JP2006254575A - Control method of induction motor - Google Patents

Control method of induction motor Download PDF

Info

Publication number
JP2006254575A
JP2006254575A JP2005066098A JP2005066098A JP2006254575A JP 2006254575 A JP2006254575 A JP 2006254575A JP 2005066098 A JP2005066098 A JP 2005066098A JP 2005066098 A JP2005066098 A JP 2005066098A JP 2006254575 A JP2006254575 A JP 2006254575A
Authority
JP
Japan
Prior art keywords
induction motor
speed
motor
gain
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005066098A
Other languages
Japanese (ja)
Other versions
JP4760064B2 (en
Inventor
Hidehiko Sugimoto
英彦 杉本
Hisae Kikuchi
寿江 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005066098A priority Critical patent/JP4760064B2/en
Publication of JP2006254575A publication Critical patent/JP2006254575A/en
Application granted granted Critical
Publication of JP4760064B2 publication Critical patent/JP4760064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an induction motor by the speed sensorless vector control of an induction motor employing an adaptive secondary flux observer. <P>SOLUTION: In order to shorten a settling time of a speed estimation error of an induction motor 100, a phase, a gain compensator 31 for compensating the phase and the gain of the difference between a torque current of the motor and its estimation value is provided at a control section 30 in a speed controller of the induction motor 100, and phase characteristics in the vicinity of a resonance frequency dependent on a secondary frequency and a slip frequency of the motor in the speed estimation system of the induction motor 100 are improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、適応二次磁束オブザーバを用いた誘導電動機の速度センサレスベクトル制御により該電動機を可変速駆動する誘導電動機の制御方法に関する。   The present invention relates to a control method for an induction motor that drives the motor at a variable speed by speed sensorless vector control of the induction motor using an adaptive secondary magnetic flux observer.

図5は、この種の速度センサレスベクトル制御を行う誘導電動機の速度制御装置の従来例を示す回路構成図である。   FIG. 5 is a circuit configuration diagram showing a conventional example of a speed control device for an induction motor that performs this type of speed sensorless vector control.

図5に示した速度制御装置には誘導電動機100に所望の交流電力を供給する電力変換装置1と、この電力変換装置1から誘導電動機100への一次電流,一次電圧それぞれを検出する電流検出器2,電圧検出器3と、指令される速度指令値に基づき電力変換装置1を介して誘導電動機100を可変速制御するためのベクトル制御システム部分および適応二次磁束オブザーバシステム部分からなる制御部10とを備えている。   The speed control device shown in FIG. 5 includes a power converter 1 that supplies desired AC power to the induction motor 100, and a current detector that detects a primary current and a primary voltage from the power converter 1 to the induction motor 100, respectively. 2, a voltage detector 3 and a control unit 10 comprising a vector control system part and an adaptive secondary magnetic flux observer system part for variable speed control of the induction motor 100 via the power converter 1 based on the commanded speed command value. And.

前記ベクトル制御シスシム部分は指令される速度指令値と後述の回転速度推定値との偏差を零にする調節演算値と後述の誘導電動機100の二次磁束推定値とに基づき該電動機のトルク電流指令値を生成する速度調節手段11と、電流検出器2からの誘導電動機100の一次電流の検出値を該電動機のトルク電流および励磁電流の検出値に座標変換する座標変換手段12と、前記トルク電流指令値とトルク電流の検出値との偏差を零にする調節演算値と前記二次磁束推定値と後述の誘導電動機100の一次・二次抵抗推定値とに基づき該電動機のトルク成分の電圧指令値を生成するトルク電流調節手段13と、指令される励磁電流指令値と前記励磁電流の検出値との偏差を零にする調節演算値と前記一次・二次抵抗推定値とに基づき誘導電動機100の励磁成分の電圧指令値を生成する励磁電流調節手段14と、前記回転速度推定値と一次・二次抵抗推定値とに基づき誘導電動機100の一次周波数を生成するすべり周波数制御手段15と、前記トルク成分および励磁成分の電圧指令値と一次周波数とに基づく座標逆変換をして電力変換装置1への3相電圧指令値(交流量)を生成する座標逆変換手段16とから構成され、速度調節手段11,座標変換手段12,トルク電流調節手段13,励磁電流調節手段14,すべり周波数制御手段15,座標逆変換手段16それぞれは周知の技術により形成されている。   The vector control system portion is based on an adjustment calculation value that makes a deviation between a commanded speed command value and a rotational speed estimated value, which will be described later, zero, and a secondary magnetic flux estimated value of the induction motor 100, which will be described later. A speed adjusting means 11 for generating a value, a coordinate converting means 12 for converting the detected value of the primary current of the induction motor 100 from the current detector 2 into a detected value of torque current and exciting current of the motor, and the torque current A voltage command for the torque component of the motor based on an adjustment calculation value that makes the deviation between the command value and the detected value of the torque current zero, the secondary magnetic flux estimated value, and primary and secondary resistance estimated values of the induction motor 100 described later. Induction electric motor based on torque current adjusting means 13 for generating a value, an adjustment calculation value for making the deviation between the commanded excitation current command value and the detected value of the excitation current zero, and the primary / secondary resistance estimation values Excitation current adjusting means 14 for generating a voltage command value of 100 excitation components; slip frequency control means 15 for generating a primary frequency of the induction motor 100 based on the rotational speed estimated value and primary / secondary resistance estimated value; Coordinate reverse conversion means 16 for generating a three-phase voltage command value (AC amount) to the power converter 1 by performing coordinate reverse conversion based on the voltage command value and primary frequency of the torque component and excitation component, The speed adjusting means 11, the coordinate converting means 12, the torque current adjusting means 13, the exciting current adjusting means 14, the slip frequency controlling means 15, and the coordinate reverse converting means 16 are each formed by a known technique.

また、前記適応二次磁束オブザーバシステム部分は電流・磁束オブザーバ21と、オブザーバゲイン設定器22と、回転速度・抵抗推定手段23とから構成され、電流・磁束オブザーバ21では誘導電動機100の一次電流,二次磁束を状態変数とした状態方程式における一次抵抗,二次抵抗,回転速度をそれぞれ推定値に置き換え、該電動機のトルク電流,励磁電流それぞれの推定誤差にオブザーバゲイン設定器22のそれぞれの値を乗じてフィードバックさせた値と電圧検出器3からの該電動機の一次電圧との和に基づき、誘導電動機100のトルク電流,励磁電流,二次磁束それぞれの推定値を演算している。これを式で表すと、下記数1式となる。   The adaptive secondary magnetic flux observer system portion includes a current / magnetic flux observer 21, an observer gain setting device 22, and a rotational speed / resistance estimating means 23. The current / magnetic flux observer 21 is a primary current of the induction motor 100, The primary resistance, secondary resistance, and rotation speed in the state equation with the secondary magnetic flux as a state variable are replaced with estimated values, respectively, and the respective values of the observer gain setting unit 22 are replaced with estimated errors of the torque current and excitation current of the motor. Based on the sum of the multiplied and fed back value and the primary voltage of the motor from the voltage detector 3, the estimated values of the torque current, excitation current, and secondary magnetic flux of the induction motor 100 are calculated. When this is expressed by a formula, the following formula 1 is obtained.

Figure 2006254575
Figure 2006254575


上記式における動特性を決定するオブザーバゲイン行列Gは下記数2式で表され、オブザーバゲイン設定器22にて設定される。   The observer gain matrix G for determining the dynamic characteristics in the above equation is expressed by the following equation 2 and is set by the observer gain setting unit 22.

Figure 2006254575
Figure 2006254575

上述の電流・磁束オブザーバ21ではパラメータとして推定値を用いているため、この推定値に誤差がある場合には、誘導電動機100のトルク電流,励磁電流それぞれの推定値に誤差を含むことになる。そこで、前記誤差が無くなるように、この適応二次磁束オブザーバを用いた速度センサレス制御では適応推定機構を付加し、誘導電動機100の回転速度,一次抵抗値,二次抵抗値それぞれの推定値を回転速度・抵抗推定器23において、下記数3式に基づいて導出している。   Since the estimated value is used as a parameter in the current / magnetic flux observer 21 described above, if there is an error in the estimated value, the estimated value of each of the torque current and the excitation current of the induction motor 100 includes an error. Therefore, an adaptive estimation mechanism is added in the speed sensorless control using the adaptive secondary magnetic flux observer so that the error is eliminated, and the estimated values of the rotation speed, primary resistance value, and secondary resistance value of the induction motor 100 are rotated. The speed / resistance estimator 23 derives it based on the following equation (3).

Figure 2006254575
Figure 2006254575



杉本英彦,他「誘導電動機の速度センサレスベクトル制御の安定性の改善」平成13年度電気学会全国大会講演論文集、4−109、2001年3月21日Hidehiko Sugimoto, et al. “Improvement of Stability of Speed Sensorless Vector Control of Induction Motors” 2001 Annual Conference of the Institute of Electrical Engineers of Japan, 4-109, March 21, 2001

前記数2式で示したオブザーバゲイン行列Gの各要素に対して、上記非特許文献1などでは下記数4式で示すように設定している。   For each element of the observer gain matrix G expressed by the equation 2, the non-patent document 1 and the like are set as expressed by the following equation 4.

Figure 2006254575
Figure 2006254575

しかしながら、上記数4式で示した従来のオブザーバゲイン行列Gの設定方法では、速度センサレスベクトル制御を行う誘導電動機の回転速度が低いときに、速度推定誤差が長時間収束しない場合があった。   However, in the conventional method for setting the observer gain matrix G expressed by the above equation 4, when the rotational speed of the induction motor that performs speed sensorless vector control is low, the speed estimation error may not converge for a long time.

この発明の目的は上記問題点を解決する誘導電動機の制御方法を提供することにある。   An object of the present invention is to provide a method of controlling an induction motor that solves the above problems.

この発明は、適応二次磁束オブザーバを用いた誘導電動機の速度センサレスベクトル制御により該電動機を可変速駆動する誘導電動機の制御方法において、
前記誘導電動機のトルク電流の推定値とその実際値との偏差に対して所定の位相およびゲイン補償した値に基づいて、該電動機の回転速度の推定値を導出することを特徴とする制御方法を行う。
The present invention relates to a control method for an induction motor that drives the motor at a variable speed by speed sensorless vector control of the induction motor using an adaptive secondary magnetic flux observer.
A control method for deriving an estimated value of the rotational speed of the electric motor based on a value obtained by compensating a predetermined phase and gain with respect to a deviation between an estimated value of the torque current of the induction motor and an actual value thereof; Do.

この発明の誘導電動機の制御方法について、図面を参照しつつ、以下に説明する。   A method for controlling an induction motor according to the present invention will be described below with reference to the drawings.

図3は、誘導電動機の速度センサレスベクトル制御における状態変数の誤差に関する等価フィードバック系を示すブロック図である。   FIG. 3 is a block diagram showing an equivalent feedback system related to an error of a state variable in speed sensorless vector control of the induction motor.

すなわち、従来の誘導電動機の速度制御装置において、誘導電動機100の回転速度から回転速度推定値までの一巡伝達関数G(s)を求めると、下記数5式で表される。ここで、G1(s)はオブザーバと誘導電動機の状態変数の誤差を出力する伝達関数を表し、Gn(s)は誘導電動機の二次抵抗と回転速度の推定器を含む伝達関数である。 That is, in the conventional speed control device for an induction motor, when a round transfer function G (s) from the rotation speed of the induction motor 100 to the estimated rotation speed is obtained, it is expressed by the following equation (5). Here, G 1 (s) represents a transfer function that outputs an error between state variables of the observer and the induction motor, and G n (s) is a transfer function including an induction motor secondary resistance and a rotational speed estimator. .

Figure 2006254575
Figure 2006254575


前記数5式中のKRrP,KωPは推定器の比例ゲイン、KRrI,KωIは積分ゲインである。また、g22はオブザーバゲイン行列の2行2列目の要素であり、分母に0次の項に含まれるqという係数はオブザーバゲイン行列の2行1列目に含まれる係数である。 In Equation 5, K RrP and Kω P are proportional gains of the estimator , and K RrI and Kω I are integral gains. G 22 is an element in the second row and second column of the observer gain matrix, and a coefficient q included in the 0th-order term in the denominator is a coefficient included in the second row and first column of the observer gain matrix.

すなわち、従来の誘導電動機の制御方法では前記qの値を上げれば、G1(s)の直流および直流に近いゲインを高め、その結果、速度誤差の収束性能を高めることができるが、q>0の場合、G1(s)は分母が4次、分子が3次となるため、G1(s)の入出力間の位相差が90°を越える周波数帯が存在することがあり、このときには制御系の安定性が保証されない。 That is, if the value of q is increased in the conventional induction motor control method, the gain of G 1 (s) and the gain close to DC can be increased, and as a result, the convergence performance of the speed error can be improved. In the case of 0, G 1 (s) has a denominator of the fourth order and a numerator of the third order, and therefore there may be a frequency band in which the phase difference between the input and output of G 1 (s) exceeds 90 °. Sometimes the stability of the control system is not guaranteed.

図4は、この発明の誘導電動機の制御方法を用いた速度推定系のブロック図である。すなわち、誘導電動機の電流推定誤差に対する補償器が新たに備えられ、従来の制御方法におけるG1(s)の入出力間の位相差が90°を越える周波数帯に対して、該位相差が90°を越えないようにしている。 FIG. 4 is a block diagram of a speed estimation system using the method for controlling an induction motor according to the present invention. That is, a compensator for a current estimation error of the induction motor is newly provided, and the phase difference is 90 for a frequency band in which the phase difference between the input and output of G 1 (s) in the conventional control method exceeds 90 °. Do not exceed °.

図4に示した補償器を用いると、適応二次磁束オブザーバにおけるオブザーバゲインの影響より発生した位相遅れを補償できるため、制御系を安定に保ちながらオブザーバゲインの調整範囲を広げられ、従って、速度推定性能を上げることができる。また、前記補償器のゲイン補償によって、ゲインを高めた周波数帯での速度推定性能を上げられるため、速度推定系として望ましい伝達特性を持たせることができる。   When the compensator shown in FIG. 4 is used, it is possible to compensate for the phase lag caused by the effect of the observer gain in the adaptive secondary magnetic flux observer, so that the adjustment range of the observer gain can be expanded while keeping the control system stable. The estimation performance can be improved. Further, since the speed estimation performance in the frequency band with the increased gain can be improved by the gain compensation of the compensator, it is possible to have a desirable transfer characteristic as a speed estimation system.

図1は、この発明の誘導電動機の制御方法を行う誘導電動機の速度制御装置の回路構成図であり、この図において、図5に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 1 is a circuit configuration diagram of an induction motor speed control apparatus for performing the induction motor control method of the present invention. In this figure, components having the same functions as those of the conventional configuration shown in FIG. A description thereof will be omitted here.

すなわち、図1に示した制御部30には図5に示した制御部10に対して、位相・ゲイン補償器31が追加されている。   That is, the control unit 30 shown in FIG. 1 has a phase / gain compensator 31 added to the control unit 10 shown in FIG.

この位相・ゲイン補償器31は、図4に示した補償器に相当するものであり、下記数6式で示すような伝達関数で表される遅れ進みフィルタである。   The phase / gain compensator 31 corresponds to the compensator shown in FIG. 4 and is a delay-advance filter represented by a transfer function as shown in the following equation (6).

Figure 2006254575
Figure 2006254575

ここで、ω02>ω01,k>1とする。 Here, ω 02 > ω 01 , k> 1.

上記数6式のω01をRr/Lrとωse#で決まる共振周波数より低く設定し、この共振周波数付近で位相進み補償とゲイン補償が行われるようにすると、図2に示すようなボード線図の特性が得られる。 When ω 01 in the above equation 6 is set lower than the resonance frequency determined by R r / L r and ω se # and phase advance compensation and gain compensation are performed in the vicinity of this resonance frequency, as shown in FIG. Bode plot characteristics can be obtained.

すなわち図2において、濃実線は位相・ゲイン補償器31を用いた速度推定系の特性、淡実線は従来の速度推定系の特性、破線は位相・ゲイン補償器31の特性を示している。この特性図からも明らかなように、従来の制御方法ではqを高く設定した結果、90°以上の位相遅れが発生するが、この発明の制御方法では位相が90°以下となり、角周波数が100[rad/s]付近でのゲインが高められるため、誤差収束時間がより短縮される。   That is, in FIG. 2, the dark solid line indicates the characteristics of the speed estimation system using the phase / gain compensator 31, the light solid line indicates the characteristics of the conventional speed estimation system, and the broken line indicates the characteristics of the phase / gain compensator 31. As is apparent from this characteristic diagram, as a result of setting q to be high in the conventional control method, a phase delay of 90 ° or more occurs, but in the control method of the present invention, the phase is 90 ° or less and the angular frequency is 100 Since the gain in the vicinity of [rad / s] is increased, the error convergence time is further shortened.

この発明の実施例を示す誘導電動機の速度制御装置の回路構成図The circuit block diagram of the speed control apparatus of the induction motor which shows the Example of this invention この発明の速度推定系の動作を説明するボード線図Bode diagram explaining the operation of the speed estimation system of the present invention 速度センサレス制御系の誤差に関する等価フィードバック系のブロック図Block diagram of equivalent feedback system for error of speed sensorless control system この発明の動作を説明する速度推定系のブロック図Block diagram of speed estimation system explaining operation of the present invention 従来例を示す誘導電動機の速度制御装置の回路構成図Circuit configuration diagram of a speed control device for an induction motor showing a conventional example

符号の説明Explanation of symbols

1…電力変換装置、2…電流検出器、3…電圧検出器、10…制御部、11…速度調節手段、12…座標変換手段、13…トルク電流調節手段、14…励磁電流調節手段、15…すべり周波数制御手段、16…座標逆変換手段、21…電流・磁束オブザーバ、22…オブザーバゲイン設定器、23…回転速度・抵抗推定器、30…制御部、31…位相・ゲイン補償器、100…誘導電動機。   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Current detector, 3 ... Voltage detector, 10 ... Control part, 11 ... Speed adjusting means, 12 ... Coordinate converting means, 13 ... Torque current adjusting means, 14 ... Excitation current adjusting means, 15 ... slip frequency control means, 16 ... coordinate reverse conversion means, 21 ... current / magnetic flux observer, 22 ... observer gain setter, 23 ... rotational speed / resistance estimator, 30 ... control section, 31 ... phase / gain compensator, 100 ... induction motor.

Claims (1)

適応二次磁束オブザーバを用いた誘導電動機の速度センサレスベクトル制御により該電動機を可変速駆動する誘導電動機の制御方法において、
前記誘導電動機のトルク電流の推定値とその実際値との偏差に対して所定の位相およびゲイン補償した値に基づいて、該電動機の回転速度の推定値を導出することを特徴とする誘導電動機の制御方法。

In a control method of an induction motor that drives the motor at a variable speed by speed sensorless vector control of the induction motor using an adaptive secondary magnetic flux observer,
An estimated value of the rotational speed of the electric motor is derived based on a value obtained by compensating a predetermined phase and gain for a deviation between an estimated value of the torque current of the induction motor and an actual value thereof. Control method.

JP2005066098A 2005-03-09 2005-03-09 Induction motor control method Active JP4760064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066098A JP4760064B2 (en) 2005-03-09 2005-03-09 Induction motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066098A JP4760064B2 (en) 2005-03-09 2005-03-09 Induction motor control method

Publications (2)

Publication Number Publication Date
JP2006254575A true JP2006254575A (en) 2006-09-21
JP4760064B2 JP4760064B2 (en) 2011-08-31

Family

ID=37094466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066098A Active JP4760064B2 (en) 2005-03-09 2005-03-09 Induction motor control method

Country Status (1)

Country Link
JP (1) JP4760064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044865A (en) * 2007-08-09 2009-02-26 Fuji Electric Systems Co Ltd Speed sensorless control unit for motor
JP2010172167A (en) * 2009-01-26 2010-08-05 Ebara Corp Inverter control device
JP2011189359A (en) * 2010-03-12 2011-09-29 Omron Corp Laser marking device and laser marking method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258298A (en) * 2000-03-10 2001-09-21 Fuji Electric Co Ltd Speed sensorless vector controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258298A (en) * 2000-03-10 2001-09-21 Fuji Electric Co Ltd Speed sensorless vector controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044865A (en) * 2007-08-09 2009-02-26 Fuji Electric Systems Co Ltd Speed sensorless control unit for motor
JP2010172167A (en) * 2009-01-26 2010-08-05 Ebara Corp Inverter control device
JP2011189359A (en) * 2010-03-12 2011-09-29 Omron Corp Laser marking device and laser marking method

Also Published As

Publication number Publication date
JP4760064B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4954590B2 (en) Method for adjusting parameter of electric motor and transmission using the method
JP4685509B2 (en) AC motor drive control device and drive control method
JP2006288076A (en) Control unit
CN108462413B (en) Motor control device and motor control method
WO2014046235A1 (en) Inverter control device and inverter control method
JP4581739B2 (en) Electric motor drive
JP6179389B2 (en) Electric motor control device
KR101539539B1 (en) Apparatus for controlling induction machine
JP2009124871A (en) V/f control system of synchronous electric motor
US8143837B2 (en) Inverter control apparatus
JP2010246318A (en) Controller for induction motor
JP4760064B2 (en) Induction motor control method
JP2009142112A (en) Motor controller and its control method
JP2010273400A (en) Device for control of induction motor
JP4811727B2 (en) Permanent magnet field synchronous motor controller
JP2010081726A (en) Controller of ac motor and control method thereof
JP5012813B2 (en) AC motor control device
WO2007063766A1 (en) Motor controller
JP2019221105A (en) Motor drive device
JP4710358B2 (en) Induction motor control method
JP6465477B2 (en) Motor control device, motor control method and program
JP2004072931A (en) Controller for synchronous motor
JPH11341852A (en) Speed controller for motor
JP5713850B2 (en) Motor control device
JP6112227B2 (en) Electric motor control device and electric motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4760064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250