JP2004088763A - Multistable circuit - Google Patents

Multistable circuit Download PDF

Info

Publication number
JP2004088763A
JP2004088763A JP2003203347A JP2003203347A JP2004088763A JP 2004088763 A JP2004088763 A JP 2004088763A JP 2003203347 A JP2003203347 A JP 2003203347A JP 2003203347 A JP2003203347 A JP 2003203347A JP 2004088763 A JP2004088763 A JP 2004088763A
Authority
JP
Japan
Prior art keywords
potential
supply line
output terminal
input
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203347A
Other languages
Japanese (ja)
Inventor
Toshiyasu Suzuki
鈴木 利康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003203347A priority Critical patent/JP2004088763A/en
Publication of JP2004088763A publication Critical patent/JP2004088763A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multistable circuit which is constituted with a small number of parts and from normally-off switching means, and which a power source short circuit current is little when powered up. <P>SOLUTION: As shown in the figure, for example, an on-state is held by itself between a power source lines v0 and v1, and between the power source lines v1 and v2, respectively. A pull down means of a self-retention type switch capable of off-driving and pulling down a potential of an input/output terminal Tio is established one by one. The on-state is held by itself between the power source lines v2 and v3, and between power source lines v3 and v4, respectively. A pull up means of a self-retention type switch capable of off-driving and pulling up the potential of the input/output terminal Tio is established one by one. Each of the above-mentioned pull down means between the power source lines v1 and v2, and the above-mentioned pull up means between the power source lines v3 and v4, is a multistable circuit of 4 values without capability for clamping the potential of input/output terminal Tio in the reverse direction. The above-mentioned target can be attained by the circuit just mentioned. Diodes 3a and 3d may be eliminated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技 術 分 野】
本発明は、その安定状態の数が3又は3以上で、その安定状態に応じた電圧もしくは電位を保持または出力できる多安定回路に関する。この多安定回路は多値のメモリー・セル、多値メモリー又は多値記憶手段として利用でき、さらに多値(又は多進法)論理回路、多値(又は多進法)演算回路、多値コンピュータ(特に4、8、『10』、16、32、64、100、128進法コンピュータ)又は多値(又は多進法)制御手段の構成要素として利用できる。
【0002】
【背 景 技 術】
特許第2853041号公報に開示された多安定回路には『部品点数が多い』という問題点が有る。また、特開2000−83369号公報の図27〜図36と特願2001−32972号公報の図10〜図14に開示された多安定回路には『ノーマリィ・オン型スイッチング手段しか使うことができず、しかも、電源投入時に電源電圧が立ち上がってそれらノーマリィ・オン型スイッチング手段に充分なゲート逆バイアス電圧を印加できるまで電源短絡電流が流れてしまう』という問題点が有る。ノーマリィ・オフ型で多安定回路を構成できれば、構成手段の選択肢が増えて便利である。また、この電源短絡電流の問題は例えば『その多安定回路を多値のメモリー・セルとして多数使って多値メモリー手段を構成する場合、電源投入時に極めて大きな電源短絡電流が流れ、電源電圧を立ち上げることができず、使い物にならない』という問題点に結び付く。
【0003】
そこで、本発明は『部品点数が少なく、ノーマリィ・オフ型スイッチング手段を使うことができて、電源投入時の電源短絡電流を少なくできる』多安定回路を提供することを目的としている。        ( 発 明 の 目 的 )
【0004】
【発 明 の 開 示】
即ち、本発明は請求項1に記載した通りの多安定回路である。但し、その所定の前記電位供給線手段は第2電位供給線手段から第N電位供給線手段までのいずれか1つに該当するため、前記プル・アップ手段が1つしかない場合も有るし、あるいは、前記プル・ダウン手段が1つしかない場合も有るので、前記の「それぞれのプル・アップ手段」には1つの場合も含まれ、前記の「それぞれのプル・ダウン手段」には1つの場合も含まれる。ノーマリィ・オフ型スイッチング手段で構成した自己保持型スイッチング手段をプル・アップ手段やプル・ダウン手段として用いているので、本発明の多安定回路には『部品点数が少なく、ノーマリィ・オフ型スイッチング手段を使うことができて、電源投入時の電源短絡電流を少なくできる』という効果が有る。       ( 発 明 の 効 果 )
【0005】
【発明を実施するための最良の形態】
本発明をより詳細に説明する為に以下添付図面に従ってこれを説明する。図1に示す実施例は4安定または4値の多安定回路で、この実施例では前述したNは4で、次の通り各構成要素が前述した請求項1記載中の各構成手段に相当する。
a)電源線V0〜V4が前述した第1電位供給線手段〜第(N+1)電位供給線
手段に。
b)入出力端子Tioが前述した入出力端子に。
c)電源線V2が前述した所定の前記電位供給線手段に。
d)「電源線V2、V3間に接続されたトランジスタ1c、2c、ダイオード3c及び抵抗4c〜6cの接続体」と「電源線V3、V4間に接続されたトランジスタ1d、2d(、ダイオード3d)及び抵抗4d〜6dの接続体」それぞ
れが前述したプル・アップ手段に。
e)「電源線V0、V1間に接続されたトランジスタ1a、2a(、ダイオード3a)及び抵抗4a〜6aの接続体」と「電源線V1、V2間に接続されたトランジスタ1b、2b、ダイオード3b及び抵抗4b〜6bの接続体」それぞ
れが前述したプル・ダウン手段に。
【0006】
「トランジスタ1a、2a(、ダイオード3a)及び抵抗4a〜6aが構成する自己保持型スイッチング手段」は自分でオン状態を保持する機能を持ち、トランジスタ1a、2aは互いに相手をオン駆動できるが、入出力端子Tioの電位が「電源線V1の電位からトランジスタ1aのオン・オフしきい値電圧を引いた電位」より高くなると、その自己保持型スイッチング手段はターン・オフする。同様に「トランジスタ1b、2b、ダイオード3b及び抵抗4b〜6bが構成する自己保持型スイッチング手段」も自分でオン状態を保持する機能を持ち、トランジスタ1b、2bは互いに相手をオン駆動できるが、入出力端子Tioの電位が「電源線V2の電位からトランジスタ1bのオン・オフしきい値電圧を引いた電位」より高くなると、その自己保持型スイッチング手段はターン・オフする。
【0007】
「トランジスタ1d、2d(、ダイオード3d)及び抵抗4d〜6dが構成する自己保持型スイッチング手段」は自分でオン状態を保持する機能を持ち、トランジスタ1d、2dは互いに相手をオン駆動できるが、入出力端子Tioの電位が「電源線V3の電位にトランジスタ2dのオン・オフしきい値電圧を加算した電位」より低くなると、その自己保持型スイッチング手段はターン・オフする。同様に「トランジスタ1c、2c、ダイオード3c及び抵抗4c〜6cが構成する自己保持型スイッチング手段」も自分でオン状態を保持する機能を持ち、トランジスタ1c、2cは互いに相手をオン駆動できるが、入出力端子Tioの電位が「電源線V2の電位にトランジスタ2cのオン・オフしきい値電圧を加算した電位」より低くなると、その自己保持型スイッチング手段はターン・オフする。
【0008】
尚、入出力端子Tioの電位が常に電源線V0の電位と電源線V4の電位の間にあれば、ダイオード3a、3dは有っても無くても構わない。また、図1の実施例ではトランジスタ2a、2b、1c、1dのいずれか1つがオンである安定状態にあるので、トランジスタ1bのエミッタ接合(エミッタ・ベース間PN接合)と抵抗6bの直列回路は弱いながらも一応プル・アップ能力を持つが、入出力端子Tioの電位を電源線V2の電位にクランプすることはできない。つまり、「トランジスタ1b、2b、ダイオード3b及び抵抗4b〜6bが構成する自己保持型スイッチング手段」は逆方向に関して入出力端子Tioの電位をクランプする能力を持っていない。加えて抵抗6bの一端をダイオード3bのアノードからカソードに接続し直せば、この自己保持型スイッチング手段は逆阻止型になるので、その不要な弱いプル・アップ能力を完全に取り除くことができる。同様に、抵抗6cとトランジスタ2cのエミッタ接合の直列回路は弱いながらも一応プル・ダウン能力を持つが、入出力端子Tioの電位を電源線V2の電位にクランプすることはできない。つまり、「トランジスタ1c、2c、ダイオード3c及び抵抗4c〜6cが構成する自己保持型スイッチング手段」は逆方向に関し入出力端子Tioの電位をクランプする能力を持っていない。加えて抵抗6cの一端をダイオード3cのカソードからアノードに接続し直せば、その自己保持型スイッチング手段は逆阻止型になるので、その不要な弱いプル・ダウン能力を完全に取り除くことができる。
【0009】
それから、その安定状態を切り換えるには、すなわち、その記憶内容を書き換えるには「入出力端子Tioを電源線V3又はV4の電位にプル・アップ又は電源線V0又はV1の電位にプル・ダウンするか」、「トランジスタ2a、2b、1c、1dのいずれか1つにパルス・オン駆動信号を与えるか、あるいは、その4トランジスタのいずれか3つにパルス・オフ駆動信号を与えるか」又は「トランジスタ1a、1b、2c、2dのいずれか1つにパルス・オン駆動信号を与えるか、あるいは、その4トランジスタのいずれか3つにパルス・オフ駆動信号を与えるか」すれば良い。その記憶内容を読み出す時は例えば入出力端子Tioを「その記憶内容に影響を与えない大きさのプル抵抗を電源線v2との間に接続したデータ線」に接続すれば良い。そして、トランジスタ1a〜1d、2a〜2dそれぞれの代わりに「その駆動信号入力用に対を成す制御端子と主端子の間の逆バイアス電圧極性がそれと同じノーマリィ・オフ型スイッチング手段」ならば何でも使用できる。例えばバイポーラ・モードのSIT、MOS・FET、IGBT、GTBT(接地した溝形電極を持つバイポーラ型FET)、ノーマリィ・オフ型SIサイリスタ、GTOサイリスタ等が有る。各ダイオードの代わりに「そのコレクタとベースを接続したバイポーラ・トランジスタ」を使っても良い。電源線v2、v1間の各構成手段と直流電源を取り外し、電源線v2、v1を直結すれば図1の実施例は3安定もしくは3値の多安定回路になる。電源線v3、v2間についても同様にすれば図1の実施例は3値の多安定回路になる。電源線v3、v1間の各構成手段と各直流電源を取り外し、電源線v3、v1を直結すれば図1の実施例は双安定回路になる。ところで、図1の実施例においてトランジスタ2cのエミッタを電源線V2から電源線V1へ接続し直し、トランジスタ1bのエミッタを電源線V2から電源線V3へ接続し直した回路も可能である。
【0010】
図2の実施例は6安定または6値の多安定回路で、電源線v3が前述した所定の電位供給線手段である。図3の実施例は10値の多安定回路で、電源線v5が前述した所定の電位供給線手段で、接続端子ct1、ct2に関して同じ符号同士が接続状態にある。なお、図3の実施例において電源線V5に接続したP・MOSとN・MOSを取り外し、電源線V6に接続したP・MOS(図左側)のドレインと電源線V4に接続したN・MOS(図左側)のドレインを接続した実施例も可能である。図4、図5の各実施例は7値の多安定回路である。図4の実施例では電源線v4が前述した所定の電位供給線手段で、図5の実施例では電源線v3が前述した所定の電位供給線手段である。図6の実施例は12値の多安定回路で、電源線v6が前述した所定の電位供給線手段で、接続端子ct3、ct4に関して同じ符号同士が接続状態にある。これら実施例についても上述の様にして各電源線を直結すれば、その多値数が異なる多安定回路をいくつも構成したり、双安定回路を構成したりできる。図2、図3、図6の各実施例において「そのドレインがダイオードを介して入出力端子Tioに接続されるMOS・FET」それぞれを逆阻止型IGBTで1つずつ置き換えた実施例では逆阻止用の各ダイオードは不要である。逆阻止型の可制御スイッチング手段を使えば同様に逆阻止用の各ダイオードは不要である。各実施例において各ダイオードの代わりに「そのコレクタとベースを直結したバイポーラ・トランジスタ」、「そのコレクタとエミッタを直結したバイポーラ・トランジスタ」、「そのドレインとソースを直結した接合型FET」、「そのドレインとゲートを直結したバイポーラ・モードのSIT又はGTBT」、「そのゲート、ソース及びバックゲートを接続したMOS・FET」、「そのドレインとソースを接続し、そのゲートとバックゲートを接続したMOS・FET」又は「そのドレイン・バックゲート間、そのソース・バックゲート間それぞれが導通しない様にそのバックゲート電位を保ち、そのドレインとゲートを接続したMOS・FET」を1つずつ使用できる。
【0011】
各実施例において各電源線の高低を正反対にして、各可制御スイッチング手段を「それと相補関係に有る可制御スイッチング手段(例:Nチャネル型MOS・FETに対するPチャネル型MOS・FET)で1つずつ置換え、方向性の有る各構成要素(例:ダイオード)の向きを逆にした「元の実施例に対して電圧方向または電圧極性に関して対称的な関係に有る実施例」もまた可能である。但し、その場合、その機能が元と同じ場合も有るし、違う場合も有る。それから、図4、図5の両実施例は、各前段のベース抵抗の接続位置の違いを除けば、互いに前記の様な対称的な関係に有る。例えば10値以上の多安定回路の複数個を10進法の多数桁で使用し、10値以外をプラス、マイナスの符号あるいはパリティ・チェック等に使用することも可能である。点線で示したダイオードの意味は「有っても無くても良い」という意味である。便宜上、入出力端子と呼んだが、実際には端子として存在せず、単なる導線や電極である場合が多い。
【0012】
半導体の(基板)多層化技術(3次元化IC技術)や低電圧化技術は「本発明を利用する多進法コンピュータなど」の実用化を強力にアシストする。もし、半導体の(基板)多層化技術(3次元化IC技術)、低電圧化技術、耐(電)圧化技術、省エネルギー技術、冷却技術などがどんどん進歩すれば、64進法、100進法、128進法の論理回路、演算回路もしくはコンピュータ等も可能になり、64進法、100進法、128進法の超ウルトラ・スーパー・コンピュータが出現するかもしれない。又、10進法コンピュータ『DC』(Decimal Computer)が「現在の2進法コンピュータが引き起こす『コンピュータ過剰適応症』と呼ばれる症候群」を無くしたり、予防したり、緩和(かんわ)したり、あるいは治(なお)したり、することが期待される。『コンピュータ過剰適応症』では「0」か「1」しかないコンピュータの2進法的な思考に同一化して、「曖昧な余地を残す他者」とのコミュニケーションができなくなり、人間関係が悪化する。(参考:日本経済新聞の2002年3月11日付け朝刊P.34『心蝕むテクノストレス』)
【図面の簡単な説明】
【図1〜図6】各図は、本発明の実施例を1つずつ示す回路図である。
[0001]
【Technical field】
The present invention relates to a multistable circuit having three or more stable states and capable of holding or outputting a voltage or potential corresponding to the stable state. The multi-stable circuit can be used as a multi-valued memory cell, a multi-valued memory or a multi-valued storage means, and furthermore, a multi-valued (or multi-valued) logic circuit, a multi-valued (or multi-valued) arithmetic circuit, a multi-valued computer (Especially 4, 8, "10", 16, 32, 64, 100, 128-ary computer) or as a component of multi-level (or multi-level) control means.
[0002]
[Background technology]
The multistable circuit disclosed in Japanese Patent No. 2853041 has a problem that "the number of components is large". The multistable circuits disclosed in FIGS. 27 to 36 of Japanese Patent Application Laid-Open No. 2000-83369 and FIGS. 10 to 14 of Japanese Patent Application No. 2001-32972 can only use "normally-on type switching means." In addition, the power supply voltage rises when the power is turned on, and the power supply short-circuit current flows until a sufficient gate reverse bias voltage can be applied to the normally-on type switching means. " If a normally-off type multi-stable circuit can be formed, it is convenient to increase the choices of constituent means. The problem of the power supply short-circuit current is described in, for example, "When a multi-valued memory means is configured by using a large number of such multi-stable circuits as multi-valued memory cells, an extremely large power supply short-circuit current flows when the power is turned on, and the power supply voltage rises. It can't be lifted and can't be used. "
[0003]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-stable circuit which "reduces the number of components, can use normally-off type switching means, and can reduce the power supply short-circuit current when the power is turned on". (The purpose of the invention)
[0004]
[Disclosure of the invention]
That is, the present invention is a multistable circuit as described in claim 1. However, since the predetermined potential supply line means corresponds to any one of the second potential supply line means to the Nth potential supply line means, there may be only one pull-up means, Alternatively, since there may be only one pull-down means, the "each pull-up means" includes one case, and the "each pull-down means" includes one case. The case is also included. Since the self-holding type switching means constituted by the normally-off type switching means is used as the pull-up means or the pull-down means, the multi-stable circuit of the present invention has "the number of parts is small, the normally-off type switching means is small. Can be used to reduce the power supply short-circuit current at power-on. " ( The invention's effect )
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. The embodiment shown in FIG. 1 is a four-stable or quaternary multi-stable circuit. In this embodiment, the above-mentioned N is 4, and the respective constituent elements correspond to the respective constituent means in claim 1 as follows. .
a) The power supply lines V0 to V4 correspond to the above-described first to (N + 1) th potential supply line means.
b) The input / output terminal Tio is the input / output terminal described above.
c) The power supply line V2 serves as the predetermined potential supply line means described above.
d) “Connected body of transistors 1c and 2c, diode 3c and resistors 4c to 6c connected between power supply lines V2 and V3” and “transistors 1d and 2d (diode 3d) connected between power supply lines V3 and V4” And the connection body of the resistances 4d to 6d ”is used as the pull-up means described above.
e) "Connected body of transistors 1a and 2a (and diode 3a) and resistors 4a to 6a connected between power supply lines V0 and V1" and "transistors 1b and 2b and diode 3b connected between power supply lines V1 and V2" And the connection body of the resistances 4b to 6b "is used as the pull-down means described above.
[0006]
The “self-holding type switching means constituted by the transistors 1a and 2a (and the diode 3a) and the resistors 4a to 6a” has a function of holding the ON state by itself, and the transistors 1a and 2a can drive each other on. When the potential of the output terminal Tio becomes higher than "the potential obtained by subtracting the ON / OFF threshold voltage of the transistor 1a from the potential of the power supply line V1," the self-holding switching means is turned off. Similarly, the “self-holding switching means constituted by the transistors 1b and 2b, the diode 3b, and the resistors 4b to 6b” also has a function of maintaining the ON state by itself, and the transistors 1b and 2b can drive each other on. When the potential of the output terminal Tio becomes higher than "the potential obtained by subtracting the ON / OFF threshold voltage of the transistor 1b from the potential of the power supply line V2", the self-holding type switching means is turned off.
[0007]
The “self-holding type switching means constituted by the transistors 1d and 2d (and the diode 3d) and the resistors 4d to 6d” has a function of holding the ON state by itself, and the transistors 1d and 2d can drive each other on. When the potential of the output terminal Tio becomes lower than "the potential obtained by adding the on / off threshold voltage of the transistor 2d to the potential of the power supply line V3", the self-holding type switching means is turned off. Similarly, the "self-holding switching means constituted by the transistors 1c and 2c, the diode 3c, and the resistors 4c to 6c" also has a function of holding the ON state by itself, and the transistors 1c and 2c can drive each other ON. When the potential of the output terminal Tio becomes lower than "the potential obtained by adding the ON / OFF threshold voltage of the transistor 2c to the potential of the power supply line V2", the self-holding type switching means is turned off.
[0008]
Note that if the potential of the input / output terminal Tio is always between the potential of the power supply line V0 and the potential of the power supply line V4, the diodes 3a and 3d may or may not be provided. In the embodiment shown in FIG. 1, since any one of the transistors 2a, 2b, 1c, and 1d is in a stable state, the series circuit of the emitter junction (emitter-base PN junction) of the transistor 1b and the resistor 6b is formed. Although it has a weak pull-up capability, it cannot clamp the potential of the input / output terminal Tio to the potential of the power supply line V2. That is, the "self-holding switching means constituted by the transistors 1b and 2b, the diode 3b, and the resistors 4b to 6b" does not have the ability to clamp the potential of the input / output terminal Tio in the reverse direction. In addition, if one end of the resistor 6b is reconnected from the anode to the cathode of the diode 3b, the self-holding switching means becomes a reverse blocking type, so that the unnecessary weak pull-up ability can be completely eliminated. Similarly, the series circuit of the resistor 6c and the emitter junction of the transistor 2c has a weak pull-down capability, but cannot clamp the potential of the input / output terminal Tio to the potential of the power supply line V2. That is, the "self-holding switching means constituted by the transistors 1c and 2c, the diode 3c, and the resistors 4c to 6c" does not have the ability to clamp the potential of the input / output terminal Tio in the reverse direction. In addition, if one end of the resistor 6c is connected again from the cathode to the anode of the diode 3c, the self-holding switching means becomes a reverse blocking type, so that the unnecessary weak pull-down ability can be completely eliminated.
[0009]
Then, in order to switch the stable state, that is, to rewrite the stored contents, it is necessary to determine whether the input / output terminal Tio is pulled up to the potential of the power supply line V3 or V4 or pulled down to the potential of the power supply line V0 or V1. "Whether to apply a pulse-on drive signal to any one of the transistors 2a, 2b, 1c, or 1d, or to apply a pulse-off drive signal to any three of the four transistors" or "Transistor 1a , 1b, 2c, or 2d, or a pulse-off drive signal to any three of the four transistors. " When reading the stored content, for example, the input / output terminal Tio may be connected to a "data line in which a pull resistor having a size that does not affect the stored content is connected between the power supply line v2". Instead of the transistors 1a to 1d and 2a to 2d, any type of "normally-off type switching means having the same reverse bias voltage polarity between the control terminal and the main terminal as a pair for inputting the drive signal" is used. it can. For example, there are a bipolar mode SIT, a MOS FET, an IGBT, a GTBT (a bipolar FET having a grounded groove electrode), a normally-off SI thyristor, a GTO thyristor, and the like. Instead of each diode, a "bipolar transistor having its collector and base connected" may be used. If the components between the power supply lines v2 and v1 and the DC power supply are removed and the power supply lines v2 and v1 are directly connected, the embodiment of FIG. 1 becomes a three-stable or ternary multi-stable circuit. If the same applies between the power supply lines v3 and v2, the embodiment of FIG. 1 becomes a ternary multistable circuit. If the components and the DC power supply between the power supply lines v3 and v1 are removed and the power supply lines v3 and v1 are directly connected, the embodiment of FIG. 1 becomes a bistable circuit. By the way, a circuit in which the emitter of the transistor 2c is reconnected from the power supply line V2 to the power supply line V1 and the emitter of the transistor 1b is reconnected from the power supply line V2 to the power supply line V3 in the embodiment of FIG.
[0010]
The embodiment of FIG. 2 is a six-stable or six-valued multistable circuit, and the power supply line v3 is the predetermined potential supply line means described above. The embodiment of FIG. 3 is a ten-valued multistable circuit, in which the power supply line v5 is the predetermined potential supply line means described above, and the same reference numerals are connected to the connection terminals ct1 and ct2. In the embodiment of FIG. 3, the P-MOS and the N-MOS connected to the power supply line V5 are removed, and the drain of the P-MOS (left side in FIG. 3) connected to the power supply line V6 and the N-MOS ( An embodiment in which the drain (on the left side in the figure) is connected is also possible. Each of the embodiments shown in FIGS. 4 and 5 is a seven-valued multistable circuit. In the embodiment of FIG. 4, the power supply line v4 is the above-mentioned predetermined potential supply line means, and in the embodiment of FIG. 5, the power supply line v3 is the above-mentioned predetermined potential supply line means. The embodiment of FIG. 6 is a twelve-valued multistable circuit, in which the power supply line v6 is the predetermined potential supply line means described above, and the same reference numerals are connected to the connection terminals ct3 and ct4. Also in these embodiments, if the power supply lines are directly connected as described above, it is possible to configure a number of multi-stable circuits having different multi-value numbers or a bistable circuit. In each of the embodiments shown in FIGS. 2, 3 and 6, the MOS / FET whose drain is connected to the input / output terminal Tio via a diode is replaced with a reverse blocking IGBT one by one. Each diode is unnecessary. Similarly, if reverse controllable controllable switching means is used, each diode for reverse blocking is unnecessary. In each embodiment, instead of each diode, "a bipolar transistor whose collector and base are directly connected", "a bipolar transistor whose collector and emitter are directly connected", "a junction type FET whose drain and source are directly connected", " Bipolar-mode SIT or GTBT with drain and gate directly connected, "MOS / FET with its gate, source and back gate connected", "MOS / FET with its drain and source connected and its gate and back gate connected" FETs or MOS-FETs whose drain and gate are connected and whose back gate potential is maintained so that the drain and back gate and the source and back gate do not conduct each other can be used.
[0011]
In each embodiment, the height of each power supply line is reversed, and each of the controllable switching means is composed of one controllable switching means (e.g., a P-channel type MOS.FET for an N-channel type MOS.FET) having a complementary relationship with it. An "embodiment having a symmetrical relationship with respect to the voltage direction or voltage polarity with respect to the original embodiment" in which the direction of each directional component (eg, diode) is replaced by each other is also possible. However, in that case, the function may be the same as the original, or may be different. 4 and 5 have a symmetrical relationship with each other as described above, except for the difference in the connection position of the base resistor in each preceding stage. For example, it is possible to use a plurality of multi-stable circuits having 10 or more values in a large number of decimals, and to use other than 10 values for plus / minus sign or parity check. The meaning of the diode shown by the dotted line means "it may or may not be present". Although referred to as input / output terminals for convenience, they are not actually present as terminals, but are often simply conductors or electrodes.
[0012]
Semiconductor (substrate) multilayering technology (three-dimensional IC technology) and low voltage technology strongly assist in the practical application of "multi-point computer using the present invention". If semiconductor (substrate) multi-layer technology (three-dimensional IC technology), low voltage technology, anti-voltage (electric) resistance technology, energy saving technology, cooling technology, etc. progress steadily, hexadecimal system and 100 system system , 128-ary logic circuit, arithmetic circuit or computer, etc., and a super-ultra-super computer of a hexadecimal system, a 100-system system, or a 128-system system may appear. Also, the decimal computer “DC” (Decimal Computer) eliminates, prevents, alleviates, or eliminates “a syndrome called“ computer over-adaptation ”caused by the current binary computer”, or It is expected to be healed. "Computer over-adaptation" equates to a binary thinking of a computer that has only "0" or "1", making it impossible to communicate with "others who leave vague room" and deteriorating human relationships . (Reference: Nikkei, Morning Paper, March 11, 2002, P.34, “Heart-Eating Technostress”)
[Brief description of the drawings]
1 to 6 are circuit diagrams each showing one embodiment of the present invention.

Claims (1)

3又は3以上である所定の複数をNとしたときに、
「第1電位から第(N+1)電位まで番号順に電位が高くなって行く(N+1)個の各電位を供給する第1電位供給線手段〜第(N+1)電位供給線手段」及び「信号の入出力を行う入出力端子」が有って、
所定の前記電位供給線手段から前記第(N+1)電位供給線手段までで電位の高さで隣同士となる2つの前記電位供給線手段の各間に「前記入出力端子に接続され、オンの時その2つの前記電位供給線手段のうち高電位側に前記入出力端子の電位をプル・アップするプル・アップ手段」を1つずつ設け、
前記第1電位供給線手段から前記所定の電位供給線手段までで電位の高さで隣同士となる2つの前記電位供給線手段の各間に「前記入出力端子に接続され、オンの時その2つの前記電位供給線手段のうち低電位側に前記入出力端子の電位をプル・ダウンするプル・ダウン手段」を1つずつ設け、
それぞれの前記プル・アップ手段が「自分でオン状態を保持できて、前記入出力端子の電位が自分固有の電位まで下がるとターン・オフする自己保持型スイッチング手段」であり、
それぞれの前記プル・ダウン手段が「自分でオン状態を保持できて、前記入出力端子の電位が自分固有の電位まで上がるとターン・オフする自己保持型スイッチング手段」であり、
前記第2電位供給線手段から前記N電位供給線手段までに設けられた(N−2)個の前記自己保持型スイッチング手段それぞれが逆阻止型であるか、あるいは、逆方向に関して前記入出力端子の電位をクランプする能力を持たないことを特徴とする多安定回路。
When N is 3 or a predetermined plurality that is 3 or more,
"First potential supply line means to supply (N + 1) potentials, each of which increases in numerical order from the first potential to the (N + 1) th potential, to (N + 1) th potential supply line means"; There is an input / output terminal that performs output,
Between the potential supply line means and the (N + 1) th potential supply line means, between each of the two potential supply line means which are adjacent to each other at the height of the potential, "connected to the input / output terminal and turned on. A pull-up means for pulling up the potential of the input / output terminal on the high potential side of the two potential supply line means.
Between the two potential supply line means that are adjacent to each other at the height of the potential from the first potential supply line means to the predetermined potential supply line means, "being connected to the input / output terminal, One pull-down means for pulling down the potential of the input / output terminal on the lower potential side of the two potential supply line means,
Each of the pull-up means is a `` self-holding switching means that can hold the ON state by itself and turn off when the potential of the input / output terminal falls to its own potential '',
Each of the pull-down means is a `` self-holding switching means that can hold the ON state by itself and turn off when the potential of the input / output terminal rises to its own potential '',
Each of the (N-2) self-holding type switching means provided from the second potential supply line means to the N potential supply line means is a reverse blocking type, or the input / output terminal in the reverse direction. A multi-stable circuit characterized in that it does not have the ability to clamp the potential of the circuit.
JP2003203347A 2002-06-24 2003-06-24 Multistable circuit Pending JP2004088763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203347A JP2004088763A (en) 2002-06-24 2003-06-24 Multistable circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002218904 2002-06-24
JP2003203347A JP2004088763A (en) 2002-06-24 2003-06-24 Multistable circuit

Publications (1)

Publication Number Publication Date
JP2004088763A true JP2004088763A (en) 2004-03-18

Family

ID=32072257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203347A Pending JP2004088763A (en) 2002-06-24 2003-06-24 Multistable circuit

Country Status (1)

Country Link
JP (1) JP2004088763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116168A (en) * 2003-09-16 2005-04-28 Toshiyasu Suzuki Multi-level storage means
JP2006228388A (en) * 2005-02-17 2006-08-31 Toshiyasu Suzuki Multi-level storing means
JP2006252742A (en) * 2005-03-08 2006-09-21 Toshiyasu Suzuki Multi-level storage means, multi-level buffer means, and bi-directional switching means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116168A (en) * 2003-09-16 2005-04-28 Toshiyasu Suzuki Multi-level storage means
JP2006228388A (en) * 2005-02-17 2006-08-31 Toshiyasu Suzuki Multi-level storing means
JP2006252742A (en) * 2005-03-08 2006-09-21 Toshiyasu Suzuki Multi-level storage means, multi-level buffer means, and bi-directional switching means

Similar Documents

Publication Publication Date Title
JP2733796B2 (en) Switch circuit
JPH06169252A (en) Programmable logic-circuit device
JPH05267603A (en) Integrated circuit
EP0346898B1 (en) Power supply switching circuit
JPH06244700A (en) Rectifier type transmission gate circuit
US4521695A (en) CMOS D-type latch employing six transistors and four diodes
JPS6077520A (en) Control circuit of drive circuit
JP2004088763A (en) Multistable circuit
WO2023155439A1 (en) Electronic device and memristor-based logic gate circuit thereof
KR790001774B1 (en) Logic circuit
US4360897A (en) Memory cell comprising tunnel diodes and field effect transistors
JP2003188696A (en) Bistable circuit
JPS61157115A (en) Cmos including &#39;chute through&#39; current suppression means
JPH0684345A (en) Decoder driver circuit
JPH11284500A (en) Logic circuit
JP3698040B2 (en) Bipolar level shift circuit
US4868903A (en) Safe logic zero and one supply for CMOS integrated circuits
JPS61161826A (en) Latch circuit using complementary misfet
JPS62268211A (en) Complementary input circuit
JP2001257570A (en) Switching means, bistable circuit and multistable circuit
JPWO2003028214A1 (en) Multistable circuit
JP2005116168A (en) Multi-level storage means
JP4800657B2 (en) Multi-value storage means and multi-stable circuit
JP3361873B2 (en) Input / output buffer circuit in semiconductor integrated circuit
JP4800642B2 (en) Multi-value storage means and multi-stable circuit