hvであり、実施例2から5に比べて、シフトフォークの爪部の摩耗量は大きかった。また、比較例7のシフトフォークの爪部の表面硬度は2500Hvであり、実施例2から5に比べて、比較例7のハブスリーブの溝部の摩耗量は大きかった。   As shown in FIG. 2 and Table 2, the surface hardness of the claw portion of the shift fork of Comparative Example 6 was 800 Hv, and the wear amount of the claw portion of the shift fork was large compared to Examples 2 to 5. Further, the surface hardness of the claw portion of the shift fork of Comparative Example 7 was 2500 Hv, and the wear amount of the groove portion of the hub sleeve of Comparative Example 7 was large as compared with Examples 2 to 5.

(評価2)
この結果より、シフトフォークの爪部の表面硬化層の最適な表面硬度は、Hv1000からHv2000であり、この表面硬度範囲を外れるとシフトフォークの爪部またはハブスリーブの溝部のいずれか一方の摩耗が促進すると考える。すなわち、比較例6の如くシフトフォークの爪部の表面硬度がHv1000よりも小さいと、ハブスリーブの溝部のDLCの被膜によりシフトフォークの爪部の摩耗が促進され、比較例7の如くシフトフォークの爪部の表面硬度がHv2000よりも大きいと、シフトフォークの爪部によりハブスリーブの溝部の摩耗が促進されたと考える。
(Evaluation 2)
From this result, the optimum surface hardness of the surface hardened layer of the claw portion of the shift fork is Hv1000 to Hv2000, and if the surface hardness range is exceeded, wear of either the claw portion of the shift fork or the groove portion of the hub sleeve will occur. Think to promote. That is, when the surface hardness of the claw part of the shift fork is smaller than Hv1000 as in Comparative Example 6, the wear of the claw part of the shift fork is promoted by the DLC coating on the groove part of the hub sleeve. When the surface hardness of the claw portion is higher than Hv2000, it is considered that the wear of the groove portion of the hub sleeve is promoted by the claw portion of the shift fork.

(実施例6及び7)
実施例1と同様の組合せ摺動部材を製作した。実施例1と異なる点は、DLCを被覆する前のハブスリーブの溝部の表面あらさを調整して、実施例6及び7のハブスリーブの溝部に形成したDLCの被膜の表面あらさを、順に十点平均あらさRz0.1μm、0.5μmにした点である。
(Examples 6 and 7)
A combination sliding member similar to that in Example 1 was manufactured. The difference from the first embodiment is that the surface roughness of the groove portion of the hub sleeve before coating the DLC is adjusted, and the surface roughness of the DLC coating formed on the groove portion of the hub sleeve of the sixth and seventh embodiments is sequentially increased to ten points. The average roughness Rz is 0.1 μm and 0.5 μm.

そして、実施例6及び7の組合せ摺動部材に対して、実施例1と同様の摩耗試験を行い、さらに、実施例1と同様にこれらに対応した試験片を製作し焼付き試験を行った。その結果を、図3及び表3に示す。   And the same abrasion test as Example 1 was performed with respect to the combination sliding member of Example 6 and 7, Furthermore, the test piece corresponding to these was manufactured similarly to Example 1, and the seizure test was done. . The results are shown in FIG.

図3及び表3から、実施例6、実施例7の如くDLCの被膜の表面あらさを変えた場合であっても、実施例1と同様に、焼付き荷重は4250N程度、摩擦係数も、0.01程度であり、シフトフォークの爪部の摩耗量は、20μm程度、ハブスリーブの溝部の摩耗量は、ほとんど無かった。   3 and Table 3, even when the surface roughness of the DLC film was changed as in Example 6 and Example 7, the seizure load was about 4250 N and the friction coefficient was 0 as in Example 1. The wear amount of the claw portion of the shift fork was about 20 μm, and the wear amount of the groove portion of the hub sleeve was almost zero.

Figure 2006258149
Figure 2006258149

(比較例8から10)
実施例1と同様の組合せ摺動部材を製作した。実施例1と異なる点は、DLCを被覆する前のハブスリーブの溝部のあらさを調整して、ハブスリーブの溝に形成したDLCの被膜の表面あらさを、比較例8から順に十点平均あらさRz1μm、3μm、5μmにした点である。
(Comparative Examples 8 to 10)
A combination sliding member similar to that in Example 1 was manufactured. The difference from Example 1 is that the roughness of the groove portion of the hub sleeve before coating the DLC is adjusted, and the surface roughness of the DLC coating formed on the groove of the hub sleeve is changed to the ten-point average roughness Rz1 μm in order from Comparative Example 8. The point is 3 μm and 5 μm.

そして、比較例8から10の組合せ摺動部材に対して、実施例1と同様の摩耗試験を行い、さらに、実施例1と同様にこれらに対応した試験片を製作し焼付き試験を行った。その結果を、図3及び表3に示す。   Then, the same sliding test as in Example 1 was performed on the combination sliding members of Comparative Examples 8 to 10, and further, test pieces corresponding to these were manufactured and the seizure test was performed as in Example 1. . The results are shown in FIG.

図3及び表3に示すように、ハブスリーブの溝部に被覆したDLCの被膜の表面あらさを大きくしても、ハブスリーブの溝部の摩耗量はほとんど変化しないが、ハブスリーブの溝部を押圧するシフトフォークの爪部の摩耗量は増加し、この組合せ摺動部材の焼付き荷重も低下し、摩擦係数も大きくなった。   As shown in FIG. 3 and Table 3, even if the surface roughness of the DLC film coated on the groove portion of the hub sleeve is increased, the wear amount of the groove portion of the hub sleeve hardly changes, but the shift that presses the groove portion of the hub sleeve is changed. The amount of wear on the fork pawls increased, the seizure load of the combined sliding member decreased, and the friction coefficient increased.

また、比較例8から10の組合せ摺動部材は、実施例6、7に比べて、シフトフォークの爪部の摩耗量が大きく、摺動部材としての焼付き荷重も小さく、摩擦係数が大きかった。   In addition, the combination sliding members of Comparative Examples 8 to 10 had a larger amount of wear on the claw portion of the shift fork, a smaller seizure load as a sliding member, and a larger coefficient of friction than Examples 6 and 7. .

(評価3)
このような結果から、ハブスリーブの溝部に被覆したDLCの表面あらさは、十点平均あらさRz0.5μm以下にすることが好ましく、この表面あらさよりも大きいと、ハブスリーブの溝部に接触するシフトフォークの爪部がアブレッシブ摩耗により、摩耗量が増加すると考えられ、これらの部材の摺動抵抗も増加すると考えられる。
(Evaluation 3)
From these results, it is preferable that the surface roughness of the DLC coated on the groove portion of the hub sleeve is 10 points average roughness Rz 0.5 μm or less. If this surface roughness is larger than this, the shift fork that contacts the groove portion of the hub sleeve It is considered that the amount of wear of the claw portion of the claw is increased due to the abrasive wear, and the sliding resistance of these members is also increased.

本実施例の組合せ摺動部材は、車両のトランスミッションのシフトフォークとハブスリーブに用いた例を示したが、エンジンのピストンリングとシリンダの摺動部材など、摺動する頻度が高く、耐摩耗性が要求されるような環境において使用される摺動部材に特に好適である。   Although the example of the combination sliding member of this embodiment is used for a shift fork and a hub sleeve of a vehicle transmission, such as a sliding member of an engine piston ring and a cylinder, the sliding frequency is high and wear resistance. It is particularly suitable for a sliding member used in an environment in which is required.

実施例1の組合せ摺動部材と比較例1から5の組合せ摺動部材の摩耗試験結果を示した図。The figure which showed the abrasion test result of the combination sliding member of Example 1, and the combination sliding member of Comparative Examples 1-5. 実施例2から5の組合せ摺動部材と比較例6及び7の組合せ摺動部材の摩耗試験結果を示した図。The figure which showed the abrasion test result of the combination sliding member of Examples 2 to 5 and the combination sliding member of Comparative Examples 6 and 7. 実施例6及び7の組合せ摺動部材と比較例8から10の組合せ摺動部材の摩耗試験結果を示した図。The figure which showed the abrasion test result of the combination sliding member of Example 6 and 7 and the combination sliding member of Comparative Examples 8-10. 従来の車両のトランスミッションを示した図。The figure which showed the transmission of the conventional vehicle. 図4に示すトランスミッションのシフトフォークを示した図。The figure which showed the shift fork of the transmission shown in FIG.

符号の説明Explanation of symbols

10:シフトフォーク,13:爪部,20:ハブスリーブ,21:溝部,100:トランスミッション 10: Shift fork, 13: Claw, 20: Hub sleeve, 21: Groove, 100: Transmission

Claims (5)

摺動面に非晶質炭素材料からなる被膜を形成した第一部材と、該第一部材の摺動面と摺動する摺動面にアルミニウム材料又はその合金材料を酸化処理することによりHv1000からHv2000の表面硬度を有する表面硬化層を形成した第二部材と、を有することを特徴とする組合せ摺動部材。   A first member having a coating made of an amorphous carbon material formed on the sliding surface, and an aluminum material or an alloy material thereof is oxidized on the sliding surface that slides with the sliding surface of the first member. And a second member on which a hardened surface layer having a surface hardness of Hv2000 is formed. 前記第二部材の酸化処理は、プラズマ電解酸化処理であることを特徴とする請求項1に記載の組合せ摺動部材。   The combination sliding member according to claim 1, wherein the oxidation treatment of the second member is a plasma electrolytic oxidation treatment. 前記第一部材に被覆した非晶質炭素材料の表面硬度は、Hv1000からHv5000であることを特徴とする請求項1又は2に記載の組合せ摺動部材。   The combined sliding member according to claim 1 or 2, wherein the amorphous carbon material coated on the first member has a surface hardness of Hv1000 to Hv5000. 前記第一部材に被覆した非晶質炭素材料の表面あらさは、十点平均あらさRz0.5μm以下であることを特徴とする請求項1から3のいずれか一項に記載の組合せ摺動部材。   4. The combined sliding member according to claim 1, wherein the surface roughness of the amorphous carbon material coated on the first member is a ten-point average roughness Rz of 0.5 μm or less. 5. 請求項1から4のいずれか一項に記載の組合せ摺動部材を用いたトランスミッションであって、当該トランスミッションを構成するハブスリーブの摺動面には組合せ摺動部材の第一部材が用いられ、シフトフォークの摺動面には組合せ摺動部材の第二部材が用いられていることを特徴とするトランスミッション。   A transmission using the combination sliding member according to any one of claims 1 to 4, wherein a first member of the combination sliding member is used on a sliding surface of a hub sleeve constituting the transmission, A transmission characterized in that a second member of a combination sliding member is used on the sliding surface of the shift fork.
JP2005074181A 2005-03-16 2005-03-16 Combined slide member Withdrawn JP2006258149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074181A JP2006258149A (en) 2005-03-16 2005-03-16 Combined slide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074181A JP2006258149A (en) 2005-03-16 2005-03-16 Combined slide member

Publications (1)

Publication Number Publication Date
JP2006258149A true JP2006258149A (en) 2006-09-28

Family

ID=37097641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074181A Withdrawn JP2006258149A (en) 2005-03-16 2005-03-16 Combined slide member

Country Status (1)

Country Link
JP (1) JP2006258149A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068179A1 (en) * 2007-11-28 2009-06-04 Daimler Ag Gear shifting device for a manual transmission of a motor vehicle
JP2010060030A (en) * 2008-09-03 2010-03-18 Dymco:Kk Steel belt or steel sleeve having non-adhesive heat-resistant coating
JP2012021637A (en) * 2010-07-16 2012-02-02 Aichi Machine Industry Co Ltd Shift fork and transmission equipped with the same
US8585887B2 (en) 2008-08-06 2013-11-19 Aisin Seiki Kabushiki Kaisha Aluminum alloy member and method for manufacturing same
JP2016540119A (en) * 2013-11-12 2016-12-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Method for producing a tribological coated surface
WO2018173719A1 (en) 2017-03-23 2018-09-27 Kyb株式会社 Method for manufacturing sliding member, and sliding member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068179A1 (en) * 2007-11-28 2009-06-04 Daimler Ag Gear shifting device for a manual transmission of a motor vehicle
WO2009068123A2 (en) * 2007-11-28 2009-06-04 Daimler Ag Selector fork for a manual transmission of a motor vehicle and method for producing a selector fork
WO2009068123A3 (en) * 2007-11-28 2009-09-24 Daimler Ag Selector fork for a manual transmission of a motor vehicle and method for producing a selector fork
US8585887B2 (en) 2008-08-06 2013-11-19 Aisin Seiki Kabushiki Kaisha Aluminum alloy member and method for manufacturing same
JP2010060030A (en) * 2008-09-03 2010-03-18 Dymco:Kk Steel belt or steel sleeve having non-adhesive heat-resistant coating
JP2012021637A (en) * 2010-07-16 2012-02-02 Aichi Machine Industry Co Ltd Shift fork and transmission equipped with the same
JP2016540119A (en) * 2013-11-12 2016-12-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Method for producing a tribological coated surface
WO2018173719A1 (en) 2017-03-23 2018-09-27 Kyb株式会社 Method for manufacturing sliding member, and sliding member
US10767694B2 (en) 2017-03-23 2020-09-08 Kyb Corporation Manufacturing method for sliding member and sliding member

Similar Documents

Publication Publication Date Title
RU2231695C2 (en) Anti-friction bearing provided with coat (versions)
JP5841607B2 (en) Sliding member and sliding material composition
JP4400603B2 (en) Member with hard carbon coating
JP2006258149A (en) Combined slide member
CN1789754A (en) Friction coupling with at least one first friction unit and at least one second friction unit as cooperating unit
US9062713B2 (en) Slide bearing
JP2008286354A (en) Sliding member
JP2006144848A (en) Bearing for rocker arm
JP5141654B2 (en) Sliding parts
CN104662329B (en) Chain element, chain pin and method for producing the same
WO2016002810A1 (en) Piston ring
JP2007205564A (en) Sliding member and clutch
JP4901207B2 (en) piston ring
JP2005256868A (en) Slide member in pair
JP2004332915A (en) Roller bearing
WO2020095807A1 (en) Piston ring
JP2007327037A (en) Rolling slide member, and rolling apparatus using the same
JP6343581B2 (en) Sliding member and sliding machine
JP5385039B2 (en) Powder for shot peening imparting slidability and surface compressive residual stress at the same time, and method for producing slidable member using the same
JP4725229B2 (en) Combination sliding member, and internal combustion engine and plain bearing mechanism using the same
WO2018143138A1 (en) Rolling bearing
WO2019130553A1 (en) Low-friction sliding mechanism
JP2006257916A (en) Combinational sliding member
JP4736684B2 (en) Combination sliding member
JP2006299381A (en) Combined sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090609