JP2006257359A - Gravity dehydrating type dehydrator - Google Patents

Gravity dehydrating type dehydrator Download PDF

Info

Publication number
JP2006257359A
JP2006257359A JP2005079924A JP2005079924A JP2006257359A JP 2006257359 A JP2006257359 A JP 2006257359A JP 2005079924 A JP2005079924 A JP 2005079924A JP 2005079924 A JP2005079924 A JP 2005079924A JP 2006257359 A JP2006257359 A JP 2006257359A
Authority
JP
Japan
Prior art keywords
dehydration
gas hydrate
tower
dehydration tower
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005079924A
Other languages
Japanese (ja)
Other versions
JP4620508B2 (en
Inventor
Tetsuo Murayama
哲郎 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005079924A priority Critical patent/JP4620508B2/en
Publication of JP2006257359A publication Critical patent/JP2006257359A/en
Application granted granted Critical
Publication of JP4620508B2 publication Critical patent/JP4620508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Filtration Of Liquid (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the height of a cylinder of a dehydration column while maintaining the through-put of the dehydration column at the level of the through-put of the conventional dehydration column and to thereby reduce the construction cost, running cost, etc. <P>SOLUTION: The gravity dehydrating type dehydrator is designed to introduce a gas hydrate (a) produced by reacting a gas (g) with water (w) together with the unreacted water into the dehydration column 5, lift the gas hydrate from the lower side of the dehydration column 5 to the upper side thereof and discharge the unreacted water from a filtration part 7 provided in the sidewall surface of the dehydration column 5 to the outside of the column during the lifting. The dehydration column 5 is a dehydration column 22 of a double cylindrical structure composed of two cylinders of an inner cylinder 23 and an outer cylinder 24. Filters 26a and 26b for dehydration are provided in both sidewall surfaces of the inner cylinder 23 and outer cylinder 24, respectively and the unreacted water is discharged from the two filters of the filter 26a provided in the inner cylinder and the filter 26b provided in the outer cylinder to the outside of the column. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、重力脱水式の脱水装置、更に詳しくは、ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置に関するものである。   The present invention relates to a gravity dehydration type dehydrator, more specifically, a gas hydrate produced by reacting a gas and water is introduced into a dehydration tower together with unreacted water, and the dehydration tower is moved upward from below. And a gravity dehydration-type dehydration apparatus that causes unreacted water to flow out of the tower from the filtration section provided on the side wall surface of the dehydration tower.

メタンなどの炭化水素を主成分とする天然ガスを貯蔵及び輸送する方法としては、天然ガスを液化温度まで冷却してLNG(液化天然ガス)とし、このLNGを貯蔵及び輸送する方法が一般的である。   As a method of storing and transporting natural gas mainly composed of hydrocarbons such as methane, a method of storing and transporting LNG by cooling natural gas to a liquefaction temperature to form LNG (liquefied natural gas) is common. is there.

しかし、LNGの主成分であるメタンを液化させるには、−162℃という極低温が必要であり、こうした厳しい条件を維持しながら貯蔵及び輸送を行うためには、専用の貯蔵施設やLNG船が必要となる。   However, in order to liquefy methane, which is the main component of LNG, an extremely low temperature of −162 ° C. is necessary. In order to store and transport these strict conditions, dedicated storage facilities and LNG ships are required. Necessary.

こうした装置の製造及び維持管理には、非常に高いコストを要するため、上記の方法に代わる低コストの貯蔵及び輸送する方法が研究されてきた。   The manufacture and maintenance of such devices are very expensive, and low cost storage and transport methods have been investigated as an alternative to the above methods.

こうした研究の結果、天然ガスと水を反応させて固体状態の水和物(以下、ガスハイドレートという。)を生成し、このガスハイドレートを貯蔵及び輸送する方法が見出され、注目を集めている。   As a result of such research, a method for storing and transporting this gas hydrate was discovered, which produced a solid-state hydrate (hereinafter referred to as gas hydrate) by reacting natural gas with water. ing.

この方法では、LNGを取り扱う場合のような超低温条件を必要としないばかりでなく、ガスハイドレートが固体であるため、その取り扱いも比較的に容易である。   In this method, not only the ultra-low temperature condition as in the case of handling LNG is required, but also the handling is relatively easy because the gas hydrate is solid.

ガスハイドレートとは、包接化合物(クラスレート化合物)の一種であって、複数の水分子により形成された立体かご型の包接格子(クラスレート)の中に、天然ガスの各成分を構成する分子、すなわち、メタン、エタン、プロパンなどが入り込み、包接された結晶構造を成すものである。例えば、メタンの水和物が安定に存在し得る条件下、すなわち、−30℃で、なおかつ、大気圧においては、気体の場合と比較して約1/170の体積となる。   Gas hydrate is a kind of clathrate compound (clathrate compound), and each component of natural gas is formed in a three-dimensional cage clathrate formed by multiple water molecules. Molecules, that is, methane, ethane, propane, etc. enter and form an inclusion crystal structure. For example, under a condition where hydrates of methane can exist stably, that is, at −30 ° C. and at atmospheric pressure, the volume is about 1/170 compared to the case of gas.

このように、ガスハイドレートは、比較的容易に得られる温度条件及び圧力条件下において製造可能であり、しかも、安定した保存が可能である。   Thus, the gas hydrate can be produced under temperature and pressure conditions that are relatively easily obtained, and can be stably stored.

このガスハイドレートの製造を工業化して大量に製造しようとすると、天然ガスを水中に吹き込んでガスハイドレートを製造する方法(バブリング方式)(例えば、特許文献1参照。)、あるいは、ガス相内に水をスプレーしてガスハイドレートを製造する方法(スプレー方式)(例えば、特許文献2参照。)などがある。
特開2003−80056号公報 特開2003−105362号公報
In order to industrialize the production of this gas hydrate and produce it in large quantities, a method for producing gas hydrate by blowing natural gas into water (a bubbling method) (see, for example, Patent Document 1), or in the gas phase There is a method for producing gas hydrate by spraying water (spray method) (for example, see Patent Document 2).
JP 2003-80056 A JP 2003-105362 A

しかしながら、いずれの場合も、生成直後のガスハイドレートは、未反応の水を含んだスラリー状態であるため、そのままの状態、あるいは、冷凍して氷の状態で貯蔵及び輸送すれば、水あるいは氷の分だけ、余分な費用がかかるという問題がある。   However, in any case, since the gas hydrate immediately after production is in a slurry state containing unreacted water, if it is stored and transported as it is or after being frozen and stored in ice, There is a problem that extra costs are required.

このような問題を回避するために、スラリー状のガスハイドレートを脱水してガスハイドレートの濃度を高めることが行われているが、特許文献2の発明のように、スクリュープレス型脱水装置を使用して強制的に脱水する場合には、脱水後の濾液中にガスハイドレートの固体粒子が混入することが避けられない。このため、ガスハイドレートの回収率が低下するという問題がある。   In order to avoid such a problem, the slurry gas hydrate is dehydrated to increase the concentration of the gas hydrate. As in the invention of Patent Document 2, a screw press type dehydrator is used. When using and dehydrating forcibly, it is inevitable that solid particles of gas hydrate are mixed in the filtrate after dehydration. For this reason, there exists a problem that the recovery rate of gas hydrate falls.

そこで、本発明者らは、図4の如く、重力を利用した重力脱水式の脱水装置を考えた。この脱水装置を含むガスハイドレート製造装置は、次のような構造となっている。   Therefore, the present inventors have considered a gravity dehydration type dehydrator using gravity as shown in FIG. The gas hydrate manufacturing apparatus including this dehydrating apparatus has the following structure.

すなわち、第1生成器1に水wと原料ガスである天然ガスgを供給して、天然ガスgと水wの水和物であるガスハイドレート(図示せず)を生成する。そのとき、第1生成器1内を攪拌機2で攪拌して低濃度のスラリーsとなるようにする。   That is, the water w and the natural gas g that is the raw material gas are supplied to the first generator 1 to generate a gas hydrate (not shown) that is a hydrate of the natural gas g and the water w. At that time, the inside of the first generator 1 is stirred by the stirrer 2 so as to be a low-concentration slurry s.

その際、第1生成器1内に伝熱管3を設けたり、あるいは、第1生成器1の外側に冷却ジャケット(図示せず)を設けて第1生成器1内を冷却する。   At that time, the heat transfer tube 3 is provided in the first generator 1, or a cooling jacket (not shown) is provided outside the first generator 1 to cool the inside of the first generator 1.

この第1生成器1で製造された低濃度のガスハイドレートスラリーsは、スラリー供給ポンプ4によって円筒形の脱水塔5の底部に供給される。この脱水塔5は、その側壁面に金網、あるいは多孔質の焼結板などから成る脱液用の濾過体7を備えている。この濾過体7の外側には、排水ジャケット8を有している。   The low concentration gas hydrate slurry s produced in the first generator 1 is supplied to the bottom of the cylindrical dehydration tower 5 by the slurry supply pump 4. The dehydration tower 5 is provided with a liquid removal filter 7 made of a metal mesh or a porous sintered plate on the side wall surface. A drainage jacket 8 is provided outside the filter body 7.

濾過体7から脱水塔5の外側に流出した水(未反応水)wは、循環水ポンプ9によって第1生成器1に戻されるが、その間に循環水冷却器10によって所定の温度に冷却される。また、排水ジャケット8内に流出した未反応ガスgは、循環ガスブロワ11によって第1生成器1に戻される。   Water (unreacted water) w flowing out from the filter body 7 to the outside of the dehydration tower 5 is returned to the first generator 1 by the circulating water pump 9, while being cooled to a predetermined temperature by the circulating water cooler 10. The The unreacted gas g flowing into the drainage jacket 8 is returned to the first generator 1 by the circulating gas blower 11.

脱水塔5によって脱水され、含水率の低下したガスハイドレートaは、脱水塔5の上端に設けたスクリューフィーダ等の搬送装置12によって第2生成器(図示せず)に供給され、更に、水和反応を利用した脱水が行われる。そして、ガスハイドレートの製造が進行するに連れ、第1生成器1には、ポンプ13によって水wが補給され、原料ガス圧縮機14によって天然ガスgが補給される。   The gas hydrate a dehydrated by the dehydration tower 5 and having a reduced water content is supplied to a second generator (not shown) by a conveying device 12 such as a screw feeder provided at the upper end of the dehydration tower 5, Dehydration is performed using a sum reaction. As the production of gas hydrate proceeds, the first generator 1 is replenished with water w by the pump 13 and replenished with natural gas g by the raw material gas compressor 14.

ところで、このガスハイドレート製造装置を大型化して、ガスハイドレートを量産しようとすると、従来の円筒形の脱水塔5は、その直径及び高さが大きなものとなる。脱水塔5の高さが増加すると、スラリー供給ポンプ4のポンプヘッドが高くなり、消費動力の増加するという問題がある。   By the way, when this gas hydrate production apparatus is enlarged and mass production of gas hydrate is attempted, the conventional cylindrical dehydration tower 5 has a large diameter and height. When the height of the dehydration tower 5 increases, the pump head of the slurry supply pump 4 becomes higher, and there is a problem that the power consumption increases.

他方、脱水塔5の直径Dについては、例えば、2.4T/Dのプラントを想定した場合、脱水塔5の横断面積Aが約116.11(m2 )となり、脱水塔5の直径Dが約12(m)の大きさとなる。 On the other hand, regarding the diameter D of the dehydration tower 5, for example, assuming a 2.4 T / D plant, the cross-sectional area A of the dehydration tower 5 is about 116.11 (m 2 ), and the diameter D of the dehydration tower 5 is The size is about 12 (m).

このように、脱水塔5の直径Dが増大すると、脱水塔5に設けた濾過体7の内側面に堆積するガスハイドレートaの堆積層の厚さが非常に厚くなり、脱水塔5の中心部Cの水が排水され難いという問題がある(図5参照。)。   As described above, when the diameter D of the dehydration tower 5 increases, the thickness of the deposition layer of the gas hydrate a deposited on the inner surface of the filter body 7 provided in the dehydration tower 5 becomes very thick. There is a problem that the water of part C is difficult to drain (see FIG. 5).

本発明は、このような問題を解消するためになされたものであり、その目的とするところは、脱水塔の処理量を、従来の脱水塔の処理量の水準を保持しながら、脱水塔の筒の高さを抑制し、以て、建設コスト、ランニングコスト等の低減を図ることにある。   The present invention has been made to solve such problems, and the object of the present invention is to maintain the level of throughput of the dehydration tower while maintaining the level of throughput of the conventional dehydration tower. The purpose is to reduce the construction cost and running cost by suppressing the height of the tube.

本発明は、かかる目的を達成するために、次のように構成されている。   In order to achieve this object, the present invention is configured as follows.

請求項1に記載の発明は、ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置であって、前記脱水塔を、内筒と外筒の二つの筒体より成る2重筒形構造の脱水塔とし、かつ、前記内筒と外筒の両側壁面にそれぞれ脱水用の濾過体を設けて、未反応の水を内筒に設けた濾過体と、外筒に設けた濾過体との二つの濾過体より塔外に流出させることを特徴とする重力脱水式の脱水装置である。   The invention according to claim 1 introduces gas hydrate generated by reacting gas and water into a dehydration tower together with unreacted water, and raises the dehydration tower upward from below. A gravitational dehydration type dehydrating apparatus for causing unreacted water to flow out of the tower from the filtration section provided on the side wall surface of the dehydration tower during the ascent, wherein the dehydration tower is divided into two cylinders, an inner cylinder and an outer cylinder. A dehydrating tower having a double cylinder structure, and a dehydrating filter body provided on both side wall surfaces of the inner cylinder and the outer cylinder, respectively, and an unreacted water provided in the inner cylinder; and an outer cylinder It is a gravity dehydration-type dehydrator characterized in that it flows out of the tower through two filter bodies with a filter body provided in the column.

請求項2に記載の発明は、ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置であって、耐圧容器内に、内外両側壁面にそれぞれ脱水用の濾過体を設けた2重筒形構造の脱水塔を内蔵し、該脱水塔の中央の空洞内に筒形のガスハイドレート投入部を設けて、該ガスハイドレート投入部と前記耐圧容器との間に排水槽を形成し、更に、前記ガスハイドレート投入部内にガスハイドレート粉砕用の粉砕装置を設けると共に、前記ガスハイドレート投入部の下方にガスハイドレート排出装置を設け、前記脱水塔の上方にスクレーパを回転自在に設け、更に、前記脱水塔の下方にスラリー供給管を設け、かつ、前記排水槽に排水管を設けたことを特徴とする重力脱水式の脱水装置である。   The invention according to claim 2 introduces gas hydrate produced by reacting gas and water into a dehydration tower together with unreacted water, and raises the dehydration tower upward from below. A gravitational dehydration type dehydration device for allowing unreacted water to flow out from a filtration section provided on a side wall surface of a dehydration tower during the ascent to the outside of the tower. A dehydrating tower having a double cylindrical structure is provided, and a cylindrical gas hydrate charging section is provided in the central cavity of the dehydrating tower, and the gas hydrate charging section and the pressure vessel are disposed between A drainage tank is formed, and further, a pulverizing device for gas hydrate pulverization is provided in the gas hydrate input part, and a gas hydrate discharge device is provided below the gas hydrate input part, above the dehydration tower. A scraper is rotatably provided, and The slurry supply pipe provided below the water tower, and a gravity dewatering type dewatering apparatus characterized in that a drain pipe to the drain tank.

請求項3に記載の発明は、前記粉砕装置と、前記スクレーパとを共通の回転軸に設けることを特徴とする請求項2記載の重力脱水式の脱水装置である。   The invention according to claim 3 is the gravity dewatering type dewatering apparatus according to claim 2, wherein the crushing device and the scraper are provided on a common rotating shaft.

請求項4に記載の発明は、前記ガスハイドレート排出装置として、スクリューフィーダーを適用することを特徴とする請求項2記載の重力脱水式の脱水装置である。   The invention according to claim 4 is the gravity dehydration type dehydrating apparatus according to claim 2, wherein a screw feeder is applied as the gas hydrate discharging apparatus.

上記のように、請求項1に記載の発明は、ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置であって、前記脱水塔を、内筒と外筒の二つの筒体より成る2重筒形構造の脱水塔とし、かつ、前記内筒と外筒の両側壁面にそれぞれ脱水用の濾過体を設けて、未反応の水を内筒に設けた濾過体と、外筒に設けた濾過体との二つの濾過体より塔外に流出させるので、本発明の脱水塔の横断面積Aが、従来の円筒型の脱水塔の横断面積Aと同じであっても、本発明は、脱水塔の内外両筒間の間隔Wが(D0 −D1 )/2となり、従来のものに比べて脱水塔の内外両筒間の間隔Wが大幅に縮小する(図2参照。)。 As described above, the invention according to claim 1 introduces the gas hydrate produced by reacting gas and water into the dehydration tower together with unreacted water, and from above to below the dehydration tower. Gravity dehydration type dehydration device that raises the unreacted water to the outside of the tower from the filtration section provided on the side wall surface of the dehydration tower during the ascent, wherein the dehydration tower comprises an inner cylinder and an outer cylinder. A double-tubular dehydration tower comprising two cylinders, and a filter for dehydration provided on both side walls of the inner cylinder and the outer cylinder, respectively, and unreacted water provided in the inner cylinder. The cross-sectional area A of the dehydrating tower of the present invention is the same as the cross-sectional area A of the conventional cylindrical dehydrating tower. also, the present invention, the distance W between the inner and outer cylinder of the dewatering tower is (D 0 -D 1) / 2, and the inside and outside both the dehydration column as compared with the conventional Distance W between is significantly reduced (see Fig. 2.).

例えば、2.4T/Dのプラントを想定し、なおかつ、外筒の直径D0 を14.04(m)と想定した場合、内筒の直径D1 が7.02(m)となり、脱水塔の内外両筒間の間隔W(=(D0 −D1 )/2)が約3.5(m)となる。 For example, when a 2.4 T / D plant is assumed and the outer cylinder diameter D 0 is assumed to be 14.04 (m), the inner cylinder diameter D 1 becomes 7.02 (m), and the dehydration tower The distance W (= (D 0 −D 1 ) / 2) between the inner and outer cylinders is about 3.5 (m).

従って、従来の円筒型の脱水塔の直径Dが約12(m)であるのに対し、本発明の2重筒形構造の脱水塔は、内筒と外筒との間の間隔Wがが約3.5(m)となることから、本発明の2重筒形構造の脱水塔は、従来の円筒型の脱水塔に比べて脱水が円滑に行えるようになった。   Therefore, while the diameter D of the conventional cylindrical dehydration tower is about 12 (m), the double cylindrical structure dehydration tower of the present invention has a gap W between the inner cylinder and the outer cylinder. Since it was about 3.5 (m), the dehydration tower having the double cylindrical structure of the present invention can be dehydrated more smoothly than the conventional cylindrical dehydration tower.

その結果、脱水塔の処理量を従来の脱水塔の処理量の水準を保持しながら、脱水塔の筒の高さを抑制し、以て、建設コスト、ランニングコスト等の低減を図ることが可能となった。   As a result, it is possible to reduce the construction cost, running cost, etc., while suppressing the height of the column of the dehydration tower while maintaining the processing amount of the dehydration tower at the level of the conventional dewatering tower. It became.

請求項2に記載の発明は、ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置であって、耐圧容器内に、内外両側壁面にそれぞれ脱水用の濾過体を設けた2重筒形構造の脱水塔を内蔵し、該脱水塔の中央の空洞内に筒形のガスハイドレート投入部を設けて、該ガスハイドレート投入部と前記耐圧容器との間に排水槽を形成し、更に、前記ガスハイドレート投入部内にガスハイドレート粉砕用の粉砕装置を設けると共に、前記ガスハイドレート投入部の下方にガスハイドレート排出装置を設け、前記脱水塔の上方にスクレーパを回転自在に設け、更に、前記脱水塔の下方にスラリー供給管を設け、かつ、前記排水槽に排水管を設けたので、既に説明した効果に加え、脱水塔の上方のスクレーパと、ガスハイドレート投入部下方のガスハイドレート排出装置を用いて脱水後のガスハイドレートを円滑に送出することができる。   The invention according to claim 2 introduces gas hydrate produced by reacting gas and water into a dehydration tower together with unreacted water, and raises the dehydration tower upward from below. A gravitational dehydration type dehydration device for allowing unreacted water to flow out from a filtration unit provided on the side wall surface of the dehydration tower during the ascending operation, wherein the dehydration filter is provided in the pressure vessel and on both inner and outer wall surfaces. A dehydrating tower having a double cylindrical structure is provided, and a cylindrical gas hydrate charging section is provided in the central cavity of the dehydrating tower, and the gas hydrate charging section and the pressure vessel are disposed between A drainage tank is formed, and further, a pulverizing device for gas hydrate pulverization is provided in the gas hydrate input part, and a gas hydrate discharge device is provided below the gas hydrate input part, above the dehydration tower. A scraper is rotatably provided, and Since the slurry supply pipe is provided under the water tower and the drain pipe is provided in the drain tank, in addition to the effects already described, the scraper above the dehydration tower and the gas hydrate discharge device below the gas hydrate input section Can be used to smoothly feed the dehydrated gas hydrate.

請求項3に記載の発明は、前記粉砕装置と、前記スクレーパとを共通の回転軸に取り付けたので、部品点数を低減することができる。   In the invention according to claim 3, since the pulverizing apparatus and the scraper are attached to a common rotating shaft, the number of parts can be reduced.

請求項4に記載の発明は、前記ガスハイドレート排出装置として、スクリューフィーダーを適用するので、脱水後のガスハイドレートを円滑に移送することができる。   In the invention according to claim 4, since a screw feeder is applied as the gas hydrate discharge device, the dehydrated gas hydrate can be smoothly transferred.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の係る重力脱水式の脱水装置の断面図である。図2は図1のX−X線断面図、図3は図1のY−Y線断面図である。   FIG. 1 is a cross-sectional view of a gravity dehydration type dehydrator according to the present invention. 2 is a cross-sectional view taken along line XX of FIG. 1, and FIG. 3 is a cross-sectional view taken along line YY of FIG.

図1において、符号20は、重力脱水式の脱水装置であり、耐圧容器(耐圧殻ともいう。)21の中に脱水塔22を内蔵している。この脱水塔22は、図2に示すように、直径D1 の内筒23と、それより直径D0 の大きい外筒24により形成された2重筒形構造となっている。 In FIG. 1, reference numeral 20 denotes a gravity dehydration type dehydrator, which includes a dehydration tower 22 in a pressure vessel (also referred to as a pressure shell) 21. As shown in FIG. 2, the dehydrating tower 22 has a double cylindrical structure formed by an inner cylinder 23 having a diameter D 1 and an outer cylinder 24 having a larger diameter D 0 .

なお、上記内筒23の上端は、外筒24の上端より、若干、低くなっており、脱水塔22の上端開口部25が逆円錐台状になっている。   The upper end of the inner cylinder 23 is slightly lower than the upper end of the outer cylinder 24, and the upper end opening 25 of the dewatering tower 22 has an inverted truncated cone shape.

また、脱水塔22は、図1に示すように、所定の高さの部位に脱水用の濾過体26a及び26bを設けている。すなわち、内筒23は、金網や多孔質の焼結板等で形成した円環状の脱液用濾過体26aを所定の高さの部位に設けている。また、外筒24は、前記濾過体26aと同様の方法で形成した脱液用濾過体26bを前記濾過体26aと同様の高さの部位に設けている。   Further, as shown in FIG. 1, the dehydration tower 22 is provided with filter bodies 26a and 26b for dehydration at a predetermined height. That is, the inner cylinder 23 is provided with an annular liquid removal filter body 26a formed of a wire mesh, a porous sintered plate, or the like at a predetermined height. Further, the outer cylinder 24 is provided with a liquid removal filter body 26b formed by the same method as that of the filter body 26a at the same height as the filter body 26a.

この脱水塔22は、その中央の空洞27内に円筒形のガスハイドレート投入部28を設けて、ガスハイドレート投入部28と耐圧容器21との間に排水槽29を形成している。この排水槽29は、円環状の底板30を有している。また、脱水塔の外筒24と耐圧容器21との間の隙間は、円環状の遮蔽板31によって塞いでいる。   The dehydration tower 22 is provided with a cylindrical gas hydrate charging part 28 in a central cavity 27, and a drain tank 29 is formed between the gas hydrate charging part 28 and the pressure vessel 21. The drainage tank 29 has an annular bottom plate 30. In addition, the gap between the outer cylinder 24 of the dehydration tower and the pressure vessel 21 is closed by an annular shielding plate 31.

更に、この脱水塔22は、ガスハイドレート投入部28の中にガスハイドレート粉砕用の粉砕装置32を設けている。この粉砕装置32は、耐圧容器21の上部を貫通している垂直な回転軸33の下端部に放射状に設けた複数の平板状のブレード34によって形成されている(図2参照。)。   Further, the dehydration tower 22 is provided with a pulverizing device 32 for gas hydrate pulverization in a gas hydrate charging section 28. The crusher 32 is formed by a plurality of flat blades 34 provided radially at the lower end of a vertical rotating shaft 33 that penetrates the upper portion of the pressure vessel 21 (see FIG. 2).

この粉砕装置32は、平板状のブレードに限らず、例えば、棒体のようなものでもよい。要は、ガスハイドレートの固まりを細かに粉砕できるものであればよい。なお、回転軸33は、モーター35によって回転するようになっている。   The crusher 32 is not limited to a flat blade, and may be a rod, for example. In short, any material that can finely pulverize the mass of the gas hydrate may be used. The rotating shaft 33 is rotated by a motor 35.

また、この円筒状のガスハイドレート投入部28の下方にガスハイドレート排出装置36を設けている。このガスハイドレート排出装置36は、複数台(例えば、2台)のスクリューフィーダー37を平行に設けることにより形成されている。なお、脱水後のガスハイドレートを円滑に排出できるものであれば、スクリューフィーダー以外のものでもよい。   A gas hydrate discharge device 36 is provided below the cylindrical gas hydrate input portion 28. The gas hydrate discharge device 36 is formed by providing a plurality of (for example, two) screw feeders 37 in parallel. In addition, as long as it can discharge | emit smoothly the gas hydrate after dehydration, things other than a screw feeder may be used.

また、この脱水塔22の上方にスクレーパ38を設けている。このスクレーパ38は、3枚のヘラ又はブレード39を上記回転軸33に放射状に設けることにより形成されている(図2参照。)。しかし、脱水後のガスハイドレートを脱水塔22から掻き落とすことができるものであれば、ヘラ又はブレード以外のものでもよい。   A scraper 38 is provided above the dehydration tower 22. The scraper 38 is formed by providing three spatulas or blades 39 radially on the rotating shaft 33 (see FIG. 2). However, as long as the dehydrated gas hydrate can be scraped off from the dehydration tower 22, it may be other than a spatula or a blade.

更に、この脱水塔22の下部には、脱水塔22の接線方向にスラリー供給管40を設け、スラリー供給管40から脱水塔22の下部に供給されたガスハイドレートスラリーsが脱水塔22内を旋回するようになっている。   Furthermore, a slurry supply pipe 40 is provided at the lower part of the dehydration tower 22 in the tangential direction of the dehydration tower 22, and the gas hydrate slurry s supplied from the slurry supply pipe 40 to the lower part of the dehydration tower 22 passes through the dehydration tower 22. It is designed to turn.

更に、上記排水槽29に排水管41を設け、脱水された未反応水(ブラインともいう。)wを図示しない生成器に戻すようになっている。また、上記耐圧容器21に配管42を設けて耐圧容器21内の未反応の天然ガスgを図示しない第1再生器に戻すようになっている。   Further, a drain pipe 41 is provided in the drain tank 29, and dehydrated unreacted water (also referred to as brine) w is returned to a generator (not shown). Further, the pressure vessel 21 is provided with a pipe 42 to return the unreacted natural gas g in the pressure vessel 21 to a first regenerator (not shown).

ここで、外筒24の直径をD0 、内筒23の直径をD1 、脱水塔22の横断面積をAとすると、内筒23の直径D1 は、次のようになる。 Here, assuming that the diameter of the outer cylinder 24 is D 0 , the diameter of the inner cylinder 23 is D 1 , and the cross-sectional area of the dehydrating tower 22 is A, the diameter D 1 of the inner cylinder 23 is as follows.

すなわち、
1 =2√((D0 /2)2 −(A/π))
That is,
D 1 = 2√ ((D 0 /2) 2 - (A / π))

従って、例えば、2.4T/Dのプラントを想定し、なおかつ、外筒24の直径D0 を14.04(m)、脱水塔22の横断面積Aを従来の円筒形の脱水塔の横断面積と同様に116.11(m2 )と想定すると、内筒23の直径D1 が7.02(m)となり、脱水塔22の内外両筒間の間隔W(=(D0 −D1 )/2)が約3.5(m)となる。 Therefore, for example, assuming a 2.4 T / D plant, the diameter D 0 of the outer cylinder 24 is 14.04 (m), and the cross-sectional area A of the dehydration tower 22 is the cross-sectional area of a conventional cylindrical dehydration tower. As in the case of 116.11 (m 2 ), the diameter D 1 of the inner cylinder 23 is 7.02 (m), and the interval W between the inner and outer cylinders of the dehydration tower 22 (= (D 0 −D 1 ) / 2) is about 3.5 (m).

次に、この脱水装置の作用について説明する。   Next, the operation of this dehydrator will be described.

図1に示すように、スラリー供給管40から2重筒形構造の脱水塔22にガスハイドレートスラリーsを供給すると、このガスハイドレートスラリーsは、図2に示すように、脱水塔22内を旋回しながら、内筒23と外筒24との間を下方から上方に向って上昇する。   As shown in FIG. 1, when a gas hydrate slurry s is supplied from a slurry supply pipe 40 to a dehydration tower 22 having a double cylindrical structure, the gas hydrate slurry s is contained in the dehydration tower 22 as shown in FIG. As it turns, the space between the inner cylinder 23 and the outer cylinder 24 rises from below to above.

そして、脱水塔22の内筒23に設けた円環状の濾過体26aと、外筒24に設けた円環状の濾過体26bの位置に達すると、ガスハイドレートスラリーsに含まれている未反応水wは、濾過体26a及び26bを通過して塔外に排出される。   And when it reaches the position of the annular filter body 26a provided in the inner cylinder 23 of the dehydration tower 22 and the annular filter body 26b provided in the outer cylinder 24, the unreacted contained in the gas hydrate slurry s. The water w passes through the filter bodies 26a and 26b and is discharged out of the tower.

すなわち、内筒23に装着した濾過体26aから排出された未反応水wは、内筒23の壁面を伝って排水槽29に流下し、外筒24に装着した濾過体26bから排出された未反応水wは、外筒24の壁面を伝って排水槽29に流下する。   That is, the unreacted water w discharged from the filter body 26 a attached to the inner cylinder 23 flows down to the drainage tank 29 along the wall surface of the inner cylinder 23, and the unreacted water w discharged from the filter body 26 b attached to the outer cylinder 24. The reaction water w flows down to the drainage tank 29 along the wall surface of the outer cylinder 24.

脱水塔22の濾過体26a,26bを通過する間に脱水され、含水率が約40〜50%となったガスハイドレートaは、順次、上方に押し上げられる。そして、脱水塔22の上部開口部25に達すると、スクレーパ38によって脱水塔22の中央に設けた円筒状のガスハイドレート投入部28内に掻き落とされる。   The gas hydrate a dehydrated while passing through the filter bodies 26a and 26b of the dehydrating tower 22 and having a water content of about 40 to 50% is sequentially pushed upward. Then, when reaching the upper opening 25 of the dehydration tower 22, the scraper 38 scrapes off into the cylindrical gas hydrate charging section 28 provided at the center of the dehydration tower 22.

ガスハイドレート投入部28内に掻き落とされたガスハイドレートaの固まりは、ガスハイドレート投入部28内に設けた粉砕装置32によって細かく粉砕されてガスハイドレート投入部28の下部に落下する。   The mass of the gas hydrate a scraped into the gas hydrate input unit 28 is finely pulverized by a pulverizer 32 provided in the gas hydrate input unit 28 and falls to the lower part of the gas hydrate input unit 28.

ガスハイドレート投入部28の下部に落下したガスハイドレートaは、2軸のスクリューフィーダー37によって次工程、例えば、第2生成器に搬送される。   The gas hydrate a dropped to the lower portion of the gas hydrate charging unit 28 is transported to the next process, for example, the second generator by the biaxial screw feeder 37.

他方、上記排水槽29に流下した未反応水wは、排水管41を経て図示しない第1生成器に戻される。また、耐圧容器21の上部空間内の天然ガスgは、配管42を経て第1生成器に戻される。   On the other hand, the unreacted water w flowing down to the drainage tank 29 is returned to the first generator (not shown) via the drainage pipe 41. Further, the natural gas g in the upper space of the pressure vessel 21 is returned to the first generator via the pipe 42.

本発明の係る重力脱水式の脱水装置の断面図である。1 is a cross-sectional view of a gravity dehydration type dehydrator according to the present invention. 図2は図1のX−X線断面図である。2 is a cross-sectional view taken along line XX of FIG. 図3は図1のY−Y線断面図である。3 is a cross-sectional view taken along line YY of FIG. 従来のガスハイドレート生成装置の構成図である。It is a block diagram of the conventional gas hydrate production | generation apparatus. 脱水塔の要部拡大説明図である。It is principal part expansion explanatory drawing of a dehydration tower.

符号の説明Explanation of symbols

a ガスハイドレート
g ガス
w 水
5 脱水塔
7 濾過部
22 2重筒形構造の脱水塔
23 内筒
24 外筒
26a,26b 脱水用の濾過体
a gas hydrate g gas w water 5 dehydration tower 7 filtration part 22 dehydration tower of double cylinder structure 23 inner cylinder 24 outer cylinder 26a, 26b filter for dehydration

Claims (4)

ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置であって、前記脱水塔を、内筒と外筒の二つの筒体より成る2重筒形構造の脱水塔とし、かつ、前記内筒と外筒の両側壁面にそれぞれ脱水用の濾過体を設けて、未反応の水を内筒に設けた濾過体と、外筒に設けた濾過体との二つの濾過体より塔外に流出させることを特徴とする重力脱水式の脱水装置。 Gas hydrate produced by reacting gas and water is introduced into the dehydration tower together with unreacted water, and is raised upward from below the dehydration tower. Unreacted water is removed during the rise. A gravity dehydration type dewatering device for flowing out from a filtration section provided on a side wall surface of a dewatering tower, wherein the dewatering tower has a double cylindrical structure composed of two cylinders, an inner cylinder and an outer cylinder. A filter body for dehydration is provided on both side wall surfaces of the inner cylinder and the outer cylinder, respectively, and a filter body provided with unreacted water in the inner cylinder and a filter body provided in the outer cylinder. Gravity dehydration type dehydration device, characterized in that it flows out of the tower from the filter body. ガスと水を反応させて生成したガスハイドレートを、未反応の水と一緒に脱水塔に導入して、該脱水塔の下方から上方に向けて上昇させ、該上昇中に未反応の水を脱水塔の側壁面に設けた濾過部から塔外に流出させる重力脱水式の脱水装置であって、耐圧容器内に、内外両側壁面にそれぞれ脱水用の濾過体を設けた2重筒形構造の脱水塔を内蔵し、該脱水塔の中央の空洞内に筒形のガスハイドレート投入部を設けて、該ガスハイドレート投入部と前記耐圧容器との間に排水槽を形成し、更に、前記ガスハイドレート投入部内にガスハイドレート粉砕用の粉砕装置を設けると共に、前記ガスハイドレート投入部の下方にガスハイドレート排出装置を設け、前記脱水塔の上方にスクレーパを回転自在に設け、更に、前記脱水塔の下方にスラリー供給管を設け、かつ、前記排水槽に排水管を設けたことを特徴とする重力脱水式の脱水装置。 Gas hydrate produced by reacting gas and water is introduced into the dehydration tower together with unreacted water, and is raised upward from below the dehydration tower. Unreacted water is removed during the rise. A gravitational dehydration type dehydrating apparatus that flows out from a filtration unit provided on a side wall surface of a dehydration tower, having a double cylindrical structure in which a filter for dehydration is provided on both inner and outer wall surfaces in a pressure vessel. Built-in dehydration tower, provided a cylindrical gas hydrate input portion in the central cavity of the dehydration tower, forming a drainage tank between the gas hydrate input portion and the pressure vessel, further, A pulverizer for gas hydrate pulverization is provided in the gas hydrate input part, a gas hydrate discharge device is provided below the gas hydrate input part, and a scraper is provided rotatably above the dehydration tower, A slurry is provided below the dehydration tower. The tube is provided, and gravity dewatering type dewatering apparatus characterized in that a drain pipe to the drain tank. 前記粉砕装置と、前記スクレーパとを共通の回転軸に設けることを特徴とする請求項2記載の重力脱水式の脱水装置。 The gravity dehydration type dehydrating apparatus according to claim 2, wherein the pulverizing apparatus and the scraper are provided on a common rotating shaft. 前記ガスハイドレート排出装置として、スクリューフィーダーを適用することを特徴とする請求項2記載の重力脱水式の脱水装置。
The gravity dehydration type dehydrating apparatus according to claim 2, wherein a screw feeder is applied as the gas hydrate discharging apparatus.
JP2005079924A 2005-03-18 2005-03-18 Gravity dehydration type dehydrator Expired - Fee Related JP4620508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079924A JP4620508B2 (en) 2005-03-18 2005-03-18 Gravity dehydration type dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079924A JP4620508B2 (en) 2005-03-18 2005-03-18 Gravity dehydration type dehydrator

Publications (2)

Publication Number Publication Date
JP2006257359A true JP2006257359A (en) 2006-09-28
JP4620508B2 JP4620508B2 (en) 2011-01-26

Family

ID=37096966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079924A Expired - Fee Related JP4620508B2 (en) 2005-03-18 2005-03-18 Gravity dehydration type dehydrator

Country Status (1)

Country Link
JP (1) JP4620508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120605A1 (en) 2007-03-30 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. Method of dewatering gas hydrate and apparatus therefor
JP2008248193A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Dehydrator for gas hydrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075771A (en) * 2002-08-13 2004-03-11 Mitsui Zosen Plant Engineering Inc Apparatus for producing gas hydrate
JP2005248124A (en) * 2004-03-08 2005-09-15 Chubu Electric Power Co Inc Process and apparatus for producing gas-hydrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075771A (en) * 2002-08-13 2004-03-11 Mitsui Zosen Plant Engineering Inc Apparatus for producing gas hydrate
JP2005248124A (en) * 2004-03-08 2005-09-15 Chubu Electric Power Co Inc Process and apparatus for producing gas-hydrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120605A1 (en) 2007-03-30 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. Method of dewatering gas hydrate and apparatus therefor
JP2008248193A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Dehydrator for gas hydrate
US8353409B2 (en) 2007-03-30 2013-01-15 Mitsui Engineering & Shipbuilding Co., Ltd. Method of dewatering gas hydrate and apparatus therefor

Also Published As

Publication number Publication date
JP4620508B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP2004010686A (en) Device for forming gas hydrate, and equipment and process for producing it
JP4285600B2 (en) Gas hydrate production equipment
US8367880B2 (en) Device and method for continuous hydrate production and dehydration by centrifugal force
KR20030004434A (en) Gas hydrate production device and gas hydrate dehydrating device
JP2001342473A (en) Apparatus for producing gas hydrate and apparatus for dehydrating gas hydrate
JP4672990B2 (en) Method and apparatus for manufacturing gas hydrate
JP4620508B2 (en) Gravity dehydration type dehydrator
JP2007224249A (en) Cooling apparatus for gas hydrate pellet
EP1165470A1 (en) Formation, processing, transportation and storage of hydrates
JP2009242749A (en) Method and apparatus for producing gas hydrate
JP2006095438A (en) Fluidized bed type reaction column for gas hydrate slurry
JP4845008B2 (en) Gas hydrate production equipment
JP4676187B2 (en) Gas hydrate dispensing device
JP4488769B2 (en) Hydrate generation method and generation apparatus
JP4578930B2 (en) Gas hydrate manufacturing method
JP2006111776A (en) Apparatus for producing gas hydrate
JP5265620B2 (en) Method and apparatus for manufacturing gas hydrate
JP2006111816A (en) Method for producing gas hydrate
JP4564327B2 (en) Gas hydrate dehydrator
JP2007238826A (en) Method and apparatus for producing gas hydrate
JP2005290334A (en) Hydrate treatment apparatus
JP2006117755A (en) Apparatus for forming high concentration gas hydrate and gas hydrate production plant using the apparatus
JP2006104385A (en) Method for producing mixed gas hydrate
JP2001316684A (en) Process and apparatus for treatment of gas hydrate
JP2006111769A (en) Dehydrator in gas-hydrate production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees