JP2006252742A - Multi-level storage means, multi-level buffer means, and bi-directional switching means - Google Patents

Multi-level storage means, multi-level buffer means, and bi-directional switching means Download PDF

Info

Publication number
JP2006252742A
JP2006252742A JP2005109163A JP2005109163A JP2006252742A JP 2006252742 A JP2006252742 A JP 2006252742A JP 2005109163 A JP2005109163 A JP 2005109163A JP 2005109163 A JP2005109163 A JP 2005109163A JP 2006252742 A JP2006252742 A JP 2006252742A
Authority
JP
Japan
Prior art keywords
output
storage means
potential
input
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005109163A
Other languages
Japanese (ja)
Other versions
JP4800657B2 (en
Inventor
Toshiyasu Suzuki
利康 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005109163A priority Critical patent/JP4800657B2/en
Publication of JP2006252742A publication Critical patent/JP2006252742A/en
Application granted granted Critical
Publication of JP4800657B2 publication Critical patent/JP4800657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a senary storage means having such effects that less numbers of parts, simple constitution, use of a normally-off type FET, less short circuit current of a power source at the time of applying the power source, less numbers of power source lines, prevention of increment of power source voltage, elimination of trouble at the time of read-out, reduction of power loss, reduction of erroneous discrimination of read-out contents, improving of noise proofing property are attained. <P>SOLUTION: In the senary storage means, a binary CMOS type inverter is provided between power source lines V0 to V5 in which a potential is raised successively, a source of a NMOS is grounded to the power source line V0, a source of a PMOS is grounded to the power source line V5, a series circuit (bi-directional switch) of the NMOS and the PMOS is connected to each of the power source lines V1 to V4, on/off driving of each PMOS and each NMOS is performed by the inverter shown as the figure, "an open end of the NMOS of the power source line VO, an open end of the PMOS of the power source line V5, all open ends of the series circuit, and all input terminals of the inverters" are connected and they are made an input/output terminal Tio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

第1発明は、その記憶可能な数値(又は意味又は内容)が3通り又は3通り以上で、その数値等に応じた電圧または電位を保持または入出力できる多値記憶手段に関する。この多値記憶手段は多値(又は多進法)メモリ・セル、多値(又は多進法)メモリ、(外部)多値(又は多進法)情報保管手段まなは多安定回路として利用できる。また多値(又は多進法)論理回路、多値(又は多進法)演算回路、多値コンピュータ(又は多進法コンピュータ、特に4、8、『10』、16、32、64、「100」、128進法コンピュータ等)、車内や無線や有線など各種の多値変調通信手段、多値記録手段あるいは多値(又は多進法)制御手段の構成要素として利用できる。第2発明は、第1発明と同じ機能と効果を持ち、第1発明に比べて部品点数が少なく、構成が簡単な多値記憶手段に関する。第3発明は第2発明を応用した、部品点数が少なく、構成が簡単な多値バッファ手段に関する。第4発明は各発明で使う双方向性スイッチング手段に関する。  The first invention relates to a multi-value storage means that can store or input / output a voltage or a potential corresponding to the numerical value or the like in three or three or more possible numerical values (or meanings or contents). This multi-value storage means can be used as a multi-value (or multi-adic) memory cell, multi-value (or multi-adic) memory, (external) multi-value (or multi-adic) information storage means or a multistable circuit. . Also, a multi-value (or multi-adic) logic circuit, a multi-value (or multi-adic) arithmetic circuit, a multi-value computer (or a multi-adic computer, in particular, 4, 8, “10”, 16, 32, 64, “100 ”, 128-base computer, etc.), various kinds of multi-value modulation communication means such as in-vehicle, wireless or wired, multi-value recording means, or multi-value (or multi-adic) control means. The second invention relates to a multi-value storage means having the same functions and effects as the first invention, having a smaller number of parts than the first invention, and having a simple configuration. The third invention relates to a multi-value buffer means to which the second invention is applied and which has a small number of parts and a simple configuration. The fourth invention relates to bidirectional switching means used in each invention.

特許第2853041号に開示の多値記憶手段には『後述の双方向性プル手段が構成されていないにもかかわらず部品点数が多い』という問題点が有る。その様な双方向性プル手段を構成できたとしても、部品点数は当然もっと多くなってしまう。また、特開2000−83369号の図27〜図36、特開2001−257570の図21〜図28及び「WO 03/028214 A1」に開示の多値記憶手段には『ノーマリィ・オン型スイッチング手段(例:ディプレッション型MOS・FET。)しか使えず、しかも、その為に電源投入時に電源電圧が立ち上がり、それらノーマリィ・オン型スイッチング手段に充分なゲート逆バイアス電圧を印加できるまで電源短絡電流が流れてしまい、その上、各電源電圧の大きさを大きくする必要が有る』という問題点が有る。  The multi-value storage means disclosed in Japanese Patent No. 2853041 has a problem that “the number of parts is large even though the bidirectional pull means described later is not configured”. Even if such a bidirectional pulling means can be constructed, the number of parts naturally increases. The multi-value storage means disclosed in FIGS. 27 to 36 of Japanese Patent Laid-Open No. 2000-83369, FIGS. 21 to 28 of Japanese Patent Laid-Open No. 2001-257570, and “WO 03/028214 A1” include “normally on type switching means”. (Example: Depletion type MOS FET) can only be used, and for that reason, the power supply voltage rises when the power is turned on, and a short circuit current flows until a sufficient gate reverse bias voltage can be applied to these normally-on switching means Furthermore, there is a problem that it is necessary to increase the magnitude of each power supply voltage.

もしノーマリィ・オフ型スイッチング手段(例:エンハンスメント型MOS・FET。)で多値記憶手段を構成できれば、構成手段の選択肢が増えて便利だし、電源投入時の電源短絡電流を低減できる。その電源短絡電流の問題は、例えば『その多値記憶手段を多値メモリ・セルとして多数使い多値メモリ手段を構成する場合、その電源投入時に極めて大きな電源短絡電流が流れて、その電源電圧を立ち上げることができず使い物にならなかったり、又は、電源投入の繰り返しで電源線が焼き切れたり、又は、その電源線付近の半導体に熱的ダメージや膨脹(ぼうちょう)歪みによるダメージ等を与えたりする』という問題点に結び付く。そして、各電源電圧に関しても『負性抵抗手段を形成する各トランジスタ対』をオフ駆動するには『対を成すトランジスタの直列接続された両ゲート・ソース間』にオフ駆動電圧を同時供給しなければならないので、各電源電圧は約『4倍のオン・オフしきい値電圧絶対値』になり、結局、他の多値記憶手段のそれに比較して大きくなり、記憶内容の書換え時のスイッチング損失も大きくなってしまう。なぜなら、各トランジスタ対が例えばP型とN型のMOS・FETの組合せの場合、両オン・オフしきい値電圧絶対値を等しく設定するのが普通であり、書換え時「ターン・オンするトランジスタ対」と「ターン・オフするトランジスタ対」ができるだけ同時オン状態とならない様にする為には、各電源電圧は少なくとも4倍のオン・オフしきい値電圧絶対値でなければならない、からである。通常の2値CMOSメモリの電源電圧はほぼ『P型MOSとN型MOSの両オン・オフしきい値電圧絶対値の和』である。  If the multi-value storage means can be configured with normally-off type switching means (for example, enhancement type MOS-FET), it is convenient to increase the number of constituent means, and the power supply short-circuit current at power-on can be reduced. The problem of the power supply short-circuit current is, for example, “When the multi-value memory means is used as a multi-value memory cell and a multi-value memory means is configured, an extremely large power-supply short-circuit current flows when the power is turned on. The power line cannot be used because it cannot be started up, or the power line burns out due to repeated power-on, or damage to the semiconductor near the power line due to thermal damage or expansion distortion It leads to the problem of “Yes”. For each power supply voltage, in order to drive off each transistor pair forming the negative resistance means, the off drive voltage must be supplied simultaneously between the gates and the sources of the paired transistors connected in series. Therefore, each power supply voltage becomes about “4 times absolute value of on / off threshold voltage”, and eventually becomes larger than that of other multi-value storage means, and switching loss at the time of rewriting stored contents Will also grow. This is because, when each transistor pair is, for example, a combination of a P-type and an N-type MOS FET, it is common to set both on / off threshold voltage absolute values equal. This is because each power supply voltage must have an absolute value of the on / off threshold voltage at least four times so that the "turned-off transistor pair" is not turned on as simultaneously as possible. The power supply voltage of a normal binary CMOS memory is approximately “the sum of absolute values of both on-off threshold voltages of P-type MOS and N-type MOS”.

さらに、特開2003−188696に開示の多値記憶手段ではノーマリィ・オフ型スイッチング手段とノーマリィ・オン型スイッチング手段を直列にして使うので、上記電源短絡電流の面や構成手段の選択肢の面で改善されるが、『電位供給手段(例:電源線)の数が多くなる上に、電源電圧の総和は大きいままで、記憶内容の書換え時のスイッチング損失も大きいままである』という問題点が有る。  Further, in the multi-value storage means disclosed in Japanese Patent Application Laid-Open No. 2003-188696, normally-off type switching means and normally-on type switching means are used in series, so that the power supply short circuit current and the constituent means are improved. However, there is a problem that “the number of potential supply means (for example, power supply lines) increases and the total sum of the power supply voltages remains large and the switching loss at the time of rewriting the stored contents remains large”. .

それから、特開2004−088763に開示の多値記憶手段はノーマリィ・オフ型スイッチング手段で構成できるが、『最高、最低の電位供給手段を除く各電位供給手段と入出力手段(例:入出力端子等。)の間に出力用の双方向性プル手段(プル・アップまたはプル・ダウンする手段)が構成されていない』という問題点が有る。この問題点は次の問題を引き起こす。そのプル・アップ手段の電位より「接続される外部データ線」の電位の方が高いときプル・ダウン機能が無い為その外部データ線をプル・ダウンできない上に、そのプル・ダウン手段の電位より「接続される外部データ線」の電位の方が低いときプル・アップ機能が無い為その外部データ線をプル・アップできないので、または、反対にその「接続される外部データ線」の方がその充電電荷によって多値記憶手段の入出力手段部の電位をそのプル・アップ手段の電位より高くプル・アップしたり、そのプル・ダウン手段の電位より低くプル・ダウンしたりするので、『読出し不能、読出し時の記憶内容の変化、誤った記憶内容の読出し、あるいは、読出し時間の遅れ』や『不安定な動作』という問題を引き起こす。これら問題は『接続される外部データ線の電位や充電電荷』だけでなく『その入出力手段に繋がる内部導線などからの漏洩電流』や『その外部データ線とその入出力手段を接続する選択用スイッチ・トランジスタ等の駆動電流(例:絶縁ゲート型FETのゲート・ソース間静電容量の充放電電流。)』等によっても引き起こされる。この事は前述の特許第2853041号や特開2000−83369の各多値記憶手段でも同様である。  Then, the multi-value storage means disclosed in Japanese Patent Application Laid-Open No. 2004-087763 can be constituted by normally-off type switching means. “Each potential supply means and input / output means excluding the highest and lowest potential supply means (eg, input / output terminals) Etc.)), there is a problem that the bidirectional pulling means for output (means for pulling up or pulling down) is not configured. This problem causes the following problems. When the potential of the “connected external data line” is higher than the potential of the pull-up means, the external data line cannot be pulled down because there is no pull-down function, and moreover than the potential of the pull-down means. When the potential of the “connected external data line” is lower, the external data line cannot be pulled up because there is no pull-up function, or conversely, the “connected external data line” is The charge of the input / output means of the multi-value storage means is pulled up or pulled up higher than the potential of the pull-up means, or pulled down below the potential of the pull-down means. This causes problems such as changes in stored contents during reading, reading of incorrect stored contents, or delays in reading time ”and“ unstable operation ”. These problems are not only for "potential and charging charge of connected external data line" but also for "leakage current from internal conductors connected to the input / output means" and "selection for connecting the external data line and the input / output means" It is also caused by a drive current of a switch transistor or the like (eg, charge / discharge current of capacitance between gate and source of an insulated gate FET). The same applies to each of the multivalue storage means disclosed in the above-mentioned Japanese Patent No. 2853041 and Japanese Patent Laid-Open No. 2000-83369.

そして、念のため第1発明の効果の存在をより明確にする為に、本発明者が第1発明より先に考えた図2、図9(b)の各多値記憶手段(特願2004−303564、未公開。)が持つ問題点について述べる。これら図2のn(≧3)値と図9(b)の3値の多値記憶手段では各プル手段(=各プル・アップ手段や各プル・ダウン手段)が「順電圧(又は順方向電圧)を伴うダイオード等のダイオード手段」を内蔵する結果、下記2つの問題点が有り、第1発明はこの問題点を解決することができる。なお、下記2つの問題点は前述した各多値記憶手段にも有る。
(A)その順電圧分、各プル手段のオン電圧が増加する為に各出力電位、各出力電圧の差、違いが小さくなる結果、『雑音余裕度が小さくなり、次段回路(例:読出し回路等。)がノイズの影響を受け易くなり、入力電位、入力電圧に対応する入力数値などの判別を間違い易くなってしまう』。
(B)その順電圧の存在によって各プル手段はその順電圧より小さくしっかりとプルできない為、出力しようとする本来の電源電位(又は電源電圧)付近で開放状態の様になるので、すなわち、出力インピーダンスが大きくなるので、『出力信号にノイズが乗り易くなり、その次段回路がそのノイズを増幅して他に悪影響を与えてしまう』。
In order to clarify the existence of the effect of the first invention just in case, each of the multi-value storage means (Japanese Patent Application 2004) shown in FIGS. 2 and 9B considered by the inventor prior to the first invention. -303564, unpublished.) Each of the pull means (= each pull-up means and each pull-down means) is “forward voltage (or forward direction) in the multivalue storage means of n (≧ 3) in FIG. 2 and ternary value in FIG. 9B. As a result of incorporating a diode means such as a diode with a voltage), there are the following two problems, and the first invention can solve this problem. The following two problems also exist in each of the multi-value storage means described above.
(A) Since the ON voltage of each pull means increases by the forward voltage, the difference and difference between the output potentials and output voltages become smaller. As a result, “the noise margin becomes smaller and the next stage circuit (eg, read out) Circuits, etc.) are easily affected by noise, and the input numerical values corresponding to the input potential and the input voltage are easily determined.
(B) Since each pull means cannot be securely pulled smaller than the forward voltage due to the presence of the forward voltage, it becomes open in the vicinity of the original power supply potential (or power supply voltage) to be output. Since the impedance increases, it becomes easier for noise to be applied to the output signal, and the next-stage circuit amplifies the noise and has other adverse effects.

ここで、一旦、n値を記憶できる図2の多値記憶手段について説明する。全MOS・FETはノーマリィ・オフ型で、電源線V0〜電源線V(n−1)の電位すなわち電位v0〜電位v(n−1)は順々に高くなって行く。電源線V0〜電源線V(n−1)の各・2電源線間に2値CMOSメモリが1個ずつ接続され、全部で(n−1)個有る。電源線V1〜電源線V(n−2)の各線に接続された「PMOS・FETとダイオードの直列回路」と「ダイオードとNMOS・FETの直列回路」はどちらも1方向性の可制御スイッチング手段を構成し、オン駆動時でも逆方向電圧に対してオフを維持できる。上記(n−1)個の2値C・MOSメモリが連携してn値の記憶動作を行う際に電源短絡が起きない様にダイオードDU1〜DU(n−2)及びDL2〜DL(n−1)が接続されている。ふつう電位v0を数値『0』に、電位v1を数値『1』に、電位v2を数値『2』に、あとは同様に電位v(n−1)まで各電位を順々に各数値に対応させ、電位v(n−1)を数値『n−1』に対応させる。勿論ほかの使い方も可能である。  Here, the multi-value storage means of FIG. 2 capable of temporarily storing n values will be described. All MOS FETs are normally-off type, and the potential of the power supply line V0 to power supply line V (n-1), that is, the potential v0 to potential v (n-1) increases in order. One binary CMOS memory is connected between each of the power supply lines V0 to V (n-1) and the two power supply lines, and there are (n-1) in total. The "PMOS-FET and diode series circuit" and the "diode and NMOS-FET series circuit" connected to each of the power lines V1 to V (n-2) are both unidirectional controllable switching means. And can be kept off with respect to the reverse voltage even during on-drive. The diodes DU1 to DU (n−2) and DL2 to DL (n−) are arranged so that a power supply short circuit does not occur when the (n−1) binary C · MOS memories cooperate to perform an n value storing operation. 1) is connected. Normally, the potential v0 corresponds to the numerical value “0”, the potential v1 corresponds to the numerical value “1”, the potential v2 corresponds to the numerical value “2”, and similarly, each potential corresponds to the potential v (n−1) in order. The potential v (n−1) is made to correspond to the numerical value “n−1”. Of course, other uses are possible.

具体的に動作を説明すれば、入出力端子Tioが電位v0を保持する時トランジスタQL1〜QL(n−1)はオンであるが、ダイオードDL2〜DL(n−1)がトランジスタQL2〜QL(n−1)とトランジスタQL1の電源短絡を阻止する。また、入出力端子Tioが電位v(n−1)を保持する時トランジスタQU1〜QU(n−1)はオンであるが、ダイオードDU1〜DU(n−2)がトランジスタQU(n−1)とトランジスタQU1〜QU(n−2)の電源短絡を阻止する。更に、入出力端子Tioが電位v1を保持する時トランジスタQU1及びQL2〜QL(n−1)はオンであるが、ダイオードDL3〜DL(n−1)がトランジスタQL3〜QL(n−1)とトランジスタQL2の電源短絡を阻止する。しかも、このとき「トランジスタQU1とダイオードDU1の直列回路」と「ダイオードDL2とトランジスタQL2の直列回路」の並列回路が実質的に双方向性プル手段つまり「プル・アップしたりプル・ダウンしたりする手段」を構成する。あと同様に、入出力端子Tioが電位v2〜電位v(n−2)の各電位を保持する時に、同様な並列回路が実質的に双方向性プル手段を構成する。  Specifically, when the input / output terminal Tio holds the potential v0, the transistors QL1 to QL (n-1) are on, but the diodes DL2 to DL (n-1) are turned on to the transistors QL2 to QL ( n-1) and the power supply short circuit between the transistor QL1 are prevented. Further, when the input / output terminal Tio holds the potential v (n-1), the transistors QU1 to QU (n-1) are on, but the diodes DU1 to DU (n-2) are turned on to the transistor QU (n-1). And the power supply short circuit of the transistors QU1 to QU (n-2) is prevented. Further, when the input / output terminal Tio holds the potential v1, the transistors QU1 and QL2 to QL (n-1) are on, but the diodes DL3 to DL (n-1) are connected to the transistors QL3 to QL (n-1). The power supply short circuit of the transistor QL2 is prevented. Moreover, at this time, the parallel circuit of “the series circuit of the transistor QU1 and the diode DU1” and “the series circuit of the diode DL2 and the transistor QL2” is substantially bi-directional pull means, that is, “pull up or pull down”. Means ". Similarly, when the input / output terminal Tio holds the potentials v2 to v (n−2), a similar parallel circuit substantially constitutes a bidirectional pulling unit.

ここから、先程(段落番号0006)の図2等の多値記憶手段の問題点について詳述する。図2の多値記憶手段では例えばトランジスタQU1、QL2がオンのとき入出力端子Tioの電位の上限はダイオードDL2の順電圧分(ぶん)余計に高くなる一方、トランジスタQU2、QL3がオンのとき入出力端子Tioの電位の下限はダイオードDU2の順電圧分(ぶん)余計に低くなるので、電位v2出力と電位v1出力との差、違いが小さくなってしまう。この事は他の電位出力同士でも同様である。その結果、『雑音余裕度が小さくなり、次段回路(例:読出し回路等。)がノイズの影響を受け易くなり、入力電位、入力電圧に対応する入力数値等の判別を間違い易くなってしまう』。  From here, the problem of the multi-value storage means of FIG. 2 etc. of the previous (paragraph number 0006) is explained in full detail. In the multi-value storage means of FIG. 2, for example, when the transistors QU1 and QL2 are on, the upper limit of the potential of the input / output terminal Tio is excessively higher than the forward voltage of the diode DL2, whereas when the transistors QU2 and QL3 are on Since the lower limit of the potential of the output terminal Tio is excessively reduced by the forward voltage of the diode DU2, the difference or difference between the potential v2 output and the potential v1 output is reduced. The same applies to other potential outputs. As a result, “the noise margin is reduced, the next-stage circuit (eg, readout circuit, etc.) is easily affected by noise, and the input numerical value corresponding to the input potential and the input voltage is easily determined. ].

また、一般的に信号用ダイオードの順電圧は約0.6ボルトで、ダイオードの電圧対電流特性から分かる通りその順電圧がゼロ・ボルト近くなる為にはその順電流は非常に極めて小さい値である必要が有る。この為、『ダイオード手段を内蔵する各プル手段』が何かをプル・アップしたりプル・ダウンしたりしてプルするとき、順電圧ほぼゼロ・ボルトでプルしようとしてもしっかりとプルすることができす、非常に極めて弱くプルするだけである。言い換えると、そのプル手段はその順電圧より小さい電圧範囲内ではしっかりとプルすることができないので、そのプル手段が出力しようとする本来の電源電位(もしくは電源電圧)付近で開放状態の様になってしまう。すなわち、出力インピーダンスが大きくなってしまう。その結果、『出力信号にノイズが乗り易くなり、その次段回路がそのノイズを増幅して他に悪影響を与えてしまう』。これら2つの問題点は前述した各多値記憶手段にも有る。  In general, the forward voltage of the signal diode is about 0.6 volts, and as can be seen from the voltage-current characteristics of the diode, the forward current is very small so that the forward voltage is close to zero volts. There must be. For this reason, when each “pull means with built-in diode means” pulls up or down something, it can pull firmly even if it tries to pull at a forward voltage of almost zero volts. Just pull it very very weakly. In other words, the pull means cannot pull firmly within a voltage range smaller than the forward voltage, so that the pull means becomes open near the original power supply potential (or power supply voltage) to be output. End up. That is, the output impedance becomes large. As a result, “the output signal becomes more susceptible to noise, and the next-stage circuit amplifies the noise and adversely affects the other”. These two problems also exist in each of the multi-value storage means described above.

関連技術Related technology

特許第2853041号(多値記憶手段、本発明者の出願)  Patent No. 2853041 (multi-value storage means, application of the present inventor) 特開2000−83369(同上)  JP 2000-83369 (same as above) 特開2001−257570(同上)  JP 2001-257570 (same as above) WO 03/028214 A1(同上)  WO 03/028214 A1 (same as above) 特開2003−188696(同上)  JP 2003-188696 (same as above) 特開2004−88763(同上)  JP 2004-88763 (same as above) 特願2004−303564  Japanese Patent Application No. 2004-303564

第1発明の開示Disclosure of the first invention

第1発明が解決しようとする課題Problems to be solved by the first invention

従来の問題点は下記の通りてある。(課題)
a)部品点数が多い。 (特許文献1の多値記憶手段)
b)構成手段の選択肢を増やすことが望まれる。(特許文献2〜4の各多値記憶手段)
c)電源投入時の電源短絡電流が多く、その電源短絡電流による弊害が有っなりする。
(特許文献2〜4の各多値記憶手段)
d)各電源電圧の大きさを大きくしなければならず、電力損失が増加する。
(特許文献2〜5の各多値記憶手段)
e)電位供給手段(例:電源線)の数が多い。 (特許文献5の多値記憶手段)
f)最高、最低の電位供給手段を除いた各電位供給手段と入出力手段(例:入出力端子など。)の間に出力用の双方向性プル手段が構成されていない為に、『読出し不能、読出し時の記憶内容の変化、誤った記憶内容の読出し、又は、読出し時間の遅れ』や『不安定な動作』という問題が起きる。 (特許文献1、2、6の各多値記憶手段)
g)各プル手段が『順電圧を伴うダイオード手段』を内蔵する為、雑音余裕度が小さくなり、次段回路がノイズの影響を受け易くなり、入力数値等の判別を間違い易くなり、しかも、出力信号にノイズが乗り易くなり、その次段回路がそのノイズを増幅して他に悪影響を与えてしまう。 (特許文献1〜7の各多値記憶手段)
The conventional problems are as follows. (Task)
a) The number of parts is large. (Multi-value storage means of Patent Document 1)
b) It is desirable to increase the number of constituent means. (Each multi-value storage means of patent documents 2-4)
c) There are many power supply short-circuit currents at the time of power-on, and there are adverse effects due to the power supply short-circuit currents.
(Each multi-value storage means of patent documents 2-4)
d) The magnitude of each power supply voltage must be increased, increasing power loss.
(Each multi-value storage means of patent documents 2-5)
e) The number of potential supply means (eg, power supply lines) is large. (Multi-value storage means of Patent Document 5)
f) Since there is no bidirectional pull means for output between each potential supply means except the highest and lowest potential supply means and the input / output means (eg, input / output terminals), Impossible, changes in stored contents at the time of reading, reading of wrong stored contents, or delays in reading time ”and“ unstable operation ”occur. (Multivalue storage means in Patent Documents 1, 2, and 6)
g) Since each pull means incorporates “diode means with forward voltage”, the noise margin is reduced, the next stage circuit is easily affected by noise, and the input numerical value etc. is easily discriminated, Noise is easily applied to the output signal, and the next-stage circuit amplifies the noise to have other adverse effects. (Each multivalue storage means of patent documents 1-7)

そこで、第1発明は下記特徴を持つ多値記憶手段を提供することを目的としている。
(第1発明の目的)
a)部品点数が少ない。
b)すべてノーマリィ・オフ型スイッチング手段で構成できる為、従来の多値記憶手段と合わせれば構成手段の選択肢が増えて便利になる。
c)電源投入時の電源短絡電流を少なくできて、その電源短絡電流による弊害を無くす又は小さくすることができる。
d)各電源電圧の大きさを大きくせずに済み、電力損失の増加を回避できる。
e)電位供給手段の数が多くならずに済む。
f)最高、最低の電位供給手段を除いた各電位供給手段と入出力手段(例:入出力端子など。)の間に実質的に出力用の双方向性プル手段を構成できるので、『読出し不能、読出し時の記憶内容の変化、誤った記憶内容の読出し、読出し時間の遅れ』が無く、動作が安定する。
g)各プル手段が『順電圧を伴うダイオード手段』を内蔵していないので、雑音余裕度が大きくなり、次段回路がノイズの影響を受け難くなり、入力数値等の判別を間違い難くなり、しかも、出力信号にノイズが乗り難くなり、その次段回路がそのノイズを増幅することが減って他に影響を与え難くなる。
Therefore, the first invention aims to provide a multi-value storage means having the following characteristics.
(Object of the first invention)
a) The number of parts is small.
b) Since all can be constituted by normally-off type switching means, the combination of the conventional multi-value storage means increases the choices of the construction means, which is convenient.
c) It is possible to reduce the power supply short-circuit current when the power is turned on, and to eliminate or reduce the adverse effects caused by the power supply short-circuit current.
d) It is not necessary to increase the magnitude of each power supply voltage, and an increase in power loss can be avoided.
e) The number of potential supply means is not increased.
f) Bidirectional pull means for output can be configured substantially between each potential supply means excluding the highest and lowest potential supply means and input / output means (eg, input / output terminals). There is no “impossibility, change in stored contents at the time of reading, reading of wrong stored contents, delay in reading time”, and the operation becomes stable.
g) Since each pull means does not incorporate a “diode means with forward voltage”, the noise margin increases, the next stage circuit is less susceptible to noise, and it is difficult to discriminate the input numerical value, etc. In addition, it is difficult for noise to be applied to the output signal, and the subsequent stage circuit is less likely to amplify the noise, thereby making it difficult to affect the others.

問題を解決するための手段Means to solve the problem

すなわち、第1発明は請求項1に記載した多値記憶手段である。第1電位供給手段〜第N電位供給手段で、番号で隣り同士となる2つの電位供給手段の各間に2値記憶手段を1つずつ設けており、全部で(N−1)個の2値記憶手段が有る。電位的に上下関係にある前記2値記憶手段それぞれ同士が各電位供給手段間の電源手段を短絡しない様に請求項1に記載の通り特定の各出力プル・アップ・スイッチング手段に逆阻止用の第1可制御スイッチング手段を1つずつ直列接続して出力プル・アップ用直列回路とし、同じく特定の各出力プル・ダウン・スイッチング手段に逆阻止用の第2可制御スイッチング手段を1つずつ直列接続して出力プル・ダウン用直列回路としている。しかも、その第2〜第(N−1)電位供給手段のそれぞれに『前記出力プル・アップ用直列回路と前記出力プル・ダウン用直列回路』の並列回路が1つずつ接続されることになり、各並列回路が実質的に双方向性プル手段として機能する。  That is, the first invention is the multi-value storage means described in claim 1. In the first potential supply means to the Nth potential supply means, one binary storage means is provided between each of two potential supply means adjacent to each other by number, and a total of (N−1) 2 There is a value storage means. 2. As described in claim 1, each of the binary storage means that are in an up-and-down relationship with each other does not short-circuit the power supply means between the potential supply means. The first controllable switching means are connected in series one by one to form an output pull-up series circuit. Similarly, each second output controllable switching means is connected in series to each specific output pull-down switching means. Connected to form a series circuit for output pull-down. In addition, a parallel circuit of “the output pull-up series circuit and the output pull-down series circuit” is connected to each of the second to (N−1) th potential supply means one by one. Each parallel circuit substantially functions as a bidirectional pulling means.

このことによって、(N−1)個の前記2値記憶手段が連携して多値記憶手段として機能する。また、それら全2値記憶手段の入出力手段(例:入出力端子など。)を接続しても支障が無い様に最上位の前記2値記憶手段を除いた各2値記憶手段ではその出力プル・アップ・スイッチング手段がオンで、その『出力プル・アップ・スイッチング手段と第1可制御スイッチング手段の直列回路』に逆方向電圧が印加される時、その第1可制御スイッチング手段はオフ駆動されてその逆方向電圧を阻止する一方、その出力プル・アップ・スイッチング手段がオンで、その直列回路に順方向電圧が印加される時、その第1可制御スイッチング手段もオン駆動されていて、その直列回路は出力のプル・アップ動作をする。さらに、同じく支障が無い様に最下位の前記2値記憶手段を除いた各2値記憶手段ではその出力プル・ダウン・スイッチング手段がオンで、その『出力プル・ダウン・スイッチング手段と第2可制御スイッチング手段の直列回路』に逆方向電圧が印加される時、その第2可制御スイッチング手段はオフ駆動されてその逆方向電圧を阻止する一方、その出力プル・ダウン・スイッチング手段がオンで、その直列回路に順方向電圧が印加される時、その第2可制御スイッチング手段もオン駆動されていて、その直列回路は出力のプル・ダウン動作をする。  Thus, (N−1) pieces of the binary storage means cooperate to function as a multi-value storage means. Further, the binary storage means other than the uppermost binary storage means output the output so that there is no problem even if the input / output means (eg, input / output terminals) of all the binary storage means are connected. When the pull-up switching means is on and a reverse voltage is applied to the “series circuit of output pull-up switching means and first controllable switching means”, the first controllable switching means is driven off. The output pull-up switching means is on, and when the forward voltage is applied to the series circuit, the first controllable switching means is also driven on, The series circuit performs an output pull-up operation. Furthermore, the output pull down switching means is turned on in each binary storage means except the lowest binary storage means so that there is no problem. When a reverse voltage is applied to the `` series circuit of control switching means '', the second controllable switching means is driven off to prevent the reverse voltage, while its output pull-down switching means is on, When a forward voltage is applied to the series circuit, the second controllable switching means is also turned on, and the series circuit performs an output pull-down operation.

本多値記憶手段が第1電位を保持している時、第1電位の出力プル・ダウン・スイッチング手段はオンで、第N電位の出力プル・アップ・スイッチング手段および各『前記出力プル・アップ用直列回路と前記出力プル・ダウン用直列回路の並列回路』はオフである。又、本多値記憶手段が第N電位を保持している時、第N電位の出力プル・アップ・スイッチング手段はオンで、第1電位の出力プル・ダウン・スイッチング手段と上記の各並列回路はオフである。さらに、本多値記憶手段が第2電位から第(N−1)電位のうち、ある電位を保持している時、その電位を境にして『その電位とその電位以上の前記出力プル・ダウン・スイッチング手段すべて』と『その電位とその電位以下の前記出力プル・アップ・スイッチング手段すべて』はオン駆動される。ところが、これらがオン駆動されていても、上述の通り各第1可制御スイッチング手段と各第2可制御スイッチング手段の作用により逆方向電圧に対して『各前記出力プル・アップ用直列回路と各前記出力プル・ダウン用直列回路』はオフとなるので、その電位の前記並列回路だけが双方向にオンとなり、双方向性プル手段として機能するので、電源短絡は起きない。  When the multi-value storage means holds the first potential, the output pull-down switching means at the first potential is on, the output pull-up switching means at the Nth potential, The parallel circuit of the series circuit for output and the series circuit for output pull-down is off. When the multi-value storage means holds the Nth potential, the output pull-up / switching means for the Nth potential is on, and the output pull-down / switching means for the first potential and each of the above parallel circuits. Is off. Further, when the multi-value storage means holds a certain potential from the second potential to the (N-1) th potential, the output pull-down above the potential and the potential is set at the potential. “All switching means” and “all the output pull-up switching means below that potential and below that potential” are turned on. However, even if they are turned on, as described above, each of the first controllable switching means and each of the second controllable switching means acts on the reverse voltage with respect to each of the output pull-up series circuits and Since the “output pull-down series circuit” is turned off, only the parallel circuit of the potential is turned on bidirectionally and functions as bidirectional pulling means, so that a power supply short circuit does not occur.

第1発明の効果Effects of the first invention

その結果、第1発明の多値記憶手段には下記の効果が有る。
a)特許第2853041号の多値記憶手段に比べて部品点数を少なくできる。
b)すべてノーマリィ・オフ型スイッチング手段で構成できる為、従来の多値記憶手段と合わせれば構成手段の選択肢が増えて便利になる。
c)すべてノーマリィ・オフ型スイッチング手段で構成できるので、電源投入時の電源短絡電流を少なくできて、その電源短絡電流による弊害を無くす又は小さくすることができる。
d)従来のノーマリィ・オフ型の2値記憶手段など(新規でも良いが。)を使用できるため各電源電圧の大きさを大きくせずに済み、電力損失の増加を回避できる。
e)電位供給手段の数が多くならずに済む。
f)最高、最低の電位供給手段を除いた各電位供給手段と入出力手段(例:入出力端子など。)の間に出力用の双方向性プル手段を構成できる。
g)各プル手段が『順電圧を伴うダイオード手段』を内蔵していないので、雑音余裕度が大きくなり、次段回路がノイズの影響を受け難く、入力数値等の判別を間違い難くなる。しかも、各プル手段がしっかりプルできるので、出力信号にノイズが乗り難くなり、その次段回路がそのノイズを増幅することが減って他に影響を与え難くなる。
As a result, the multi-value storage means of the first invention has the following effects.
a) The number of parts can be reduced as compared with the multi-value storage means of Japanese Patent No. 2853041.
b) Since all can be constituted by normally-off type switching means, the combination of the conventional multi-value storage means increases the choices of the construction means, which is convenient.
c) Since all can be configured by normally-off type switching means, the power supply short-circuit current when the power is turned on can be reduced, and the adverse effects of the power supply short-circuit current can be eliminated or reduced.
d) Since a conventional normally-off type binary storage means (which may be new) can be used, it is not necessary to increase the magnitude of each power supply voltage, and an increase in power loss can be avoided.
e) The number of potential supply means is not increased.
f) Bidirectional pull means for output can be formed between each potential supply means except the highest and lowest potential supply means and the input / output means (eg, input / output terminal).
g) Since each pull means does not include “diode means with forward voltage”, the noise margin increases, the next-stage circuit is hardly affected by noise, and the input numerical value and the like are difficult to discriminate. In addition, since each pulling means can be pulled firmly, it is difficult for noise to be applied to the output signal, and the subsequent stage circuit is less likely to amplify the noise, making it difficult to affect the others.

なお、第1発明の多値記憶手段では第2電位供給手段〜第(N−1)電位供給手段とその入出力手段(例:入出力端子等。)の各間に実質的に双方向性プル手段が構成されることになるので、外部データ線がその入出力手段に接続されてその記憶データを読み出すとき、たとえその外部データ線の電位が「その読み出す時の記憶内容」の電位より高かろうが低かろうが、その外部データ線はその記憶内容に応じてプル・アップされたり、あるいは、プル・ダウンされたりするので、「読出し不能も、読出し時の記憶内容の変化も、誤った記憶内容の読出しも」無い上に、読出し時間が短くなり、動作が安定する。また、実質的な双方向性プル手段それぞれは『接続される外部データ線の電位や充電電荷』だけでなく『その入出力手段に繋がる多値記憶手段内部の導線等からの漏洩電流』や『その外部データ線とその入出力手段を接続する選択用スイッチ・トランジスタ等の駆動電流(例:絶縁ゲート型FETのゲート・ソース間静電容量の充放電電流など。)』等が引き起こす同様の問題に対しても有効である。  In the multi-value storage means of the first invention, there is substantially bidirectionality between each of the second potential supply means to the (N-1) th potential supply means and its input / output means (eg, input / output terminal). Since the pull means is configured, when the external data line is connected to the input / output means and the stored data is read, the potential of the external data line is higher than the potential of the “content stored at the time of reading”. Even if it is low or low, the external data line is pulled up or down depending on the stored contents. In addition, there is no “reading of stored contents”, and the reading time is shortened and the operation is stabilized. In addition, each of the substantially bidirectional pull means includes not only “potential and charge charge of external data line to be connected” but also “leakage current from a conductive line inside the multi-value storage means connected to the input / output means” and “ Similar problems caused by the drive current (eg, charge / discharge current of the gate-source capacitance of an insulated gate FET) that connects the external data line and its input / output means It is also effective against

第2発明の開示Disclosure of the second invention

第2発明が解決しようとする課題Problems to be solved by the second invention

いつでも各分野では『同じ機能、同じ効果を持ちつつ、少・部品点数、簡単な構成、低・製造コストが望まれている』。第1発明でも同様である。(課題)
そこで、第2発明は『第1発明の多値記憶手段と同じ機能、同じ効果を持ちつつ、少・部品点数、簡単な構成、低・製造コストで実現できる多値記憶手段』を提供することを目的としている。(第2発明の目的)
In any field, “the same function and the same effect are desired, but a small number of parts, a simple structure, and a low production cost are desired”. The same applies to the first invention. (Task)
Therefore, the second invention provides "a multi-value storage means that can be realized with the same function and the same effect as the multi-value storage means of the first invention, but with a small number of parts, a simple configuration, and a low manufacturing cost". It is an object. (Object of the second invention)

問題を解決するための手段Means to solve the problem

すなわち、第2発明は請求項2に記載した多値記憶手段である。前述した第1発明の多値記憶手段において、第2電位〜第(N−1)電位の各電位供給手段では『その電位供給手段に接続される出力プル・アップ用の前記直列回路と出力プル・ダウン用の前記直列回路』がどちらも双方向性スイッチング手段つまり双方向性プル手段として機能し、だぶっているので、第2発明は『その各電位供給手段に接続される両前記直列回路のうち、どちらか片方ずつを取り外した構成の多値記憶手段』である。  That is, the second invention is the multivalue storage means described in claim 2. In the multi-value storage means of the first invention described above, the potential supply means of the second potential to the (N-1) th potential is “the output pull-up series circuit connected to the potential supply means and the output pull-up. Since both of the series circuits for down function as bidirectional switching means, that is, bidirectional pull means, the second invention is “the two series circuits connected to the respective potential supply means”. Among them, it is a multi-value storage means in which either one is removed.

第2発明の効果Effects of the second invention

このことによって、第1発明の多値記憶手段において『機能がだぶっている構成手段』をただ取り外しただけなので、第2発明は、第1発明の多値記憶手段の機能と効果をそのまま持ちつつ、少・部品点数、簡単な構成および低・製造コストを実現できる。  As a result, the “multi-value storage means” of the first invention is simply removed from the multi-value storage means of the first invention, so that the second invention has the functions and effects of the multi-value storage means of the first invention as it is. , Small number of parts, simple configuration and low manufacturing cost.

第3発明の開示Disclosure of the third invention

第3発明が解決しようとする課題Problems to be solved by the third invention

少・部品点数、簡単な構成および低・製造コストを実現できる多値バッファ手段が望まれる。従来、その様な多値バッファ手段は無かった。(課題)
そこで、第3発明は第1又は第2発明を応用して『少・部品点数、簡単な構成、低・製造コストの多値バッファ手段』を提供するのを目的としている。(第3発明の目的)
A multi-value buffer means capable of realizing a small number of parts, a simple configuration, and a low production cost is desired. Conventionally, there was no such multi-value buffer means. (Task)
Therefore, the third invention is intended to provide the “multi-value buffer means with a small number of parts, a simple configuration, and a low manufacturing cost” by applying the first or second invention. (Object of the third invention)

問題を解決するための手段Means to solve the problem

すなわち、第3発明は請求項3に記載した多値バッファ手段である。第1又は第2発明の多値記憶手段がちょうど『第3発明の多値バッファ手段において出力信号を入力側に正帰還した構成』なので、正反対に第3発明は『第1又は第2発明の多値記憶手段において出力信号の正帰還を遮断した構成の多値バッファ手段』である。  That is, the third invention is the multi-value buffer means described in claim 3. Since the multi-value storage means of the first or second invention is just “a configuration in which the output signal is positively fed back to the input side in the multi-value buffer means of the third invention”, the third invention is the opposite of “the first or second invention. The multi-value buffer means is configured to block the positive feedback of the output signal in the multi-value storage means.

第3発明の効果Effects of the third invention

このことによって、第3発明は第1又は第2発明の多値記憶手段において『ただ出力信号の正帰還を遮断しただけ』なので、第1又は第2発明の特徴つまり『少・部品点数、簡単な構成、低・製造コスト』という特徴を持つ多値バッファ手段を実現できる。  As a result, the third aspect of the invention is simply “blocking the positive feedback of the output signal” in the multi-value storage means of the first or second aspect of the invention. Multi-value buffer means having the characteristic of “low cost and low manufacturing cost” can be realized.

第4発明の開示Disclosure of the fourth invention

第4発明が解決しようとする課題Problems to be solved by the fourth invention

一般的な双方向性スイッチング手段として利用できることはもちろん当然であるが、全体でC・MOS・FETやPNP・NPN相補型などの相補型回路を構成できる様にするために、『C・MOS・FET等の相補型3端子スイッチング手段を用いたオン・オフ駆動手段も使用できる様にすることである』。特に多値または多進法論理回路などではC・MOS・FET回路構成の実現は省電力の面などから重要である。(課題)
そこで、第4発明は『C・MOS・FET等の相補型3端子スイッチング手段を用いたオン・オフ駆動手段も使用できる双方向性スイッチング手段』を提供することを目的としている。(第4発明の目的)
Of course, it can be used as a general bidirectional switching means, but in order to be able to construct a complementary circuit such as a C • MOS • FET or a PNP / NPN complementary type as a whole, “C • MOS • It is also possible to use on / off drive means using complementary three-terminal switching means such as FETs. In particular, in a multi-valued or multi-valued logic circuit, it is important to realize a C / MOS / FET circuit configuration from the viewpoint of power saving. (Task)
Accordingly, the fourth invention aims to provide a “bidirectional switching means that can also use an on / off drive means using a complementary three-terminal switching means such as a C / MOS / FET”. (Object of the fourth invention)

問題を解決するための手段Means to solve the problem

すなわち、第4発明は請求項4に記載した双方向性スイッチング手段である。両方の『スイッチングを制御できるスイッチ方向』を互いに正反対にして両方を直列接続し、他方のオン・オフ駆動を一方を介して行うことにより一方の主電極の所に両方のオン・オフ駆動手段を設けた。  That is, the fourth invention is the bidirectional switching means described in claim 4. Both “switching directions that can control switching” are opposite to each other, and both are connected in series, and the other on / off drive is performed via one, thereby providing both on / off drive means at one main electrode. Provided.

第4発明の効果Effects of the fourth invention

このことによって双方向性スイッチング機能を損なわすに3端子スイッチング手段を用いたオン・オフ駆動手段も使用できる様になる結果、『C・MOS・FET等の相補型3端子スイッチング手段を用いたオン・オフ駆動手段も使用できる』。特に多値論理回路等ではC・MOS・FET回路構成を実現できるので、電力消費を少なくできる。  As a result, the on / off driving means using the three-terminal switching means can be used to impair the bidirectional switching function. As a result, “on / off using the complementary three-terminal switching means such as C / MOS / FET”・ Off drive means can also be used. In particular, since a C / MOS / FET circuit configuration can be realized in a multi-value logic circuit or the like, power consumption can be reduced.

本発明をより詳細に説明する為に以下添付図面に従ってこれを説明する。尚、電源線V0の電位を電位v0で表わし、電源線V1の電位を電位v1で表わし、あとは同様に電源線V2から電源線V(n−1)まで各電位を電位v2〜電位v(n−1)で表わしている。また、電位v0から電位v(n−1)まで順々に電位は高くなって行く。  In order to explain the present invention in more detail, this will be described with reference to the accompanying drawings. Note that the potential of the power supply line V0 is represented by the potential v0, the potential of the power supply line V1 is represented by the potential v1, and thereafter, similarly, each potential from the power supply line V2 to the power supply line V (n−1) is represented by the potential v2 to the potential v ( n-1). Further, the potential increases in order from the potential v0 to the potential v (n-1).

図1に示す実施例1は10値の多値記憶手段で、前述のNは10で、符号s1〜s5に関して同じ符号を付した導線同士は導通状態にある。全MOS・FETはノーマリィ・オフ型つまりエンハンスメント・モードFETで、各電源線間に2値CMOSメモリが1個ずつ接続されており、全部で9個有る。図1の各構成手段などは次の通り請求項1記載中の各構成手段などに相当する。
a)電位v0〜電位v9それぞれが順々に同項記載中の第1電位〜第N電位それぞれに。
b)電源線V0〜電源線V9それぞれが順々に同項記載中の第1電位供給手段〜第N電位供給手段それぞれに。
c)入出力端子Tioが同項記載中の入出力手段に。
d)電源線V0〜電源線V9の各・2電源線間に1つずつ接続されている9個の2値CMOSメモリが同項記載中の2値記憶手段に。
e)トランジスタ1c〜9cそれぞれが同項記載中の出力プル・アップ・スイッチング手段それぞれに。
f)トランジスタ1d〜9dそれぞれが同項記載中の出力プル・ダウン・スイッチング手段それぞれに。
g)トランジスタ1e〜8eそれぞれが同項記載中の第1可制御スイッチング手段それぞれに。
h)トランジスタ2f〜9fそれぞれが同項記載中の第2可制御スイッチング手段それぞれに。
i)トランジスタ「1c、1e」、「2c、2e」……、「8c、8e」の各直列回路が同項記載中の出力プル・アップ用の各直列回路に。
j)トランジスタ「2f、2d」、「3f、3d」……、「9f、9d」の各直列回路が同項記載中の出力プル・ダウン用の各直列回路に。
The embodiment 1 shown in FIG. 1 is a 10-value multi-value storage means, and the above-mentioned N is 10, and the conductors having the same reference numerals with respect to the signs s1 to s5 are in a conductive state. All the MOS FETs are normally-off type, ie, enhancement mode FETs, and one binary CMOS memory is connected between each power supply line, and there are nine in total. 1 correspond to the constituent means in claim 1 as follows.
a) The potential v0 to the potential v9 are sequentially changed to the first potential to the Nth potential in the same paragraph.
b) The power supply line V0 to the power supply line V9 are sequentially supplied to the first potential supply means to the Nth potential supply means in the same paragraph.
c) The input / output terminal Tio is the input / output means described in the same paragraph.
d) Nine binary CMOS memories connected one by one between each power source line V0 to power source line V9 to the binary storage means described in the same paragraph.
e) Each of the transistors 1c to 9c is connected to the output pull-up switching means described in the same paragraph.
f) Each of the transistors 1d-9d is connected to the output pull-down switching means described in the same paragraph.
g) Each of the transistors 1e to 8e is respectively connected to the first controllable switching means described in the same paragraph.
h) Each of the transistors 2f to 9f is respectively connected to the second controllable switching means described in the same paragraph.
i) Each series circuit of the transistors “1c, 1e”, “2c, 2e”..., “8c, 8e” is replaced with each series circuit for output pull-up described in the same paragraph.
j) Each series circuit of the transistors “2f, 2d”, “3f, 3d”..., “9f, 9d” is replaced with each output pull-down series circuit described in the same paragraph.

全2値CMOSメモリの入出力端子を接続して入出力端子Tioひとつにまとめても電源短絡が起きない様に、トランジスタ1c〜8cそれぞれのオン期間中その逆方向電圧を『その逆方向電圧印加時にオフである逆阻止用のトランジスタ1e〜8eそれぞれ』が阻止する一方、トランジスタ2d〜9dそれぞれのオン期間中その逆方向電圧を『その逆方向電圧印加時にオフである逆阻止用トランジスタ2f〜9fそれぞれ』が阻止する。例えば入出力端子Tioが電位v1を保持している時トランジスタ「2a〜9a、2d〜9d、1c、1b」はオンで、トランジスタ「2c〜9c、2b〜9b、1a、1d」はオフだから、トランジスタ「1e〜8e、2f」はオンで、トランジスタ「3f〜9f」はオフである。その結果これらトランジスタが電源線同士を短絡することは無い。つまり電源短絡は起きない。この電位v1保持の時、オンであるトランジスタ「2f、2d、1c、1e」が電源線V1と入出力端子Tioの間を双方向に導通し、これらトランジスタが双方向性プル手段(プル・アップ又はプル・ダウンする手段)として機能し、実質的に双方向性プル手段を構成する。この様な双方向性プル手段は電位v1保持の時だけでなく電位v2〜v8の各電位保持の時も同様に構成される。  In order to prevent a power supply short circuit even if the input / output terminals of all the binary CMOS memories are connected and combined into one input / output terminal Tio, the reverse voltage is applied to each of the transistors 1c to 8c during the ON period. The reverse blocking transistors 1e to 8e, which are sometimes off at times, block, while the reverse voltages during the ON periods of the transistors 2d to 9d are "reverse blocking transistors 2f to 9f that are off when the reverse voltage is applied." Each "stops. For example, when the input / output terminal Tio holds the potential v1, the transistors “2a-9a, 2d-9d, 1c, 1b” are on and the transistors “2c-9c, 2b-9b, 1a, 1d” are off, Transistors “1e-8e, 2f” are on, and transistors “3f-9f” are off. As a result, these transistors do not short-circuit the power supply lines. In other words, a power supply short circuit does not occur. When this potential v1 is maintained, the transistors "2f, 2d, 1c, 1e" that are on conduct bidirectionally between the power supply line V1 and the input / output terminal Tio, and these transistors are bidirectional pulling means (pull-up Or a pull-down means), and substantially constitutes a bidirectional pull means. Such bidirectional pull means is configured in the same manner not only when holding the potential v1 but also when holding each potential of the potentials v2 to v8.

なお、本発明の各2値記憶手段には入出力兼用タイプつまり「書込み信号を入力したり、読出し信号を出力したりする部分(=入出力手段。例:入出力端子。)が共通のタイプ」を用いている。実施例1の使い方は例えば電位v0を数値「0」、電位v1を数値「1」、電位v2を数値「2」、……、電位v9を数値「9」に対応させて用いる。各電源電位を任意の符号又は意味、内容と対応させて使う使い方ももちろん構わない。例えば数値「0」〜「9」の代わりに数値「−2」〜「7」でも、文字「a」〜「j」でも良い。他の実施例の使い方も同様である。また、書込み時と読出し時に外部データ線を選択用スイッチ・トランジスタ等で入出力端子Tioに接続するが、本発明の多値記憶手段をメモリ・セルとして使う時ワード選択方式を利用することができる。さらに、本発明の多値記憶手段の書込みは入出力端子Tioをプル・アップ又はプル・ダウンして「その書込み数値等に対応する電位または電圧」に保持して行い、その読出しは入出力端子Tioの電位もしくは電圧を判別してその数値等を読み出す。それから、オン駆動電圧極性が各FETと同じなら、各FETの代わりに『両主電極の役割がその印加電圧の方向によって互いに入れ換わることができるノーマリィ・オフの制御電極絶縁型スイッチング手段』を1つずつ使用できる。  Each binary storage means of the present invention has a common input / output type, that is, a type in which a portion for inputting a write signal or outputting a read signal (= input / output means, eg, input / output terminal) is common. Is used. The first embodiment uses, for example, the potential v0 corresponding to the numerical value “0”, the potential v1 corresponding to the numerical value “1”, the potential v2 corresponding to the numerical value “2”,..., And the potential v9 corresponding to the numerical value “9”. Of course, it is possible to use each power supply potential in correspondence with an arbitrary code, meaning, or content. For example, numerical values “−2” to “7” or characters “a” to “j” may be used instead of the numerical values “0” to “9”. The usage of other embodiments is the same. Further, the external data line is connected to the input / output terminal Tio by a selection switch / transistor or the like at the time of writing and reading, but the word selection method can be used when the multi-value storage means of the present invention is used as a memory cell. . Further, the writing of the multi-value storage means of the present invention is performed by pulling up / down the input / output terminal Tio and holding it at “potential or voltage corresponding to the written numerical value”, and reading out the input / output terminal. The potential or voltage of Tio is discriminated and its numerical value is read. Then, if the on-drive voltage polarity is the same as each FET, “normally-off control electrode insulation type switching means in which the roles of both main electrodes can be interchanged depending on the direction of the applied voltage” instead of each FET is 1 Can be used one by one.

そして、トランジスタ1a〜9aそれぞれのバックゲートはそのソースや「そのソースより電位の高い電源線等」に接続され、トランジスタ1b〜9bそれぞれのバックゲートはそのソースや「そのソースより電位の低い電源線等」に接続される。一方、トランジスタ2f〜9fそれぞれのバックゲートはそのソースに接続されているが、そのバックゲート・ソース間PN接合やそのバックゲート・ドレイン間PN接合が導通しない様に電源線V9(又は電源線V9より電位の高い電源線等」に接続しても良い。同様に、トランジスタ1e〜8eそれぞれのバックゲートはそのソースに接続されているが、そのバックゲート・ソース間PN接合やそのバックゲート・ドレイン間PN接合が導通しない様に電源線V0(又は電源線V0より電位の低い電源線等」に接続しても良い。ところで、逆阻止用のトランジスタ「1e〜8e、2f〜9f」それぞれはそのドレイン・ソース間の印加電圧方向によりそのドレインとソースの役割が互いに入れ換わっているが、そのドレイン・バックゲート間PN接合を内蔵ダイオードとして積極的に利用しても構わない。この事は後述するMOS・FETを使う各実施例でも同様である。  The back gates of the transistors 1a to 9a are connected to the source and “power supply line having a higher potential than the source”, and the back gates of the transistors 1b to 9b are connected to the source and “power supply line having a lower potential than the source”. Etc. ". On the other hand, the back gates of the transistors 2f to 9f are connected to their sources, but the power supply line V9 (or the power supply line V9) so that the back gate-source PN junction and the back gate-drain PN junction are not conductive. Similarly, the back gate of each of the transistors 1e to 8e is connected to the source thereof, but the back gate-source PN junction and the back gate / drain thereof are also connected. It may be connected to a power supply line V0 (or a power supply line having a potential lower than that of the power supply line V0) so that the inter-PN junction does not conduct. By the way, each of the reverse blocking transistors “1e to 8e, 2f to 9f” The roles of the drain and source are interchanged depending on the applied voltage direction between the drain and source. May be actively used as a built-in diode between PN junction. This is also true in the embodiments using the MOS · FET to be described later.

図1の実施例において電源線V2・電源線V1間の「電源(図示せず。)と2値メモリー」を取り外し、電源線V2と電源線V1を直結して両電源線を共通化し、トランジスタ1eのゲートをトランジスタ3a、3bの両ドレインに接続し、トランジスタ3fのゲートをトランジスタ1a、1bの両ドレインに接続した9値の多値記憶手段の実施例が可能であり、さらに電源線V3・電源線V2間の「電源(図示せず。)と2値メモリー」を取り外し、電源線V1〜V3を直結して3電源線を共通化し、トランジスタ1eのゲートをトランジスタ4a、4bの両ドレインに接続し、トランジスタ4fのゲートをトランジスタ1a、1bの両ドレインに接続した8値の多値記憶手段の実施例が可能である。あとは同様に「電源と2値メモリーの取外し、電源線の共通化、および、各ゲートの接続し直し」を順々にして行くと7値〜3値の各多値記憶手段が可能になる。これらの事は後述する他の各実施例においても同様で、多値数(例えばN値のNのこと。10値なら10。以後こう呼ぶ。)の違う実施例を構成できる。(派生実施例)  In the embodiment of FIG. 1, the "power supply (not shown) and binary memory" between the power supply line V2 and the power supply line V1 is removed, and the power supply line V2 and the power supply line V1 are directly connected to share both power supply lines. An embodiment of nine-value multivalue storage means is possible in which the gate of 1e is connected to both drains of the transistors 3a and 3b, and the gate of the transistor 3f is connected to both drains of the transistors 1a and 1b. Remove the “power supply (not shown) and binary memory” between the power supply lines V2, connect the power supply lines V1 to V3 directly to share the three power supply lines, and connect the gate of the transistor 1e to both drains of the transistors 4a and 4b. An embodiment of an eight-value multi-value storage means is possible in which the gates of the transistor 4f are connected to both drains of the transistors 1a and 1b. After that, in the same way, “sequential removal of power supply and binary memory, commonization of power supply lines, and reconnection of gates” is performed in order, and 7-value to 3-value multivalue storage means becomes possible. . The same applies to other embodiments described later, and different embodiments having different multi-value numbers (for example, N of N values, 10 for 10 values, and so on) can be configured. (Derived Example)

図3に示す実施例3は、図1の実施例1において10値記憶から4値記憶に変更し、トランジスタ1a、2aの各ゲートの接続を入出力端子Tioからトランジスタ1c、2cの各ドレインに変更し、トランジスタ2b、3bの各ゲートの接続を入出力端子Tioからトランジスタ2d、3dの各ドレインに変更した4値の多値記憶手段である。  In the third embodiment shown in FIG. 3, the ten-value storage is changed from the ten-value storage to the four-value storage in the first embodiment shown in FIG. 1, and the connection of each gate of the transistors 1a and 2a is connected from the input / output terminal Tio to each drain of the transistors 1c and 2c. This is a quaternary multi-value storage means in which the connections of the gates of the transistors 2b and 3b are changed from the input / output terminal Tio to the drains of the transistors 2d and 3d.

図4に示す実施例4は、図1の実施例1においてトランジスタ「1eと1c、2eと2c………、8eと8c」それぞれの上下の接続とトランジスタ「2dと2f、3dと3f………、9dと9f」それぞれの上下の接続を入れ換えた10値の多値記憶手段である。この場合、トランジスタ1c〜8cそれぞれのバックゲートはそのソースに接続するか、又は、そのバックゲート・ソース間PN接合やそのバックゲート・ドレイン間PN接合が導通しない様に電源線V9(又は電源線V9より電位の高い電源線など」に接続する。同様にトランジスタ2d〜9dそれぞれのバックゲートもそのソースに接続するか、又は、そのバックゲート・ソース間PN接合やそのバックゲート・ドレイン間PN接合が導通しない様に電源線V0(又は電源線V0より電位の低い電源線など」に接続する。その一方、トランジスタ1e〜8eそれぞれのバックゲートはそのソースに接続されているが、「そのソース電位より低い電源線など」に接続し直しても構わない。そして、トランジスタ2f〜9fそれぞれのバックゲートはそのソースに接続されているが、「そのソース電位より高い電源線など」に接続し直しても構わない。尚、図4で符号t1〜t5に関して同じ符号を付した導線同士は接続状態に有る。  In the fourth embodiment shown in FIG. 4, the upper and lower connections of the transistors “1e and 1c, 2e and 2c..., 8e and 8c” and the transistors “2d and 2f, 3d and 3f. .., 9d and 9f "are 10-value multi-value storage means in which the upper and lower connections are interchanged. In this case, the back gate of each of the transistors 1c to 8c is connected to the source thereof, or the power line V9 (or the power line) so that the back gate-source PN junction and the back gate-drain PN junction are not conductive. Similarly, the back gate of each of the transistors 2d to 9d is also connected to the source thereof, or the back gate-source PN junction or the back gate-drain PN junction. Is connected to the power supply line V0 (or a power supply line having a lower potential than the power supply line V0, etc.) On the other hand, the back gates of the transistors 1e to 8e are connected to their sources. May be reconnected to a lower power line, etc. And the back of each of the transistors 2f-9f Although the gate is connected to its source, it may be reconnected to “a power supply line higher than its source potential, etc.” Note that the conductors having the same reference numerals t1 to t5 in FIG. It is in a state.

図5に示す実施例5は、図1の実施例1において10値記憶から5値記憶に変更し、各P型MOS・FETの代わりにベース電流制限手段付きPNPトランジスタを使い、各N型MOS・FETの代わりにベース電流制限手段付きNPNトランジスタを使い、トランジスタ11e〜13eとトランジスタ12f〜14fの各トランジスタに関してはそのコレクタとエミッタの役割がそのコレクタ・エミッタ間印加電圧の方向によって互いに入れ換わることができるものを使った5値の多値記憶手段である。その記憶内容を読み出すとき、その読出し手段の電位(又は電圧)判別手段の入力抵抗は大きいから、オン駆動の各トランジスタはオーバー・ドライブされ、過飽和状態にあり、そのオン電圧はダイオードの順電圧に比べて小さい。この事は後述する実施例6〜7でも同様。  In the fifth embodiment shown in FIG. 5, the ten-value storage is changed from the ten-value storage in the first embodiment shown in FIG. 1, and a PNP transistor with a base current limiting means is used in place of each P-type MOS • FET, and each N-type MOS is used. -An NPN transistor with a base current limiting means is used instead of an FET, and the roles of the collector and emitter of the transistors 11e to 13e and transistors 12f to 14f are interchanged depending on the direction of the applied voltage between the collector and the emitter. This is a five-value multi-value storage means using what can be used. When reading the stored content, the input resistance of the potential (or voltage) discrimination means of the reading means is large, so that each on-driving transistor is overdriven and is in a supersaturated state, and the on-voltage becomes the forward voltage of the diode. Smaller than that. The same applies to Examples 6 to 7 described later.

図6に示す実施例6は、図3の実施例3において、各P型MOS・FETの代わりにベース電流制限手段付きPNPトランジスタを使い、各N型MOS・FETの代わりにベース電流制限手段付きNPNトランジスタを使い、トランジスタ11e〜12eとトランジスタ12f〜13fの各トランジスタに関してはそのコレクタとエミッタの役割がそのコレクタ・エミッタ間の印加電圧の方向によって互いに入れ換わることができるものを使った4値の多値記憶手段である。  The sixth embodiment shown in FIG. 6 uses a PNP transistor with base current limiting means instead of each P-type MOS.FET in the third embodiment of FIG. 3, and has base current limiting means instead of each N-type MOS.FET. Using an NPN transistor, each of the transistors 11e to 12e and transistors 12f to 13f has a quaternary value using the collector and emitter whose roles can be interchanged depending on the direction of the applied voltage between the collector and the emitter. Multi-value storage means.

図7に示す実施例7は、図4の実施例4において10値記憶から5値記憶に変更し、各P型MOS・FETの代わりにベース電流制限手段付きPNPトランジスタを使い、各N型MOS・FETの代わりにベース電流制限手段付きNPNトランジスタを使い、トランジスタ11e〜13eとトランジスタ12f〜14fの各トランジスタに関してはそのコレクタとエミッタの役割がそのコレクタ・エミッタ間印加電圧の方向によって互いに入れ換わることができるものを使った5値の多値記憶手段である。  In the seventh embodiment shown in FIG. 7, the ten-value memory is changed from the ten-value memory to the five-value memory in the fourth embodiment shown in FIG. 4, and a PNP transistor with a base current limiting means is used instead of each P-type MOS FET. -An NPN transistor with a base current limiting means is used instead of an FET, and the roles of the collector and emitter of the transistors 11e to 13e and transistors 12f to 14f are interchanged depending on the direction of the applied voltage between the collector and the emitter. This is a five-value multi-value storage means using what can be used.

図8(a)に示す実施例8は、図4の実施例において入出力端子Tioを残して電源線V8・電源線V1間のすべての「電源(図示せず。)と回路構成部品」を取り外し、電源線V8と電源線V1を直結して両電源線を共通化し、トランジスタ1eのゲートをトランジスタ9a、9bの両ドレインに接続し、トランジスタ9fのゲートをトランジスタ1a、1bの両ドレインに接続した3値の多値記憶手段である。すなわち、それは電源線V9・電源線V8間2値メモリ、電源線V1・電源線V0間2値メモリ及び入出力端子Tioを接続する等した3値記憶手段である。他の各実施例でも同様にその最上位の2値メモリ、最下位の2値メモリ及び入出力端子Tioだけ残して両2値メモリを上下に直結する等して3値記憶手段を構成することができる。(派生実施例)  In the eighth embodiment shown in FIG. 8A, all “power supplies (not shown) and circuit components” between the power supply line V8 and the power supply line V1 except the input / output terminal Tio in the embodiment of FIG. The power supply line V8 and the power supply line V1 are directly connected to share both power supply lines, the gate of the transistor 1e is connected to both drains of the transistors 9a and 9b, and the gate of the transistor 9f is connected to both drains of the transistors 1a and 1b. The ternary multi-value storage means. That is, it is a ternary storage means such as a binary memory between the power supply line V9 and the power supply line V8, a binary memory between the power supply line V1 and the power supply line V0, and an input / output terminal Tio. Similarly, in each of the other embodiments, the ternary storage means is configured by directly connecting the two binary memories up and down, leaving only the highest binary memory, the lowest binary memory, and the input / output terminal Tio. Can do. (Derived Example)

図8(b)に示す実施例9は、図1の実施例において入出力端子Tioを残して電源線V8・電源線V1間のすべての「電源(図示せず。)と回路構成部品」を取り外し、電源線V8と電源線V1を直結して両電源線を共通化し、トランジスタ1eのゲートをトランジスタ9a、9bの両ドレインに接続し、トランジスタ9fのゲートをトランジスタ1a、1bの両ドレインに接続した3値の多値記憶手段である。  In the ninth embodiment shown in FIG. 8B, all “power supplies (not shown) and circuit components” between the power supply line V8 and the power supply line V1 except the input / output terminal Tio in the embodiment of FIG. The power supply line V8 and the power supply line V1 are directly connected to share both power supply lines, the gate of the transistor 1e is connected to both drains of the transistors 9a and 9b, and the gate of the transistor 9f is connected to both drains of the transistors 1a and 1b. The ternary multi-value storage means.

図9(a)に示す実施例10は、図3の実施例において入出力端子Tioを残して電源線V2・電源線V1間の「電源(図示せず。)と回路構成部品すべて」を取り外し、電源線V2と電源線V1を直結して両電源線を共通化し、トランジスタ1eのゲートをトランジスタ3a、3bの両ドレインに接続し、トランジスタ3fのゲートをトランジスタ1a、1bの両ドレインに接続した3値の多値記憶手段である。  The embodiment 10 shown in FIG. 9A removes the “power supply (not shown) and all circuit components” between the power supply line V2 and the power supply line V1, leaving the input / output terminal Tio in the embodiment of FIG. The power supply line V2 and the power supply line V1 are directly connected to share both power supply lines, the gate of the transistor 1e is connected to both drains of the transistors 3a and 3b, and the gate of the transistor 3f is connected to both drains of the transistors 1a and 1b. This is a ternary multi-value storage means.

図10に示す実施例11(第2発明)は、図1の実施例においてトランジスタ「1c〜8c、1e〜8e」を取り外し、10値記憶から6値記憶に変更した6値の多値記憶手段である。図1の実施例ではトランジスタ1c、1eの直列回路とトランジスタ2f、2dの直列回路はどちらも双方向性プル手段として機能し、機能がだぶっているので、どちらか片方を取り外すことができる。同様に「トランジスタ2c、2eの直列回路とトランジスタ3f、3dの直列回路」、「トランジスタ3c、3eの直列回路とトランジスタ4f、4dの直列回路」………、「トランジスタ8c、8eの直列回路とトランジスタ9f、9dの直列回路」それぞれについても同じ事が言えて、どちらかの直列回路を片方ずつ取り外すことができる。同様に、第1発明の実施例1〜10それぞれにおいても同様な各2直列回路のうち、どちらかを片方ずつ取り外すことができ、その取り外しによりその実施例は第2発明の多値記憶手段の実施例(派生実施例)になる。  Example 11 (second invention) shown in FIG. 10 is a six-value multivalue storage means in which the transistors “1c to 8c, 1e to 8e” in the embodiment of FIG. It is. In the embodiment of FIG. 1, both the series circuit of the transistors 1c and 1e and the series circuit of the transistors 2f and 2d function as bidirectional pulling means, and have only one function. Therefore, one of them can be removed. Similarly, “a series circuit of transistors 2c and 2e and a series circuit of transistors 3f and 3d”, “a series circuit of transistors 3c and 3e and a series circuit of transistors 4f and 4d”, and so on, “a series circuit of transistors 8c and 8e” The same can be said for each of the "series circuit of transistors 9f and 9d", and one of the series circuits can be removed one by one. Similarly, in each of the first to tenth embodiments of the first invention, either one of the same two series circuits can be removed one by one, and this embodiment can be removed from the multivalue storage means of the second invention. This is an example (derived example).

実施例12(第2発明)は、図3の実施例3においてトランジスタ2f、2d、3f、3dを取り外し、その収外しにより開放となるトランジスタ2b、3bの両ゲートを入出力端子Tioに接続した4値の多値記憶手段である。又は実施例3においてトランジスタ1c、1e、2c、2eを取り外し、その取外しにより開放となるトランジスタ1a、2aの両ゲートを入出力端子Tioに接続した4値の多値記憶手段である。  In the twelfth embodiment (second invention), the transistors 2f, 2d, 3f, and 3d in the third embodiment shown in FIG. 3 are removed, and both gates of the transistors 2b and 3b that are opened by detachment are connected to the input / output terminal Tio. This is a four-value multivalue storage means. Alternatively, it is a quaternary multi-value storage means in which the transistors 1c, 1e, 2c, and 2e in Example 3 are removed, and both gates of the transistors 1a and 2a that are opened by the removal are connected to the input / output terminal Tio.

図11に示す実施例13(第3発明)は、図10の実施例11(第2発明)において出力信号が図10左側の全2値CMOSインバータの各入力部に正帰還するのを遮断(しゃだん)する為に、図10左側の全MOS・FETの各ゲートと入出力端子Tioの接続を一旦切り離し、全ゲートを接続して入力端子Inとし、入出力端子Tioを出力端子Outに変更した多値バッファ手段である。逆に言えば、図11の実施例12(第3発明)の入力端子Inと出力端子Outを接続して入出力端子Tioとすれば多値記憶手段になる。同様に、実施例1〜10、12(第1又は第2発明)それぞれ及びその各派生実施例(第1又は第2発明)や実施例11〜12(第2発明)の各派生実施例においても出力信号が入力部に正帰還するのを遮断する等すれば、それは第3発明の多値バッファ手段(各派生実施例)になる。対比:特開2004−32702の多値AND回路(段落番号0032)で入力端子を1つにしたもの。  The embodiment 13 (third invention) shown in FIG. 11 cuts off the positive feedback of the output signal to each input portion of the binary CMOS inverter on the left side of FIG. 10 in the embodiment 11 (second invention) of FIG. In order to do this, all the gates of the MOS FETs on the left side of FIG. 10 and the input / output terminal Tio are disconnected once, all the gates are connected to the input terminal In, and the input / output terminal Tio is changed to the output terminal Out. Multi-value buffer means. In other words, if the input terminal In and the output terminal Out of the twelfth embodiment (third invention) of FIG. Similarly, in each of Examples 1 to 10, 12 (first or second invention) and its derivative examples (first or second invention) and Examples 11 to 12 (second invention). If, for example, the positive feedback of the output signal to the input section is cut off, it becomes the multi-value buffer means of the third invention (each derivative embodiment). Contrast: A multi-value AND circuit (paragraph number 0032) disclosed in Japanese Patent Application Laid-Open No. 2004-32702 with one input terminal.

図12(c)に示す実施例14(第4発明)は、第1〜第3発明で使用できる双方向性スイッチング手段である。図12(a)は「図12(c)の双方向性スイッチング手段が双方向にオフ駆動されたとき、双方向にオフを維持できることを説明する回路図」である。図12(a)の回路では図右側の端子から図左側の端子への電圧印加に対して『ゲート・ソース間を短絡したNMOS』がオフを保つことができる。一方、図左側の端子から図右側の端子への電圧印加に対してPMOSがもし仮に僅(わず)か少しでも導通しようとすると、その漏洩電流がNMOSに電圧降下を生ずるが、その電圧降下はPMOSにとってゲート逆バイアス電圧になるので、PMOSはオフ駆動されることになる。結局、図12(a)の回路は双方向にオフを維持することができることになる。このため、図12(c)の実施例14(第4発明)においてPMOSとNMOSを同時にオン駆動したり、同時にオフ駆動したりできることが分かる。もちろん、第1〜第3発明の様に使い方によって片方ずつオン駆動したり等しても構わない。そして、2組の「3端子スイッチと抵抗2つの接続体」をCMOS・FETや「ベース電流制限用抵抗が付いたPNPとNPN等の接続体」で置換できることは明白であり、事実、実施例1〜13それぞれには図12(c)の実施例14(第4発明)の構成が有る。  Example 14 (fourth invention) shown in FIG. 12C is a bidirectional switching means that can be used in the first to third inventions. FIG. 12A is a “circuit diagram for explaining that the bidirectional switching means of FIG. 12C can be kept off in both directions when it is driven off in both directions”. In the circuit of FIG. 12A, “NMOS with shorted gate and source” can be kept off with respect to voltage application from the right terminal to the left terminal. On the other hand, if the PMOS tries to conduct even a little when the voltage is applied from the terminal on the left side of the figure to the terminal on the right side of the figure, the leakage current causes a voltage drop in the NMOS. Becomes a gate reverse bias voltage for the PMOS, so that the PMOS is driven off. Eventually, the circuit of FIG. 12A can be kept off in both directions. Therefore, it can be seen that in Example 14 (fourth invention) of FIG. 12C, the PMOS and NMOS can be simultaneously turned on or off simultaneously. Of course, it may be turned on one by one depending on how it is used, as in the first to third inventions. It is clear that two sets of “three-terminal switch and two resistor connections” can be replaced with CMOS FETs or “connectors such as PNP and NPN with a base current limiting resistor”. Each of 1 to 13 has the configuration of Example 14 (fourth invention) of FIG.

図12(d)に示す実施例15(第4発明)も第1〜第3発明で使用する双方向性スイッチング手段であるが、実施例15はただ図12(c)の実施例14においてP型、N型の両MOS・FETの接続位置を互いに入れ換えただけである。図12(b)も「図12(d)の双方向性スイッチング手段が双方向にオフ駆動されたとき、双方向にオフを維持できることを説明する回路図」であるが、図12(b)の回路の作用効果や使用方法等は上述と同様である。実施例1〜10、12それぞれにも図12(d)の実施例15の構成が有る。なお、図12(d)の実施例15ではPMOSとNMOSどちらもオフ駆動用抵抗(両3端子スイッチ間に接続された抵抗2つ)の代わりにゲート逆バイアス用直流電源と抵抗の直列回路を使用できる。この場合、PMOSのゲート順バイアス用直流電源をNMOSのゲート逆バイアス用直流電源としても使い、NMOSのゲート順バイアス用直流電源をPMOSのゲート逆バイアス用直流電源としても使うことができる。また、各バックゲートは各ソースに接続されているが、もちろん一旦その各接続を切り離し、バックゲート・ソース間PN接合とバックゲート・ドレイン間PN接合が導通しないよう各バックゲート電位を保つ様にしても構わない。この電源共有化と各バックゲート接続変更は図12(c)の実施例14においても同様である。  The fifteenth embodiment (fourth invention) shown in FIG. 12D is also a bidirectional switching means used in the first to third inventions, but the fifteenth embodiment is merely P in the fourteenth embodiment shown in FIG. The connection positions of both the type and N type MOS • FETs are simply interchanged. FIG. 12B is also a “circuit diagram for explaining that the bidirectional switching means of FIG. 12D can be kept off in both directions when it is driven off in both directions”, but FIG. The effects and usage of the circuit are the same as described above. Each of Examples 1 to 10 and 12 has the configuration of Example 15 in FIG. In the embodiment 15 of FIG. 12D, a series circuit of a gate reverse bias DC power source and a resistor is used in place of both the PMOS and NMOS off-drive resistors (two resistors connected between the three-terminal switches). Can be used. In this case, the PMOS gate forward bias DC power source can also be used as the NMOS gate reverse bias DC power source, and the NMOS gate forward bias DC power source can also be used as the PMOS gate reverse bias DC power source. Also, each back gate is connected to each source, but of course, each connection is once disconnected, and each back gate potential is maintained so that the back gate / source PN junction and the back gate / drain PN junction do not conduct. It doesn't matter. This power sharing and back gate connection change are the same in the embodiment 14 of FIG.

最後に補足説明する。説明の便宜上、入出力端子(請求項1記載中の入出力手段に相当。)と呼んだが、実際には端子として存在せず、単なる導線や電極などである場合が多い。これは例えばトランジスタのベース端子、ベース電極、ベース・リード線という呼び方がされるのと同様である。また、記憶内容の書込み又は読出しは入出力端子を使わず、各図左側の2値インバータ側からもできるし、両側からも可能である。さらに、例えばMOS・FETとダイオードの直列回路よりPMOSとNMOSの直列回路の方がオン電圧の面で有利である。なぜなら、ダイオードだと必ず順電圧分の電圧降下を考慮する必要が有るが、その直列回路では両オン抵抗の和で済むので、各オン抵抗を小さくすれば済むし、読出し判別用ソース電流やシンク電流は小さい為有利だからである。  A supplementary explanation will be given at the end. For convenience of explanation, it is referred to as an input / output terminal (corresponding to the input / output means in claim 1), but it does not actually exist as a terminal, but is simply a lead wire or an electrode in many cases. This is the same as what is called a base terminal, a base electrode, and a base lead wire of a transistor, for example. In addition, the storage contents can be written or read out from the binary inverter side on the left side of each figure without using the input / output terminals, or from both sides. Furthermore, for example, a PMOS and NMOS series circuit is more advantageous in terms of on-voltage than a series circuit of MOS.FET and diode. This is because, for a diode, the voltage drop for the forward voltage must be taken into consideration, but in the series circuit, the sum of both on-resistances is sufficient, so each on-resistance can be reduced, and the source current and sink for read determination can be reduced. This is because the current is small and advantageous.

特に、『部品点数が少なく、簡単な構成で、製造コストが低い第2〜第3発明』や『新しい基本構成の第4発明』は産業上の利用可能性が高い。  In particular, “the second to third inventions with a small number of parts, simple configuration and low manufacturing cost” and “fourth invention with a new basic configuration” have high industrial applicability.

第1発明の1実施例を示す回路図である。 発明効果の説明で使う本発明者の先の発明回路を示す回路図である。

Figure 2006252742
(a)と(b)に第1発明の実施例を2つ示す回路図である。 (a)に第1発明の1実施例を示し、(b)に同じく本発明者の先の発明回路を示す回路図である。 第2発明の1実施例を示す回路図である。 第3発明の1実施例を示す回路図である。 第4発明の実施例2つとその説明回路2つを示す回路図である。 It is a circuit diagram showing one embodiment of the first invention. It is a circuit diagram which shows this invention circuit of this inventor used by description of an invention effect.
Figure 2006252742
(A) And (b) is a circuit diagram which shows two Examples of 1st invention. (A) shows one embodiment of the first invention, and (b) is a circuit diagram showing the inventor's previous invention circuit. It is a circuit diagram which shows one Example of 2nd invention. It is a circuit diagram which shows one Example of 3rd invention. It is a circuit diagram which shows two Example of 4th invention, and its explanatory circuit.

Claims (4)

3又は3以上の所定の複数をNで表わしたときに、
第1電位から第N電位まで番号順に電位が高くなって行くN個の電位を供給する第1電位供給手段〜第N電位供給手段を有し、
「そこから書込み信号を入力したり、読出し信号を出力したりする入出力手段と、ノーマリィ・オフの出力プル・アップ・スイッチング手段と、ノーマリィ・オフの出力プル・ダウン・スイッチング手段を有する2値記憶手段」を1つずつ、番号で隣り同士となる2つの前記電位供給手段の間それぞれに設け、
最上位の前記2値記憶手段を除く各前記2値記憶手段ではその出力プル・アップ・スイッチング手段の代わりに「その出力プル・アップ・スイッチング手段」と「ノーマリィ・オフで、オン駆動電圧極性がプラスで、両主電極の役割がその印加電圧の方向により互いに入れ換わることができ、1つ上位の前記2値記憶手段の補出力を駆動信号とする第1可制御スイッチング手段」の直列回路を用い、
最下位の前記2値記憶手段を除く各前記2値記憶手段ではその出力プル・ダウン・スイッチング手段の代わりに「その出力プル・ダウン・スイッチング手段」と「ノーマリィ・オフで、オン駆動電圧極性がマイナスで、両主電極の役割がその印加電圧の方向により互いに入れ換わることができ、1つ下位の前記2値記憶手段の補出力を駆動信号とする第2可制御スイッチング手段」の直列回路を用い、
すべての前記入出力手段を接続して1つの入出力手段にまとめたことを特徴とする多値記憶手段。
When three or three or more predetermined plurals are represented by N,
Having a first potential supply means to an Nth potential supply means for supplying N potentials whose potentials increase in numerical order from the first potential to the Nth potential;
"Binary having input / output means for inputting a write signal or outputting a read signal therefrom, normally-off output pull-up switching means, and normally-off output pull-down switching means One storage means "is provided between each of the two potential supply means adjacent to each other by a number,
In each of the binary storage means other than the highest-level binary storage means, instead of the output pull-up switching means, “the output pull-up switching means” and “normally off, the on drive voltage polarity is A series circuit of “first controllable switching means” in which the roles of the two main electrodes can be switched with each other depending on the direction of the applied voltage, and the complementary output of the upper binary storage means is used as a drive signal. Use
In each of the binary storage means except the lowest binary storage means, the output pull-down switching means and the output pull-down switching means are normally off and the ON drive voltage polarity is A series circuit of “second controllable switching means” in which the roles of the two main electrodes can be switched with each other depending on the direction of the applied voltage, and the complementary output of the binary storage means one level lower is used as a drive signal. Use
A multi-value storage means characterized in that all the input / output means are connected and combined into one input / output means.
前記第2電位供給手段〜前記第(N−1)電位供給手段のそれぞれに接続される2つの前記直列回路のうち、どちらかを片方ずつ取り外し、その取外しにより開放になる制御電極または制御端子が有れば前記制御電極または制御端子を前記入出力手段に接続することを特徴とする請求項1記載の多値記憶手段。One of the two series circuits connected to each of the second potential supply means to the (N-1) th potential supply means is removed one by one, and a control electrode or a control terminal opened by the removal is provided. 2. The multi-value storage means according to claim 1, wherein if present, the control electrode or the control terminal is connected to the input / output means. 請求項1又は2記載の多値記憶手段において、各前記2値記憶手段の構成手段で、前記補出力を1つずつ出力する各2値インバータ手段の「そこから信号を入力する入力手段」を各前記直列回路から切り離し、それら入力手段すべてを接続して1つの入力手段にまとめ、前記入出力手段を出力手段としたことを特徴とする多値バッファ手段。3. The multi-value storage means according to claim 1 or 2, wherein the "input means for inputting a signal therefrom" of each binary inverter means for outputting the complementary outputs one by one in the constituent means of each binary storage means. Multi-value buffer means characterized in that it is separated from each of the series circuits, all of the input means are connected and combined into one input means, and the input / output means is used as output means. 「どちらも両主電極の役割がその印加電圧の方向により互いに入れ換わることができ、どちらも互いに相補関係に有る2つの可制御スイッチング手段」が有って、
その両可制御スイッチング手段のうち一方の主電極と他方の主電極を接続し、
一方の開放された主電極と一方の制御電極の間に一方のオン・オフ駆動手段を設け、
一方の開放された主電極と他方の制御電極の間に他方のオン・オフ駆動手段を設け、
その両可制御スイッチング手段の直列回路を双方向性のスイッチとして使用することを特徴とする双方向性スイッチング手段。
There are “two controllable switching means in which the roles of both main electrodes can be interchanged with each other depending on the direction of the applied voltage, both of which are complementary to each other”
Of the two controllable switching means, one main electrode and the other main electrode are connected,
One on / off driving means is provided between one open main electrode and one control electrode,
The other on / off drive means is provided between one open main electrode and the other control electrode,
A bidirectional switching means characterized in that a series circuit of both controllable switching means is used as a bidirectional switch.
JP2005109163A 2005-03-08 2005-03-08 Multi-value storage means and multi-stable circuit Expired - Fee Related JP4800657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109163A JP4800657B2 (en) 2005-03-08 2005-03-08 Multi-value storage means and multi-stable circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109163A JP4800657B2 (en) 2005-03-08 2005-03-08 Multi-value storage means and multi-stable circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011073750A Division JP5249379B2 (en) 2011-03-29 2011-03-29 Multi-value bidirectional switching means

Publications (2)

Publication Number Publication Date
JP2006252742A true JP2006252742A (en) 2006-09-21
JP4800657B2 JP4800657B2 (en) 2011-10-26

Family

ID=37093031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109163A Expired - Fee Related JP4800657B2 (en) 2005-03-08 2005-03-08 Multi-value storage means and multi-stable circuit

Country Status (1)

Country Link
JP (1) JP4800657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069236A (en) * 2011-09-23 2012-04-05 Toshiyasu Suzuki Multi-level buffer means

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111298A (en) * 1990-08-30 1992-04-13 Matsushita Electron Corp Memory circuit
JPH054400U (en) * 1991-06-29 1993-01-22 日本電気株式会社 Memory cell circuit
JPH08273361A (en) * 1995-03-30 1996-10-18 Seiko Epson Corp Multivalue static random access memory cell circuit
JPH10199996A (en) * 1997-01-10 1998-07-31 Hitachi Ltd Semiconductor integrated circuit device
JP2000083369A (en) * 1998-06-24 2000-03-21 Toshiyasu Suzuki Selection switching means, logic circuit, bistable circuit, and multistable circuit
JP2001257570A (en) * 2000-01-03 2001-09-21 Toshiyasu Suzuki Switching means, bistable circuit and multistable circuit
JP2003022677A (en) * 2001-06-29 2003-01-24 Internatl Business Mach Corp <Ibm> Method and apparatus for writing operation in sram cell
WO2003028214A1 (en) * 2001-09-19 2003-04-03 Toshiyasu Suzuki Multi-stable circuit
JP2003188696A (en) * 2001-12-17 2003-07-04 Toshiyasu Suzuki Bistable circuit
WO2003063349A1 (en) * 2002-01-24 2003-07-31 Japan Science And Technology Agency Nonlinear resistor circuit using floating gate mosfets
JP2004088763A (en) * 2002-06-24 2004-03-18 Toshiyasu Suzuki Multistable circuit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111298A (en) * 1990-08-30 1992-04-13 Matsushita Electron Corp Memory circuit
JPH054400U (en) * 1991-06-29 1993-01-22 日本電気株式会社 Memory cell circuit
JPH08273361A (en) * 1995-03-30 1996-10-18 Seiko Epson Corp Multivalue static random access memory cell circuit
JPH10199996A (en) * 1997-01-10 1998-07-31 Hitachi Ltd Semiconductor integrated circuit device
JP2000083369A (en) * 1998-06-24 2000-03-21 Toshiyasu Suzuki Selection switching means, logic circuit, bistable circuit, and multistable circuit
JP2001257570A (en) * 2000-01-03 2001-09-21 Toshiyasu Suzuki Switching means, bistable circuit and multistable circuit
JP2003022677A (en) * 2001-06-29 2003-01-24 Internatl Business Mach Corp <Ibm> Method and apparatus for writing operation in sram cell
WO2003028214A1 (en) * 2001-09-19 2003-04-03 Toshiyasu Suzuki Multi-stable circuit
JP2003188696A (en) * 2001-12-17 2003-07-04 Toshiyasu Suzuki Bistable circuit
WO2003063349A1 (en) * 2002-01-24 2003-07-31 Japan Science And Technology Agency Nonlinear resistor circuit using floating gate mosfets
JP2004088763A (en) * 2002-06-24 2004-03-18 Toshiyasu Suzuki Multistable circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069236A (en) * 2011-09-23 2012-04-05 Toshiyasu Suzuki Multi-level buffer means

Also Published As

Publication number Publication date
JP4800657B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US7554379B2 (en) High-speed, low-power level shifter for mixed signal-level environments
EP0471289A1 (en) High speed output buffer unit preliminarily shifting output voltage level
US6750680B2 (en) Semiconductor integrated circuit, logic operation circuit, and flip flop
KR100515300B1 (en) A circuit and method for sampling and holding current, de-multiplexer and display apparatus using the same
US20200211642A1 (en) Circuit Cell for a Memory Device or Logic Device
US4858191A (en) Semiconductor integrated circuit
KR100567497B1 (en) Bus interface circuit and receiver circuit
KR930000760B1 (en) Line switching circuit and memory device with using it
US7477076B2 (en) Low-voltage, low-power-consumption, and high-speed differential current-sense amplification
KR920010824B1 (en) Semiconductor memory
JP2006295322A (en) Level shifter circuit
US6563351B2 (en) Semiconductor integrated circuit having output buffer
JP2006252742A (en) Multi-level storage means, multi-level buffer means, and bi-directional switching means
US7885109B2 (en) Memory and method for dissipation caused by current leakage
EP0529545A1 (en) Level shifting CMOS integrated circuits
US20070120577A1 (en) Semiconductor integrated apparatus using two or more types of power supplies
JP2011172254A (en) Multivalued storage means, multivalued buffer means, and bidirectional switching means
JP2006260660A (en) Semiconductor storage device
JP2012069236A (en) Multi-level buffer means
US8629692B1 (en) State definition and retention circuit
EP2538560B1 (en) A voltage level shift circuit
US20200082877A1 (en) Semiconductor memory device
US8228115B1 (en) Circuit for biasing a well from three voltages
US20240005981A1 (en) Non-volatile memory
WO2022059378A1 (en) Non-volatile memory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees