JP2006255673A - Membrane evaluation method in membrane separation apparatus - Google Patents

Membrane evaluation method in membrane separation apparatus Download PDF

Info

Publication number
JP2006255673A
JP2006255673A JP2005080514A JP2005080514A JP2006255673A JP 2006255673 A JP2006255673 A JP 2006255673A JP 2005080514 A JP2005080514 A JP 2005080514A JP 2005080514 A JP2005080514 A JP 2005080514A JP 2006255673 A JP2006255673 A JP 2006255673A
Authority
JP
Japan
Prior art keywords
membrane
colloidal silica
raw water
water
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080514A
Other languages
Japanese (ja)
Other versions
JP4985904B2 (en
Inventor
Kozo Shimizu
浩三 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005080514A priority Critical patent/JP4985904B2/en
Publication of JP2006255673A publication Critical patent/JP2006255673A/en
Application granted granted Critical
Publication of JP4985904B2 publication Critical patent/JP4985904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane evaluation method in a membrane separation apparatus capable of being normally operated even if flux is reduced caused by fluctuation of water quality by a temperature in winter or the like. <P>SOLUTION: A filtration performance is measured using raw water added with colloidal silica and a separation membrane to be used is evaluated based on the measurement result. The colloidal silica is preferably added to raw water in an amount of 5-20 mg/L and is particularly preferably added thereto such that the total amount of colloidal silica in raw water becomes 10-20 mg/L. Thus, the evaluation test of the membrane is performed by previously adding the colloidal silica to raw water. Thereby, since the membrane separation apparatus is designed at the performance in response to reduction of the flux by fluctuation of the temperature, the membrane separation apparatus can always exhibit a predetermined function. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、膜分離装置における膜評価方法に関し、特に精密濾過膜、限外濾過膜、逆浸透膜等の膜分離装置の最適な評価方法に関する。   The present invention relates to a membrane evaluation method in a membrane separation device, and more particularly to an optimum evaluation method for a membrane separation device such as a microfiltration membrane, an ultrafiltration membrane, and a reverse osmosis membrane.

膜分離装置は、河川水や湖沼水などの表流水に凝集沈殿処理等の浄水処理を施して得られる工業用水や上水中の懸濁物や溶存物を分離して高度な浄水を得る場合や、あるいは工場や家庭、下水処理場から排出される排水中の懸濁物や溶存物を分離して再利用を図る浄化設備等の分野において、広く用いられている。   Membrane separation equipment is used to obtain high-purity water by separating industrial water obtained by subjecting surface water such as river water and lake water to water purification treatment such as coagulation and sedimentation, and suspended and dissolved substances in tap water. Or, it is widely used in fields such as purification equipment for separating and reusing suspended matter and dissolved matter in waste water discharged from factories, households, and sewage treatment plants.

上述したような膜分離装置においては、河川水や湖沼水などに凝集剤を添加して、凝集・沈殿・濾過等の固液分離処理を施して得られる分離水を原水として処理を行うが、この際原水を用いてフラックス等の膜性能を評価し、この評価結果に基づいて膜分離装置の設計を行っている。   In the membrane separation apparatus as described above, a flocculant is added to river water, lake water, etc., and the separation water obtained by performing solid-liquid separation processing such as flocculation / precipitation / filtration is treated as raw water. At this time, membrane performance such as flux is evaluated using raw water, and a membrane separation apparatus is designed based on the evaluation result.

この際、膜分離装置の後段では水を流す場合に加温することが多いことから、あらかじめ加温した水を通すことが多いため、25℃の水温の原水のフラックスに基づいて膜を評価・選定していた。しかしながら、原水の水質は水温により変動するものであり、水温が下がる冬季にはフラックスが低下する。さらに、膜分離装置によっては加温しない水を透過する場合もある。   At this time, since water is often heated in the latter stage of the membrane separation apparatus, preheated water is often passed, so the membrane is evaluated based on the raw water flux at 25 ° C. It was selected. However, the quality of the raw water varies depending on the water temperature, and the flux decreases in winter when the water temperature falls. Furthermore, some membrane separators may permeate unheated water.

かかる場合に25℃の原水のフラックスに基づいて膜を評価し、膜分離装置の性能として設計していたのでは、冬季には透過水量が減少し所定の性能を発揮できなくなり、所望量の原水の処理ができなくなり工業用水などの不足を招くおそれがあり、また膜分離装置の運転にも支障をきたしかねないという問題点があった。   In such a case, if the membrane was evaluated based on the raw water flux at 25 ° C. and designed as the performance of the membrane separation device, the permeated water amount decreased in the winter, and the predetermined performance could not be exhibited. In other words, there is a risk that the treatment of the membrane separator may be hindered, and the operation of the membrane separator may be hindered.

本発明は上記課題に鑑みてなされたものであり、冬季などの温度による水質の変動に起因してフラックスが低下しても普通に運転可能な膜分離装置における膜評価方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a membrane evaluation method in a membrane separation apparatus that can be normally operated even when flux decreases due to fluctuations in water quality due to temperature such as in winter. And

第1に本発明は、分離膜により原水中の懸濁物や溶存物を分離する膜分離装置における膜評価方法であって、コロイダルシリカを添加した原水を用いて濾過性能を測定し、この測定結果に基づき使用する分離膜を評価する膜分離装置における膜評価方法を提供する(請求項1)。原水中のコロイダルシリカは温度が低下すると増加する上に凝集しにくいので固液分離により除去しにくいため、原水温度が高い状態で膜の評価を行った場合には、冬季などの水温の低下に伴い原水中のコロイダルシリカの量が増加すると、フラックスが低下し膜分離装置が所定の機能を発揮できなくなることから、あらかじめ原水中にコロイダルシリカを添加して膜の評価試験を行えば、気温の変動によるフラックスの低下に対応した性能で膜分離装置を設計することになるので、常時膜分離装置が所定の機能を発揮しつづけることができる。ここで、本発明において、原水に添加するコロイダルシリカは、膜の濾過性能を評価する基準となるものである。   First, the present invention is a membrane evaluation method in a membrane separation apparatus for separating suspensions and dissolved substances in raw water using a separation membrane, and measures filtration performance using raw water to which colloidal silica is added. A membrane evaluation method in a membrane separation apparatus for evaluating a separation membrane to be used based on the results is provided. Colloidal silica in raw water increases with decreasing temperature and is difficult to agglomerate, so it is difficult to remove it by solid-liquid separation.If the membrane is evaluated at a high raw water temperature, the water temperature may decrease in winter. As the amount of colloidal silica in the raw water increases, the flux decreases and the membrane separator cannot perform its predetermined function.If the colloidal silica is added to the raw water in advance and the membrane is evaluated, Since the membrane separator is designed with the performance corresponding to the decrease in the flux due to the fluctuation, the membrane separator can always perform the predetermined function. Here, in this invention, the colloidal silica added to raw | natural water becomes a reference | standard which evaluates the filtration performance of a film | membrane.

また、第2に本発明は、前記コロイダルシリカを5〜20mg/L添加する膜分離装置における膜評価方法を提供する(請求項2)。これにより低温での原水中のコロイダルシリカの含有量に対応して膜分離装置を評価することができる。   Secondly, the present invention provides a membrane evaluation method in a membrane separator in which 5 to 20 mg / L of the colloidal silica is added (Claim 2). Thereby, a membrane separator can be evaluated corresponding to the content of colloidal silica in raw water at a low temperature.

第3に本発明は、前記コロイダルシリカを原水中のコロイダルシリカの総量が10〜20mg/Lとなるように添加する膜分離装置における膜評価方法を提供する(請求項3)。これにより低温での原水中のコロイダルシリカの含有量に即して膜分離装置を評価することができる。   3rdly, this invention provides the membrane evaluation method in the membrane separator which adds the said colloidal silica so that the total amount of the colloidal silica in raw | natural water may be 10-20 mg / L (Claim 3). Thereby, the membrane separator can be evaluated in accordance with the content of colloidal silica in the raw water at a low temperature.

本発明の膜分離装置における膜評価方法によれば、低い水温での運転を想定して、あらかじめ原水に濾過性能の評価基準となるコロイダルシリカを添加した状態でフラックスを測定し、これに基づき膜を評価して膜分離装置の性能を設定しているので、気温の変動により設計時のフラックスを下回ることがなく、常に良好な状態で膜分離装置を運転することができる。   According to the membrane evaluation method in the membrane separation apparatus of the present invention, assuming the operation at a low water temperature, the flux is measured in advance in a state where colloidal silica which is an evaluation standard for filtration performance is added to the raw water, and based on this, the membrane is measured. Since the performance of the membrane separation device is set by evaluating the above, the membrane separation device can always be operated in a good state without being lower than the flux at the time of design due to fluctuations in temperature.

以下、本発明の膜分離装置における膜評価方法の一実施形態について詳細に説明する。図1は本実施形態の膜評価方法で評価する平膜の一例を示す概略図であり、膜シート1は、ポリプロピレンコーティング処理を施したポリスルフォン製の透過性支持層2と濾過を行うポリテトラフルオロエチレン(PTFE)製の孔径0.2μmのスキン層4とをポリプロピレン製の不織布層3を介して接合してなり、この膜シート1をスキン層4側で対向させて内側にスペーサ(流路材)6を配置した状態でスキン層4の端縁に接着剤層5を形成して固化接着して袋状に形成してなる。そして、内面側に原水Wを供給してスキン層4を透過させ、処理水W1を得ることで処理を行う。この平膜の初期性能は25℃のRO処理水で80mL/minである。   Hereinafter, an embodiment of a membrane evaluation method in the membrane separation apparatus of the present invention will be described in detail. FIG. 1 is a schematic view showing an example of a flat membrane evaluated by the membrane evaluation method of the present embodiment. A membrane sheet 1 includes a polysulfone permeable support layer 2 that has been subjected to a polypropylene coating treatment and a polytetrasilane that performs filtration. A skin layer 4 made of fluoroethylene (PTFE) having a pore diameter of 0.2 μm is joined via a non-woven fabric layer 3 made of polypropylene, and this membrane sheet 1 is opposed to the skin layer 4 side so that a spacer (channel) In the state where the material 6 is disposed, the adhesive layer 5 is formed on the edge of the skin layer 4 and solidified and bonded to form a bag. And it processes by supplying the raw | natural water W to the inner surface side, permeate | transmitting the skin layer 4, and obtaining the treated water W1. The initial performance of this flat membrane is 80 mL / min with 25 ° C. RO treated water.

本実施形態の膜評価方法は、原水にコロイダルシリカを所定量添加し、当該原水を膜分離装置に導入して濾過性能を測定することにより行う。ここで、原水に添加するコロイダルシリカは、膜の濾過性能の評価基準となるものであれば特に限定されるものではなく、例えば、スノーテックス20(商品名,日産化学工業社製)等を用いることができる。コロイダルシリカの添加量は、5〜20mg/Lであることが好ましく、原水中のコロイダルシリカの総量が10〜20mg/Lとなるように添加するのが好ましい。   The membrane evaluation method of this embodiment is performed by adding a predetermined amount of colloidal silica to raw water, introducing the raw water into a membrane separator, and measuring the filtration performance. Here, the colloidal silica added to the raw water is not particularly limited as long as it becomes an evaluation standard for the filtration performance of the membrane, and for example, Snowtex 20 (trade name, manufactured by Nissan Chemical Industries, Ltd.) or the like is used. be able to. The amount of colloidal silica added is preferably 5 to 20 mg / L, and is preferably added so that the total amount of colloidal silica in the raw water is 10 to 20 mg / L.

上述したような膜シート1において、まず凝集剤(PAC)60mg/Lと、スライム抑制のために次亜塩素酸ソーダ(12%濃度)35mg/Lとを添加し、凝集沈殿処理を行った分離水を工業用水としての原水とした。この原水のpHは6.2で25℃におけるコロイダルシリカ濃度は5mg/Lであった。このような原水の運転開始から6時間経過後までのフラックスの推移を計測した。結果を図2に実線で示す。   In the membrane sheet 1 as described above, first, a coagulant (PAC) 60 mg / L and a sodium hypochlorite (12% concentration) 35 mg / L were added to suppress slime, followed by a coagulation precipitation treatment. Water was used as industrial water. The pH of this raw water was 6.2, and the colloidal silica concentration at 25 ° C. was 5 mg / L. The transition of flux from the start of operation of such raw water to 6 hours later was measured. The result is shown by a solid line in FIG.

図2から明らかなように本実施形態の平膜においては、コロイダルシリカ濃度5mg/Lで25℃の水温では、約35mL/minの透過水量をほぼ維持して推移していくことがわかる。従来は、このように高い水温でのフラックスに基づき、この平膜のフラックスを35mL/minとして膜分離装置を設計していた。しかしながら、このような設計では冬季など水温が低下すると、フラックスが低下し設計どおりの性能を発揮できないという不都合を生じる一因となっていた。そこで、本発明では水温の低下に伴うフラックスの低下は、溶解度の低下によりコロイダルシリカの濃度が増加することによるものであることから、これを利用して水温の低下に伴うフラックスの低下に対応した膜分離装置の評価を行うこととした。   As can be seen from FIG. 2, in the flat membrane of this embodiment, the permeated water amount of about 35 mL / min is maintained substantially at a water temperature of 25 ° C. with a colloidal silica concentration of 5 mg / L. Conventionally, based on the flux at such a high water temperature, the membrane separator was designed with the flux of the flat membrane set to 35 mL / min. However, in such a design, when the water temperature is lowered in winter, the flux is lowered, which causes a disadvantage that performance as designed cannot be exhibited. Therefore, in the present invention, the decrease in flux accompanying the decrease in water temperature is due to the increase in the concentration of colloidal silica due to the decrease in solubility, and this was used to cope with the decrease in flux associated with the decrease in water temperature. The membrane separator was evaluated.

すなわち、原水に対して濾過性能の評価基準となるコロイダルシリカ(商品名:スノーテックス20,日産化学工業社製)15mg/Lを添加してコロイダルシリカを合計で20mg/Lとしたものを用いて、同じ条件で運転開始から6時間経過後までのフラックスの推移を計測した。結果を図2に破線で示す。この結果からコロイダルシリカ濃度20mg/Lの場合には、フラックス(透過水量)は約35mL/minのから約15mL/minへと漸減していくことがわかる。そこで、本実施形態においては、この平膜のフラックスを15mL/minと評価して膜分離装置の性能を設定することにより、例え水温が低下してフラックスが低下したとしても膜分離装置を設定された性能に基づいて運転することが可能となる。   That is, by using 15 mg / L of colloidal silica (trade name: Snowtex 20, manufactured by Nissan Chemical Industries, Ltd.), which is an evaluation standard for filtration performance, with respect to raw water, the total colloidal silica is 20 mg / L. The change in flux from the start of operation to 6 hours after the start was measured under the same conditions. The results are shown by broken lines in FIG. From this result, it is understood that when the colloidal silica concentration is 20 mg / L, the flux (permeated water amount) gradually decreases from about 35 mL / min to about 15 mL / min. Therefore, in this embodiment, by setting the performance of the membrane separation device by evaluating the flux of this flat membrane as 15 mL / min, even if the water temperature is lowered and the flux is lowered, the membrane separation device is set. It becomes possible to drive based on the performance.

ただし、前記コロイダルシリカの添加量は、あまり多すぎても過度にフラックスを低いものとして膜分離装置を評価してしまい現実的でないことから、低温での原水中のコロイダルシリカの含有量に対応させるために5〜20mg/L添加するのが好ましい。具体的に前記コロイダルシリカを原水中のコロイダルシリカの総量が10〜20mg/Lとなるように添加して膜分離装置における膜を評価すればよい。   However, since the amount of the colloidal silica added is too much, it is not practical to evaluate the membrane separation apparatus as an excessively low flux, so it corresponds to the content of the colloidal silica in the raw water at a low temperature. Therefore, it is preferable to add 5 to 20 mg / L. Specifically, the colloidal silica may be added so that the total amount of colloidal silica in the raw water is 10 to 20 mg / L, and the membrane in the membrane separation apparatus may be evaluated.

以上本発明について前記実施形態に基づいて説明してきたが、本発明は平膜に限らず、限外濾過膜、精密濾過膜、逆浸透膜など種々の膜を用いた膜分離装置に適用可能である。   Although the present invention has been described based on the above embodiment, the present invention is not limited to a flat membrane, and can be applied to a membrane separation apparatus using various membranes such as an ultrafiltration membrane, a microfiltration membrane, and a reverse osmosis membrane. is there.

本発明の膜分離装置における膜評価方法によれば、気温の変動によるフラックスの低下に対応した性能で膜分離装置を設計することになるので、常時膜分離装置が設計値以上の機能を発揮しつづけることができる。   According to the membrane evaluation method in the membrane separation apparatus of the present invention, since the membrane separation apparatus is designed with performance corresponding to the decrease in flux due to temperature fluctuations, the membrane separation apparatus always exhibits a function exceeding the design value. Can continue.

本発明の膜分離装置における膜評価方法を適用可能な平膜を構成を示す概略図である。It is the schematic which shows a structure of the flat membrane which can apply the membrane evaluation method in the membrane separator of this invention. コロイダルシリカ濃度と透過量との関係を示すグラフである。It is a graph which shows the relationship between a colloidal silica density | concentration and permeation | transmission amount.

符号の説明Explanation of symbols

1…膜シート
2…透過性支持層
3…不織布層
4…スキン層
5…接着剤層
6…スペーサ(流路材)
DESCRIPTION OF SYMBOLS 1 ... Membrane sheet 2 ... Permeable support layer 3 ... Nonwoven fabric layer 4 ... Skin layer 5 ... Adhesive layer 6 ... Spacer (channel material)

Claims (3)

分離膜により原水中の懸濁物や溶存物を分離する膜分離装置における膜評価方法であって、コロイダルシリカを添加した原水を用いて濾過性能を測定し、この測定結果に基づき使用する分離膜を評価することを特徴とする膜分離装置における膜評価方法。   A membrane evaluation method in a membrane separator that separates suspensions and dissolved substances in raw water using a separation membrane, and the filtration performance is measured using raw water added with colloidal silica, and the separation membrane used based on the measurement results A membrane evaluation method in a membrane separator characterized by the above. 前記コロイダルシリカを5〜20mg/L添加することを特徴とする請求項1に記載の膜分離装置における膜評価方法。   The membrane evaluation method for a membrane separator according to claim 1, wherein 5 to 20 mg / L of the colloidal silica is added. 前記コロイダルシリカを原水中のコロイダルシリカの総量が10〜20mg/Lとなるように添加することを特徴とする請求項1に記載の膜分離装置における膜評価方法。
The membrane evaluation method for a membrane separator according to claim 1, wherein the colloidal silica is added so that the total amount of colloidal silica in the raw water is 10 to 20 mg / L.
JP2005080514A 2005-03-18 2005-03-18 Membrane evaluation method in membrane separator Expired - Fee Related JP4985904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080514A JP4985904B2 (en) 2005-03-18 2005-03-18 Membrane evaluation method in membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080514A JP4985904B2 (en) 2005-03-18 2005-03-18 Membrane evaluation method in membrane separator

Publications (2)

Publication Number Publication Date
JP2006255673A true JP2006255673A (en) 2006-09-28
JP4985904B2 JP4985904B2 (en) 2012-07-25

Family

ID=37095455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080514A Expired - Fee Related JP4985904B2 (en) 2005-03-18 2005-03-18 Membrane evaluation method in membrane separator

Country Status (1)

Country Link
JP (1) JP4985904B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471851A (en) * 1977-11-19 1979-06-08 Kouriyuu Kougiyou Kk Reverse osmosis refining method of water
JPS6068006A (en) * 1983-09-24 1985-04-18 Kuraray Co Ltd Filtration apparatus
JPH0416217A (en) * 1990-05-02 1992-01-21 Nitto Denko Corp Evaluation of dividing performance of ultrafiltration membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471851A (en) * 1977-11-19 1979-06-08 Kouriyuu Kougiyou Kk Reverse osmosis refining method of water
JPS6068006A (en) * 1983-09-24 1985-04-18 Kuraray Co Ltd Filtration apparatus
JPH0416217A (en) * 1990-05-02 1992-01-21 Nitto Denko Corp Evaluation of dividing performance of ultrafiltration membrane

Also Published As

Publication number Publication date
JP4985904B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
Barredo-Damas et al. Ceramic membrane behavior in textile wastewater ultrafiltration
Lehman et al. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
WO2014103860A1 (en) Water treatment method
Dialynas et al. Integration of immersed membrane ultrafiltration with coagulation and activated carbon adsorption for advanced treatment of municipal wastewater
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP2012213676A (en) Water quality evaluation method and operation management method for water treatment apparatus
JPWO2019044312A1 (en) Water treatment method and water treatment apparatus
WO2016027302A1 (en) Reverse osmosis membrane device and method for operating same
JP4958384B2 (en) Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process
WO2017159303A1 (en) Method for treating waste water having high hardness
JP4985904B2 (en) Membrane evaluation method in membrane separator
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
Mousa et al. Treatability of wastewater and membrane fouling
JP2009165928A (en) Water treatment apparatus and method
WO2016038726A1 (en) Water treatment apparatus and water treatment method
WO2018105569A1 (en) Water treatment method and water treatment device
JP4825932B2 (en) Water treatment method
Jang et al. Performance of ultrafiltration membrane process combined with coagulation/sedimentation
KR101791307B1 (en) Apparatus for purifying water and method for purifying water using the same
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP7224753B2 (en) Cohesive membrane filtration method and cohesive membrane filtration device
JP6630689B2 (en) Water treatment equipment and water treatment method
JP4825933B1 (en) Water treatment method
JP2019217504A (en) Water treatment installation and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees