JP2006255683A - Method for generating alkaline ion water and alkaline ion water generated by the method - Google Patents

Method for generating alkaline ion water and alkaline ion water generated by the method Download PDF

Info

Publication number
JP2006255683A
JP2006255683A JP2005117483A JP2005117483A JP2006255683A JP 2006255683 A JP2006255683 A JP 2006255683A JP 2005117483 A JP2005117483 A JP 2005117483A JP 2005117483 A JP2005117483 A JP 2005117483A JP 2006255683 A JP2006255683 A JP 2006255683A
Authority
JP
Japan
Prior art keywords
water
organic acid
alkaline ion
ion water
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117483A
Other languages
Japanese (ja)
Inventor
Yoshimi Sano
義美 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005117483A priority Critical patent/JP2006255683A/en
Publication of JP2006255683A publication Critical patent/JP2006255683A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems; recently adult diseases increase remarkably and are worried and the cause and preventive measures and the like for the same are studied but decisive factors thereof are not yet discovered; among these, the attack by active oxygen to the tissue and cells of organisms come up as an important problem and the fact that SOD enzyme exists and the bodily fluid is reducible and is an electron donor are coming to be known to defend the same and drinking of the alkaline ion water is effective for enhancing the effect, however, if the absolute value of ORP is raised in order to enhance the effect, the pH rises accordingly and the alkaline ion water becomes not suitable for drinking and therefore, these problems are solved to make increasing of the ORP while averting the increase of the pH possible. <P>SOLUTION: The water obtained by adding a small volume of a reducing organic acid to raw water is electrolyzed and the water generated in a cathode region thereof is taken out and is used. The method for generating the alkaline ion water and the alkaline ion water generated by the material are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は日常飲用水、保健健康飲料、スポーツドリンク、調理用水、嗜好用飲食品、酒類の水割、食品加工用水、医療用物質、医療用物質生成器等に関する。  The present invention relates to daily drinking water, health and health drinks, sports drinks, cooking water, food and drink for taste, water division for liquor, water for food processing, medical substances, medical substance generators and the like.

水を電気分解しその陽極領域に生成する水と陰極領域に生成する水とをそれぞれ別々に取り出して利用する技術は約40年以前から利用されている。以前は汲み置き式容器に陽極と陰極の二つの電極を立て中間に隔膜を配し両極の領域に生成する溶液を汲み分けて陰極側の水を飲用に供する形式のもので言わば静的生成器と言うべく生成量が少なく、生成に時間がかかる等使用上不便が多く極く一部の愛用者に利用される程度であった。今から32年前昭和47年に本発明者が水道直結式アルカリイオン水生成器を発明したことにより、その後急速に普及し今日の盛況を見た。今日広く使用されているアルカリイオン水生成器は、密閉された樹脂製の電解槽内に陰陽両極板を平行に対向せしめその間に隔膜を配して、当該隔膜によって仕切られた二つの水通路を形成し陰極に接触して流れる水を採取して飲用に供するものが大勢をしめている。而して陰陽電極板には0,5〜1.0m/m 厚程度のチタン板に0.5〜1.0ミクロン厚程度の白金メッキを施したものを使用し、隔膜には1〜150ミクロン程度のポア径をもつメンブレンが使われているものが多い。このような生成器から得られる陰極水の物性はpH=7〜11,ORP=0〜−500mV程度で弱アルカリ性且つ還元性であるのでアルカリイオン水と呼ばれ、当該生成器をアルカリイオン水整水器などと呼ばれている。従来の整水器で生成するアルカリイオン水は前述のような物性を有し、吐水(採水)当初はpH=7〜11,ORP=−0〜−500mV程度であるがこの価は不安定で減衰が激しく数分にして降下する。これはアルカリイオン水の利用上大きな欠点であるが、もう一つの問題としてpHとORPとの価を自由に選択して制御することが出来がたい点があげられる。もう少し具体的に説明すれば、実例として、東京地方の水道水を2アンペアの電流で電解したときpH=9,ORP=−300mV程度のアルカリイオン水が得られる。このときpH=10でORP=−300mVの水を造ることもpH=9でORP=−400mVの水を造ることも出来ない。即ち、同一の原水を電解して得られる水においてはpH,ORPの何れか一方を決めれば他方は従属的に決まった値をとる。この相関関係を変えることは従来の技術では困難である。  A technique of electrolyzing water to produce water in the anode region and water produced in the cathode region separately and using them has been used for about 40 years. In the past, two generators, an anode and a cathode, were placed in a pumping-type container, and a diaphragm was placed between them to draw the solution produced in both regions, and the water on the cathode side was used for drinking. In other words, the amount of generation was small, and it took a long time to generate, so there were many inconveniences in use and it was only used by some users. The present inventor invented a water supply direct-coupled alkaline ionized water generator in 1972, 32 years ago, and then rapidly spread and saw today's success. Alkaline ion water generators widely used today include two water passages separated by a diaphragm, with a positive and negative electrode plates facing each other in parallel in a sealed resin electrolytic cell and a diaphragm placed between them. A large number of the water that forms and contacts the cathode and collects it for drinking is used. Thus, the Yin-Yang electrode plate is a titanium plate having a thickness of about 0.5 to 1.0 m / m 2 and a platinum plate having a thickness of about 0.5 to 1.0 μm. Many use membranes with pore sizes on the order of microns. The properties of the cathode water obtained from such a generator are called alkaline ionized water because it is weakly alkaline and reducible at pH = 7 to 11, ORP = 0 to −500 mV. It is called a water container. Alkaline ion water produced by a conventional water conditioner has the above-mentioned properties, and the initial value of water discharge (water sampling) is pH = 7 to 11, ORP = −0 to −500 mV, but this value is unstable. Decreases in a few minutes and falls in a few minutes. This is a major drawback in the use of alkaline ionized water, but another problem is that it is difficult to control the values of pH and ORP by freely selecting them. More specifically, as an example, when tap water in Tokyo is electrolyzed at a current of 2 amperes, alkaline ionized water having pH = 9 and ORP = −300 mV is obtained. At this time, it is impossible to produce water at pH = 10 and ORP = −300 mV, and water at pH = 9 and ORP = −400 mV. That is, in water obtained by electrolyzing the same raw water, if one of pH and ORP is determined, the other takes a dependently determined value. Changing this correlation is difficult with the prior art.

発明が解決しようとする課題Problems to be solved by the invention

上述のアルカリイオン水の物性の減衰(pH,ORPの経時変化)はアルカリイオン水の利用上大きな欠点で時間経過或いは環境に対する緩衝性を強くし長期保存に耐えるアルカリイオン水の出現が要望されていた。また希望するpH値に対しそのORPの価を自由に設定制御する技術の開発も要望さねていた。しかしこの要求を満たすことは極めて困難な事とされていた。  The above-mentioned attenuation of physical properties of alkaline ionized water (changes in pH and ORP over time) is a major drawback in the use of alkaline ionized water, and there is a demand for the appearance of alkaline ionized water that can withstand long-term storage by strengthening buffering against time or the environment. It was. There has also been a demand for development of a technique for freely setting and controlling the value of the ORP with respect to a desired pH value. However, it was considered extremely difficult to meet this requirement.

課題を解決する手段Means to solve the problem

上記二つの課題を解決するため本発明は還元性の有機酸等を添加してする。添加の時期は原水に有機酸等或いはその水溶液を添加して後電解しても、電解した後で有機酸等或いはその水溶液を添加してもそのどちらでも目的を達成する効果がある。水に還元性有機酸等を加えて電解し或は電解陰極水即ち電解アルカリ水に還元性有機酸等を添加して調製することには二つの効果がある。一つは中和的反応により生成水のpHを調整することである。もう一つは生成水を弱酸と強塩基の共役溶液にして緩衝能を強くすることである。通常、電解アルカリ水は化学的アルカリ水(電解的操作等電子、プロトンの移動操作を加えず例えば水に単純にNaOHを溶解して得た溶液等の意味で用いた)に比し電子ドナーとしての性質が強力である。このことは電解アルカリ水の生成プロセスから当然のことでありその結果として強還元作用を呈し指標としてORPがマイナス高電位を示現する。器官や細胞に対する活性酸素のアタックを防衛する力は極めて強い。我々は努めてこの陰極還元力の活用を計ろうとするが還元性の指標であるORPの絶対値を大きくするため電解を強くするとORPの絶対値は大きくなるが同時にpHも高くなり許容値例えばpH=10.5を越えてしまい飲用上問題となることが多い。この時pHを下げるため通常の酸で中和すると折角の負のORP(還元性)が失われてしまうが還元力を有する有機酸(例えば銀鏡反応を示す有機酸)を使って中和してやると還元性(ORP)を損なわずにpHを飲用圏に下げることが出来る。それだけでなくこの中和の結果生成する溶液系は弱酸と強アルカリによる典型的共役溶液であるので強い緩衝能があり攪乱に強くpH,ORPの持続時間を長くすることが出来るようになる。  In order to solve the above two problems, the present invention adds a reducing organic acid or the like. The addition of the organic acid or the like or an aqueous solution thereof to the raw water can be followed by electrolysis, or the addition of the organic acid or the like or the aqueous solution after electrolysis can achieve the purpose. Electrolysis by adding a reducing organic acid or the like to water or preparing by adding a reducing organic acid or the like to electrolytic cathodic water, that is, electrolytic alkaline water, has two effects. One is to adjust the pH of the produced water by a neutral reaction. The other is to increase the buffer capacity by making the produced water a conjugate solution of a weak acid and a strong base. Electrolytic alkaline water is usually used as an electron donor compared to chemical alkaline water (used in the sense of, for example, a solution obtained by simply dissolving NaOH in water without adding electron or proton transfer operations such as electrolytic operation). The nature of is powerful. This is natural from the electrolytic alkaline water production process. As a result, it exhibits a strong reducing action, and ORP expresses a negative high potential as an index. The ability to defend active oxygen attacks on organs and cells is extremely strong. We try to use this cathodic reduction power, but in order to increase the absolute value of ORP, which is an index of reducing ability, if the electrolysis is strengthened, the absolute value of ORP will increase, but at the same time the pH will increase and the allowable value, for example pH = 10.5 is often exceeded, which is a problem in drinking. At this time, when neutralizing with a normal acid to lower the pH, the negative ORP (reducing property) of the corner is lost, but neutralizing with an organic acid having a reducing power (for example, an organic acid exhibiting a silver mirror reaction) The pH can be lowered to the drinking zone without impairing the reducibility (ORP). In addition, the solution system produced as a result of this neutralization is a typical conjugate solution with a weak acid and a strong alkali, so that it has a strong buffering capacity and is strong against disturbance, and can extend the duration of pH and ORP.

上記は主として還元性有機酸を添加してするケースについて記述したが、次にアルカリ金属等の還元性有機酸塩を添加する場合について説明する。一般に飲用に使用する水のpHは5.8〜8.6で酸塩基平衡の主役はNa,K,Ca++Mg++,Cl,SO −−,CO −−,HCO 等である。電解イオン水においては特にNaとClが大きく影響する。この両者は飲用水における含有量も多く電解操作における輸率も大きいので当然のことと言える。ここに例えば還元性有機酸塩の代表としてアスコルビン酸ナトリウムCNa(構造式別記)を原水に加えると一部は次式(1)のように電離しまた他の一部は次式(2)のように加水分解して荷電粒子(イオン)が増加するので電解しやすくなり、また弱アルカリ性を呈する。

Figure 2006255683
この水を電解すると陰極領域には電気泳動によりNa+が集まり陰極の陰電荷で中和して金属ナトリウムとして析出し周囲の水と反応して次式の変化をおこす。
(次式) Na+ + −電荷 → Na
Na + HO → NaOH + 1/2H
NaOH → Na + OH
ここに生じたNa及び前式のNaと前式のC とは強塩基と弱酸との共役関係にあり、また過剰に存在するNaはCの更なる電離を促し共役ペアを形成するため相当強固な緩衝系をなす。尚この系は強アルカリと弱酸によるものであるから当然アルカリpH緩衝系であり同時に陰極領域によるものであるから電子過剰型電子ドナー系である。還元性が強く活性酸素を中和してそのアタックから防衛する力がつよい。DNAの変異を防ぎ、癌や成人病の予防にもつながり長寿をもたらす。The above has mainly described the case where a reducing organic acid is added. Next, the case where a reducing organic acid salt such as an alkali metal is added will be described. In general, the pH of water used for drinking is 5.8 to 8.6, and the main role of acid-base equilibrium is Na + , K + , Ca ++ Mg ++ , Cl , SO 4 −− , CO 3 −− , HCO 3 −. Etc. In electrolytic ionic water, Na + and Cl are particularly important. It can be said that both of them have a high content in potable water and a large transport number in the electrolysis operation. For example, when sodium ascorbate C 6 H 7 O 6 Na (structural formula) is added to the raw water as a representative of the reducing organic acid salt, a part of it is ionized as shown in the following formula (1) and the other part is As the following formula (2) is hydrolyzed, charged particles (ions) increase, so that electrolysis is facilitated and weak alkalinity is exhibited.
Figure 2006255683
When this water is electrolyzed, Na + is collected in the cathode region by electrophoresis, neutralized by the negative charge of the cathode, precipitated as metallic sodium, and reacts with the surrounding water to cause the change of the following formula.
(Formula) Na + +-Charge → Na
Na + H 2 O → NaOH + 1 / 2H 2
NaOH → Na + + OH
Occurs here Na + and Equation of Na + and previous formula C 6 H 7 O 6 - that there is a conjugate relationship with a strong base and a weak acid is also Na + present in excess C 6 H 8 O 6 This promotes further ionization and forms a conjugated pair, thus forming a considerably strong buffer system. Since this system is based on a strong alkali and a weak acid, it is naturally an alkaline pH buffer system, and at the same time, based on the cathode region, it is an electron excess electron donor system. It is highly reducing and has a strong ability to neutralize active oxygen and protect it from attacks. It prevents DNA mutations and prevents cancer and adult diseases, leading to longevity.

作用・理論Action / Theory

飲用水を電気分解して陰極領域に生成する水を飲用することが生理的に有為であることは三十数年以前から認められ経験的理論的に実証されてきた。行政上もアルカリイオン水(当初はアルカリ性カルシウムイオン水と言った)として医療効果があることが認められその生成装置は医療用具として認可され広く普及している。しかしその論拠は必ずしも普遍的に十分洗練されたものとは言い難い面があることを認めざるを得ず、さらに研究を深め理論を高めなければならないことを痛感させられる。そもそもこの理論(アルカリイオン水有為説)のよって立つところは人の体液が弱アルカリ性であることと日本人にカルシウム欠乏傾向が目立ったことに始まったものである。現在は状況が変わり体液の酸塩基平衡に関してもカルシウムの問題に関しても議論は変わってきた。体液の物性に関する議論はその還元性すなわち電子ドナー性に視点が移った。これは最近の成人病蔓延の傾向とその防止対策の研究の中で生体に対する活性酸素によるアタックの概念が導入され、その防御にはSODの存在と体液の電子ドナー性とが有効であるとの思想が台頭し関連治験が数多く示されるようになったためである。本発明はこのような流れのなかで新しいアルカリイオン水のあり方を追求した結果、理想的な物性を備えたアルカリイオン水とこれを作り出すための技法とを提供する目的で発明されたものである。
水を電気分解すると水に溶解し且つ電離している物質の帯電粒子(イオン)の電荷と陰陽両電極との間に働く電気力(クーロン力)の作用によりイオンの移動がおこり、陽陰電荷に帯電しているイオンはそれぞれ引力の働く陰陽電極に向かって泳動し、陰電極領域にカチオン(陽イオン)、陽電極領域にアニオン(陰イオン)が集結する。この際イオンの移動速度は各イオンにより異なるのですべてのイオンが同じという事ではない。イオンの移動速度はその質量と帯電の電荷の量さらにはイオンに結合している水分子の数(水和数)等によって異なる。最も早いのは水素イオンH,水酸基イオンOH等である。一般にイオンの移動速度(易動度)は実際には水和水の為、理論値よりかなりおそいものである。また電解電流を運ぶことを分担するイオンの量は当然イオンの種類によって違ってくる。その割合を輸率というが、一般に原水に溶存するイオンの主役は前記のごとくNaとClであるが、ここでアルカリイオン水の特性改善のために添加する有機酸およびその塩類等は解離度も低く易動度も小さいので電解に関与する量は多くない。電解しないまま電解槽を通過して後の化学反応に参加する部分が多い。その結果としてこの溶液系はいろいろ興味深い現象を提供してくれた。以下順次化学式を使って説明する。
まず最初にLアスコルビン酸を原水に添加した場合を検討する。数値的データーは実施例に記載する。この酸は還元性が強いが電離度は高くなくイオンの式量が大きいのであまり電解の影響を受けずアニオンであるにもかかわらず陰極領域に残留し電解によって生成したNaと共役系を形成し、一部はNaと中和反応して溶液(陰極領域であるからアルカリイオン水である)のpHをさげる。一方、マイナスの電界に刺激されてORPの絶対値は大きくなる。即ちpHをあげる事無く還元力を強くする効果を果たす事が出来るのである。次に原水に酒石酸ナトリウムカリウム(ロッシェル塩)を添加して電解した場合はORPの絶対値に対する効果よりもpHの緩衝作用が大きく増加することが確認された。
The fact that drinking water produced in the cathode region by electrolyzing potable water has been recognized physiologically and has been proven empirically and theoretically for more than thirty years. Administratively, alkaline ionized water (originally called alkaline calcium ionized water) has been recognized as having a medical effect, and its production device has been approved as a medical device and is widely used. However, I must admit that there is an aspect that cannot be said to be sufficiently refined universally, and I am deeply impressed with the need to deepen research and raise the theory. In the first place, this theory (the theory of alkaline ionized water) is based on the fact that human body fluids are weakly alkaline and that Japanese people are prone to calcium deficiency. At present, the situation has changed and the discussion has changed regarding the acid-base balance of body fluids and the issue of calcium. Discussions on the physical properties of body fluids shifted to their reducing properties, ie, electron donor properties. This is because the concept of attack by active oxygen on the living body was introduced in the recent trend of adult disease epidemic and prevention measures, and the existence of SOD and the electron donor property of body fluids are effective for the defense. This is because the idea has risen and many related clinical trials have been shown. The present invention was invented for the purpose of providing alkali ion water having ideal physical properties and a technique for producing the same, as a result of pursuing a new way of alkali ion water in such a flow. .
When water is electrolyzed, the movement of ions occurs due to the action of the electric force (Coulomb force) acting between the charge of the charged particles (ions) of the substance dissolved and ionized in water and the negative and positive electrodes, and the positive and negative charges The ions that are charged to each other migrate toward the negative and positive electrodes that are attracted to each other, and cations (positive ions) are collected in the negative electrode region and anions (negative ions) are collected in the positive electrode region. At this time, since the moving speed of ions differs depending on each ion, not all ions are the same. The moving speed of ions varies depending on the mass, the amount of charged charges, the number of water molecules bonded to the ions (hydration number), and the like. The earliest are hydrogen ion H + , hydroxyl ion OH − and the like. In general, the movement speed (mobility) of ions is actually much slower than the theoretical value because of hydration water. Also, the amount of ions that share the electrolytic current naturally depends on the type of ion. Although the ratio is called transport number, the main role of ions dissolved in raw water is generally Na + and Cl − as described above, but organic acids and their salts added to improve the properties of alkaline ionized water are dissociated here. The amount involved in electrolysis is not large because the degree is low and the mobility is low. There are many parts that pass through the electrolytic cell without electrolysis and participate in the subsequent chemical reaction. As a result, this solution system provided various interesting phenomena. Hereinafter, the chemical formulas will be used in order.
First, consider the case where L ascorbic acid is added to the raw water. Numerical data are given in the examples. Although this acid is highly reducible, the degree of ionization is not high and the ion formula is large, so it is not affected by electrolysis so much, but remains in the cathode region despite being an anion and forms a conjugated system with Na + produced by electrolysis. Then, a part of the solution neutralizes with Na to lower the pH of the solution (because it is a cathode region, which is alkaline ionized water). On the other hand, the absolute value of the ORP increases when stimulated by a negative electric field. That is, the effect of increasing the reducing power can be achieved without increasing the pH. Next, it was confirmed that when potassium potassium tartrate (Rochelle salt) was added to the raw water for electrolysis, the pH buffering action increased more than the effect on the absolute value of ORP.

図に示す装置を使用して実験を実施した。図に於いて1.原水注入口から注入した原水は2.ミキシングベンチュリーに於いて3.溶液タンクから4.注入ポンプを介して注入される添加液と混合され5.電解槽に導かれて電解され、電解された水は6.生成水タンクに受けて電解後の化学変化を行なうように造られたものである。この水は陰極で電解された水であるからアルカリイオン水である。またこのアルカリイオン水の吐出量は毎分1リットルに調整し、添加液の濃度はLアスコルビン酸、ロッシェル塩ともにそれぞれ5リットルの純水に各25グラムの無水塩を溶解して造ったものである。添加液の注入量は毎分60mlに調整した。この条件でDC30Vの電圧を印加して電解したところ5.8Ampの電流が流れ生成水の物性は次に示す通りであった。尚この時の実験室の室温は20℃であった。
1.L−Ascorbin酸添加によるデータ
原水(水道水) 生成水(アルカリイオン水) 24時間後
pH 7.06 10.52 9.56
ORP +150mV −1003mV −923mV
電気化学的変化・平衡

Figure 2006255683
2.酒石酸ナトリウムカリウム(ロッシェル塩)の場合
原水 生成水 24時間後
pH 7.06 9.34 9.16
ORP +150mV −826mV −730mV
化学平衡式
Figure 2006255683
Experiments were performed using the apparatus shown in the figure. In the figure: The raw water injected from the raw water inlet is 2. 2. In mixing venturi 3. From the solution tank 4. mixed with the additive solution to be injected through the injection pump; Electrolyzed water is introduced into the electrolytic cell and the electrolyzed water is 6. It is designed to undergo chemical changes after electrolysis when it is received in the generated water tank. Since this water is water electrolyzed at the cathode, it is alkaline ionized water. The discharge amount of the alkaline ionized water was adjusted to 1 liter per minute, and the concentration of the additive solution was made by dissolving 25 grams of anhydrous salt in 5 liters of pure water for each of L ascorbic acid and Rochelle salt. is there. The injection amount of the additive solution was adjusted to 60 ml per minute. When electrolysis was performed by applying a voltage of DC 30 V under these conditions, a current of 5.8 Amp flowed and the physical properties of the produced water were as follows. The room temperature in the laboratory at this time was 20 ° C.
1. Data by addition of L-Ascorbin acid Raw water (tap water) Product water (alkaline ion water) After 24 hours pH 7.06 10.52 9.56
ORP +150 mV -1003 mV -923 mV
Electrochemical change / equilibrium
Figure 2006255683
2. In the case of sodium potassium tartrate (Rochelle salt) Raw water Product water 24 hours later pH 7.06 9.34 9.16
ORP +150 mV -826 mV -730 mV
Chemical equilibrium formula
Figure 2006255683

この図面は実施例に用いた装置のものである。This drawing is for the apparatus used in the examples.

符号の説明Explanation of symbols

1.原水給入口
2.ミキシングベンチュリー
3.添加溶液タンク
4.添加液注入ポンプ
5.電解槽
6.生成水受けタンク
1. Raw water inlet 2. 2. Mixing Venturi 3. Addition solution tank 4. Additive liquid injection pump Electrolytic cell 6. Generated water tank

Claims (4)

原水に少量の還元性有機酸を加えて得た水を電気分解して、その陰極領域に生成する水をとり出して使用することを特徴とするアルカリイオン水の生成方法ならびにこの方法によって生成したアルカリイオン水。  Water produced by adding a small amount of a reducing organic acid to raw water and electrolyzing the water generated in the cathode region for use, and a method for producing alkaline ionized water Alkaline ion water. 原水を直接電気分解しその陰極領域より取り出した水に還元性有機酸またはその水溶液を加えて攪拌混和してアルカリイオン水を調製する方法ならびにこの方法によって調製したアルカリイオン水。  A method of preparing alkaline ionized water by adding a reducing organic acid or an aqueous solution thereof to water taken out from the cathode region by directly electrolyzing raw water and stirring and mixing, and alkali ionized water prepared by this method. 請求項1の方法により生成した水に更に有機酸、有機塩基、還元性物質等を添加し生成水の物性を調製する手法及びこの手法により調製して得たアルカリイオン水。  The method of adding the organic acid, the organic base, a reducing substance, etc. to the water produced | generated by the method of Claim 1, and preparing the physical property of produced | generated water, and the alkali ion water obtained by preparing by this method. 原水に、アルカリ金属・アルカリ土類金属等と有機酸とから成る塩類またはその水溶液を添加して得た水溶液を電気分解してその陰極領域に生成する水を取出し、これを、そのまま又は更に還元性有機酸等またはその水溶液を加えて攪拌混和して調製することを特徴とするアルカリイオン水の生成方法ならびにこの手法により調製したアルカリイオン水。
請求項1及び請求項2に於いて原水とは井戸水、湧き水、貯水、地下水、伏流水、水道水等、直接飲用に供しまたはこれを浄水的加工を施したりして飲用に供し得る総べての水を言う。請求項1及び請求項2に於いて還元性有機酸とは銀鏡反応等で還元性が確認できるものを含め還元的に働き酸性の官能基をもつ総ての有機物を言う。
The raw water is electrolyzed with an aqueous solution obtained by adding a salt composed of an alkali metal / alkaline earth metal or the like and an organic acid, or an aqueous solution thereof, and the water produced in the cathode region is taken out, and this is reduced as it is or further. A method for producing alkaline ionized water, which is prepared by adding an organic organic acid or the like or an aqueous solution thereof and mixing with stirring, and alkaline ionized water prepared by this method.
In claim 1 and claim 2, the raw water is well water, spring water, stored water, ground water, underground water, tap water, etc. that can be directly used for drinking or can be used for drinking by subjecting it to water purification. Say no water. In the first and second aspects, the reducing organic acid means all organic substances having an acidic functional group that works reductively, including those whose reducibility can be confirmed by silver mirror reaction or the like.
JP2005117483A 2005-03-18 2005-03-18 Method for generating alkaline ion water and alkaline ion water generated by the method Pending JP2006255683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117483A JP2006255683A (en) 2005-03-18 2005-03-18 Method for generating alkaline ion water and alkaline ion water generated by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117483A JP2006255683A (en) 2005-03-18 2005-03-18 Method for generating alkaline ion water and alkaline ion water generated by the method

Publications (1)

Publication Number Publication Date
JP2006255683A true JP2006255683A (en) 2006-09-28

Family

ID=37095465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117483A Pending JP2006255683A (en) 2005-03-18 2005-03-18 Method for generating alkaline ion water and alkaline ion water generated by the method

Country Status (1)

Country Link
JP (1) JP2006255683A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216470A (en) * 1998-01-30 1999-08-10 Tadamasa Nakamura Generating method of electrolytic water, drinking water produced from electrolytic catholyte and production of drinking water
JP2001070944A (en) * 1998-11-25 2001-03-21 Matsushita Electric Works Ltd Electrolytic water generator
JP2004323815A (en) * 2003-04-23 2004-11-18 Shinobu Ito Antioxidant composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216470A (en) * 1998-01-30 1999-08-10 Tadamasa Nakamura Generating method of electrolytic water, drinking water produced from electrolytic catholyte and production of drinking water
JP2001070944A (en) * 1998-11-25 2001-03-21 Matsushita Electric Works Ltd Electrolytic water generator
JP2004323815A (en) * 2003-04-23 2004-11-18 Shinobu Ito Antioxidant composition

Similar Documents

Publication Publication Date Title
JP3602773B2 (en) Anode electrolyzed water and method for producing the same
RU2140881C1 (en) Water produced by electrolysis and containing dissolved hydrogen, method of water production by electrolysis and plant for water production by electrolysis
US8562860B2 (en) Method for activating and stabilizing dissolved hydrogen in water
JP5640266B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
RU2006134275A (en) ARTIFICIAL PHYSIOLOGICAL SALT SOLUTION AND PRODUCTION METHOD OF ITS PRODUCTION
JP2002301476A (en) Ascorbylglucosamine electrolyzed water and method for making the same
JP2005058848A (en) Production method for water used for washing, disinfecting, and wound healing, its production apparatus, and water used for washing, disinfecting, and wound healing
JP2004267956A (en) Method for producing mixed electrolytic water
JP2007007591A (en) Electrolylic water and its production method
CN101638262A (en) Process for producing electrolyzed oxidizing water and bottled package
JP2004261656A (en) Manufacturing method for mixed electrolytic water
JP2000033377A (en) Reducing electrolyzed water
JP2006255683A (en) Method for generating alkaline ion water and alkaline ion water generated by the method
JP2002018439A (en) Alkaline electrolytic water containing vitamin c
JP2000079391A (en) Production of reducing electrolytic water
JP2001079549A (en) Production of electrolytic water, electrolyzed water on cathode side, electrolytic auxiliary and water electrolytic device
JP2001137852A (en) Electrolytic reduction water, cancer suppressing agent and its production method and production device therefor
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JP2000093964A (en) Alkali water making method and electrolytic apparatus
KR100658409B1 (en) Electrolyzed water of anode side and process for production thereof
CN101391832B (en) Method for preparing acidic high oxidation water
JP2006008631A (en) Cosmetic
JPH1076269A (en) Production of sterilizing water
KR20070057873A (en) Immunopotentiator and method and apparatus for producing the same
JP2005152867A (en) Electrolytic water manufacturing means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018