JP2006256100A - Manufacturing method of copper clad laminated sheet - Google Patents

Manufacturing method of copper clad laminated sheet Download PDF

Info

Publication number
JP2006256100A
JP2006256100A JP2005076618A JP2005076618A JP2006256100A JP 2006256100 A JP2006256100 A JP 2006256100A JP 2005076618 A JP2005076618 A JP 2005076618A JP 2005076618 A JP2005076618 A JP 2005076618A JP 2006256100 A JP2006256100 A JP 2006256100A
Authority
JP
Japan
Prior art keywords
carrier
copper foil
heat
clad laminate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005076618A
Other languages
Japanese (ja)
Inventor
Takashi Nomura
俊 野村
Tetsuya Yamamoto
哲也 山本
Ryuichi Kamei
隆一 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005076618A priority Critical patent/JP2006256100A/en
Publication of JP2006256100A publication Critical patent/JP2006256100A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a highly heat-resistant copper clad laminated sheet, which uses an extremely thin copper foil, having no flaw or wrinkles and suitably used for fine patterning. <P>SOLUTION: The manufacturing method of the copper clad laminated sheet, which is constituted by laminating the extremely thin copper foil at least on one side of a heat-resistant adhesive film, comprises a process (1) for bonding the heat-resistant adhesive film and the extremely thin copper foil with a carrier, which has at least the carrier and an extremely thin copper foil and is constituted so as to be capable of peeling the carrier and the extremely thin copper foil even after heating at 250°C or above, under heating and pressure, and a process (2) for peeling the carrier in this order. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱性接着フィルムの少なくとも片面に極薄銅箔を積層してなる銅張積層板の製造方法に関するものであり、さらに詳しくは、電子機器類の基板材料として好適な銅張積層板の製造方法に関するものである。   The present invention relates to a method for producing a copper-clad laminate obtained by laminating an ultrathin copper foil on at least one surface of a heat-resistant adhesive film, and more specifically, a copper-clad laminate suitable as a substrate material for electronic devices. It is related with the manufacturing method.

カメラ、パソコン、液晶ディスプレイなどの電子機器類用途において、耐熱性接着フィルムに銅箔を積層した銅張積層板が広く使用されている。具体的には、フレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用されている。   2. Description of the Related Art Copper-clad laminates in which copper foil is laminated on a heat-resistant adhesive film are widely used in electronic devices such as cameras, personal computers, and liquid crystal displays. Specifically, it is used as a substrate material for flexible printed circuit boards (FPC) and tape-automated bonding (TAB).

近年、銅張積層板のファインパタ−ン化の要求は大きく、銅箔として12μm程度の厚みのものが使用されはじめており、今後さらに薄銅化が進むと考えられている。薄銅化への対応として、蒸着またはスパッタ法によってあらかじめポリイミドフィルムに下地金属層を形成し、銅メッキによって所定の厚さの積層板を得る方法が提案されているが、特殊な設備を必要とし、生産工程が複雑で、生産性が低いという課題がある。   In recent years, there has been a great demand for fine patterning of copper-clad laminates, and copper foil having a thickness of about 12 μm has begun to be used. As a countermeasure to thin copper, a method has been proposed in which a base metal layer is formed in advance on a polyimide film by vapor deposition or sputtering, and a laminated plate with a predetermined thickness is obtained by copper plating, but special equipment is required. The production process is complicated and the productivity is low.

一方、極薄銅箔と耐熱性接着フィルムを熱圧着して銅張積層板を製造する方法として、極薄銅箔にキャリアを貼り合わせたキャリア付き極薄銅箔と耐熱性接着フィルムとを熱圧着−冷却して積層する方法が提案されている(例えば、特許文献1参照。)。しかしながら、銅張積層板の耐熱性を高めるためにガラス転移温度の高い耐熱性接着フィルムを用いた場合、特に250℃以上の温度で熱圧着すると、極薄銅箔とキャリアが接着してしまう課題があった。そのため、250℃以上の耐熱性を有する耐熱性接着フィルムと極薄銅箔を用いた銅張積層板の提供が困難であった。
特開2004−42579号公報
On the other hand, as a method of manufacturing a copper clad laminate by thermocompression bonding of an ultrathin copper foil and a heat resistant adhesive film, an ultrathin copper foil with a carrier obtained by bonding a carrier to an ultrathin copper foil and a heat resistant adhesive film are heated. A method of laminating by pressure bonding and cooling has been proposed (for example, see Patent Document 1). However, when a heat-resistant adhesive film having a high glass transition temperature is used to increase the heat resistance of the copper-clad laminate, particularly when thermocompression bonding is performed at a temperature of 250 ° C. or higher, an extremely thin copper foil and a carrier are bonded. was there. Therefore, it has been difficult to provide a copper-clad laminate using a heat-resistant adhesive film having a heat resistance of 250 ° C. or higher and an ultrathin copper foil.
JP 2004-42579 A

本発明の目的は、傷・シワなどがなく、ファインパターン化に好適に用いられる極薄銅箔を用いた高耐熱性の銅張積層板の製造方法を提供することである。   An object of the present invention is to provide a method for producing a highly heat-resistant copper-clad laminate using an ultra-thin copper foil that is free from scratches and wrinkles and is suitably used for fine patterning.

本発明は、耐熱性接着フィルムの少なくとも片面に極薄銅箔を積層してなる銅張積層板の製造方法であって、(1)耐熱性接着フィルムと、少なくともキャリアと極薄銅箔とを有し、250℃以上の加熱後においてもキャリアと極薄銅箔の剥離が可能であるキャリア付き極薄銅箔とを、250℃以上で熱圧着する工程と、(2)キャリアを剥離する工程とをこの順に有することを特徴とする銅張積層板の製造方法である。   The present invention is a method for producing a copper clad laminate in which an ultrathin copper foil is laminated on at least one surface of a heat resistant adhesive film, and (1) a heat resistant adhesive film, at least a carrier and an ultrathin copper foil. And a step of thermocompression bonding the carrier and an ultrathin copper foil with a carrier capable of peeling the ultrathin copper foil at 250 ° C or higher after heating at 250 ° C or higher, and (2) a step of peeling the carrier In this order.

本発明により、製品外観が良好で、基板材料として好適な極薄銅箔を用いた銅張積層板を提供することができる。   According to the present invention, it is possible to provide a copper clad laminate having an excellent product appearance and using an ultrathin copper foil suitable as a substrate material.

本発明は、耐熱性接着フィルムの少なくとも片面に極薄銅箔を積層してなる銅張積層板の製造方法であって、(1)耐熱性接着フィルムと、少なくともキャリアと極薄銅箔とを有し、250℃以上の加熱後においてもキャリアと極薄銅箔の剥離が可能であるキャリア付き極薄銅箔とを、250℃以上で熱圧着する工程と、(2)キャリアを剥離する工程とをこの順に有する。すなわち、キャリア付き極薄銅箔が、250℃以上の加熱後においてもキャリアと極薄銅箔が剥離可能であることが重要である。これは、上記(2)の工程において極薄銅箔からキャリアを剥離する必要があるためである。具体的には、キャリア付き極薄銅箔と耐熱性接着フィルムを熱圧着した後の銅張積層体とキャリアの90°剥離における接着力が、温度:25℃、湿度:50±10%の条件で、5N/cm以下であることが好ましく、2N/cm以下であることがより好ましい。このようなキャリア付き極薄銅箔を得るために、極薄銅箔とキャリアとの間に、耐熱性剥離補助層を設けることが好ましい。耐熱性剥離補助層としては、CrあるいはCr合金の水和酸化物層、Ni、Feまたはこれらの少なくとも1種を含む合金の水和酸化物層などを用いることができる。   The present invention is a method for producing a copper clad laminate in which an ultrathin copper foil is laminated on at least one surface of a heat resistant adhesive film, and (1) a heat resistant adhesive film, at least a carrier and an ultrathin copper foil. And a step of thermocompression bonding the carrier and an ultrathin copper foil with a carrier capable of peeling the ultrathin copper foil at 250 ° C or higher after heating at 250 ° C or higher, and (2) a step of peeling the carrier And in this order. That is, it is important that the ultrathin copper foil with a carrier can be peeled off from the carrier even after heating at 250 ° C. or higher. This is because it is necessary to peel the carrier from the ultrathin copper foil in the step (2). Specifically, the adhesive strength in 90 ° peeling between the copper-clad laminate and the carrier after thermocompression bonding of the ultra-thin copper foil with carrier and the heat-resistant adhesive film is a condition where the temperature is 25 ° C. and the humidity is 50 ± 10%. Is preferably 5 N / cm or less, and more preferably 2 N / cm or less. In order to obtain such an ultrathin copper foil with a carrier, it is preferable to provide a heat-resistant peeling auxiliary layer between the ultrathin copper foil and the carrier. As the heat-resistant peeling auxiliary layer, a hydrated oxide layer of Cr or Cr alloy, a hydrated oxide layer of Ni, Fe, or an alloy containing at least one of these can be used.

一方、キャリアと極薄銅箔との接着力は、0.02N/cm以上であることが好ましい。具体的には、熱圧着前のキャリア付き極薄銅箔の極薄銅箔とキャリアとの90°剥離における接着力、およびキャリア付き極薄銅箔と耐熱性接着フィルムを熱圧着した後の銅張積層体とキャリアとの90°剥離における接着力が、温度:25℃、湿度:50±10%の条件で、いずれも0.02N/cm以上であることが好ましく、0.05N/cm以上であることがより好ましい。0.02N/cm以上であれば、キャリア付き極薄銅箔と耐熱性接着フィルムを250℃以上で熱圧着させる際、キャリアが極薄銅箔から剥がれ、支持体を失った極薄銅箔にシワが入ってしまうなどのトラブルを防ぐことができる。   On the other hand, the adhesive force between the carrier and the ultrathin copper foil is preferably 0.02 N / cm or more. Specifically, the adhesive strength at 90 ° peeling between the ultrathin copper foil with the carrier and the carrier before thermocompression bonding and the copper after thermocompression bonding of the ultrathin copper foil with carrier and the heat-resistant adhesive film Adhesive strength in 90 ° peeling between the tension laminate and the carrier is preferably 0.02 N / cm or more, and 0.05 N / cm or more under the conditions of temperature: 25 ° C. and humidity: 50 ± 10%. It is more preferable that If it is 0.02 N / cm or more, when thermocompression bonding the ultrathin copper foil with carrier and the heat-resistant adhesive film at 250 ° C. or higher, the carrier is peeled off from the ultrathin copper foil, and the ultrathin copper foil that has lost the support Troubles such as wrinkles can be prevented.

キャリア付き極薄銅箔のキャリアとしては、厚み10〜50μm程度の肉厚の銅箔などの金属が挙げられる。極薄銅箔としては、厚みが1〜9μmであるものが好適である。   Examples of the carrier of the ultrathin copper foil with a carrier include metals such as a thick copper foil having a thickness of about 10 to 50 μm. As an ultra-thin copper foil, what is 1-9 micrometers in thickness is suitable.

この発明における耐熱性接着フィルムとしては、例えば非熱可塑性フィルムなどの耐熱性のフィルムの片面もしくは両面に熱圧着性の接着剤層を有するものが挙げられる。非熱可塑性フィルムとしては、ポリイミドフィルム、アラミドフィルム、液晶ポリマフィルムなどが挙げられる。中でも、MD方向、TD方向での線膨張係数(50〜200℃)が5×10−6〜25×10−6cm/cm/℃であるポリイミドフィルムが好ましい。 Examples of the heat resistant adhesive film in the present invention include those having a thermocompression bonding adhesive layer on one side or both sides of a heat resistant film such as a non-thermoplastic film. Examples of the non-thermoplastic film include a polyimide film, an aramid film, and a liquid crystal polymer film. Among them, MD direction, the linear expansion coefficient of TD direction (50 to 200 ° C.) is a polyimide film is preferably 5 × 10 -6 ~25 × 10 -6 cm / cm / ℃.

熱圧着性の接着剤層としては、熱可塑性ポリイミド系接着剤、熱可塑性ポリエーテル系接着剤、熱可塑性ポリアミドイミド系接着剤、熱可塑性ポリエステルイミド系接着剤などからなる接着剤層が挙げられるが、中でも熱可塑性ポリイミド系接着剤層であることが好ましい。接着剤の銅箔表面への埋まり込みや接着力の点から、キャリア付き極薄銅箔と耐熱性接着フィルムとの熱圧着温度において、弾性率が200MPa以下、より好ましくは100MPa以下のものが良い。   Examples of the thermocompression bonding adhesive layer include an adhesive layer made of a thermoplastic polyimide adhesive, a thermoplastic polyether adhesive, a thermoplastic polyamideimide adhesive, a thermoplastic polyesterimide adhesive, and the like. Of these, a thermoplastic polyimide adhesive layer is preferred. From the viewpoint of embedding the adhesive on the copper foil surface and adhesive strength, the elastic modulus is 200 MPa or less, more preferably 100 MPa or less at the thermocompression bonding temperature between the ultrathin copper foil with carrier and the heat-resistant adhesive film. .

非熱可塑性ポリイミドフィルムと熱可塑性ポリイミド系接着剤層を有する、耐熱性接着フィルムの製造方法としては、例えば、非熱可塑性ポリイミドの前駆体(ポリアミック酸ともいう)溶液乾燥膜の片面あるいは両面に熱可塑性のポリイミドの前駆体溶液を積層した後、あるいは、共押出し−流延製膜法によって非熱可塑性ポリイミドの前駆体溶液の片面あるいは両面に熱可塑性のポリイミドの前駆体溶液を積層した後、乾燥、イミド化する方法が挙げられる。その他、非熱可塑性ポリイミドフィルムの片面あるいは両面に、グラビアコータ、コンマコータ、リバースコータ、バーコータ、スリットダイコータなどを用いて、熱可塑性ポリイミド系接着剤を塗工する方法もある。   As a method for producing a heat-resistant adhesive film having a non-thermoplastic polyimide film and a thermoplastic polyimide adhesive layer, for example, a non-thermoplastic polyimide precursor (also referred to as polyamic acid) is heated on one or both sides of a solution dry film. After laminating a precursor solution of a plastic polyimide, or after laminating a precursor solution of a thermoplastic polyimide on one side or both sides of a non-thermoplastic polyimide precursor solution by a coextrusion-casting film forming method, drying The method of imidizing is mentioned. In addition, there is a method in which a thermoplastic polyimide adhesive is applied to one side or both sides of a non-thermoplastic polyimide film using a gravure coater, comma coater, reverse coater, bar coater, slit die coater or the like.

耐熱性フィルムの厚みは5〜50μmであることが好ましく、特に5〜40μmであることがより好ましい。5μm以上であると、十分な強度を有するため、シワなどの発生を抑制しつつ銅箔と貼り合わせることが可能である。50μm以下であれば、銅張積層板の厚みを小さくすることができ、柔軟性を有する銅張積層板を得ることができる。   The thickness of the heat resistant film is preferably 5 to 50 μm, and more preferably 5 to 40 μm. Since it has sufficient intensity | strength as it is 5 micrometers or more, it can bond together with copper foil, suppressing generation | occurrence | production of wrinkles. If it is 50 micrometers or less, the thickness of a copper clad laminated board can be made small and the copper clad laminated board which has a softness | flexibility can be obtained.

本発明に用いられる加圧加熱成形装置は、積層材料を加熱して圧力を加えてラミネートする装置であれば特に限定されず、例えば、単動プレス装置、多段プレス装置、真空プレス装置、多段真空プレス装置、オートクレーブ装置、熱ロールラミネート機、ダブルベルトプレス機等が挙げられ、これらのうち、連続して銅張積層板を製造することを考慮すると、ダブルベルトプレス機、熱ロールラミネート機が好ましく用いられる。   The pressure heating molding apparatus used in the present invention is not particularly limited as long as it is an apparatus for laminating by heating a laminated material and applying pressure, for example, a single-action press apparatus, a multistage press apparatus, a vacuum press apparatus, a multistage vacuum. Examples include a pressing device, an autoclave device, a hot roll laminating machine, a double belt press machine, etc. Among these, in consideration of continuously producing a copper clad laminate, a double belt press machine and a hot roll laminating machine are preferable. Used.

加熱方法については、所定の温度で加熱することができるものであれば特に限定されず、熱媒循環方式、熱風加熱方式、誘電加熱方式等が挙げられる。   The heating method is not particularly limited as long as it can be heated at a predetermined temperature, and examples thereof include a heat medium circulation method, a hot air heating method, and a dielectric heating method.

加圧方式についても所定の圧力を加えることができるものであれば特に限定されず、油圧方式、空気圧方式、ギャップ間圧力方式等が挙げられ、圧力は特に限定されない。また、連続的な加熱加圧成形を可能とする装置として、巻き出し軸、巻き取り軸、張力制御装置、ライン調整装置(EPC)など、さらには電子回路材料としての品質を維持する為のクリーン化設備として、粘着ロール、静電気除去装置、クリーンブースなど必要に応じて用いることができる。   The pressurization method is not particularly limited as long as a predetermined pressure can be applied, and includes a hydraulic method, a pneumatic method, a gap pressure method, and the like, and the pressure is not particularly limited. In addition, as a device that enables continuous heat and pressure molding, unwinding shaft, winding shaft, tension control device, line adjustment device (EPC), etc., as well as clean to maintain the quality as electronic circuit materials As the equipment, an adhesive roll, a static eliminator, a clean booth, etc. can be used as necessary.

耐熱性接着フィルムとキャリア付き極薄銅箔を熱圧着する工程において、極薄銅箔と加圧部との間に1種以上の保護材を配してもよい。保護材の厚みはその種類によっても異なるが、10〜300μmが好ましい。10μm以上であれば適度な剛性を有し、保護材にシワが入りにくいため、保護材のシワが銅箔に転写されるという問題がない。また、300μm以下であれば適度な剛性を有し、保護材が金属箔に密着する。具体的には、250℃以上の熱圧着温度以上の耐熱性を有するアラミドフィルム、ポリイミドフィルム、金属箔等が有効である。本発明では、キャリア付き極薄銅箔のキャリア自体を保護材として用いることが好ましい。これにより、新たに保護材を使用する必要がなく、コストダウン、工程の簡略化、作業性の向上など、多くの面で利点がある。   In the step of thermocompression bonding the heat-resistant adhesive film and the ultrathin copper foil with a carrier, one or more kinds of protective materials may be disposed between the ultrathin copper foil and the pressure part. Although the thickness of a protective material changes with kinds, 10-300 micrometers is preferable. If it is 10 μm or more, it has an appropriate rigidity and it is difficult for wrinkles to enter the protective material, so there is no problem that the wrinkles of the protective material are transferred to the copper foil. Moreover, if it is 300 micrometers or less, it has moderate rigidity and a protective material adheres to metal foil. Specifically, an aramid film, a polyimide film, a metal foil or the like having heat resistance equal to or higher than a thermocompression bonding temperature of 250 ° C. or higher is effective. In this invention, it is preferable to use the carrier itself of the ultra-thin copper foil with a carrier as a protective material. As a result, there is no need to newly use a protective material, and there are advantages in many aspects such as cost reduction, process simplification, and workability improvement.

こうして得られた銅張積層板は、そのままあるいはロ−ル巻き、エッチング、および場合によりカ−ル戻し等の各処理を行った後、必要ならば所定の大きさに切断して、電子部品用基板として使用できる。例えば、FPC、TAB、多層FPC、フレックスリジッド基板の基板、COFなどに好適に使用することができる。   The copper-clad laminate thus obtained can be used for electronic parts as it is or after being subjected to roll winding, etching, and in some cases, such as curl return, and then cut into a predetermined size if necessary. Can be used as a substrate. For example, it can be suitably used for FPC, TAB, multilayer FPC, flex-rigid substrate, COF, and the like.

以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例の説明に入る前に、耐熱性接着フィルムの作製方法、両面銅張積層板の製造方法、評価方法について述べる。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Before describing the examples, a method for producing a heat-resistant adhesive film, a method for producing a double-sided copper-clad laminate, and an evaluation method will be described.

1.耐熱性接着フィルムの作製方法
(1)耐熱性接着フィルム−1
温度計、乾燥窒素導入口、温水・冷却水による加熱・冷却装置および攪拌装置を付した反応釜に、下記X1をn−メチルピロリドン2377gと共に仕込み、溶解させた後、下記X2を添加し、70℃で4時間反応させてポリアミック酸溶液を得た。得られたポリアミック酸溶液にトルエン200gを添加し、200℃で加熱して、反応の進行に伴ってトルエンと共沸してきた水分を分離しながら3時間イミド化反応を行った。その後、トルエンを留去し、得られたポリイミドワニスを水中に注いで、得られた沈殿物を分離、粉砕、洗浄および乾燥させることにより、ポリイミド粉末を得た。ジメチルアセトアミド2834gに、得られたポリイミド粉末500gを添加して、40℃で2時間撹拌してポリイミド溶液−1を得た。
X1:ピロメリット酸無水物 0.5mol
3,3’,4,4’−ビスフェニルテトラカルボン酸無水物 0.5mol
X2:4,4’−オキシ−bis−ベンゼンジアミン 0.5mol
2,2’−ビス(4−アミノフェノキシフェニルプロパン) 0.5mol
得られたポリイミド溶液−1を、市販の非熱可塑性ポリイミドフィルム((株)カネカ製“アピカル”AH)に塗工後、200℃で30分乾燥し、耐熱性接着フィルム−1を作製した。
1. Method for producing heat-resistant adhesive film (1) Heat-resistant adhesive film-1
Into a reaction kettle equipped with a thermometer, a dry nitrogen inlet, a heating / cooling device with hot water / cooling water, and a stirrer, the following X1 was charged together with 2377 g of n-methylpyrrolidone, dissolved, and then the following X2 was added. The reaction was carried out at 4 ° C. for 4 hours to obtain a polyamic acid solution. 200 g of toluene was added to the obtained polyamic acid solution, heated at 200 ° C., and an imidization reaction was performed for 3 hours while separating water azeotroped with toluene as the reaction progressed. Then, toluene was distilled off, the obtained polyimide varnish was poured into water, and the resulting precipitate was separated, ground, washed and dried to obtain a polyimide powder. 500 g of the obtained polyimide powder was added to 2834 g of dimethylacetamide, and stirred at 40 ° C. for 2 hours to obtain a polyimide solution-1.
X1: pyromellitic anhydride 0.5 mol
3,3 ′, 4,4′-bisphenyltetracarboxylic anhydride 0.5 mol
X2: 4,4′-oxy-bis-benzenediamine 0.5 mol
2,2′-bis (4-aminophenoxyphenylpropane) 0.5 mol
The obtained polyimide solution-1 was applied to a commercially available non-thermoplastic polyimide film ("Apical" AH manufactured by Kaneka Corporation) and then dried at 200 ° C for 30 minutes to prepare a heat-resistant adhesive film-1.

(2)耐熱性接着フィルム−2
X1およびX2として下記を用いた以外は上記と同様にして、ポリイミド溶液−2を得た。得られたポリイミド溶液−2を、市販の非熱可塑性ポリイミドフィルム(宇部興産(株)製“ユーピレックス”)に塗工後、200℃で30分乾燥し、耐熱性接着フィルム−2を作製した。
X1:3,3’,4,4’−ビスフェニルテトラカルボン酸無水物 1.0mol
X2:p−フェニレンジアミン 1.0mol。
(2) Heat resistant adhesive film-2
A polyimide solution-2 was obtained in the same manner as above except that the following were used as X1 and X2. The obtained polyimide solution-2 was applied to a commercially available non-thermoplastic polyimide film ("Upilex" manufactured by Ube Industries, Ltd.) and then dried at 200 ° C for 30 minutes to prepare a heat-resistant adhesive film-2.
X1: 3,3 ′, 4,4′-bisphenyltetracarboxylic anhydride 1.0 mol
X2: p-phenylenediamine 1.0 mol.

(3)耐熱性接着フィルム−3
X1およびX2として下記を用いた以外は上記と同様にして、ポリイミド溶液−3を得た。得られたポリイミド溶液−3を、市販の非熱可塑性ポリイミドフィルム(東レデュポン(株)製“カプトン”EN)に塗工後、200℃で30分乾燥し、耐熱性接着フィルム−3を作製した。
X1:3,3’,4,4’−ビスフェニルテトラカルボン酸無水物 0.4mol
3,3’,4,4’−オキシ−ビスフェニルテトラカルボン酸無水物 0.6mol
X2:4,4’−オキシ−bis−ベンゼンジアミン 1.0mol。
(3) Heat resistant adhesive film-3
A polyimide solution-3 was obtained in the same manner as above except that the following were used as X1 and X2. The obtained polyimide solution-3 was applied to a commercially available non-thermoplastic polyimide film (“Kapton” EN manufactured by Toray DuPont Co., Ltd.) and then dried at 200 ° C. for 30 minutes to prepare a heat-resistant adhesive film-3. .
X1: 3,3 ′, 4,4′-bisphenyltetracarboxylic anhydride 0.4 mol
3,3 ′, 4,4′-oxy-bisphenyltetracarboxylic anhydride 0.6 mol
X2: 4,4′-oxy-bis-benzenediamine 1.0 mol.

2.両面銅張積層板の作製方法
上記1.で作製した耐熱性接着フィルムの両面に、極薄銅箔厚みが3.5μmの古川電工製キャリア付き極薄銅箔(キャリア厚み:35μm、キャリア材質:古河電工製WS箔、キャリア表面粗さ:1.2μm以下、極薄銅箔表面粗さ:1.2μm以下)を配置し、さらにその両側にポリイミドフィルムの保護材を配置した場合としない場合の2通りについて、熱ロールラミネート装置を用い表1に示す条件で耐熱性接着フィルムとキャリア付き銅箔とを熱圧着した。その後、キャリアを剥離して両面銅張積層板を作製した。
2. Method for producing double-sided copper-clad laminate 1. On the both sides of the heat-resistant adhesive film produced in the above, an ultrathin copper foil with a carrier made of Furukawa Electric whose thickness is 3.5 μm (carrier thickness: 35 μm, carrier material: WS foil made by Furukawa Electric, carrier surface roughness: 1.2 μm or less, ultra-thin copper foil surface roughness: 1.2 μm or less), and a case where a polyimide film protective material is arranged on both sides thereof and a case where a polyimide film protective material is not arranged on the both sides. The heat resistant adhesive film and the copper foil with a carrier were thermocompression bonded under the conditions shown in 1. Thereafter, the carrier was peeled off to prepare a double-sided copper-clad laminate.

3.評価方法
(1)極薄銅箔−キャリアの接着力
キャリア付き極薄銅箔を2mmの幅で5cmカットし、サンプルとした。サンプルの極薄銅箔側を平面板に貼り付け、テンシロン(オリエンテック(株)UTM−11−5HR型)を用いて、キャリアを90°方向に50mm/分の速度で剥離し、接着力を測定した。測定は、温度:25℃、湿度:50±10%の恒温恒湿条件で実施した。
3. Evaluation method (1) Ultra-thin copper foil-adhesive strength of carrier An ultra-thin copper foil with a carrier was cut by 5 cm with a width of 2 mm to prepare a sample. The ultrathin copper foil side of the sample is attached to a flat plate, and using Tensilon (Orientec Co., Ltd. UTM-11-5HR type), the carrier is peeled off at a speed of 50 mm / min in the 90 ° direction to increase the adhesive strength. It was measured. The measurement was carried out under constant temperature and humidity conditions of temperature: 25 ° C. and humidity: 50 ± 10%.

(2)キャリアの剥離性
両面銅張積層板の作製において、キャリアの剥離の可否を評価した。
(2) Carrier peelability In the production of a double-sided copper-clad laminate, the possibility of carrier peeling was evaluated.

(3)外観
キャリアを剥離した銅張積層板50cm×500cmの極薄銅箔面の外観検査を行った。結果は、○:傷およびシワなし、△:傷またはシワ1〜4個(本)、×:傷またはシワ5個(本)以上で評価した。
(3) Appearance An appearance inspection was performed on the surface of an ultrathin copper foil having a 50 cm × 500 cm copper-clad laminate with the carrier peeled off. The results were evaluated with ○: no scratches and wrinkles, Δ: 1 to 4 scratches or wrinkles (books), and x: 5 or more scratches or wrinkles (books).

実施例1〜6
表1に示す古河電工製キャリア付き極薄銅箔(高温タイプ)および耐熱性接着フィルムを用いて、表1に示すラミネート条件で、両面銅張積層板を作製し、評価を行った。その結果を表1に示す。いずれも、キャリアの剥離は可能で、かつ、極薄銅箔面に傷・シワがなく、外観の良好な両面銅張積層板が得られた。
Examples 1-6
A double-sided copper-clad laminate was prepared and evaluated under the laminating conditions shown in Table 1 using an ultrathin copper foil with a carrier (high temperature type) and a heat-resistant adhesive film manufactured by Furukawa Electric. The results are shown in Table 1. In both cases, a double-sided copper-clad laminate having a good appearance and capable of peeling the carrier and having no scratches or wrinkles on the ultrathin copper foil surface was obtained.

比較例1〜3
キャリア付き極薄銅箔として、古川電工製電解銅箔(F−DP)を用い、表1に示す耐熱性接着フィルムを用いて、表1に示すラミネート条件で両面銅張積層板を作製し、評価を行った。その結果を表1に示す。比較例1を除いて、全くキャリアの剥離ができなかった。比較例1は、耐熱性接着フィルムとキャリア付き極薄銅箔を熱圧着した積層体の面積の約8%しかキャリアが剥離できなかった。また剥離ができた部分についても、極薄銅箔面に傷・シワが入り、外観が悪かった。
Comparative Examples 1-3
As an ultra-thin copper foil with a carrier, Furukawa Electric's electrolytic copper foil (F-DP) was used, and a heat-resistant adhesive film shown in Table 1 was used to produce a double-sided copper-clad laminate under the lamination conditions shown in Table 1, Evaluation was performed. The results are shown in Table 1. Except for Comparative Example 1, the carrier could not be peeled at all. In Comparative Example 1, only about 8% of the area of the laminate obtained by thermocompression bonding of the heat-resistant adhesive film and the ultrathin copper foil with carrier was peeled off. In addition, the peeled part was also scratched and wrinkled on the ultrathin copper foil surface, and the appearance was poor.

Figure 2006256100
Figure 2006256100

Claims (9)

耐熱性接着フィルムの少なくとも片面に極薄銅箔を積層してなる銅張積層板の製造方法であって、(1)耐熱性接着フィルムと、少なくともキャリアと極薄銅箔とを有し、250℃以上の加熱後においてもキャリアと極薄銅箔の剥離が可能であるキャリア付き極薄銅箔とを、250℃以上で熱圧着する工程と、(2)キャリアを剥離する工程とをこの順に有することを特徴とする銅張積層板の製造方法。 A method for producing a copper clad laminate obtained by laminating an ultrathin copper foil on at least one surface of a heat resistant adhesive film, comprising: (1) a heat resistant adhesive film, at least a carrier, and an ultrathin copper foil; The process of thermocompression bonding of the carrier and the ultrathin copper foil with a carrier capable of peeling the ultrathin copper foil at 250 ° C or higher, and (2) the process of peeling the carrier in this order, even after heating at or above ° C. A method for producing a copper clad laminate, comprising: 耐熱性接着フィルムが、熱圧着性の接着剤層と耐熱性のフィルムを有することを特徴とする請求項1記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 1, wherein the heat-resistant adhesive film has a thermocompression bonding adhesive layer and a heat-resistant film. 熱圧着性の接着剤層が、熱可塑性ポリイミド系接着剤層であることを特徴とする請求項2記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 2, wherein the thermocompression bonding adhesive layer is a thermoplastic polyimide adhesive layer. 耐熱性のフィルムが、非熱可塑性ポリイミドフィルムであることを特徴とする請求項2記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 2, wherein the heat-resistant film is a non-thermoplastic polyimide film. キャリア付き極薄銅箔が、耐熱性剥離補助層を有することを特徴とする請求項1記載の銅張積層板の製造方法。 The method for producing a copper clad laminate according to claim 1, wherein the ultrathin copper foil with a carrier has a heat-resistant peeling auxiliary layer. 極薄銅箔の厚みが1〜9μmであることを特徴とする請求項1記載の銅張積層板の製造方法。 2. The method for producing a copper-clad laminate according to claim 1, wherein the thickness of the ultrathin copper foil is 1 to 9 [mu] m. 一対以上の熱ラミネートロールにより熱圧着することを特徴とする請求項1記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 1, wherein thermocompression bonding is performed with a pair of heat laminating rolls. 耐熱性接着フィルムとキャリア付き極薄銅箔を熱圧着する工程において、1種以上の保護材を極薄銅箔と加圧部との間に配することを特徴とする請求項1記載の銅張積層板の製造方法。 2. The copper according to claim 1, wherein in the step of thermocompression bonding the heat-resistant adhesive film and the ultrathin copper foil with a carrier, one or more kinds of protective materials are disposed between the ultrathin copper foil and the pressing portion. A method for producing a tension laminate. 保護材がキャリア付き極薄銅箔のキャリアであることを特徴とする請求項8記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 8, wherein the protective material is a carrier of an ultrathin copper foil with a carrier.
JP2005076618A 2005-03-17 2005-03-17 Manufacturing method of copper clad laminated sheet Pending JP2006256100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076618A JP2006256100A (en) 2005-03-17 2005-03-17 Manufacturing method of copper clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076618A JP2006256100A (en) 2005-03-17 2005-03-17 Manufacturing method of copper clad laminated sheet

Publications (1)

Publication Number Publication Date
JP2006256100A true JP2006256100A (en) 2006-09-28

Family

ID=37095836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076618A Pending JP2006256100A (en) 2005-03-17 2005-03-17 Manufacturing method of copper clad laminated sheet

Country Status (1)

Country Link
JP (1) JP2006256100A (en)

Similar Documents

Publication Publication Date Title
JP2009083498A (en) Copper clad laminated sheet and its manufacturing method
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
WO2005063466A1 (en) Method of producing flexible laminate sheet
JP2003071984A (en) Polyimide copper-clad laminate and manufacturing method therefor
KR20050088089A (en) Process for producing heat-resistant flexible laminate and heat-resistant flexible laminate produced thereby
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2007203505A (en) Manufacturing method of double-sided metal sheet laminated plate
JP5217321B2 (en) Method for producing flexible metal laminate
JP4500773B2 (en) Method for producing flexible laminate
KR20050090139A (en) Bonding sheet and one-side metal-clad laminate
JP2007109694A (en) Process for producing one-side flexible metal laminated plate
JP5151938B2 (en) Method for producing metal foil laminated film
JP4706283B2 (en) Method for producing heat-resistant flexible metal laminate
JP4389627B2 (en) Method for producing flexible metal laminate
JP2002052614A (en) Method for manufacturing laminated sheet
JP2007098749A (en) Manufacturing method of one side flexible metal laminate
JPH10209583A (en) Flexible metal foil polyimide laminate
JP2002326308A (en) Heat-resistant flexible laminated sheet and method for manufacturing the same
JP2006256100A (en) Manufacturing method of copper clad laminated sheet
JP2008074037A (en) Manufacturing process of heat-resistant flexible metal laminate
JP2007223052A (en) Method for manufacturing heat-resistant flexible metal laminate
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JP6123463B2 (en) Method for producing metal laminate
JP2013176931A (en) Single-sided metal-clad laminated sheet, and manufacturing method of the same