JP2006254632A - Three-phase v-connected inverter - Google Patents

Three-phase v-connected inverter Download PDF

Info

Publication number
JP2006254632A
JP2006254632A JP2005069663A JP2005069663A JP2006254632A JP 2006254632 A JP2006254632 A JP 2006254632A JP 2005069663 A JP2005069663 A JP 2005069663A JP 2005069663 A JP2005069663 A JP 2005069663A JP 2006254632 A JP2006254632 A JP 2006254632A
Authority
JP
Japan
Prior art keywords
phase
current
signal
voltage
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005069663A
Other languages
Japanese (ja)
Other versions
JP4839641B2 (en
Inventor
Takeyuki Matsumoto
剛幸 松本
Shinichiro Nagai
真一郎 長井
Shinji Sato
伸二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2005069663A priority Critical patent/JP4839641B2/en
Publication of JP2006254632A publication Critical patent/JP2006254632A/en
Application granted granted Critical
Publication of JP4839641B2 publication Critical patent/JP4839641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a size and a cost of a three-phase inverter. <P>SOLUTION: A three-phase V-connected inverter circuit is formed and provided with first and third phase reactors Lu, Lw in an output stage of the inverter circuit, first and third phase current detectors CTu, CTw for detecting currents in the first and third reactors Lu, Lw, first and second filter capacitors Cu, Cw, and a voltage detecting means 5 for detecting voltages across the first and second filter capacitors Cu, Cw; predicts currents in the first and second filter capacitors Cu, Cw based on an output from the voltage detecting means 5; and generates an output current instruction value from a value converted into two-phase axes and a linkage current instruction value. A feedback control signal is formed of the output current instruction value, and outputs from the first and third phase current detectors CTu, CTw. PWM control pulses for first, second, third and fourth switches S1-S4 in the three-phase V-connected inverter circuit are formed based on the feedback control signal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、力率制御が可能であり且つ低コスト化が可能な3相V結線インバータに関する。   The present invention relates to a three-phase V-connection inverter capable of power factor control and cost reduction.

CO2 排出量の増大に伴い燃料電池や太陽電池等を利用した分散型電源への期待が高まっている。この種の分散型電源を3相交流電力系統に連系させるためには力率制御可能な3相インバータが必要になる。また力率を1又は1に近くすることが要求される。3相インバータの交流出力端子における力率を制御するためには、3相交流出力端子を流れる系統電流をそれぞれ検出するための3個の電流検出器とインバータの出力段の3個のリアクトルを流れる電流をそれぞれ検出するための3個の電流検出器とが必要になる。このように6個の電流検出器を設けると必然的にインバータが大型且つコスト高になる。 As CO 2 emissions increase, expectations for distributed power sources that use fuel cells, solar cells, and the like are increasing. In order to link this type of distributed power supply to a three-phase AC power system, a three-phase inverter capable of power factor control is required. It is also required that the power factor is 1 or close to 1. In order to control the power factor at the AC output terminal of the three-phase inverter, three current detectors for detecting system currents flowing through the three-phase AC output terminal and three reactors at the output stage of the inverter flow, respectively. Three current detectors for detecting each current are required. If six current detectors are provided in this way, the inverter inevitably becomes large and expensive.

3相インバータの電流検出器の個数を減らす方式が特許文献1に開示されている。ここに開示されている方式では、インバータの出力段のフィルタコンデンサの電圧を検出してフィルタコンデンサの電流を予測し、連系電流検出用の電流検出器を省いている。しかし、3相インバータの場合には、インバータ出力段の3個のリアクトルの電流を検出するための3個の電流検出器が必要になる。また、3相フルブリッジ型インバータのスイッチング回路を形成するために6個のスイッチが必要になる。従って、3相インバータが比較的大型且つコスト高になる。   A method of reducing the number of current detectors of a three-phase inverter is disclosed in Patent Document 1. In the system disclosed here, the voltage of the filter capacitor in the output stage of the inverter is detected to predict the current of the filter capacitor, and the current detector for detecting the interconnection current is omitted. However, in the case of a three-phase inverter, three current detectors for detecting the currents of the three reactors in the inverter output stage are required. In addition, six switches are required to form a switching circuit for a three-phase full-bridge inverter. Therefore, the three-phase inverter is relatively large and expensive.

3相インバータの小型化及び低コスト化を図るために3相V結線インバータを使用することが考えられる。しかし、3相V結線インバータの場合においても、力率制御を行うために2つの交流端子に流れる電流をそれぞれ検出するための2つの電流検出器と、出力段の2つのリアクトルに流れる電流をそれぞれ検出するための2つの電流検出器が必要になり、必然的に大型且つコスト高になる。
特開2002−354681号公報
In order to reduce the size and cost of the three-phase inverter, it is conceivable to use a three-phase V-connection inverter. However, even in the case of a three-phase V-connection inverter, two current detectors for detecting currents flowing through two AC terminals in order to perform power factor control, and currents flowing through two reactors in the output stage, respectively. Two current detectors for detection are required, which inevitably increases in size and cost.
Japanese Patent Laid-Open No. 2002-354681

本発明が解決しようとする課題は力率制御可能な3相インバータのコストが高いことである。   The problem to be solved by the present invention is that the cost of a three-phase inverter capable of power factor control is high.

次に、本願発明を、実施例を示す図面の符号を参照して説明する。但し、特許請求の範囲及びここでの参照符号は本願発明の理解を助けるためのものであって、本願発明を限定するものではない。
上記課題を解決するための本発明は、直流電圧を供給するための第1及び第2の直流端子(1a、1b)と、
前記第1及び第2の直流端子(1a、1b)間の中間の電位を有する中間端子(1c)と、
3相交流電圧の第1相電圧を出力するための第1相交流端子(2u)と、
前記3相交流電圧の第2相電圧を出力するものであって、前記中間端子(1c)に電気的に接続された第2相交流端子(2v)と、
前記3相交流電圧の第3相電圧を出力するための第3相交流端子(2w)と、
前記第1及び第2の直流端子(1a、1b)間に接続された第1及び第2のスイッチ(S1 、S2 )の直列回路と、
前記第1及び第2の直流端子(1a、1b)間に接続された第3及び第4のスイッチ(S3 、S4 )の直列回路と、
前記第1及び第2のスイッチ(S1 、S2 )の相互接続点(P1 )と前記第1相交流端子(2u)との間に接続された第1相リアクトル(Lu )と、
前記第3及び第4のスイッチ(S3 、S4 )の相互接続点(P2 )と前記第3相交流端子(2w)との間に接続された第3相リアクトル(Lw )と、
前記第1相交流端子(2u)と前記第2相交流端子(2v)との間に接続された第1のフィルタコンデンサ(Cu )と、
前記第2相交流端子(2v)と前記第3相交流端子(2w)との間に接続された第2のフィルタコンデンサ(Cw )と、
前記第1相リアクトル(Lu )又は前記第1相交流端子(2u)に流れる第1相電流(Iou又はIsu)を検出する第1相電流検出器(CTu )と、
前記第3相リアクトル(Lw )又は前記第3相交流端子(2w)に流れる第3相電流(Iow 又はIsw)を検出する第3相電流検出器(CTw )と、
前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の電圧をそれぞれ検出する電圧検出手段(5)と、
前記第1及び第3相電流検出器(CTu 、CTw )の出力と前記電圧検出手段(5)の出力とに基づいて前記第1、第2及び第3相交流端子(2u、2v、2w)における力率を所望値にするように前記第1〜第4のスイッチをオン・オフ制御するスイッチ制御パルスを形成して前記第1、第2、第3及び第4のスイッチの制御端子に供給する制御部(6)と
を具備していることを特徴とする3相V結線インバータに係わるものである。
なお、本発明における前記中間端子は、電気回路又は部品の端、又は複数の回路又は部品の相互接続点を意味している。
Next, the present invention will be described with reference to the reference numerals of the drawings showing the embodiments. However, the claims and the reference numerals used here are for helping the understanding of the present invention, and do not limit the present invention.
The present invention for solving the above-described problems includes first and second DC terminals (1a, 1b) for supplying a DC voltage,
An intermediate terminal (1c) having an intermediate potential between the first and second DC terminals (1a, 1b);
A first phase AC terminal (2u) for outputting a first phase voltage of a three-phase AC voltage;
A second phase AC voltage (2v) that outputs a second phase voltage of the three-phase AC voltage, and is electrically connected to the intermediate terminal (1c);
A third phase AC terminal (2w) for outputting a third phase voltage of the three-phase AC voltage;
A series circuit of first and second switches (S1, S2) connected between the first and second DC terminals (1a, 1b);
A series circuit of third and fourth switches (S3, S4) connected between the first and second DC terminals (1a, 1b);
A first phase reactor (Lu) connected between an interconnection point (P1) of the first and second switches (S1, S2) and the first phase AC terminal (2u);
A third phase reactor (Lw) connected between the interconnection point (P2) of the third and fourth switches (S3, S4) and the third phase AC terminal (2w);
A first filter capacitor (Cu) connected between the first phase AC terminal (2u) and the second phase AC terminal (2v);
A second filter capacitor (Cw) connected between the second phase AC terminal (2v) and the third phase AC terminal (2w);
A first phase current detector (CTu) for detecting a first phase current (Iou or Isu) flowing through the first phase reactor (Lu) or the first phase AC terminal (2u);
A third phase current detector (CTw) for detecting a third phase current (Iow or Isw) flowing through the third phase reactor (Lw) or the third phase AC terminal (2w);
Voltage detecting means (5) for detecting voltages of the first and second filter capacitors (Cu, Cw), respectively;
Based on the output of the first and third phase current detectors (CTu, CTw) and the output of the voltage detection means (5), the first, second and third phase AC terminals (2u, 2v, 2w). A switch control pulse for controlling on / off of the first to fourth switches is formed so as to set the power factor at a desired value, and supplied to the control terminals of the first, second, third and fourth switches. And a control unit (6) for the three-phase V-connection inverter.
The intermediate terminal in the present invention means an end of an electric circuit or a component, or an interconnection point of a plurality of circuits or components.

なお、請求項2に示すように、 前記制御部は、
前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の3相で示す電流(Icu、Icv、Icw)の値を前記電圧検出手段(5)の出力を使用して計算で求めるか又は実側で求め、前記3相で示す電流(Icu、Icv、Icw)の値を2相軸に変換したものに相当する第1及び第2の信号(Icd、Icq)を作成するコンデンサ電流値作成手段(11又は11a)と、
前記第1、第2及び第3の交流端子(2u、2v、2w)を流れる3相電流の目標値を2相軸に変換したものに相当する第1及び第2の連系電流指令値(Isd*、Isq*)を発生する連系電流指令値発生手段(12)と、
前記連系電流指令値発生手段(12)から得られた前記第1の連系電流指令値(Isd*)と前記コンデンサ電流値作成手段(11又は11a)から得られた前記第1の信号(Icd)とに基づいて第1相出力電流指令値(Iod*)を作成し、且つ前記第2の連系電流指令値(Isq*)と前記第2の信号(Icq)とに基づいて第3相出力電流指令値(Ioq*)を作成する出力電流指令値作成手段(13)と、
前記出力電流指令値作成手段(13)から得られた前記第1相及び第3相出力電流指令値(Iod*、Ioq*)と前記第1相及び第3相電流検出器(CTu 、CTw )から得られた前記第1相及び第3相出力電流(Iou、Iow)の検出値とに基づいて第1相及び第3相帰還制御信号(Ifu、Ifw)を形成する帰還制御信号形成手段(14)と、
前記帰還制御信号形成手段(14)から得られた前記第1相及び第3相帰還制御信号(Ifu、Ifw)に基づいて前記第1、第2、第3及び第4のスイッチ(S1 、S2 、S3 、S4 )をオン・オフ制御するためのスイッチ制御パルス(G1 、G2 、G3 、G4 )を形成するスイッチ制御パルス形成手段(15)とから成ることが望ましい。
また、請求項3に示すように、前記電圧検出手段(5)は、前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の電圧として前記第1及び第2相交流端子(2u、2v)間の線間電圧(Vuv)、及び前記第2及び第3相交流端子(2v、2w)間の線間電圧(Vvw)を検出すると共に、及び前記第3及び第1相交流端子(2w、2u)間の線間電圧(Vwu)を検出する手段を有し、
前記コンデンサ電流値作成手段(11)は、
基準位相角(ωt)を示す信号を得るために前記電圧検出手段(5)に接続された位相検出手段(20)と、
前記基準位相角(ωt)よりもπ/2進んだ進み位相角(ωt+π/2)を示す信号を形成する進み位相角信号形成手段(21)と、
前記電圧検出手段(5)から得られた3相の各線間電圧(Vuv、Vvw、Vwu)を前記進み位相角信号形成手段(21)から得られた進み位相角(ωt+π/2)にて回転座標変換してdq座標軸で示すd軸成分電圧(Vd )とq軸成分電圧(Vq )を出力する第1の3相/dq座標変換手段(22)と、
前記第1の3相/dq座標変換手段(22)から得られた前記d軸成分電圧(Vd )及び前記q軸成分電圧(Vq )を前記第1及び第2のフィルタコンデンサ(Cu 、Cw )のそれぞれのインピーダンス(1/ωC)で除算した値を示すd軸成分仮想無効電流(Iad)とq軸成分仮想無効電流(Iaq)とを形成する2相軸仮想無効電流信号形成手段(23)と、
前記2相軸仮想無効電流信号形成手段(23)から得られた前記d軸成分仮想無効電流(Iad)と前記q軸成分仮想無効電流(Iaq)とを前記基準位相角(ωt)にて回転逆座標変換し、前記第1及び第3相交流端子間にもフィルタコンデンサが接続されていると仮定した場合における第1、第2及び第3の3相軸仮想無効電流(Iau、Iav、Iaw)を示す信号を出力するdq/3相座標変換手段(24)と、
前記dq/3相座標変換手段(24)から得られた前記第1の3相軸仮想無効電流(Iau)を示す信号を前記第1のフィルタコンデンサ(Cu )に流れる無効電流を示す第1相信号(Icu)と見なして伝送する手段(25u)と、
前記第2の3相軸仮想無効電流(Iav)を位相反転して前記第2のフィルタコンデンサ(Cw )に流れる無効電流を示す第3相信号(Icw)として出力する第3相信号形成手段(26)と、
前記第1相信号(Icu)と前記第3相信号(Icw)との合成信号の位相反転信号に相当する第2相信号(Icv)を形成する手段(27)と、
前記第1、第2及び第3相信号(Icu、Icv、Icw)を前記基準位相角(ωt)にて回転座標変換してdq座標軸で示すd軸成分電流(Icd)とq軸成分電流(Icq)とを出力する第2の3相/dq座標変換手段(29)とから成ることが望ましい。
また、請求項4に示すように、前記コンデンサ電流値作成手段(11a)は、
基準位相角(ωt)を示す信号を得るために前記電圧検出手段(5)に接続された位相検出手段(20)と、
前記第1、第2及び第3相交流端子(2u、2v、2w)間の電圧、周波数、及び前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の容量を固定値として前記第1及び第2のフィルタコンデンサ(Cu 、Cw )に流れる電流を計算又は実測でそれぞれ求めた第1及び第2のフィルタコンデンサ予測電流(Icu、Icw)を示す信号を発生するフィルタコンデンサ予測電流発生手段(40)と、
前記第1のフィルタコンデンサ予測電流(Icu)を示す信号を第1相信号と見なして伝送する手段(25u)と、
前記第2のフィルタコンデンサ予測電流(Icw)を示す信号を第3相信号として伝送する手段(25w)と、
前記第1相信号(Icu)と前記第3相信号(Icw)との合成信号の位相反転信号に相当する第2相信号(Icv)を形成する手段(27)と、
前記第1、第2及び第3相信号(Icu、Icv、Icw)を前記位相検出手段(20)から得られた前記基準位相角(ωt)にて回転座標変換してdq座標軸で示すd軸成分電流(Icd)とq軸成分電流(Icq)とを出力する3相/dq座標変換手段(29)と
から成ることが望ましい。
In addition, as shown in Claim 2, the said control part is
The value of the current (Icu, Icv, Icw) indicated by the three phases of the first and second filter capacitors (Cu, Cw) is calculated by using the output of the voltage detection means (5) or on the actual side Capacitor current value creation means for creating first and second signals (Icd, Icq) corresponding to those obtained by converting the values of the currents (Icu, Icv, Icw) indicated by the three phases into the two-phase axes. 11 or 11a)
First and second interconnected current command values (corresponding to a target value of a three-phase current flowing through the first, second and third AC terminals (2u, 2v, 2w) converted to a two-phase axis ( Interconnected current command value generating means (12) for generating Isd * , Isq * ),
The first interconnect current command value (Isd * ) obtained from the interconnect current command value generating means (12) and the first signal (11 or 11a) obtained from the capacitor current value creating means (11 or 11a). The first phase output current command value (Iod * ) is created based on Icd) and the third phase based on the second interconnection current command value (Isq * ) and the second signal (Icq). Output current command value creation means (13) for creating a phase output current command value (Ioq * );
The first and third phase output current command values (Iod * , Ioq * ) and the first and third phase current detectors (CTu, CTw) obtained from the output current command value creating means (13). Feedback control signal forming means for forming first and third phase feedback control signals (Ifu, Ifw) based on the detected values of the first phase and third phase output currents (Iou, Iow) obtained from 14)
The first, second, third and fourth switches (S1, S2) based on the first and third phase feedback control signals (Ifu, Ifw) obtained from the feedback control signal forming means (14). , S3, S4) and switch control pulse forming means (15) for generating switch control pulses (G1, G2, G3, G4) for on / off control.
According to a third aspect of the present invention, the voltage detecting means (5) includes the first and second phase AC terminals (2u, 2v) as the voltages of the first and second filter capacitors (Cu, Cw). Detecting a line voltage (Vuv) between the second and third phase AC terminals (2v, 2w), and a third and first phase AC terminal (2w, Means for detecting the line voltage (Vwu) between 2u),
The capacitor current value creating means (11)
Phase detection means (20) connected to the voltage detection means (5) to obtain a signal indicative of a reference phase angle (ωt);
A lead phase angle signal forming means (21) for forming a signal indicating a lead phase angle (ωt + π / 2) advanced by π / 2 from the reference phase angle (ωt);
The three-phase line voltages (Vuv, Vvw, Vwu) obtained from the voltage detection means (5) are rotated by the advance phase angle (ωt + π / 2) obtained from the advance phase angle signal forming means (21). A first three-phase / dq coordinate conversion means (22) for outputting a d-axis component voltage (Vd) and a q-axis component voltage (Vq) indicated by the dq coordinate axis after coordinate conversion;
The d-axis component voltage (Vd) and the q-axis component voltage (Vq) obtained from the first three-phase / dq coordinate conversion means (22) are converted into the first and second filter capacitors (Cu, Cw). Two-phase axis virtual reactive current signal forming means (23) for forming a d-axis component virtual reactive current (Iad) and a q-axis component virtual reactive current (Iaq) indicating values divided by respective impedances (1 / ωC) When,
The d-axis component virtual reactive current (Iad) and the q-axis component virtual reactive current (Iaq) obtained from the two-phase axis virtual reactive current signal forming means (23) are rotated at the reference phase angle (ωt). The first, second, and third three-phase axis virtual reactive currents (Iau, Iav, Iaw) in the case where it is assumed that a filter capacitor is connected between the first and third phase AC terminals by inverse coordinate transformation. Dq / 3-phase coordinate conversion means (24) for outputting a signal indicating
A first phase indicating a reactive current flowing through the first filter capacitor (Cu) with a signal indicating the first three-phase axis virtual reactive current (Iau) obtained from the dq / 3-phase coordinate conversion means (24). Means (25u) for transmitting as a signal (Icu);
Third phase signal forming means for outputting a third phase signal (Icw) indicating a reactive current flowing through the second filter capacitor (Cw) by inverting the phase of the second three-phase virtual reactive current (Iav). 26)
Means (27) for forming a second phase signal (Icv) corresponding to a phase inverted signal of a composite signal of the first phase signal (Icu) and the third phase signal (Icw);
The first, second and third phase signals (Icu, Icv, Icw) are subjected to rotational coordinate conversion at the reference phase angle (ωt), and d-axis component current (Icd) and q-axis component current ( It is desirable to comprise second three-phase / dq coordinate conversion means (29) for outputting Icq).
Further, as shown in claim 4, the capacitor current value creating means (11a)
Phase detection means (20) connected to the voltage detection means (5) to obtain a signal indicative of a reference phase angle (ωt);
The voltage between the first, second and third phase AC terminals (2u, 2v, 2w), the frequency, and the capacitance of the first and second filter capacitors (Cu, Cw) are fixed values. Filter capacitor predicted current generating means (40) for generating a signal indicating the first and second filter capacitor predicted currents (Icu, Icw) obtained by calculation or actual measurement of the current flowing through the second filter capacitors (Cu, Cw), respectively. )When,
Means (25u) for transmitting a signal indicating the first filter capacitor predicted current (Icu) as a first phase signal;
Means (25w) for transmitting a signal indicating said second filter capacitor predicted current (Icw) as a third phase signal;
Means (27) for forming a second phase signal (Icv) corresponding to a phase inverted signal of a composite signal of the first phase signal (Icu) and the third phase signal (Icw);
The d-axis indicated by the dq coordinate axis by rotationally converting the first, second and third phase signals (Icu, Icv, Icw) at the reference phase angle (ωt) obtained from the phase detecting means (20). It is desirable to comprise three-phase / dq coordinate conversion means (29) for outputting the component current (Icd) and the q-axis component current (Icq).

本発明は次の効果を有する。
(1) 力率制御可能な3相V結線インバータにおいて交流端子に流れる連系電流を直接に検出するための電流検出器が不要になり、この分だけコストの低減を図ることができる。
(2) 3相V結線インバータであるので、3相ブリッジ型インバータに比べて変換用スイッチの個数を減らすことが可能になり、インバータのコストの低減を図ることができる。
請求項2〜4の発明によれば、3相V結線インバータの制御を容易に達成することが可能になる。
The present invention has the following effects.
(1) In the three-phase V-connection inverter capable of power factor control, a current detector for directly detecting the interconnection current flowing in the AC terminal is not necessary, and the cost can be reduced by this amount.
(2) Since the inverter is a three-phase V-connection inverter, the number of conversion switches can be reduced as compared with a three-phase bridge inverter, and the cost of the inverter can be reduced.
According to the second to fourth aspects of the invention, it is possible to easily achieve control of the three-phase V-connection inverter.

次に、図1〜図5を参照して本発明の実施形態を説明する。   Next, an embodiment of the present invention will be described with reference to FIGS.

図1は本発明の実施例1に従う3相V結線インバータを含む電力系統を示す。3相V結線インバータの第1及び第2の直流端子1a、1bは、燃料電池、太陽電池、蓄電池、整流平滑回路、又は昇圧チョッパ回路等から成る直流電源1に接続されている。直流電源1の電圧Vdcを分割するために、第1及び第2の直流端子1a、1b間に実質的に同一容量の第1及び第2の電圧分割用コンデンサCa 、Cb の直列回路が接続されている。第1及び第2の電圧分割用コンデンサCa 、Cb の相互接続点に相当する中間端子1cの電位は、第1及び第2の直流端子1a、1bの電位の中間の値を有する。なお、直流電源1を省き、且つ第1及び第2の電圧分割用コンデンサCa 、Cb の代りに実質的に同一電圧の第1及び第2の直流電源を設けることもできる。   FIG. 1 shows an electric power system including a three-phase V-connection inverter according to Embodiment 1 of the present invention. The first and second DC terminals 1a and 1b of the three-phase V-connection inverter are connected to a DC power source 1 composed of a fuel cell, a solar cell, a storage battery, a rectifying / smoothing circuit, a boost chopper circuit, or the like. In order to divide the voltage Vdc of the DC power source 1, a series circuit of first and second voltage dividing capacitors Ca and Cb having substantially the same capacity is connected between the first and second DC terminals 1a and 1b. ing. The potential of the intermediate terminal 1c corresponding to the interconnection point of the first and second voltage dividing capacitors Ca and Cb has an intermediate value between the potentials of the first and second DC terminals 1a and 1b. The DC power supply 1 can be omitted, and the first and second DC power supplies having substantially the same voltage can be provided in place of the first and second voltage dividing capacitors Ca and Cb.

3相V結線インバータのDC−AC変換回路を構成するために第1及び第2のスイッチS1 、S2 の直列回路、及び第3及び第4のスイッチS3 、S4 の直列回路が第1及び第2の直流端子1a、1b間に接続されている。第1及び第2のスイッチS1 、S2 の直列回路を第1相(U相)スイッチング回路又は第1相ハーフブリッジスイッチング回路と呼び、また第3及び第4のスイッチS3 、S4 の直列回路を第3相(W相)スイッチング回路又は第3相ハーフブリッジスイッチング回路と呼ぶこともできる。
なお、第1〜第4のスイッチS1 〜S4 はIGBT(絶縁ゲート型バイポーラトランジスタ)で示されているが、これ等をNPN型又はPNP型トランジスタ、電界効果トランジスタ等の別のオン・オフ制御可能な半導体スイッチ等とすることができる。
In order to constitute a DC-AC conversion circuit of a three-phase V-connection inverter, a series circuit of first and second switches S1, S2 and a series circuit of third and fourth switches S3, S4 are first and second. DC terminals 1a and 1b. The series circuit of the first and second switches S1, S2 is called a first-phase (U-phase) switching circuit or a first-phase half-bridge switching circuit, and the series circuit of the third and fourth switches S3, S4 is called a first circuit. It can also be called a three-phase (W-phase) switching circuit or a third-phase half-bridge switching circuit.
The first to fourth switches S1 to S4 are IGBTs (insulated gate type bipolar transistors), but these can be controlled on / off differently such as NPN type or PNP type transistors, field effect transistors, etc. A semiconductor switch or the like.

第1〜第4のスイッチS1 〜S4 に逆方向並列に第1〜第4のダイオードD1 〜D4 が接続されている。この第1〜第4のダイオードD1 〜D4 は個別ダイオードであってもよいし、第1〜第4のスイッチS1 〜S4 の半導体基体中に形成される周知の寄生即ち内蔵ダイオードであってもよい。第1〜第4のダイオードD1 〜D4 は第1、第2及び第3相交流端子2u、2v、2w側から直流電源1側に電力を回生する時に導通する方向性を有する。   First to fourth diodes D1 to D4 are connected in reverse parallel to the first to fourth switches S1 to S4. The first to fourth diodes D1 to D4 may be individual diodes, or may be well-known parasitic or built-in diodes formed in the semiconductor substrate of the first to fourth switches S1 to S4. . The first to fourth diodes D1 to D4 have a direction of conduction when power is regenerated from the first, second and third phase AC terminals 2u, 2v and 2w to the DC power source 1 side.

第1、第2及び第3相交流端子2u、2v、2wは、互いに120度の位相差を有する第1、第2及び第3の線間電圧Vuv、Vvw、Vwuを出力するものであり、3相交流電力系統3又は3相負荷回路に接続される。   The first, second and third phase AC terminals 2u, 2v and 2w output the first, second and third line voltages Vuv, Vvw and Vwu having a phase difference of 120 degrees with respect to each other. It is connected to the three-phase AC power system 3 or the three-phase load circuit.

第1相リアクトルLu は第1及び第2のスイッチS1 、S2 の相互接続点P1 と第1相交流端子2uとの間に直列に接続されている。第3相リアクトルLw は第3及び第4のスイッチS3 、S4 の相互接続点P2 と第3相交流端子2wとの間に直列に接続されている。第1相及び第3相リアクトルLu 、Lw は第1〜第4のスイッチS1 〜S4 のオン・オフによる高周波成分を除去するフィルタとして機能する。   The first phase reactor Lu is connected in series between the interconnection point P1 of the first and second switches S1, S2 and the first phase AC terminal 2u. The third phase reactor Lw is connected in series between the interconnection point P2 of the third and fourth switches S3 and S4 and the third phase AC terminal 2w. The first-phase and third-phase reactors Lu and Lw function as filters that remove high-frequency components caused by turning on and off the first to fourth switches S1 to S4.

第1のフィルタコンデンサCu は第1及び第2相交流端子2u、2v間に接続されている。第2のフィルタコンデンサCw は第1のフィルタコンデンサCu と実質的に同一の容量Cを有して第2及び第3相交流端子2v、2w間に接続されている。第1及び第2のフィルタコンデンサCu 、Cw は第1〜第4のスイッチS1〜S4 のオン・オフによる高周波成分を除去するものである。   The first filter capacitor Cu is connected between the first and second phase AC terminals 2u, 2v. The second filter capacitor Cw has substantially the same capacitance C as the first filter capacitor Cu and is connected between the second and third phase AC terminals 2v, 2w. The first and second filter capacitors Cu and Cw are for removing high-frequency components due to on / off of the first to fourth switches S1 to S4.

第2相交流端子2vは第1及び第2の電圧分割用コンデンサCa 、Cb の相互接続点即ち中間端子1cに接続されている。従って、第1及び第2のスイッチS1 、S2 と第1相リアクトルLu とによって第1相ハーフブリッジ型変換回路が構成され、また、第3及び第4のスイッチS3 、S4 と第3相リアクトルLw とによって第3相ハーフブリッジ型変換回路が構成されている。   The second-phase AC terminal 2v is connected to the interconnection point of the first and second voltage dividing capacitors Ca and Cb, that is, the intermediate terminal 1c. Accordingly, the first and second switches S1 and S2 and the first phase reactor Lu constitute a first phase half-bridge type conversion circuit, and the third and fourth switches S3 and S4 and the third phase reactor Lw. A third-phase half-bridge conversion circuit is configured by the above.

第1〜第4のスイッチS1 〜S4 を力率制御可能にオン・オフ制御するための制御回路4は、CT(電流トランス)で例示されている第1相及び第3相電流検出器CTu 、CTw と、電圧検出手段5と、制御部6とから成る。   A control circuit 4 for on / off controlling the first to fourth switches S1 to S4 so as to be capable of power factor control includes a first phase and a third phase current detector CTu exemplified by CT (current transformer), It comprises CTw, voltage detection means 5 and control unit 6.

第1相電流検出器CTu は、第1及び第2のスイッチS1 、S2 の相互接続点P1 と第1のフィルタコンデンサCu の一端との間の第1相電流通路7uに電磁結合され、第1相電流通路7uを流れる第1相出力電流Iou(瞬時値)を検出し、これをライン8uで制御部6に送る。第2相電流検出器CTw は、第3及び第4のスイッチS3 、S4 の相互接続点P2 と第2のフィルタコンデンサCw の一端との間の第3相電流通路7wに電磁結合され、第3相電流通路7wを流れる第3相出力電流Iow(瞬時値)を検出し、これをライン8wで制御部6に送る。なお、ここでは説明を簡単にするために第1相及び第3相電流通路7u、7wの電流と第1相及び第3相電流検出器CTu 、CTw の電流を同一のIou、Iowで示すことにする。   The first phase current detector CTu is electromagnetically coupled to the first phase current path 7u between the interconnection point P1 of the first and second switches S1, S2 and one end of the first filter capacitor Cu. The first phase output current Iou (instantaneous value) flowing through the phase current path 7u is detected and sent to the control unit 6 via the line 8u. The second phase current detector CTw is electromagnetically coupled to the third phase current path 7w between the interconnection point P2 of the third and fourth switches S3 and S4 and one end of the second filter capacitor Cw. A third phase output current Iow (instantaneous value) flowing through the phase current passage 7w is detected and sent to the control unit 6 via a line 8w. In order to simplify the explanation, the currents of the first and third phase current paths 7u and 7w and the currents of the first and third phase current detectors CTu and CTw are indicated by the same Iou and Iow. To.

この実施例では、第1、第2及び第3相交流端子2u、2v、2wにおける力率を所望値(好ましくは1)に制御するにも拘らず、第1、第2及び第3相交流端子2u、2v、2wを流れる第1、第2及び第3相連系電流Isu、Isv、Iswを検出するための電流検出器が設けられていない。この電流検出器の代りに、図1の実施例では、電圧検出手段5が設けられている。電圧検出手段5は、第1のフィルタコンデンサCu の電圧即ち第1及び第2相交流端子2u、2v間の線間電圧Vuv(瞬時値)を検出する第1の電圧検出回路5aと、第2のフィルタコンデンサCw の電圧即ち第2及び第3相交流端子2v、2w間の線間電圧Vvw(瞬時値)を検出する第2の電圧検出回路5bと、第1及び第2の電圧検出回路5a、5bの出力を位相反転して加算して第3及び第1相交流端子2w、2u間の線間電圧Vwu(瞬時値)を検出する第3の電圧検出回路5cとから成る。なお、第3の電圧検出回路5cを第1及び第2の電圧検出回路5a、5bに接続する代りに、第1及び第3の交流端子2u、2wに接続して直接的に線間電圧Vwuを求めることもできる。本実施例では、説明を容易にするために第1、第2及び第3相交流端子2u、2v、2wにおける線間電圧と第1、第2及び第3の電圧検出回路5a、5b、5cの出力電圧とを同一のVuv、Vvw、Vwuで示すことにする。第1、第2及び第3の電圧検出回路5a、5b、5cの出力ライン9uv、9vw、9wuは制御部6に接続されている。   In this embodiment, the first, second and third phase alternating currents are controlled in spite of controlling the power factor at the first, second and third phase alternating current terminals 2u, 2v and 2w to a desired value (preferably 1). A current detector for detecting the first, second and third phase interconnection currents Isu, Isv and Isw flowing through the terminals 2u, 2v and 2w is not provided. Instead of this current detector, a voltage detecting means 5 is provided in the embodiment of FIG. The voltage detection means 5 includes a first voltage detection circuit 5a for detecting a voltage of the first filter capacitor Cu, that is, a line voltage Vuv (instantaneous value) between the first and second phase AC terminals 2u and 2v, and a second voltage detection circuit 5a. A second voltage detection circuit 5b for detecting the voltage of the filter capacitor Cw, that is, the line voltage Vvw (instantaneous value) between the second and third phase AC terminals 2v and 2w, and the first and second voltage detection circuits 5a. And a third voltage detection circuit 5c for detecting a line voltage Vwu (instantaneous value) between the third and first phase AC terminals 2w and 2u by inverting and adding the outputs of 5b. Instead of connecting the third voltage detection circuit 5c to the first and second voltage detection circuits 5a and 5b, it is connected to the first and third AC terminals 2u and 2w and directly connected to the line voltage Vwu. Can also be requested. In the present embodiment, for ease of explanation, the line voltage at the first, second and third phase AC terminals 2u, 2v and 2w and the first, second and third voltage detection circuits 5a, 5b and 5c are described. Are expressed by the same Vuv, Vvw, and Vwu. Output lines 9uv, 9vw, 9wu of the first, second and third voltage detection circuits 5a, 5b, 5c are connected to the control unit 6.

制御部6は、第1及び第2相電流検出器CTu 、CTw から得られた第1及び第3相出力電流Iou、Iowと電圧検出手段5から得られた第1及び第2相間の線間電圧Vuv、第2及び第3相間の線間電圧Vvw、及び第3相及び第1相間の線間電圧Vwuとに基づいて第1、第2及び第3相交流端子2u、2v、2wを流れる第1、第2及び第3相連系電流Isu、Isv、Iswを所望力率(好ましくは1)になるように制御するための第1、第2、第3及び第4のスイッチ制御パルスG1 、G2 、G3 、G4 を形成して第1、第2、第3及び第4のスイッチS1 、S2 、S3 、S4 の制御端子(ゲート)に送る。   The control unit 6 is configured to connect the first and third phase output currents Iou and Iow obtained from the first and second phase current detectors CTu and CTw and the line between the first and second phases obtained from the voltage detection means 5. Based on the voltage Vuv, the line voltage Vvw between the second and third phases, and the line voltage Vwu between the third phase and the first phase, the first, second and third phase AC terminals 2u, 2v and 2w flow. First, second, third and fourth switch control pulses G1, for controlling the first, second and third phase interconnection currents Isu, Isv, Isw to have a desired power factor (preferably 1), G2, G3 and G4 are formed and sent to the control terminals (gates) of the first, second, third and fourth switches S1, S2, S3 and S4.

図2は図1の制御部6を詳しく示すブロック図である。この制御部6はこの多くの部分をDSP(ディジタル信号処理装置)又はマイコン等のディジタル回路で形成することができるものであり、大別してコンデンサ電流値作成手段11と、連系電流指令値発生手段12と、出力電流指令値作成手段13と、帰還制御信号形成手段14と、スイッチ制御パルス形成手段15とから成る。   FIG. 2 is a block diagram showing in detail the control unit 6 of FIG. The control unit 6 can form many parts by a digital circuit such as a DSP (digital signal processing device) or a microcomputer, and is roughly divided into a capacitor current value creating means 11 and an interconnection current command value generating means. 12, output current command value creating means 13, feedback control signal forming means 14, and switch control pulse forming means 15.

コンデンサ電流値作成手段11は、図1の電圧検出手段5の出力ライン9uv、9vw、9wuに接続され、第1及び第2のフィルタコンデンサCu 、Cw の3相で示される電流Icu、Icv、Icwの値を計算で求め、この計算値を2相軸で示す第1及び第2の信号Icd、Icqに変換して出力する。このコンデンサ電流値作成手段11から出力される第1及び第2の信号Icd、Icqは、周知の3相/dq座標変換されたd軸成分及びq軸成分を示している。従って、以下の説明において第1の信号Icdをd軸成分電流と呼び、第2の信号Icqをq軸成分電流と呼びこともある。このコンデンサ電流値作成手段11の詳細は後述する。   The capacitor current value creating means 11 is connected to the output lines 9uv, 9vw, 9wu of the voltage detecting means 5 of FIG. 1, and currents Icu, Icv, Icw indicated by the three phases of the first and second filter capacitors Cu, Cw. Is obtained by calculation, and the calculated value is converted into first and second signals Icd and Icq indicated by a two-phase axis and output. The first and second signals Icd and Icq output from the capacitor current value creating unit 11 indicate the d-axis component and the q-axis component which are well-known three-phase / dq coordinate transformed. Therefore, in the following description, the first signal Icd may be referred to as a d-axis component current, and the second signal Icq may be referred to as a q-axis component current. Details of the capacitor current value creating means 11 will be described later.

連系電流指令値発生手段12は、第1、第2及び第3相交流端子2u、2v、2wを流れる第1、第2及び第3相連系電流Isu、Isv、Isw(瞬時値)の目標値を示す第1、第2及び第3相目標連系電流Isu′、Isv′、Isw′を周知の3相/dq座標変換して得たd軸成分目標連系電流及びq軸成分目標連系電流に相当する第1及び第2の連系電流指令値Isd*、Isq*を発生する。第1及び第2の連系電流指令値Isd*、Isq*は任意に設定することができる。また、連系電流指令値発生手段12を演算回路で構成し、第1及び第2の連系電流指令値Isd*、Isq*の値を演算で求めることもできる。第1及び第2の連系電流指令値Isd*、Isq*は、連系電流の周波数をω、実効値をI、力率をcos θとした時に、次の(1)の行列式で示すことができる。 The interconnection current command value generation means 12 is a target of the first, second and third phase interconnection currents Isu, Isv, Isw (instantaneous values) flowing through the first, second and third phase AC terminals 2u, 2v, 2w. D-axis component target interconnection current and q-axis component target linkage obtained by converting the first, second and third phase target interconnection currents Isu ', Isv' and Isw 'indicating the values by known three-phase / dq coordinate transformation. First and second interconnection current command values Isd * and Isq * corresponding to the system current are generated. The first and second interconnection current command values Isd * and Isq * can be arbitrarily set. Further, the interconnection current command value generating means 12 can be constituted by an arithmetic circuit, and the values of the first and second interconnection current command values Isd * and Isq * can be obtained by calculation. The first and second interconnection current command values Isd * and Isq * are expressed by the following determinant of (1), where the frequency of the interconnection current is ω, the effective value is I, and the power factor is cos θ. be able to.

Figure 2006254632
Figure 2006254632

図2の出力電流指令値作成手段13は、連系電流指令値発生手段12から得られた第1の連系電流指令値Isd*にコンデンサ電流値作成手段11から得られたd軸成分信号Icdを加算して第1相出力電流指令値Iod* を作成し、且つ第2の連系電流指令値Isq*にコンデンサ電流作成手段11から得られたq軸成分信号Icqを加算して第3相出力電流指令値Ioq*を作成する。この出力電流指令値作成手段13の詳細は後述する。 The output current command value creating means 13 shown in FIG. 2 adds the d-axis component signal Icd obtained from the capacitor current value creating means 11 to the first linked current command value Isd * obtained from the connected current command value generating means 12. Is added to create the first phase output current command value Iod * , and the second phase current command value Isq * is added to the q-axis component signal Icq obtained from the capacitor current creating means 11 to add the third phase. Create output current command value Ioq * . Details of the output current command value creating means 13 will be described later.

帰還制御信号形成手段14は、出力電流指令値作成手段13から得られた第1相及び第3相出力電流指令値Iod*、Ioq*と第1相及び第3相電流検出器CTu 、CTw から得られたライン8u、8wの第1相及び第3相出力電流Iou、Iowとに基づいて第1相及び第3相帰還制御信号Ifu、Ifwを形成する。この帰還制御信号形成手段14の詳細は後述する。 The feedback control signal forming means 14 is based on the first and third phase output current command values Iod * and Ioq * obtained from the output current command value creating means 13 and the first and third phase current detectors CTu and CTw. Based on the obtained first and third phase output currents Iou and Iow of the lines 8u and 8w, first and third phase feedback control signals Ifu and Ifw are formed. Details of the feedback control signal forming means 14 will be described later.

スイッチ制御パルス形成手段15は、帰還制御信号形成手段14から得られた第1相及び第3相帰還制御信号Ifu、Ifwに基づいて第1、第2、第3及び第4のスイッチS1 、S2 、S3 、S4 をオン・オフ制御するための周知のスイッチ制御パルスG1 、G2 、G3 、G4 を形成する。このスイッチ制御パルス形成手段15の詳細は後述する。   The switch control pulse forming means 15 includes first, second, third and fourth switches S1, S2 based on the first phase and third phase feedback control signals Ifu, Ifw obtained from the feedback control signal forming means 14. , S3, S4 are formed with known switch control pulses G1, G2, G3, G4 for ON / OFF control. Details of the switch control pulse forming means 15 will be described later.

図3は図2の制御部6を更に詳しく示すブロック図である。この図3から明らかなようにコンデンサ電流値作成手段11は、位相検出手段20を有している。この位相検出手段20は、図1の電圧検出手段5の出力ライン9uv、9vwに接続され、出力電圧Vuv、Vvwの基準位相角ωtを示す信号を出力する。   FIG. 3 is a block diagram showing the control unit 6 of FIG. 2 in more detail. As apparent from FIG. 3, the capacitor current value creating means 11 has a phase detecting means 20. The phase detection means 20 is connected to the output lines 9uv and 9vw of the voltage detection means 5 of FIG. 1, and outputs a signal indicating the reference phase angle ωt of the output voltages Vuv and Vvw.

位相検出手段20に接続された進み位相角信号形成手段21は、π/2発生器21aと加算手段22bとを有する。加算手段22bは、位相検出手段20から得られた基準位相角ωtにπ/2発生器21aから得られた位相角π/2即ち90度を加算してωt+π/2から成る進み位相角信号を形成する。   The lead phase angle signal forming means 21 connected to the phase detecting means 20 has a π / 2 generator 21a and an adding means 22b. The adding means 22b adds the phase angle π / 2 obtained from the π / 2 generator 21a to the reference phase angle ωt obtained from the phase detecting means 20, that is, 90 degrees, to obtain a lead phase angle signal composed of ωt + π / 2. Form.

図1の電圧検出手段5の3相の出力ライン9uv、9vw、9wuと進み位相角信号形成手段21に接続された第1の3相/dq座標変換手段22は、電圧検出手段5から得られた3相の各線間電圧Vuv、Vvw、Vwuを進み位相角信号形成手段21から得られた進み位相角(ωt+π/2)にて回転座標変換してdq座標軸で示すd軸成分電圧Vd とq軸成分電圧Vq とを出力する。即ち、第1の3相/dq座標変換手段22では、回転座標変換を用いて、3相から2相に変換する。この第1の3相/dq座標変換手段22に入力される3相の線間電圧Vuv、Vvw、Vwuは次の(2)式で示すことができ、進み位相角ωt+π/2による座標変換行列Tは次の(3)式で示すことができ、第1の3相/dq座標変換手段22から得られるd軸成分電圧Vd 及びq軸成分電圧Vq は次の(4)式で示すことができ、その結果は次の(5)式で示すことができる。なお、次の(2)〜(5)式において、Vは第1、第2及び第3相交流端子2u、2v、2wにおける各線間電圧の実効値を示し、Vs は瞬時値で示す各線間電圧Vuv、Vvw、Vwuを総括して示し、Vdqは瞬時値で示すd軸成分電圧Vd とq軸成分電圧Vq とを一括して示す。   The three-phase output lines 9uv, 9vw, 9wu of the voltage detection means 5 of FIG. 1 and the first three-phase / dq coordinate conversion means 22 connected to the advance phase angle signal forming means 21 are obtained from the voltage detection means 5. The three-phase line voltages Vuv, Vvw, and Vwu are converted into rotational coordinates at the advance phase angle (ωt + π / 2) obtained from the advance phase angle signal forming means 21, and d-axis component voltages Vd and q indicated by the dq coordinate axes are used. The shaft component voltage Vq is output. That is, the first three-phase / dq coordinate conversion means 22 converts from three phases to two phases using rotational coordinate conversion. The three-phase line voltages Vuv, Vvw, Vwu input to the first three-phase / dq coordinate conversion means 22 can be expressed by the following equation (2), and a coordinate conversion matrix based on the lead phase angle ωt + π / 2. T can be expressed by the following equation (3), and the d-axis component voltage Vd and the q-axis component voltage Vq obtained from the first three-phase / dq coordinate conversion means 22 can be expressed by the following equation (4). The result can be shown by the following equation (5). In the following equations (2) to (5), V represents the effective value of each line voltage at the first, second and third phase AC terminals 2u, 2v and 2w, and Vs represents the line-to-line value represented by the instantaneous value. The voltages Vuv, Vvw, and Vwu are collectively shown, and Vdq is a d-axis component voltage Vd and a q-axis component voltage Vq that are instantaneous values.

Figure 2006254632
Figure 2006254632

第1の3相/dq座標変換手段22に接続された2相軸仮想無効電流信号形成手段23は、第1及び第2の乗算器23a、23bから成る。第1の3相/dq座標変換手段22に接続された第1及び第2の乗算器23a、23bは、第1の3相/dq座標変換手段22から得られたd軸成分電圧Vd 及びq軸成分電圧Vq にωCを乗算してd軸成分仮想無効電流Iad及びq軸成分仮想無効電流Iaqを形成する。ここで、ωは基本波の角周波数を示し、Cは第1及び第2のフィルタコンデンサCu 、Cw の容量を示す。ここでは、第1及び第2の乗算器23a、23bでd軸及びq軸成分仮想無効電流Iad、Iaqを求めたが、d軸及びq軸成分電圧Vd 、Vq を第1及び第2のフィルタコンデンサCu 、Cw のインピーダンス1/ωCで除算してd軸及びq軸成分仮想無効電流Iad、Iaqに変換することもできる。ここでのd軸及びq軸成分仮想無効電流Iad、Iaqは図1の第1及び第3相交流端子2u、2w間にも第1及び第2のフィルタコンデンサCu 、Cw と同一容量のフィルタコンデンサが接続され、3相平衡なフィルタコンデンサ回路が形成されていると仮定した場合の値を示している。   The two-phase axis virtual reactive current signal forming unit 23 connected to the first three-phase / dq coordinate conversion unit 22 includes first and second multipliers 23a and 23b. The first and second multipliers 23 a and 23 b connected to the first three-phase / dq coordinate conversion means 22 are connected to the d-axis component voltages Vd and q obtained from the first three-phase / dq coordinate conversion means 22. The axial component voltage Vq is multiplied by ωC to form the d-axis component virtual reactive current Iad and the q-axis component virtual reactive current Iaq. Here, ω represents the angular frequency of the fundamental wave, and C represents the capacitance of the first and second filter capacitors Cu and Cw. Here, the d-axis and q-axis component virtual reactive currents Iad and Iaq are obtained by the first and second multipliers 23a and 23b, but the d-axis and q-axis component voltages Vd and Vq are converted into the first and second filters. Dividing by the impedance 1 / ωC of the capacitors Cu and Cw can also be converted into d-axis and q-axis component virtual reactive currents Iad and Iaq. The d-axis and q-axis component virtual reactive currents Iad and Iaq here are filter capacitors having the same capacity as the first and second filter capacitors Cu and Cw between the first and third phase AC terminals 2u and 2w in FIG. Are connected to each other, and a value is shown assuming that a three-phase balanced filter capacitor circuit is formed.

2相軸仮想無効電流信号形成手段23及び位相検出手段20に接続された逆座標変換手段即ちdq/3相座標変換手段24は、2相軸仮想無効電流信号形成手段23から得られたd軸成分仮想無効電流Iadとq軸成分仮想無効電流Iaq とを基準位相角(ωt)にて回転逆座標変換し、第1及び第3相交流端子2u、2w間にもフィルタコンデンサが接続されていると仮定した場合における第1、第2及び第3の3相軸仮想無効電流Iau、Iav、Iawを示す信号を出力する。このdq/3相座標変換手段24の入力を次の(6)式で示し、逆座標変換行列T2 を次の(7)式で示し、3相出力を次の(8)式で示し、その結果を(9)式で示すことができる。ここで、Iadq はd軸及びq軸成分仮想無効電流Iad、Iaqを一括して示し、Iauvwは3相軸仮想無効電流Iau、Iav、Iawを一括して示す。   The inverse coordinate conversion means connected to the two-phase axis virtual reactive current signal forming means 23 and the phase detection means 20, that is, the dq / 3-phase coordinate conversion means 24 is the d-axis obtained from the two-phase axis virtual reactive current signal forming means 23. The component virtual reactive current Iad and the q-axis component virtual reactive current Iaq are subjected to rotational inverse coordinate conversion at the reference phase angle (ωt), and a filter capacitor is also connected between the first and third phase AC terminals 2u and 2w. Are output signals indicating the first, second, and third three-phase axis virtual reactive currents Iau, Iav, Iaw. The input of the dq / 3-phase coordinate conversion means 24 is expressed by the following equation (6), the inverse coordinate conversion matrix T2 is expressed by the following equation (7), and the three-phase output is expressed by the following equation (8). A result can be shown by (9) Formula. Here, Iadq collectively indicates the d-axis and q-axis component virtual reactive currents Iad and Iaq, and Iauvw collectively indicates the three-phase axial virtual reactive currents Iau, Iav, and Iaw.

Figure 2006254632
Figure 2006254632

dq/3相座標変換手段24に接続された無効電流検出部25は、位相反転手段26と終端手段28とで示されている。dq/3相座標変換手段24は、フィルタコンデンサが第1及び第3相交流端子2u、2w間にも接続されていると仮定した3相平衡コンデンサ回路の場合における2相入力を3相に変換し且つ逆回転座標変換している。従って、dq/3相座標変換手段24の出力から第1及び第2のフィルタコンデンサCu 、Cw の実際の電流を示す信号を形成する必要がある。そこで、無効電流検出部25は、dq/3相座標変換手段24の第1の3相軸仮想無効電流Iauを第1のフィルタコンデンサCu に流れる無効電流を示す第1相信号Icuと見なして伝送する手段としての伝送路25uと、第2の3相軸仮想無効電流Iavを位相反転して第2のフィルタコンデンサCw に流れる無効電流を示す第3相信号Icwと見なして出力する第3相信号形成手段26と、第3の3相軸仮想無効電流Iawを終端する終端手段28とを有する。なお、終端手段28は第3の3相軸仮想無効電流Iawを使用しないための信号終端手段である。   The reactive current detection unit 25 connected to the dq / 3-phase coordinate conversion unit 24 is indicated by a phase inversion unit 26 and a termination unit 28. The dq / 3-phase coordinate conversion means 24 converts the two-phase input into the three-phase in the case of a three-phase balanced capacitor circuit assuming that the filter capacitor is also connected between the first and third phase AC terminals 2u and 2w. And reverse rotation coordinate conversion. Therefore, it is necessary to form a signal indicating the actual current of the first and second filter capacitors Cu and Cw from the output of the dq / 3-phase coordinate conversion means 24. Therefore, the reactive current detection unit 25 regards the first three-phase virtual virtual reactive current Iau of the dq / 3-phase coordinate conversion means 24 as the first phase signal Icu indicating the reactive current flowing through the first filter capacitor Cu and transmits it. And a third phase signal that is output as a third phase signal Icw indicating a reactive current flowing through the second filter capacitor Cw by inverting the phase of the second three-phase virtual reactive current Iav Forming means 26 and termination means 28 for terminating the third three-phase virtual reactive current Iaw are provided. The termination means 28 is a signal termination means for not using the third three-phase axis virtual reactive current Iaw.

第2の3相/dq座標変換手段29に、第1及び第2のフィルタコンデンサCu 、Cw の電流(無効電流)を示す第1相及び第3相信号Icu、Icwの伝送路25u、25wが接続され、且つ第2相信号Icvを形成するための第2相信号形成手段27の出力伝送路25vが接続されている。第2相信号形成手段27は、第1相信号Icuと第3相信号Icwとの合成信号(加算信号)の位相反転信号に相当する第2相信号Icvを形成する。   In the second three-phase / dq coordinate conversion means 29, transmission paths 25u and 25w for the first and third phase signals Icu and Icw indicating the currents (reactive currents) of the first and second filter capacitors Cu and Cw are provided. The output transmission path 25v of the second phase signal forming means 27 is connected to form the second phase signal Icv. The second phase signal forming means 27 forms a second phase signal Icv corresponding to a phase inversion signal of a combined signal (addition signal) of the first phase signal Icu and the third phase signal Icw.

第1、第2及び第3相信号Icu、Icv、Icwの伝送路25u、25v、25w及び位相検出手段20に接続された第2の3相/dq座標変換手段29は、第1、第2及び第3相信号Icu、Icv、Icwを基準位相角ωtにて回転座標変換してdq座標軸で示すd軸成分電流Icdとq軸成分電流Icqとから成る2相信号を出力する。この第2の3相/dq座標変換手段29の入力、座標変換行列T3 、及び出力を次の(10)(11)(12)式で示すことができる。これ等の式において、Icuvwは入力する第1、第2及び第3相信号Icu、Icv、Icwを一括して示し、Icdqは2つの出力を一括して示している。   The second three-phase / dq coordinate conversion means 29 connected to the transmission paths 25u, 25v, 25w and the phase detection means 20 for the first, second and third phase signals Icu, Icv, Icw are the first, second, The third phase signals Icu, Icv, and Icw are rotationally transformed at the reference phase angle ωt, and a two-phase signal composed of a d-axis component current Icd and a q-axis component current Icq indicated by the dq coordinate axis is output. The input, coordinate transformation matrix T3, and output of the second three-phase / dq coordinate transformation means 29 can be expressed by the following equations (10), (11), and (12). In these equations, Icuvw collectively indicates the input first, second and third phase signals Icu, Icv and Icw, and Icdq indicates two outputs collectively.

Figure 2006254632
Figure 2006254632

出力電流指令値作成手段13は、第1及び第2の加算手段30、31から成る。第1の加算手段30は連系電流指令値発生手段12から供給される第1の連系電流指令値Isd*と第2の3相/dq座標変換手段29から供給されるd軸成分電流Icdとを加算して第1相出力電流指令値Iod*を作成する。第2の加算手段31は、連系電流指令値発生手段12から供給される第2の連系電流指令値Isq*と第2の3相/dq座標変換手段29から供給されるq軸成分電流Icqを加算して第3相出力電流指令値Ioq*を作成する。なお、Isd*、Isq*、Icd、Icq、Iod*、Ioq*は瞬時値を示している。 The output current command value creating means 13 includes first and second adding means 30 and 31. The first addition means 30 includes a first interconnection current command value Isd * supplied from the interconnection current command value generation means 12 and a d-axis component current Icd supplied from the second three-phase / dq coordinate conversion means 29. Are added to create the first phase output current command value Iod * . The second addition means 31 includes a second interconnection current command value Isq * supplied from the interconnection current command value generation means 12 and a q-axis component current supplied from the second three-phase / dq coordinate conversion means 29. The third phase output current command value Ioq * is created by adding Icq. Note that Isd * , Isq * , Icd, Icq, Iod * , and Ioq * indicate instantaneous values.

帰還制御信号形成手段14は、第1及び第2の偏差信号作成手段32、33と第1及び第2の増幅回路34、35と変換手段41とから成る。変換手段41はライン8u,8wによって図1の第1及び第3相電流検出器CTu、CTwに接続され、且つ位相検出手段20にも接続され、3相で示される電流を形成し、この3相で示される電流をdq座標軸で示すd軸成分電流Iodとq軸成分電流Ioqとから成る2相の信号に変換し、この信号をライン42,43で第1及び第2の偏差信号作成手段32、33に送る。
更に詳細には、変換手段41は図4に示すように、第2相信号形成手段44と第3の3相/dq座標変換手段45とを有する。第2相信号形成手段44はライン8u,8wに接続され、ライン8uの第1相出力電流Iouとライン8wの第3相出力電流Iowとの合成信号(加算信号)を位相反転した信号に相当する第2相出力電流Iovをライン8vに送出する。従って、図4の第2相信号形成手段44は図3の第2相信号形成手段27と同様な機能を有する。なお、第2相信号形成手段44を設ける代わりに、図1の中間端子1cと第1及び第2のフィルタコンデンサCu、Cwの相互接続点との間の電流通路の第2相出力電流Iovを検出する第2相電流検出器を設け、この第2相電流検出器の出力をライン8vによって図4の第3の3相/dq座標変換手段45に送ることもできる。
ライン8u、8v、8wに接続された第3の3相/dq座標変換手段45は、位相検出手段20から出力される基準位相角ωtにて回転座標変換するものであって、図3の第2の3相/dq座標変換手段29と同様な機能を有し、3相で示めされる第1相、第2相及び第3相出力電流Iou、Iov、Iowを周知のdq座標軸で示すd軸成分電流Iodとq軸成分電流Ioqとから成る2相信号に変換してライン42,43に送出する。
第1の偏差信号作成手段32は出力電流指令値作成手段13の第1の加算手段30と変換手段41の出力ライン42とに接続され、第1相出力電流指令値Iod*とd軸成分電流Iodとの差を示す信号を出力する。第2の偏差信号作成手段33は出力電流指令値作成手段13の第2の加算手段11と変換手段41の出力ライン43とに接続され、第3相出力電流指令値Ioq*とq軸成分電流Ioqとの差を示す信号を出力する。第1及び第2の偏差信号作成手段32、33にそれぞれ接続された増幅回路34、35はそれぞれの偏差信号を増幅、又は増幅及び調整して第1相及び第3相の帰還制御信号Ifu、Ifwを出力する。
The feedback control signal forming unit 14 includes first and second deviation signal generating units 32 and 33, first and second amplifier circuits 34 and 35, and a converting unit 41. The conversion means 41 is connected to the first and third phase current detectors CTu and CTw of FIG. 1 by lines 8u and 8w, and is also connected to the phase detection means 20 to form a current indicated by three phases. The current indicated by the phase is converted into a two-phase signal composed of the d-axis component current Iod and the q-axis component current Ioq indicated by the dq coordinate axis, and this signal is generated by the first and second deviation signal generating means on the lines 42 and 43. 32 and 33.
More specifically, as shown in FIG. 4, the converting means 41 includes a second phase signal forming means 44 and a third three-phase / dq coordinate converting means 45. The second phase signal forming means 44 is connected to the lines 8u and 8w and corresponds to a signal obtained by inverting the phase of the combined signal (addition signal) of the first phase output current Iou of the line 8u and the third phase output current Iow of the line 8w. The second phase output current Iov is sent to the line 8v. Therefore, the second phase signal forming means 44 in FIG. 4 has the same function as the second phase signal forming means 27 in FIG. Instead of providing the second phase signal forming means 44, the second phase output current Iov of the current path between the intermediate terminal 1c of FIG. 1 and the connection point of the first and second filter capacitors Cu and Cw is changed. It is also possible to provide a second phase current detector for detection and send the output of the second phase current detector to the third three-phase / dq coordinate conversion means 45 in FIG.
The third three-phase / dq coordinate conversion means 45 connected to the lines 8u, 8v, 8w performs rotational coordinate conversion at the reference phase angle ωt output from the phase detection means 20, and The three-phase / dq coordinate conversion means 29 has the same function as that of the second three-phase / dq coordinate conversion means 29, and the first phase, the second phase, and the third phase output currents Iou, Iov, Iow indicated by the three phases are indicated by known dq coordinate axes The signal is converted into a two-phase signal composed of a d-axis component current Iod and a q-axis component current Ioq and sent to lines 42 and 43.
The first deviation signal creation means 32 is connected to the first addition means 30 of the output current command value creation means 13 and the output line 42 of the conversion means 41, and the first phase output current command value Iod * and the d-axis component current. A signal indicating the difference from Iod is output. The second deviation signal creating means 33 is connected to the second adding means 11 of the output current command value creating means 13 and the output line 43 of the converting means 41, and the third phase output current command value Ioq * and the q-axis component current. A signal indicating a difference from Ioq is output. Amplifying circuits 34 and 35 connected to the first and second deviation signal generating means 32 and 33 respectively amplify or amplify and adjust the deviation signals to provide first-phase and third-phase feedback control signals Ifu, Ifw is output.

スイッチ制御パルス形成手段15は鋸波発生器36と、第1及び第2の比較器37、38と、駆動回路39とから成る周知のPWMパルス形成回路である。   The switch control pulse forming means 15 is a known PWM pulse forming circuit comprising a sawtooth wave generator 36, first and second comparators 37 and 38, and a drive circuit 39.

鋸波発生器36は第1、第2及び第3相交流端子2u、2v、2wの交流電圧の周波数(例えば50Hz)よりも十分に高い周波数(例えば10〜100kHz)で鋸波電圧Vtを発生する。なお、鋸波発生器36の代りに三角波等の別の比較波(キャリア波)を発生する手段を設けることもできる。   The sawtooth generator 36 generates a sawtooth voltage Vt at a frequency (for example, 10 to 100 kHz) sufficiently higher than the frequency (for example, 50 Hz) of the AC voltage of the first, second, and third phase AC terminals 2u, 2v, and 2w. To do. Instead of the sawtooth wave generator 36, means for generating another comparison wave (carrier wave) such as a triangular wave can be provided.

第1の比較器37は帰還制御信号形成手段14の第1の増幅回路34と鋸波発生器36とに接続され、第1相帰還制御信号Ifuと鋸波電圧Vtとを図5(A)に示すように比較して図5(B)に示す第1のPWMパルスVp1を出力する。第2の比較器38は帰還制御信号形成手段14の第2の増幅回路35と鋸波発生器36とに接続され、第3相帰還制御信号Ifwと鋸波電圧Vtとを図5(A)に示すように比較して図5(C)に示す第2のPWMパルスVp2を出力する。   The first comparator 37 is connected to the first amplifier circuit 34 of the feedback control signal forming means 14 and the sawtooth generator 36, and the first phase feedback control signal Ifu and the sawtooth voltage Vt are shown in FIG. In comparison, the first PWM pulse Vp1 shown in FIG. 5B is output. The second comparator 38 is connected to the second amplifier circuit 35 and the sawtooth generator 36 of the feedback control signal forming means 14, and the third phase feedback control signal Ifw and the sawtooth voltage Vt are shown in FIG. In comparison, the second PWM pulse Vp2 shown in FIG. 5C is output.

第1及び第2の比較器37、38に接続された駆動回路39は、第1のPWMパルスVp1を増幅して第1の制御パルスG1を形成し、これを図1の第1のスイッチS1に送り、また、第1のPWMパルスVp1を反転増幅して第2の制御パルスG2を形成し、これを第2のスイッチS2に送り、また、第2のPWMパルスVp2を増幅して第3の制御パルスG3を形成し、これを第3のスイッチS3に送り、また、第2のPWMパルスVp2を反転増幅して第4の制御パルスG4を形成し、これを第4のスイッチS4に送る。   The drive circuit 39 connected to the first and second comparators 37 and 38 amplifies the first PWM pulse Vp1 to form a first control pulse G1, which is represented by the first switch S1 in FIG. And the first PWM pulse Vp1 is inverted and amplified to form the second control pulse G2, which is sent to the second switch S2, and the second PWM pulse Vp2 is amplified and the third PWM pulse Vp2 is amplified. Control pulse G3 is formed and sent to the third switch S3, and the second PWM pulse Vp2 is inverted and amplified to form the fourth control pulse G4, which is sent to the fourth switch S4. .

次に、本実施例の3相V結線インバータの動作を説明する。連系電流指令値発生手段12は、3相交流電力系統3の電圧Vsと第1、第2及び第3相連系電流Isu、Isv、Iswとによる力率が1又は1に近い値(0.85以上であることが望ましい。)になることが可能な値を有する第1及び第2の連系電流指令値Isd*、Isq*を発生する。第1及び第2の連系電流指令値Isd*、Isq*は、コンデンサ電流値作成手段11の第2の3相/dq座標変換手段29から得られるd軸成分及びq軸成分電流Icd、Icqと同一の周知のdq座標軸(直交座標軸)のd軸成分とq軸成分であるので、両者の合成によって第1及び第3相出力電流指令値Iod*、Ioq*を容易に決定することができる。第1相及び第3相リアクトルLu、Lwに流れる第1相及び第3相出力電流Iou、Iowは、所望力率(好ましくは1)の状態に第1、第2及び第3相連系電流Isu、Isv、Iswが流れるように帰還制御される。これにより、インバータの第1及び第3相出力電流Iou、Iowの制御によって力率が1となるように第1、第2及び第3相連系電流Isu、Isv、Iswを流すことができる。なお、3相V結線インバータの主回路の動作は周知であるので、その説明を省略する。 Next, the operation of the three-phase V-connection inverter of this embodiment will be described. The interconnection current command value generation means 12 has a power factor of 1 or a value close to 1 (0...) Based on the voltage Vs of the three-phase AC power system 3 and the first, second, and third phase interconnection currents Isu, Isv, Isw. The first and second interconnection current command values Isd * and Isq * having values that can be greater than or equal to 85. ) are generated. The first and second interconnection current command values Isd * and Isq * are the d-axis component and q-axis component currents Icd and Icq obtained from the second three-phase / dq coordinate conversion unit 29 of the capacitor current value creation unit 11. Are the same d-axis component and q-axis component of the same known dq coordinate axis (orthogonal coordinate axis), so that the first and third phase output current command values Iod * and Ioq * can be easily determined by combining them. . The first-phase and third-phase output currents Iou, Iow flowing in the first-phase and third-phase reactors Lu, Lw are in the state of the desired power factor (preferably 1), the first, second, and third-phase interconnection currents Isu. , Isv, Isw are feedback controlled. As a result, the first, second, and third phase interconnection currents Isu, Isv, Isw can be caused to flow so that the power factor becomes 1 by controlling the first and third phase output currents Iou, Iow of the inverter. Since the operation of the main circuit of the three-phase V-connection inverter is well known, the description thereof is omitted.

本実施例は次の効果を有する。
(1) 第1相及び第3相連系電流Isu、Iswを検出するための2つの電流検出器を設けない回路で力率を1又はほぼ1に制御することができる。従って、3相V結線インバータの小型化及び低コスト化を図ることができる。
(2) 3相V結線インバータであるので、3相フルブリッジ型インバータに比べてスイッチの数を2個減らすことができ、小型化及び低コスト化が達成される。
(3) コンデンサ電流値作成手段11によってd軸成分電流Icdとq軸成分電流Icqとを形成し、連系電流指令値発生手段12からd軸及びq軸成分としての第1及び第2の連系電流指令値Isd*、Isq*を発生させるので、3相V結線インバータの制御を容易に達成できる。
This embodiment has the following effects.
(1) The power factor can be controlled to 1 or almost 1 with a circuit that does not include two current detectors for detecting the first-phase and third-phase interconnection currents Isu and Isw. Therefore, it is possible to reduce the size and cost of the three-phase V-connection inverter.
(2) Since it is a three-phase V-connection inverter, the number of switches can be reduced by two compared to a three-phase full-bridge type inverter, and miniaturization and cost reduction are achieved.
(3) The d-axis component current Icd and the q-axis component current Icq are formed by the capacitor current value creating means 11, and the first and second linkages as the d-axis and q-axis components from the interconnection current command value generating means 12 are formed. Since system current command values Isd * and Isq * are generated, control of the three-phase V-connection inverter can be easily achieved.

実施例2の3相V結線インバータは実施例1のコンデンサ電流作成手段11を図6に示すコンデンサ電流値作成手段11aに変形し、この他は実施例1と同一に形成してものである。従って、実施例2の説明においても実施例1を示す図1〜図4を参照し、且つ共通する部分の説明を省略する。   The three-phase V-connection inverter of the second embodiment is the same as the first embodiment except that the capacitor current creating means 11 of the first embodiment is transformed into a capacitor current value creating means 11a shown in FIG. Therefore, also in description of Example 2, FIGS. 1-4 which shows Example 1 is referred, and description of a common part is abbreviate | omitted.

図6の実施例2のコンデンサ電流値作成手段11aは、固定電流値発生手段40と位相検出手段20と第2相信号形成手段27と3相/dq座標変換手段29とを有する。   6 includes a fixed current value generating means 40, a phase detecting means 20, a second phase signal forming means 27, and a three-phase / dq coordinate converting means 29.

固定電流値発生手段40は、図3の実施例1のコンデンサ電流値作成手段11における無効電流検出部25及びこれよりも前の部分と実質的に同一の機能を有し、図3において第1及び第3相信号Icu、Icwと実質的に同一の信号を固定的に発生する。即ち、固定電流値発生手段40から発生する第1相及び第3相信号Icu、Icwは、第1、第2及び第3相交流端子2u、2v、2wの線間電圧の実効値V、周波数ω、第1及び第2のフィルタコンデンサCu、Cwの容量Cを固定値として次の(13)(14)(15)式に従う計算で決定される。   The fixed current value generation means 40 has substantially the same function as the reactive current detection unit 25 and the portion before this in the capacitor current value creation means 11 of the first embodiment of FIG. In addition, a signal substantially the same as the third phase signals Icu and Icw is fixedly generated. That is, the first-phase and third-phase signals Icu and Icw generated from the fixed current value generating means 40 are the effective value V and the frequency of the line voltage at the first, second and third-phase AC terminals 2u, 2v and 2w. ω and the capacitance C of the first and second filter capacitors Cu and Cw are fixed values, and are determined by calculations according to the following equations (13), (14), and (15).

Figure 2006254632
Figure 2006254632

図6の位相検出手段20、第2相信号形成手段27、3相/dq座標変換手段29は図3で同一記号で示すものと同一であるので、その説明を省略する。   The phase detection means 20, the second phase signal formation means 27, and the three-phase / dq coordinate conversion means 29 in FIG. 6 are the same as those indicated by the same symbols in FIG.

この実施例2において、3相交流電力系統3の電圧が安定している場合には、これを固定して第1及び第2のフィルタコンデンサCu、Cwの無効電流を示す第1相及び第3相信号Icu、Icwを決定しても、これ等の値は実測値を使用する場合とほぼ同一の値となる。   In the second embodiment, when the voltage of the three-phase AC power system 3 is stable, the first phase and the third phase indicating the reactive currents of the first and second filter capacitors Cu and Cw are fixed. Even if the phase signals Icu and Icw are determined, these values are almost the same as when the actual measurement values are used.

実施例2は実施例1と同一効果を有する他に、固定電流値発生手段40で第1相及び第3相信号Icu、Icwを発生させるので、コンデンサ電流値作成手段11aにおける演算回数を実施例1に比べて削減でき、高速な演算処理が可能になるという効果を有する。   The second embodiment has the same effect as the first embodiment. In addition, since the first and third phase signals Icu and Icw are generated by the fixed current value generating means 40, the number of operations in the capacitor current value creating means 11a is determined according to the embodiment. Compared to 1, it has the effect of being able to reduce and enabling high-speed arithmetic processing.

本発明は上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1) 図1の第1相及び第3相電流検出器CTu、CTwを第1及び第2のフィルタコンデンサCu、Cwと第1及び第3相交流端子2u、2wとの間の電流通路に移動し、第1相及び第3相連系電流Isu,Iswを検出するように変形することができる。この変形例の場合には、図2のコンデンサ電流値作成手段11又は図6のコンデンサ電流値作成手段11aと同一のものを設け、また、図2の連系電流指令値発生手段12の位置に出力電流指令値作成手段を配置し、図2の出力電流指令値作成手段13の位置に連系電流指令値発生手段を配置し、この連系電流指令値発生手段の出力段に図2と同様に帰還制御信号形成手段14とスイッチ制御パルス形成手段15とを配置する。
この変形例の場合の出力電流指令値作成手段は、図1のインバータの第1、第2及び第3相出力電流Iou,Iov,Iowの目標値を2相軸に変換したものに相当する第1及び第2の出力電流指令値Iod*、Ioq*を発生するように構成する。また、連系電流指令値発生手段は、出力電流指令値作成手段から得られた第1の出力電流指令値Iod*とコンデンサ電流値作成手段11又は11aから得られた第1の信号Icdとに基づいて第1相連系電流指令値Isd*を作成し、且つ第2の出力電流指令値Ioq*とコンデンサ電流値作成手段11又は11aから得られた第2の信号Icqとに基づいて第2相連系電流指令値Isq*を作成する。また、この変形例の場合の帰還制御信号形成手段には、第1相及び第3相電流検出器CTu 、CTw から得られた第1相及び第3相連系電流Isu、Iswの検出値から第2相連系電流Isvを形成する手段を設け、更に第1相、第2及び第3相連系電流Isu、Isv,Iswを回転座標変換してdq座標軸のd軸成分電流Isd及びq軸成分電流Isdを得る3相/dq座標変換手段を設ける。図3に示す第1及び第2の偏差信号作成手段32,33は連系電流指令値作成手段から得られた第1相及び第3相連系電流指令値Isd*、Isq*と3相/dq座標変換手段から得られたd軸成分電流Isd及びq軸成分電流Isdとの偏差を求めて第1相及び第3相帰還制御信号Ifu、Ifwを形成する。なお、変形例の場合においても、第2連系電流Isvを演算で求める代わりに、第2連系電流Isvを検出する第2相電流検出器を設けることができる。
(2) 同一容量の第1及び第2の電圧分割用コンデンサCa、Cbの代りに同一電圧の第1及び第2の蓄電池を接続することができる。
(3) 連系電流Isu、Isv、Iswに高調波成分又は高周波成分が含まれても差し支えない場合には、これに対応するように連系電流指令値発生手段12を変形することができる。
The present invention is not limited to the above-described embodiments, and for example, the following modifications are possible.
(1) The first-phase and third-phase current detectors CTu and CTw in FIG. 1 are connected to the current path between the first and second filter capacitors Cu and Cw and the first and third-phase AC terminals 2u and 2w. The first phase and the third phase interconnection currents Isu and Isw can be detected by moving. In the case of this modification, the same capacitor current value creating means 11 of FIG. 2 or the capacitor current value creating means 11a of FIG. 6 is provided, and the position of the interconnecting current command value generating means 12 of FIG. An output current command value creating means is arranged, and a linkage current command value generating means is arranged at the position of the output current command value creating means 13 in FIG. The feedback control signal forming means 14 and the switch control pulse forming means 15 are arranged in the above.
The output current command value creating means in the case of this modification corresponds to the first, second and third phase output currents Iou, Iov, Iow of the inverter of FIG. The first and second output current command values Iod * and Ioq * are generated. Further, the interconnection current command value generating means generates the first output current command value Iod * obtained from the output current command value creating means and the first signal Icd obtained from the capacitor current value creating means 11 or 11a. based create a first phase interconnection current command value Isd *, and a second output current command value IOQ * a second's eye based on the second signal Icq obtained from the capacitor current value preparation unit 11 or 11a A system current command value Isq * is created. Further, the feedback control signal forming means in the case of this modification includes the first and third phase currents obtained from the first and third phase current detectors CTu and CTw based on the detected values of the first and third phase interconnection currents Isu and Isw. Means for forming the two-phase interconnection current Isv is provided, and the first-phase, second- and third-phase interconnection currents Isu, Isv, Isw are rotationally transformed to convert the d-axis component current Isd and the q-axis component current Isd of the dq coordinate axis Three-phase / dq coordinate conversion means for obtaining The first and second deviation signal generating means 32 and 33 shown in FIG. 3 are the first-phase and third-phase connected current command values Isd * and Isq * obtained from the connected current command value generating means and the three-phase / dq. Deviations between the d-axis component current Isd and the q-axis component current Isd obtained from the coordinate conversion means are obtained to form the first phase and third phase feedback control signals Ifu and Ifw. In the case of the modification, a second phase current detector for detecting the second interconnection current Isv can be provided instead of obtaining the second interconnection current Isv by calculation.
(2) The first and second storage batteries having the same voltage can be connected instead of the first and second voltage dividing capacitors Ca and Cb having the same capacity.
(3) If the harmonic currents or the high-frequency components may be included in the interconnection currents Isu, Isv, Isw, the linkage current command value generation means 12 can be modified to correspond to this.

本発明の実施例1に従う3相V結線インバータを示す回路図である。It is a circuit diagram which shows the three-phase V connection inverter according to Example 1 of this invention. 図1の制御部を詳しく示すブロック図である。It is a block diagram which shows the control part of FIG. 1 in detail. 図2を制御部を更に詳しく示すブロック図である。FIG. 2 is a block diagram showing the control unit in more detail in FIG. 図3の帰還制御信号形成手段に含まれている変換手段を詳しく示すブロック図である。It is a block diagram which shows in detail the conversion means contained in the feedback control signal formation means of FIG. 図3の各部の状態を示す波形図である。It is a wave form diagram which shows the state of each part of FIG. 実施例2のコンデンサ電流値作成手段を示すブロック図である。It is a block diagram which shows the capacitor electric current value preparation means of Example 2.

符号の説明Explanation of symbols

1 直流電源
1a、1b 第1及び第2の直流端子
1c 中間端子
2u、2v、2w 第1、第2及び第3相交流端子
3 3相交流電力系統
4 制御回路
5 電圧検出手段
6 制御部
11 コンデンサ電流値作成手段
12 連系電流指令値発生手段
13 出力電流指令値作成手段
Ca、Cb 第1及び第2の電圧分割用コンデンサ
S1〜S4 スイッチ
D1〜D4 ダイオード
Lu、Lw 第1相及び第3相リアクトル
Cu、Cw 第1及び第2のフィルタコンデンサ
CTu、CTw 第1相及び第3相電流検出器
DESCRIPTION OF SYMBOLS 1 DC power supply 1a, 1b 1st and 2nd DC terminal 1c Intermediate | middle terminal 2u, 2v, 2w 1st, 2nd and 3rd phase alternating current terminal 3 3 phase alternating current power system 4 Control circuit 5 Voltage detection means 6 Control part 11 Capacitor current value creation means 12 Interconnection current command value generation means 13 Output current command value creation means Ca, Cb First and second voltage dividing capacitors S1 to S4 Switches D1 to D4 Diodes Lu and Lw First phase and third Phase reactor Cu, Cw 1st and 2nd filter capacitor CTu, CTw 1st phase and 3rd phase current detector

Claims (4)

直流電圧を供給するための第1及び第2の直流端子(1a、1b)と、
前記第1及び第2の直流端子(1a、1b)間の中間の電位を有する中間端子(1c)と、
3相交流電圧の第1相電圧を出力するための第1相交流端子(2u)と、
前記3相交流電圧の第2相電圧を出力するものであって、前記中間端子(1c)に電気的に接続された第2相交流端子(2v)と、
前記3相交流電圧の第3相電圧を出力するための第3相交流端子(2w)と、
前記第1及び第2の直流端子(1a、1b)間に接続された第1及び第2のスイッチ(S1 、S2 )の直列回路と、
前記第1及び第2の直流端子(1a、1b)間に接続された第3及び第4のスイッチ(S3 、S4 )の直列回路と、
前記第1及び第2のスイッチ(S1 、S2 )の相互接続点(P1 )と前記第1相交流端子(2u)との間に接続された第1相リアクトル(Lu )と、
前記第3及び第4のスイッチ(S3 、S4 )の相互接続点(P2 )と前記第3相交流端子(2w)との間に接続された第3相リアクトル(Lw )と、
前記第1相交流端子(2u)と前記第2相交流端子(2v)との間に接続された第1のフィルタコンデンサ(Cu )と、
前記第2相交流端子(2v)と前記第3相交流端子(2w)との間に接続された第2のフィルタコンデンサ(Cw )と、
前記第1相リアクトル(Lu )又は前記第1相交流端子(2u)に流れる第1相電流(Iou又はIsu)を検出する第1相電流検出器(CTu )と、
前記第3相リアクトル(Lw )又は前記第3相交流端子(2w)に流れる第3相電流(Iow 又はIsw)を検出する第3相電流検出器(CTw )と、
前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の電圧をそれぞれ検出する電圧検出手段(5)と、
前記第1及び第3相電流検出器(CTu 、CTw )の出力と前記電圧検出手段(5)の出力とに基づいて前記第1、第2及び第3相交流端子(2u、2v、2w)における力率を所望値にするように前記第1〜第4のスイッチをオン・オフ制御するスイッチ制御パルスを形成して前記第1、第2、第3及び第4のスイッチの制御端子に供給する制御部(6)と
を具備していることを特徴とする3相V結線インバータ。
First and second DC terminals (1a, 1b) for supplying a DC voltage;
An intermediate terminal (1c) having an intermediate potential between the first and second DC terminals (1a, 1b);
A first phase AC terminal (2u) for outputting a first phase voltage of a three-phase AC voltage;
A second phase AC voltage (2v) that outputs a second phase voltage of the three-phase AC voltage, and is electrically connected to the intermediate terminal (1c);
A third phase AC terminal (2w) for outputting a third phase voltage of the three-phase AC voltage;
A series circuit of first and second switches (S1, S2) connected between the first and second DC terminals (1a, 1b);
A series circuit of third and fourth switches (S3, S4) connected between the first and second DC terminals (1a, 1b);
A first phase reactor (Lu) connected between an interconnection point (P1) of the first and second switches (S1, S2) and the first phase AC terminal (2u);
A third phase reactor (Lw) connected between the interconnection point (P2) of the third and fourth switches (S3, S4) and the third phase AC terminal (2w);
A first filter capacitor (Cu) connected between the first phase AC terminal (2u) and the second phase AC terminal (2v);
A second filter capacitor (Cw) connected between the second phase AC terminal (2v) and the third phase AC terminal (2w);
A first phase current detector (CTu) for detecting a first phase current (Iou or Isu) flowing through the first phase reactor (Lu) or the first phase AC terminal (2u);
A third phase current detector (CTw) for detecting a third phase current (Iow or Isw) flowing through the third phase reactor (Lw) or the third phase AC terminal (2w);
Voltage detecting means (5) for detecting voltages of the first and second filter capacitors (Cu, Cw), respectively;
Based on the output of the first and third phase current detectors (CTu, CTw) and the output of the voltage detection means (5), the first, second and third phase AC terminals (2u, 2v, 2w). A switch control pulse for controlling on / off of the first to fourth switches is formed so as to set the power factor at a desired value, and supplied to the control terminals of the first, second, third and fourth switches. A three-phase V-connection inverter, comprising:
前記制御部は、
前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の3相で示す電流(Icu、Icv、Icw)の値を前記電圧検出手段(5)の出力を使用して計算で求めるか又は実側で求め、前記3相で示す電流(Icu、Icv、Icw)の値を2相軸に変換したものに相当する第1及び第2の信号(Icd、Icq)を作成するコンデンサ電流値作成手段(11又は11a)と、
前記第1、第2及び第3の交流端子(2u、2v、2w)を流れる3相電流の目標値を2相軸に変換したものに相当する第1及び第2の連系電流指令値(Isd*、Isq*)を発生する連系電流指令値発生手段(12)と、
前記連系電流指令値発生手段(12)から得られた前記第1の連系電流指令値(Isd*)と前記コンデンサ電流値作成手段(11又は11a)から得られた前記第1の信号(Icd)とに基づいて第1相出力電流指令値(Iod*)を作成し、且つ前記第2の連系電流指令値(Isq*)と前記第2の信号(Icq)とに基づいて第3相出力電流指令値(Ioq*)を作成する出力電流指令値作成手段(13)と、
前記出力電流指令値作成手段(13)から得られた前記第1相及び第3相出力電流指令値(Iod*、Ioq*)と前記第1相及び第3相電流検出器(CTu 、CTw )から得られた前記第1相及び第3相出力電流(Iou、Iow)の検出値とに基づいて第1相及び第3相帰還制御信号(Ifu、Ifw)を形成する帰還制御信号形成手段(14)と、
前記帰還制御信号形成手段(14)から得られた前記第1相及び第3相帰還制御信号(Ifu、Ifw)に基づいて前記第1、第2、第3及び第4のスイッチ(S1 、S2 、S3 、S4 )をオン・オフ制御するためのスイッチ制御パルス(G1 、G2 、G3 、G4 )を形成するスイッチ制御パルス形成手段(15)と
から成ることを特徴とする請求項1記載の3相V結線インバータ。
The controller is
The value of the current (Icu, Icv, Icw) indicated by the three phases of the first and second filter capacitors (Cu, Cw) is calculated by using the output of the voltage detection means (5) or on the actual side Capacitor current value creation means for creating first and second signals (Icd, Icq) corresponding to those obtained by converting the values of the currents (Icu, Icv, Icw) indicated by the three phases into the two-phase axes. 11 or 11a)
First and second interconnected current command values (corresponding to a target value of a three-phase current flowing through the first, second and third AC terminals (2u, 2v, 2w) converted to a two-phase axis ( Interconnected current command value generating means (12) for generating Isd * , Isq * ),
The first interconnect current command value (Isd * ) obtained from the interconnect current command value generating means (12) and the first signal (11 or 11a) obtained from the capacitor current value creating means (11 or 11a). The first phase output current command value (Iod * ) is created based on Icd) and the third phase based on the second interconnection current command value (Isq * ) and the second signal (Icq). Output current command value creation means (13) for creating a phase output current command value (Ioq * );
The first and third phase output current command values (Iod * , Ioq * ) and the first and third phase current detectors (CTu, CTw) obtained from the output current command value creating means (13). Feedback control signal forming means for forming first and third phase feedback control signals (Ifu, Ifw) based on the detected values of the first phase and third phase output currents (Iou, Iow) obtained from 14)
The first, second, third and fourth switches (S1, S2) based on the first and third phase feedback control signals (Ifu, Ifw) obtained from the feedback control signal forming means (14). , S3, S4), and switch control pulse forming means (15) for forming switch control pulses (G1, G2, G3, G4) for on / off control. Phase V connection inverter.
前記電圧検出手段(5)は、前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の電圧として前記第1及び第2相交流端子(2u、2v)間の線間電圧(Vuv)、及び前記第2及び第3相交流端子(2v、2w)間の線間電圧(Vvw)を検出すると共に、及び前記第3及び第1相交流端子(2w、2u)間の線間電圧(Vwu)を検出する手段を有し、
前記コンデンサ電流値作成手段(11)は、
基準位相角(ωt)を示す信号を得るために前記電圧検出手段(5)に接続された位相検出手段(20)と、
前記基準位相角(ωt)よりもπ/2進んだ進み位相角(ωt+π/2)を示す信号を形成する進み位相角信号形成手段(21)と、
前記電圧検出手段(5)から得られた3相の各線間電圧(Vuv、Vvw、Vwu)を前記進み位相角信号形成手段(21)から得られた進み位相角(ωt+π/2)にて回転座標変換してdq座標軸で示すd軸成分電圧(Vd )とq軸成分電圧(Vq )を出力する第1の3相/dq座標変換手段(22)と、
前記第1の3相/dq座標変換手段(22)から得られた前記d軸成分電圧(Vd )及び前記q軸成分電圧(Vq )を前記第1及び第2のフィルタコンデンサ(Cu 、Cw )のそれぞれのインピーダンス(1/ωC)で除算した値を示すd軸成分仮想無効電流(Iad)とq軸成分仮想無効電流(Iaq)とを形成する2相軸仮想無効電流信号形成手段(23)と、
前記2相軸仮想無効電流信号形成手段(23)から得られた前記d軸成分仮想無効電流(Iad)と前記q軸成分仮想無効電流(Iaq)とを前記基準位相角(ωt)にて回転逆座標変換し、前記第1及び第3相交流端子間にもフィルタコンデンサが接続されていると仮定した場合における第1、第2及び第3の3相軸仮想無効電流(Iau、Iav、Iaw)を示す信号を出力するdq/3相座標変換手段(24)と、
前記dq/3相座標変換手段(24)から得られた前記第1の3相軸仮想無効電流(Iau)を示す信号を前記第1のフィルタコンデンサ(Cu )に流れる無効電流を示す第1相信号(Icu)と見なして伝送する手段(25u)と、
前記第2の3相軸仮想無効電流(Iav)を位相反転して前記第2のフィルタコンデンサ(Cw )に流れる無効電流を示す第3相信号(Icw)として出力する第3相信号形成手段(26)と、
前記第1相信号(Icu)と前記第3相信号(Icw)との合成信号の位相反転信号に相当する第2相信号(Icv)を形成する手段(27)と、
前記第1、第2及び第3相信号(Icu、Icv、Icw)を前記基準位相角(ωt)にて回転座標変換してdq座標軸で示すd軸成分電流(Icd)とq軸成分電流(Icq)とを出力する第2の3相/dq座標変換手段(29)とから成ることを特徴とする請求項2記載の3相V結線インバータ。
The voltage detection means (5) includes a line voltage (Vuv) between the first and second phase AC terminals (2u, 2v) as a voltage of the first and second filter capacitors (Cu, Cw), and A line voltage (Vvw) between the second and third phase AC terminals (2v, 2w) is detected, and a line voltage (Vwu) between the third and first phase AC terminals (2w, 2u) is detected. Means for detecting
The capacitor current value creating means (11)
Phase detection means (20) connected to the voltage detection means (5) to obtain a signal indicative of a reference phase angle (ωt);
A lead phase angle signal forming means (21) for forming a signal indicating a lead phase angle (ωt + π / 2) advanced by π / 2 from the reference phase angle (ωt);
The three-phase line voltages (Vuv, Vvw, Vwu) obtained from the voltage detection means (5) are rotated by the advance phase angle (ωt + π / 2) obtained from the advance phase angle signal forming means (21). A first three-phase / dq coordinate conversion means (22) for outputting a d-axis component voltage (Vd) and a q-axis component voltage (Vq) indicated by the dq coordinate axis after coordinate conversion;
The d-axis component voltage (Vd) and the q-axis component voltage (Vq) obtained from the first three-phase / dq coordinate conversion means (22) are converted into the first and second filter capacitors (Cu, Cw). Two-phase axis virtual reactive current signal forming means (23) for forming a d-axis component virtual reactive current (Iad) and a q-axis component virtual reactive current (Iaq) indicating values divided by respective impedances (1 / ωC) When,
The d-axis component virtual reactive current (Iad) and the q-axis component virtual reactive current (Iaq) obtained from the two-phase axis virtual reactive current signal forming means (23) are rotated at the reference phase angle (ωt). The first, second, and third three-phase axis virtual reactive currents (Iau, Iav, Iaw) in the case where it is assumed that a filter capacitor is connected between the first and third phase AC terminals by inverse coordinate transformation. Dq / 3-phase coordinate conversion means (24) for outputting a signal indicating
A first phase indicating a reactive current flowing through the first filter capacitor (Cu) with a signal indicating the first three-phase axis virtual reactive current (Iau) obtained from the dq / 3-phase coordinate conversion means (24). Means (25u) for transmitting as a signal (Icu);
Third phase signal forming means for outputting a third phase signal (Icw) indicating a reactive current flowing through the second filter capacitor (Cw) by inverting the phase of the second three-phase virtual reactive current (Iav). 26)
Means (27) for forming a second phase signal (Icv) corresponding to a phase inverted signal of a composite signal of the first phase signal (Icu) and the third phase signal (Icw);
The first, second and third phase signals (Icu, Icv, Icw) are subjected to rotational coordinate conversion at the reference phase angle (ωt), and d-axis component current (Icd) and q-axis component current ( 3. A three-phase V-connection inverter according to claim 2, further comprising second three-phase / dq coordinate conversion means (29) for outputting Icq).
前記コンデンサ電流値作成手段(11a)は、
基準位相角(ωt)を示す信号を得るために前記電圧検出手段(5)に接続された位相検出手段(20)と、
前記第1、第2及び第3相交流端子(2u、2v、2w)間の電圧、周波数、及び前記第1及び第2のフィルタコンデンサ(Cu 、Cw )の容量を固定値として前記第1及び第2のフィルタコンデンサ(Cu 、Cw )に流れる電流を計算又は実測でそれぞれ求めた第1及び第2のフィルタコンデンサ予測電流(Icu、Icw)を示す信号を発生するフィルタコンデンサ予測電流発生手段(40)と、
前記第1のフィルタコンデンサ予測電流(Icu)を示す信号を第1相信号と見なして伝送する手段(25u)と、
前記第2のフィルタコンデンサ予測電流(Icw)を示す信号を第3相信号として伝送する手段(25w)と、
前記第1相信号(Icu)と前記第3相信号(Icw)との合成信号の位相反転信号に相当する第2相信号(Icv)を形成する手段(27)と、
前記第1、第2及び第3相信号(Icu、Icv、Icw)を前記位相検出手段(20)から得られた前記基準位相角(ωt)にて回転座標変換してdq座標軸で示すd軸成分電流(Icd)とq軸成分電流(Icq)とを出力する3相/dq座標変換手段(29)と
から成ることを特徴とする請求項2記載の3相V結線インバータ。
The capacitor current value creating means (11a)
Phase detection means (20) connected to the voltage detection means (5) to obtain a signal indicative of a reference phase angle (ωt);
The voltage between the first, second and third phase AC terminals (2u, 2v, 2w), the frequency, and the capacitance of the first and second filter capacitors (Cu, Cw) are fixed values. Filter capacitor predicted current generating means (40) for generating a signal indicating the first and second filter capacitor predicted currents (Icu, Icw) obtained by calculation or actual measurement of the current flowing through the second filter capacitors (Cu, Cw), respectively. )When,
Means (25u) for transmitting a signal indicating the first filter capacitor predicted current (Icu) as a first phase signal;
Means (25w) for transmitting a signal indicating said second filter capacitor predicted current (Icw) as a third phase signal;
Means (27) for forming a second phase signal (Icv) corresponding to a phase inverted signal of a composite signal of the first phase signal (Icu) and the third phase signal (Icw);
The d-axis indicated by the dq coordinate axis by rotationally converting the first, second and third phase signals (Icu, Icv, Icw) at the reference phase angle (ωt) obtained from the phase detecting means (20). 3. A three-phase V-connected inverter according to claim 2, comprising three-phase / dq coordinate conversion means (29) for outputting a component current (Icd) and a q-axis component current (Icq).
JP2005069663A 2005-03-11 2005-03-11 3-phase V-connection inverter Active JP4839641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069663A JP4839641B2 (en) 2005-03-11 2005-03-11 3-phase V-connection inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069663A JP4839641B2 (en) 2005-03-11 2005-03-11 3-phase V-connection inverter

Publications (2)

Publication Number Publication Date
JP2006254632A true JP2006254632A (en) 2006-09-21
JP4839641B2 JP4839641B2 (en) 2011-12-21

Family

ID=37094516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069663A Active JP4839641B2 (en) 2005-03-11 2005-03-11 3-phase V-connection inverter

Country Status (1)

Country Link
JP (1) JP4839641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006961A1 (en) * 2016-07-07 2018-01-11 Huawei Technologies Co., Ltd. Four-switch three phase dc-dc resonant converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197541A (en) * 1992-12-21 1994-07-15 Toshiba F Ee Syst Eng Kk Inverter device
JPH10155276A (en) * 1996-11-20 1998-06-09 Hitachi Ltd Power conversion equipment
JP2002354681A (en) * 2001-05-29 2002-12-06 Mitsubishi Heavy Ind Ltd Solar power generating device
JP2004260882A (en) * 2003-02-24 2004-09-16 Sanken Electric Co Ltd Power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197541A (en) * 1992-12-21 1994-07-15 Toshiba F Ee Syst Eng Kk Inverter device
JPH10155276A (en) * 1996-11-20 1998-06-09 Hitachi Ltd Power conversion equipment
JP2002354681A (en) * 2001-05-29 2002-12-06 Mitsubishi Heavy Ind Ltd Solar power generating device
JP2004260882A (en) * 2003-02-24 2004-09-16 Sanken Electric Co Ltd Power converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006961A1 (en) * 2016-07-07 2018-01-11 Huawei Technologies Co., Ltd. Four-switch three phase dc-dc resonant converter
CN109874380A (en) * 2016-07-07 2019-06-11 华为技术有限公司 Four Switch Three-Phase DC-DC resonance converters
US10715050B2 (en) 2016-07-07 2020-07-14 Huawei Technologies Co., Ltd. Four-switch three phase DC-DC resonant converter

Also Published As

Publication number Publication date
JP4839641B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Pena et al. Control of a doubly fed induction generator via an indirect matrix converter with changing DC voltage
WO2014162620A1 (en) Power conversion device
JP2011182517A (en) Power converter
JP2006067754A (en) Converter and power converter using same
US8441225B2 (en) Direct-current to three-phase alternating-current inverter system
Taib et al. Performance and efficiency control enhancement of wind power generation system based on DFIG using three-level sparse matrix converter
WO2004062078A1 (en) Motor drive device for air conditioner
JP4662064B2 (en) Inverter device
JPH0336930A (en) Three-phase converter
JP2018129963A (en) Controller of power converter
KR101251238B1 (en) Motor control system
JP5375715B2 (en) Neutral point boost DC-three-phase converter
CN111837327A (en) Power conversion device, motor drive system, and control method
JP2004304868A (en) Motor controller
JP5147624B2 (en) Inverter device
JPWO2019167244A1 (en) Power converter and electric motor system
JP4479292B2 (en) AC / AC power converter controller
JP4839641B2 (en) 3-phase V-connection inverter
WO2023238386A1 (en) Power conversion device and control device
JP2005073380A (en) Controller for power converter
JP4910483B2 (en) 3-phase V-connection inverter
JP6805613B2 (en) Power converter
Estima et al. Efficiency evaluation of fault-tolerant operating strategies applied to three-phase permanent magnet synchronous motor drives
JPH11113257A (en) Series power system compensation device using ac bidirectional switching circuit
JP7316194B2 (en) Drive system controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350