WO2022059378A1 - Non-volatile memory - Google Patents

Non-volatile memory Download PDF

Info

Publication number
WO2022059378A1
WO2022059378A1 PCT/JP2021/029134 JP2021029134W WO2022059378A1 WO 2022059378 A1 WO2022059378 A1 WO 2022059378A1 JP 2021029134 W JP2021029134 W JP 2021029134W WO 2022059378 A1 WO2022059378 A1 WO 2022059378A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
gate
transistors
circuit
Prior art date
Application number
PCT/JP2021/029134
Other languages
French (fr)
Japanese (ja)
Inventor
省治 竹中
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US18/021,606 priority Critical patent/US20230307049A1/en
Priority to DE112021003866.4T priority patent/DE112021003866T5/en
Priority to JP2022550406A priority patent/JPWO2022059378A1/ja
Publication of WO2022059378A1 publication Critical patent/WO2022059378A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM

Definitions

  • This disclosure relates to non-volatile memory.
  • non-volatile memory that uses hot carrier injection into a transistor.
  • This type of non-volatile memory includes first and second transistors (corresponding to m1 and m2 in FIG. 22) having the same characteristics in the initial state as memory elements, and hot carriers are provided only for one of the transistors. It is injected to deteriorate the characteristics.
  • "0" data is stored or "1" data is stored based on the magnitude relationship of the drain current when a common gate voltage is supplied to the first and second transistors. Read if it is.
  • a state in which the drain current of the first transistor is smaller corresponds to a state in which "0" data is stored, and the drain current of the second transistor is smaller.
  • the state corresponds to the state in which the data of "1" is stored.
  • the stored data in the initial state is undefined.
  • a non-volatile memory configured so that a larger drain current flows in either of the first and second transistors in the initial state so that the stored data in the initial state does not become undefined has also been proposed.
  • the present disclosure aims to provide a non-volatile memory that is less susceptible to mismatches.
  • the non-volatile memory has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and is a source of the first transistor. With respect to the resistor to which the first end is connected, between the gate of the first transistor and the second end of the resistor, and between the gate and the source of the second transistor, the first and the above.
  • a lead voltage supply circuit configured to supply a lead voltage for turning on at least one of the second transistors, and in a read operation in which the lead voltage is supplied by the lead voltage supply circuit.
  • a signal output circuit configured to output a signal associated with the first value or a signal associated with the second value based on the drain currents of the first and second transistors. ..
  • the other non-volatile memory has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and the first transistor.
  • a lead voltage supply circuit configured to be able to supply a resistor to which the first end is connected to the source of the above and a read voltage for turning on at least one of the first and second transistors.
  • the signal associated with the first value or the second value is supported based on the drain currents of the first and second transistors. It includes a signal output circuit configured to be able to output the attached signal.
  • FIG. 1 is a block diagram of a storage circuit according to a standard embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a state in which a transistor (MOSFET) shown as one element in FIG. 1 is composed of a parallel circuit of a plurality of unit MOSFETs.
  • FIG. 3 is a diagram showing the characteristics of each transistor of FIG.
  • FIG. 4 is a block diagram of a storage circuit according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram showing the characteristics of each transistor of FIG.
  • FIG. 6 is a diagram showing a configuration of a storage circuit according to Example EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram showing a configuration of a storage circuit according to Example EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 8 is a timing chart of the read operation before the program operation according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram showing a state (switch state) of the precharge period in the read operation according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram showing a state (switch state) of a lead period in a read operation according to Example EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram showing a relationship between a plurality of signals according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 12 is a timing chart of the read operation after the program operation according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 13 is a diagram showing a state (switch state) of the program period according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 14A is a diagram showing a configuration of a constant voltage source according to the second embodiment of the present disclosure.
  • FIG. 14B is a diagram showing a configuration of a constant voltage source according to the second embodiment of the present disclosure.
  • FIG. 15A is a diagram showing correspondence when the output voltage of a constant voltage source is required at a plurality of locations according to the second embodiment of the present disclosure.
  • FIG. 15B is a diagram showing correspondence when the output voltage of a constant voltage source is required at a plurality of locations according to the second embodiment of the present disclosure.
  • FIG. 16 is a diagram showing a circuit configuration of a constant voltage source according to Example EX2_1 belonging to the second embodiment of the present disclosure.
  • FIG. 17 is a diagram showing the characteristics of the two transistors constituting the differential pair according to the embodiment EX2_1 belonging to the second embodiment of the present disclosure.
  • FIG. 18 is a diagram showing a modified circuit configuration of a constant voltage source according to Example EX2_1 belonging to the second embodiment of the present disclosure.
  • FIG. 19 is a diagram showing a circuit configuration of a constant current source according to Example EX2_2 belonging to the second embodiment of the present disclosure.
  • FIG. 20 is a diagram showing a modification technique for the circuit configuration of FIG. 19 according to Example EX2_2 belonging to the second embodiment of the present disclosure.
  • FIG. 21 is a diagram showing a circuit configuration of a comparator according to Example EX2_3 belonging to the second embodiment of the present disclosure.
  • FIG. 22 is a diagram showing a main part of the non-volatile memory according to the reference configuration.
  • the ground refers to a reference conductive portion having a reference potential of 0 V (zero volt) or refers to the potential of 0 V itself.
  • the reference conductive portion is formed of a conductor such as metal.
  • the potential of 0V may be referred to as a ground potential.
  • the voltage shown without any particular reference represents the potential seen from ground.
  • Level refers to the level of potential, where a high level has a higher potential than a low level for any signal or voltage of interest.
  • a signal or voltage at a high level means that the signal or voltage level is at a high level
  • a signal or voltage at a low level means that the signal or voltage level is at a low level. It means being at a low level.
  • a level for a signal is sometimes referred to as a signal level
  • a level for a voltage is sometimes referred to as a voltage level.
  • the on state refers to the state in which the drain and source of the transistor are conducting, and the off state means the drain and source of the transistor. Refers to a state in which the interval is non-conducting (blocked state).
  • MOSFETs are understood to be enhancement-type MOSFETs.
  • MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor".
  • the electrical characteristics of the MOSFET include the gate threshold voltage.
  • the gate potential of the transistor is higher than the source potential of the transistor, and the gate-source voltage of the transistor (gate potential seen from the source potential).
  • the transistor is turned on, and when not, the transistor is turned off.
  • the gate potential of the transistor is lower than the source potential of the transistor, and the gate-source voltage of the transistor (gate potential seen from the source potential).
  • the transistor is turned on, and when not, the transistor is turned off.
  • Any switch can be configured with one or more FETs (Field Effect Transistors), and when a switch is on, both ends of the switch conduct, while when a switch is off, the switch There is no conduction between both ends.
  • FETs Field Effect Transistors
  • the on state and the off state may be simply expressed as on and off.
  • the period when the level of the signal becomes high level is called the high level period
  • the period when the level of the signal becomes low level is called the low level period.
  • the same is true for any voltage that has a high or low level voltage level.
  • FIG. 1 is a configuration diagram showing a main part of a storage circuit 901 according to a basic embodiment.
  • the storage circuit 901 is a non-volatile memory that stores 1-bit data, and includes a memory unit 910, a read voltage supply circuit 920, a signal output circuit 930, and a program circuit 940.
  • the storage circuit 901 may be configured by a semiconductor integrated circuit.
  • the memory unit 910 is composed of memory elements 911 and 912, and stores "0" data or "1" data in the memory unit 910.
  • Each of the memory elements 911 and 912 is a transistor. Therefore, the memory elements 911 and 912 are also referred to as transistors 911 and 912.
  • Each of the transistors 911 and 912 is configured as an N-channel MOSFET.
  • the transistor 911 is formed by a single unit MOSFET
  • the transistor 912 is formed by a parallel circuit of n unit MOSFETs as shown in FIG. n is any integer greater than or equal to 2.
  • the unit MOSFETs constituting the transistor 911 and the unit MOSFETs constituting the transistor 912 have the same structure, and have the same electrical characteristics (including the gate threshold voltage) before the program operation by the program circuit 940 is executed. ..
  • the gates of the transistors 911 and 912 are commonly connected to each other. Each source of transistors 911 and 912 is connected to ground. Each drain of the transistors 911 and 912 is connected to the signal output circuit 930.
  • a read operation for reading the data stored in the memory unit 910 and a program operation (write operation) for rewriting the data stored in the memory unit 910 from “0" to "1" can be executed.
  • the lead voltage supply circuit 920 is a circuit that functions effectively in the read operation, and in the read operation, the lead voltage for turning on at least one of the transistors 911 and 912 is applied to each gate of the transistors 911 and 912. Supply.
  • the read voltage is at least higher than the gate threshold voltage of the transistor 911.
  • the signal output circuit 930 outputs a signal corresponding to the value of the data stored in the memory unit 910 based on the magnitude relationship of the drain currents of the transistors 911 and 912 in the read operation.
  • the program operation is realized by the program circuit 940.
  • the program circuit 940 deteriorates the electrical characteristics of the transistor 912 by injecting hot carriers into the transistor 912, and the deterioration causes the gate threshold voltage of the transistor 912 to increase (rise).
  • the solid line waveform 962 INI represents the gate-source voltage dependence of the drain current of the transistor 912 before the execution of the program operation (that is, in the initial state of the storage circuit 901)
  • the solid line waveform 962 PRG is It represents the gate-source voltage dependence of the drain current of the transistor 912 after the execution of the program operation.
  • the dashed line waveform 961 represents the gate-source voltage dependence of the drain current of the transistor 911. Since hot carriers are not injected into the transistor 911 during the program operation, the electrical characteristics of the transistor 911 do not change before and after the execution of the program operation.
  • each unit MOSFET constituting the transistors 911 and 912 has the same electrical characteristics. Therefore, when a common voltage exceeding their gate threshold voltage is supplied to the gates of the transistors 911 and 912, the transistors The drain current of the 912 is larger than the drain current of the transistor 911.
  • the state in which the drain current of the transistor 912 is larger than the drain current of the transistor 911 corresponds to the state in which the data of "0" is stored in the memory unit 910. Therefore, in the read operation, when the drain current of the transistor 912 is larger than the drain current of the transistor 911, the signal output circuit 930 outputs a signal corresponding to the data of “0” (for example, a low level signal). ..
  • the program operation By executing the program operation, hot carriers are injected into each unit MOSFET of the transistor 912, so that the gate threshold voltage of each unit MOSFET of the transistor 912 increases. This corresponds to an increase in the gate threshold voltage of the transistor 912.
  • the program operation is executed so that the gate threshold voltage of the transistor 912 becomes sufficiently higher than the gate threshold voltage of the transistor 911.
  • the gate threshold voltage of the transistor 912 after the execution of the program operation may be higher than the read voltage, and when the read operation is performed after the execution of the program operation, the drain current of the transistor 911 is larger than the drain current of the transistor 912. Become.
  • the state in which the drain current of the transistor 911 is larger than the drain current of the transistor 912 corresponds to the state in which the data of "1" is stored in the memory unit 910. Therefore, in the read operation, when the drain current of the transistor 911 is larger than the drain current of the transistor 912, the signal output circuit 930 outputs a signal corresponding to the data of “1” (for example, a high level signal). ..
  • the stored data in the initial state is indefinite.
  • the stored data can be fixed to "0" in the initial state, and the stored data can be set to "1" only when the program operation is executed.
  • each unit MOSFET is formed on the semiconductor substrate with the aim of making the electrical characteristics of the unit MOSFETs of the transistors 911 and 912 the same, but in reality, the electrical characteristics of each unit MOSFET vary. Occurs. This variation corresponds to a mismatch. Such a mismatch hinders the storage and reading of correct data. Alternatively, it is necessary to take measures such as considerably increasing the value of the above "n" in order to realize correct data storage and reading in consideration of the mismatch. In the following first embodiment, a storage circuit that is not easily affected by the mismatch will be described.
  • FIG. 4 is a configuration diagram showing a main part of the storage circuit 1 according to the first embodiment.
  • the storage circuit 1 is a non-volatile memory that stores 1-bit data, and includes a memory unit 10, a read voltage supply circuit 20, a signal output circuit 30, and a program circuit 40, as well as a resistor R1.
  • the storage circuit 1 may be configured by a semiconductor integrated circuit.
  • the memory unit 10 includes memory elements M1 and M2, and stores "0" data or "1" data in the memory unit 10.
  • Each of the memory elements M1 and M2 is a transistor. Therefore, the memory elements M1 and M2 are also referred to as transistors M1 and M2 (first and second transistors).
  • Each of the transistors M1 and M2 is configured as an N-channel MOSFET.
  • the transistors M1 and M2 have the same structure as each other, and have the same electrical characteristics as each other before the program operation by the program circuit 40 is executed. Therefore, before the program operation by the program circuit 40 is executed, the transistors M1 and M2 have the same gate threshold voltage.
  • the structure is a concept including the size of the transistor, and therefore, for any plurality of transistors, the same structure means that the sizes of the plurality of transistors are also the same. means.
  • the same structure or electrical characteristics means that they are the same in design, and an error is actually obtained. (Ie, the same is understood to be a concept involving errors).
  • the gates of the transistors M1 and M2 are commonly connected to each other.
  • the source of the transistor M1 is connected to ground via the resistor R1. That is, the source of the transistor M1 is connected to one end of the resistor R1 and the other end of the resistor R1 is connected to the ground.
  • the source of the transistor M2 is directly connected to the ground.
  • Each drain of the transistors M1 and M2 is connected to the signal output circuit 30.
  • the drain current of the transistor M1 is referred to by the symbol “ ID1 ”
  • the drain current of the transistor M2 is referred to by the symbol “ ID2 ”.
  • a read operation for reading the data stored in the memory unit 10 and a program operation (write operation) for rewriting the data stored in the memory unit 10 from “0" to "1" can be executed.
  • the lead voltage supply circuit 20 is a circuit that functions effectively in the read operation, and in the read operation, the lead voltage for turning on at least one of the transistors M1 and M2 is applied to each gate of the transistors M1 and M2. Supply.
  • the source of the transistor M1 is connected via the resistor R1
  • a voltage obtained by subtracting the voltage drop of the resistor R1 from the read voltage is applied between the gate and the source of the transistor M1 (that is,).
  • a read voltage is applied between both ends of the resistor R1 and one end connected to the ground and the gate of the transistor M1).
  • the read voltage is directly applied between the gate and the source of the transistor M2.
  • the read voltage is at least higher than the gate threshold voltage of the transistor M1.
  • the signal output circuit 30 outputs a signal D OUT corresponding to the value of the data stored in the memory unit 10 based on the magnitude relationship of the drain currents of the transistors M1 and M2 in the read operation.
  • the program operation is realized by the program circuit 40.
  • the program circuit 40 deteriorates the electrical characteristics of the transistor M2 by injecting hot carriers into the transistor M2, and the deterioration causes the gate threshold voltage of the transistor M2 to increase (rise).
  • the solid line waveform 800M2 INI represents the gate-source voltage dependence of the drain current of the transistor M2 before the execution of the program operation (that is, in the initial state of the storage circuit 1)
  • the solid line waveform 800M2 PRG is It represents the gate-source voltage dependence of the drain current of the transistor M2 after the execution of the program operation.
  • the dashed line waveform 800M1 represents the gate-source voltage dependence of the drain current of the transistor M1. Since hot carriers are not injected into the transistor M1 during the program operation, the electrical characteristics of the transistor M1 do not change before and after the execution of the program operation.
  • the waveforms 800M1 and 800M2 INI will overlap each other. In FIG. 5, for convenience of illustration, the waveforms 800M1 and 800M2 INI are shown with a slight shift.
  • the drain current I of the transistor M2 D2 is larger than the drain current I D1 of the transistor M1.
  • the state in which the drain current I D2 is larger than the drain current I D1 corresponds to the state in which the data of "0" is stored in the memory unit 10. Therefore, in the read operation, when the drain current I D2 is larger than the drain current I D1 , the signal output circuit 30 outputs a signal D OUT (for example, a low level signal D OUT ) corresponding to the data of “0”. do.
  • the drain current I D2 is larger than the drain current I D1 .
  • the gate threshold voltage of the transistor M2 increases.
  • the program operation is executed so that the gate threshold voltage of the transistor M2 becomes sufficiently higher than the gate threshold voltage of the transistor M1.
  • the gate threshold voltage of the transistor M2 after executing the program operation may be higher than the read voltage.
  • the drain current ID1 becomes larger than the drain current ID2 .
  • the state in which the drain current I D1 is larger than the drain current I D2 corresponds to the state in which the data of "1" is stored in the memory unit 10. Therefore, in the read operation, when the drain current I D1 is larger than the drain current I D2 , the signal output circuit 30 outputs a signal D OUT (for example, a high level signal D OUT ) corresponding to the data of “1”. do.
  • connection relationship of FIG. 4 and the connection relationship described above for the circuit of FIG. 4 represent the connection relationship when the read operation is executed, and the source and drain of the transistor M2 may be exchanged when the program operation is executed. (However, this is not mandatory). That is, of the first and second electrodes of the transistor M2, the electrode on the high potential side functions as a drain and the electrode on the low potential side functions as a source, but the first electrode and the second electrode of the transistor M2 have. Of the electrodes, each circuit is connected using a switch or the like (not shown in FIG. 4) so that the electrode connected to the ground in the lead operation (the electrode that functions as the source) functions as the drain when the program operation is executed. The relationship may be changed (detailed circuit examples to achieve this will be described later).
  • the first embodiment includes the following examples EX1_1 to EX1_4.
  • the above-mentioned matters in the first embodiment are applied to the following Examples EX1_1 to EX1_4 unless otherwise specified and without contradiction, and in each embodiment, the matters inconsistent with the above-mentioned matters in the first embodiment are described. The description in each embodiment may be prioritized. Further, as long as there is no contradiction, the matters described in any of the examples EX1_1 to EX1_4 can be applied to any other embodiment (that is, any two or more implementations in the plurality of examples). It is also possible to combine examples).
  • FIG. 6 shows the configuration of the storage circuit 1A according to the embodiment EX1_1.
  • the storage circuit 1A is an example of the storage circuit 1 of FIG.
  • the storage circuit 1A includes transistors M1 to M4, M11 to M14, M21 and M22, switches SW1 to SW12, resistors R1, R3 and R4, capacitors C1 and C2, inverters INV1 to INV5, and a constant current circuit CC IG .
  • CC OTPG and a control circuit 60.
  • the storage circuit 1A may be configured by a semiconductor integrated circuit.
  • Transistors M1 to M4 and M11 to M14 are N-channel MOSFETs, and transistors M21 and M22 are P-channel MOSFETs.
  • the signals XRST and PRG are output from the control circuit 60.
  • Signals XRST and PRG are binarized signals that take low or high level signal levels.
  • the on / off of the switches SW1 to SW12 is controlled based on the signals XRST and PRG, and FIG. 6 shows the situation when it is assumed that all the switches are in the off state (the same applies to FIG. 7 described later).
  • a positive power supply voltage VDD is applied to the power supply line LN VDD .
  • the power supply voltage VDD has a predetermined positive DC voltage value.
  • the ground line LN GND has a ground potential of 0 V.
  • Each source of the transistors M21 and M22 and one end of each of the switches SW3 and SW4 are connected to the power supply line LN VDD .
  • the other end of the switch SW3 is connected to the gate of the transistor M21, and the other end of the switch SW4 is connected to the gate of the transistor M22.
  • the wiring connected to the gate of the transistor M21 is referred to as a line LN2, and the voltage applied to the line LN2 is referred to as a voltage V2.
  • the wiring connected to the gate of the transistor M22 is referred to as a line LN1, and the voltage applied to the line LN1 is referred to as a voltage V1.
  • the drain of the transistor M21 is connected to the line LN1, and the drain of the transistor M22 is connected to the line LN2.
  • the input terminal of the inverter INV1 is connected to the line LN1.
  • the output terminal of the inverter INV1 is connected to the input terminal of the inverter INV2.
  • the output terminal of the inverter INV2 is connected to the input terminal of the inverter INV3 and is also connected to the line LN1 via the capacitor C1.
  • the input terminal of the inverter INV4 is connected to the line LN2.
  • the output terminal of the inverter INV4 is connected to the input terminal of the inverter INV5.
  • the output terminal of the inverter INV5 is connected to the line LN2 via the capacitor C2.
  • One end of the switch SW5 is connected to the line LN1, and the other end of the switch SW5 is connected to one end of the switch SW1.
  • the other end of the switch SW1 is connected to the ground line LN GND .
  • One end of the switch SW6 is connected to the line LN2, and the other end of the switch SW6 is connected to one end of the switch SW2.
  • the other end of the switch SW2 is connected to the ground line LN GND .
  • Each gate of the transistors M11 to M14 is commonly connected to the gate line LN IG .
  • the voltage applied to the gate line LN IG is called the gate voltage V IG .
  • Each gate of the transistors M1 to M3 is commonly connected to the gate line LN OTPG .
  • the voltage applied to the gate line LN OTPG is referred to as the gate voltage V OTPG .
  • the drain of the transistor M11 is connected to the line LN1, and the source of the transistor M11 is connected to the drain of the transistor M1.
  • the source of the transistor M1 is connected to the ground line LN GND via the resistor R1. That is, the source of the transistor M1 is connected to one end of the resistor R1 and the other end of the resistor R1 is connected to the ground line LN GND .
  • the drain of the transistor M12 is connected to the line LN2, and the source of the transistor M12 is connected to the electrode E1 of the transistor M2.
  • a switch SW9 is inserted in series between the electrode E1 of the transistor M2 and the ground line LN GND .
  • a switch SW10 is inserted in series between the electrode E2 of the transistor M2 and the ground line LN GND .
  • the switch SW11 is inserted in series between the electrode E2 of the transistor M2 and the power supply line LN VDD .
  • the electrode on the high potential side functions as a drain and the electrode on the low potential side functions as a source.
  • the switches SW9, SW10, and SW11 are turned off, on, and off, respectively, so that the electrode E1 functions as a drain, and in the program operation, the switch SW9, When SW10 and SW11 are turned on, off, and on, respectively, the electrode E2 functions as a drain.
  • the switch SW12 is inserted in series between the power line LN VDD and the gate line LN OTPG
  • the switch SW7 is inserted in series between the gate line LN OTPG and the ground line LN GND .
  • the drain of the transistor M13 is connected to the gate line LN OTPG
  • the source of the transistor M13 is connected to the drain of the transistor M3.
  • the source of the transistor M3 is connected to the ground line LN GND via the resistor R3.
  • a switch SW8 is inserted in series between the gate line LN IG and the ground line LN GND .
  • the drain of the transistor M14 is connected to the gate line LN IG
  • the source of the transistor M14 is connected to the drain of the transistor M4.
  • the gate and drain of the transistor M4 are connected to each other.
  • the source of the transistor M4 is connected to the ground line LN GND via the resistor R4.
  • the constant current circuit CC IG is connected to the gate line LN IG .
  • the constant current circuit CC IG generates a constant current IG based on the power supply voltage VDD and supplies the constant current IG to the gate line LN IG during a necessary period including a period in which the read operation is performed.
  • the constant current circuit CC OTPG is connected to the gate line LN OTPG .
  • the constant current circuit CC OTPG generates a constant current OTPG based on the power supply voltage VDD and supplies the constant current OTPG to the gate line LN OTPG in a necessary period including a period in which the read operation is performed.
  • Inverter which is any of INV1 to INV5, outputs an inverted signal of an input signal to its own input terminal from its own output terminal. Specifically, when the input voltage to its input terminal is less than a predetermined threshold voltage, the inverter outputs a high-level signal sufficiently higher than the threshold voltage from its output terminal to its own input terminal. When the input voltage of is equal to or higher than a predetermined threshold voltage, a low-level signal sufficiently lower than the threshold voltage is output from its own output terminal.
  • the inverters INV1 to INV5 are driven based on the power supply voltage VDD, and the threshold voltage of each inverter is approximately half of the power supply voltage VDD.
  • the output signal of the inverter INV3 is the output signal D OUT of the storage circuit 1A.
  • a signal corresponding to the value of the data stored in the memory unit 10 composed of the transistors M1 and M2 is output as an output signal D OUT through a read operation.
  • the control terminal of the switch SW5 is connected to the output terminal of the inverter INV1.
  • the switch SW5 is turned on and off, respectively, when the output signal of the inverter INV1 is high level and low level.
  • the control terminal of the switch SW6 is connected to the output terminal of the inverter INV4.
  • the switch SW6 is turned on and off, respectively, when the output signal of the inverter INV4 is high level and low level.
  • the transistors M1 and M2 have the same structure as each other, and have the same electrical characteristics (including the gate threshold voltage) before the execution of the program operation. Further, here, it is assumed that the configuration shown below is adopted in the storage circuit 1A (see FIG. 7). That is, the N-channel type first to fifth unit MOSFETs are formed in the storage circuit 1A, and the transistors M1, M2, and M3 are formed by the first, second, and third unit MOSFETs, respectively, while the fourth unit is formed. And the transistor M4 is formed by the parallel circuit of the fifth unit MOSFET.
  • the first to fifth unit MOSFETs have the same structure as each other and have the same electrical characteristics (including the gate threshold voltage) before the execution of the program operation.
  • the resistance values of the resistors R1 and R3 are set to be the same as each other, and the resistance value of the resistor R4 is set to half the resistance value of the resistor R1.
  • the constant current IG is set to twice the constant current OTPG.
  • the transistors M1 to M14 may be transistors having the same structure and electrical characteristics (including a gate threshold voltage).
  • Read operation before program operation RD INI the read operation executed before the execution of the program operation may be referred to as a read operation RD INI
  • the read operation executed after the execution of the program operation may be referred to as a read operation RD PRG .
  • a read operation it refers to a read operation before or after the execution of the program operation.
  • FIG. 8 is a timing chart of the read operation RD INI .
  • the low level period of the signal XRST is referred to as a precharge period, and the period in which both the switches SW5 and SW6 are in the off state among the high level periods of the signal XRST is referred to as a read period.
  • the read operation is realized in the read period after the precharge period has passed.
  • the signal PRG is maintained at a low level during the period when no program operation is performed (including the precharge period and the read period). Assuming that the signal PRG is at the low level, the signal XRST is switched from the low level to the high level to transition from the precharge period to the read period, and the signal corresponding to the data stored in the memory unit 10 is generated. After the read period, it is output as an output signal D OUT .
  • switches SW1 and SW2 are turned off, while switches SW3, SW4, SW7 and SW8 are turned on, and a constant current circuit.
  • the constant current generation and output operations by CC IG and CC OTPG are stopped.
  • the switches SW9, SW11 and SW12 are turned off and the switch SW10 is turned on based on the low level signal PRG.
  • the electrode E1 functions as a drain and the electrode E2 functions as a source in the transistor M2.
  • the broken line waveform INI V1 represents the waveform of the voltage V1 in the lead operation RD INI
  • the solid line waveform INI V2 represents the waveform of the voltage V2 in the lead operation RD INI .
  • the waveforms INI V1 and INI V2 overlap each other. Since the voltages VIG and VOTPG are 0V during the precharge period, the transistors M1 to M4 and M11 to M14 are all in the off state. Further, during the precharge period, positive charges are supplied to the lines LN1 and LN2 through the switches SW4 and SW3, and the voltages V1 and V2 reach the level of the power supply voltage VDD. Therefore, during the precharge period, the output signals of the inverters INV1 and INV4 are at a low level, and as a result, the switches SW5 and SW6 are off.
  • the signal XRST switches from the low level to the high level to transition from the precharge period to the read period.
  • the switches SW1 and SW2 are turned on while the switches SW3, SW4, SW7 and SW8 are turned off as shown in FIG.
  • constant current generation and output operation are performed by the constant current circuits CC IG and CC OTPG .
  • the gate voltage V IG rises due to the constant current I IG
  • the gate voltage V OTPG rises due to the constant current I OTPG .
  • FIG. 8 shows the waveform of one of the gate voltages VIG and VTPG as a representative (the same applies to FIG. 12 described later).
  • the transistors M4 and M11 to M14 are turned on as the gate voltages VIG and VTPG increase , and the drain current flows through the transistors M1 to M3.
  • the drain current flowing through the transistor M1 is referred to by the symbol “ ID1 ”
  • the drain current flowing through the transistor M2 is referred to by the symbol “ ID2 ” (see FIG. 10).
  • the gate voltage VTPG in the read period corresponds to the above-mentioned read voltage.
  • the gate voltage VOTPG (lead voltage) minus the voltage drop of the resistor R1 is applied between the gate and source of the transistor M1, while the gate voltage VOTPG (lead voltage) is applied between the gate and source of the transistor M2.
  • the drain current I D2 becomes larger than the drain current I D1 , and as a result, the voltage V2 drops faster than the voltage V1. Further, since the drain current flows through the transistor M21 in the process of lowering the voltage V2, the lowering of the voltage V1 stops at the stage where the voltage V2 drops to some extent, and the voltage V1 rises to the level of the power supply voltage VDD.
  • the signal END is a logical sum signal of the output signal of the inverter INV1 and the output signal of the inverter INV4. Therefore, when at least one of the output signals of the inverters INV1 and INV4 becomes a high level, the signal END Will be at a high level.
  • the signal END may be understood as an internal signal generated in the control circuit 60.
  • the control circuit 60 stops the generation and output operation of the constant current by the constant current circuits CC IG and CC OTPG , and switches the switches SW7 and SW8 from off to on. As a result, the gate voltages VIG and VOTPG drop to 0V.
  • the signal D OUT after the signal END becomes high level in the read operation is particularly referred to as a read confirmation signal D OUT .
  • the read confirmation signal D OUT represents the value of the data stored in the memory unit 10 (the value of the data read from the memory unit 10), and the low level of the read confirmation signal D OUT indicates that the data is at a low level. The value is "0", and the high level of the read confirmation signal D OUT means that the value of the data is "1".
  • the read confirmation signal D OUT In the read operation RD INI , since the output signal of the inverter INV1 is maintained at a low level, the read confirmation signal D OUT also becomes a low level, and “0” data (that is, initial value data) is read out.
  • the read confirmation signal D OUT representing the data of “0” continues to be output after the signal END becomes high level in the read operation RD INI , it is not necessary to provide a latch circuit in the subsequent stage, and the read confirmation signal D OUT is required.
  • the read confirmation signal D OUT can be directly supplied to the circuit (for example, a trimming switch that is turned on / off according to the stored data of the memory unit 10).
  • FIG. 12 is a timing chart of the read operation RD PRG (that is, the read operation performed after the execution of the program operation).
  • the broken line waveform PRG V1 represents the waveform of the voltage V1 in the lead operation RD PRG
  • the solid line waveform PRG V2 represents the waveform of the voltage V2 in the lead operation RD PRG . From the precharge period to the first half of the read period, the waveforms PRG V1 and PRG V2 overlap each other.
  • the control circuit 60 stops the generation and output operation of the constant current by the constant current circuits CC IG and CC OTPG , and switches the switches SW7 and SW8 from off to on. As a result, the gate voltages VIG and VOTPG drop to 0V.
  • the signal D OUT after the signal END becomes high level in the read operation is particularly referred to as a read confirmation signal D OUT as described above.
  • the read confirmation signal D OUT becomes high level and represents the data of “1”. Since the read confirmation signal D OUT representing the data of “1” continues to be output after the signal END becomes high level in the read operation RD PRG , it is not necessary to provide a latch circuit in the subsequent stage, and the read confirmation signal D OUT is required.
  • the read confirmation signal D OUT can be directly supplied to the circuit (for example, a trimming switch that is turned on / off according to the stored data of the memory unit 10).
  • the state in which the drain current ID 2 is larger than the drain current ID 1 in the read operation (read period) corresponds to the state in which the data of “0” is stored in the memory unit 10, and FIG.
  • the read confirmation signal D OUT (here, the low level signal D OUT ) corresponding to the data of “0” is output. ..
  • the state in which the drain current I D1 is larger than the drain current I D2 in the read operation (read period) corresponds to the state in which the data of "1” is stored in the memory unit 10, and is corresponding to the state in which the data of "1” is stored in FIG.
  • the read confirmation signal D OUT since the drain current I D1 is larger than the drain current I D2 , the read confirmation signal D OUT (here, the high level signal D OUT ) corresponding to the data of “1” is output.
  • the program operation that causes the change from the read operation RD INI of FIG. 8 to the read operation RD PRG of FIG. 12 is realized as follows.
  • FIG. 13 shows the state of each switch in the storage circuit 1A during the period in which the program operation is executed (hereinafter referred to as the program period).
  • the signal XRST is set to low level and the signal PRG is set to high level, and the switches SW1, SW2, SW7 and SW10 are turned off based on those signals XRST and PRG, while the switches SW3, SW4, SW8 and SW9 are turned off.
  • SW11 and SW12 are turned on, and the constant current generation and output operation by the constant current circuits CC IG and CC OTPG is stopped.
  • the power supply voltage VDD is applied to the electrode E2 of the transistor M2 and the gate, while the potential of the electrode E1 of the transistor M2 becomes 0V.
  • the switch SW8 is turned on, all the transistors M11 to M14 are turned off.
  • the electrode E2 functions as a drain of the transistor M2 and the electrode E1 functions as a source of the transistor M2, and a current flows from the electrode E2 toward the electrode E1.
  • a current flowing hot carriers are injected into the transistor M2, the characteristics of the transistor M2 deteriorate, and the gate threshold voltage of the transistor M2 increases.
  • the program operation is completed by switching the signal PRG from the high level to the low level.
  • the read voltage supply circuit 20 of FIG. 4 is mainly composed of a transistor M3, a resistor R3, a constant current circuit CC OTPG , and a switch SW7 in the storage circuit 1A of FIG. 6, and the transistor M13 is also included in the components of the circuit 20. It is also possible to understand that. It can be said that the storage circuit 1A of FIG. 6 is provided with a drain current control circuit for permitting or cutting off the supply of drain currents ( ID1 and ID2 ) to the transistors M1 and M2, and the drain current control circuit is said to be provided. , M11 to M14 and M4, a resistor R4, a constant current circuit CC IG , and a switch SW8.
  • the signal output circuit 30 of FIG. 4 is mainly composed of transistors M21 and M22, switches SW1 to SW6, inverters INV1 to INV5, and capacitors C1 and C2 in the storage circuit 1A of FIG. Depending on the size of the parasitic capacitance added to LN2, the capacitors C1 and C2 and the inverter INV5 may be omitted.
  • the program circuit 40 of FIG. 4 includes switches SW9 to SW12 in the storage circuit 1A of FIG. Since the power supply voltage VDD is naturally required for hot carrier injection, it can be understood that the power supply circuit (not shown) that generates and outputs the power supply voltage VDD is also included in the components of the program circuit 40. can. The same applies to the lead voltage supply circuit 20 and the signal output circuit 30.
  • the control circuit 60 of FIG. 6 is a circuit that controls the operation of the lead voltage supply circuit 20, the signal output circuit 30, and the program circuit 40 of FIG. 4 (furthermore, a circuit that controls the operation of the drain current control circuit described above). Can be understood as. Alternatively, it can be considered that the control circuit 60 is a circuit that is also used as the circuits 20, 30 and 40 for realizing the read operation and the program operation as each part of the circuits 20, 30 and 40. be.
  • the signal D OUT read confirmation signal D OUT
  • ID2 the signal D OUT associated with the first value
  • ID2 the signal D OUT (read confirmation signal D OUT ) associated with the second value
  • the first value is "0" and the second value is "1"
  • the first and second values are Optional.
  • the circuit configuration is modified so that the signal D OUT associated with the first value becomes a high-level signal and the signal D OUT associated with the second value becomes a low-level signal. You may.
  • Example EX1_2 will be described.
  • the storage circuit 1 or 1A shown in FIG. 4 or FIG. 6 is a first non-volatile memory that stores data for one bit, but a plurality of storage circuits 1 or 1A are provided as a unit cell to store data for a plurality of bits.
  • a second non-volatile memory for storage can also be configured.
  • a unit cell may be configured by a set of the memory unit 10 and the signal output circuit 30, and a third non-volatile memory provided with a plurality of the unit cells may be configured.
  • the read The voltage supply circuit 20 and the program circuit 40 are shared among a plurality of unit cells. That is, for example, in the third non-volatile memory, when the read operation is performed by two or more unit cells included in the plurality of unit cells, the read voltage supply circuit 20 is a transistor in each of the two or more unit cells. A lead voltage may be supplied to each of the gates of M1 and M2.
  • a program circuit 40 when a program operation is performed on two or more unit cells included in the plurality of unit cells, the program circuit 40 is connected to the transistor M2 in each of the two or more unit cells. Hot carriers may be injected.
  • the number of bits of the stored data is arbitrary as long as it is 1 or more, and the memory unit 10 is provided for the number of bits of the stored data.
  • Example EX1_3 Example EX1_3 will be described.
  • a circuit configuration for generating a read voltage using a constant current is given.
  • a DC lead voltage is applied to each gate of the transistors M1 and M2 in the read operation. It may be a DC voltage source to be supplied.
  • Example EX1_4 will be described.
  • the non-volatile memory according to the first embodiment (for example, any non-volatile memory mentioned in the above-mentioned Example EX1_2) can be incorporated into any circuit or device that realizes a predetermined functional operation.
  • the circuit or device When a power supply voltage is supplied to a circuit or device in which the non-volatile memory is incorporated and the circuit or device is started, the circuit or device reads out the data stored in the non-volatile memory by a read operation. A predetermined functional operation is realized according to the read data.
  • a non-volatile memory is incorporated in an amplifier circuit (not shown) that can change the amplification factor according to the trimming data, and one or more data stored in the non-volatile memory is supplied to the amplifier circuit as trimming data. It is possible to optimally adjust the amplification factor of the amplifier circuit.
  • non-volatile memory according to the first embodiment can be incorporated into a semiconductor integrated circuit for various purposes such as a semiconductor integrated circuit for a DC / DC converter and a semiconductor integrated circuit for a motor driver.
  • the amplifier circuit is an example of a circuit provided in these semiconductor integrated circuits.
  • a general constant voltage source 1910 that requires a corresponding current output capacity is a reference voltage source 1911 composed of a band gap reference or the like, and the output voltage of the reference voltage source 1911 with low impedance. It is composed of a buffer amplifier 1912 to be output, and outputs an output voltage Vo from the buffer amplifier 1912.
  • FIG. 14B shows the configuration of the constant voltage source 1910 including the internal circuit example of the buffer amplifier 1912.
  • a reference voltage source 1911 composed of a bandgap reference or the like is required for each constant voltage source 1910, and the circuit area increases.
  • a constant voltage source can be configured with a simple configuration, it is possible to form a constant voltage source in a small area at a required location, which is a great merit.
  • the same circumstances also apply to the constant current source and the comparator, and if the constant current source or the comparator can be configured with a simple configuration, the constant current source or the comparator can be formed in a small area. It is possible to do so, and the merit is great.
  • the second embodiment includes the following Examples EX2_1 to EX2_3, and the techniques that contribute to the simplification of the configuration and the like will be described in Examples EX2_1 to EX2_3.
  • FIG. 16 shows a circuit diagram of the constant voltage source 1100 according to the embodiment EX2_1.
  • the constant voltage source 1100 includes transistors Ma and Mb (first and second differential transistors), transistors Mc and Md forming the current mirror circuit CM1, output transistors Mo, and resistors Rs and Rb.
  • the constant voltage source 1100 may be configured by a semiconductor integrated circuit.
  • Transistors Ma and Mb are N-channel MOSFETs, and their gates are connected to each other. That is, the transistors Ma and Mb form a differential pair in which the gates are commonly connected to each other. However, as a characteristic configuration, the gate threshold voltages of the transistors Ma and Mb are different from each other. Specifically, the transistor Ma is a depletion type MOSFET and has a negative gate threshold voltage, and the transistor Mb is an enhancement type MOSFET and has a positive gate threshold voltage.
  • the transistor Ma Since the transistor Ma has a negative gate threshold voltage, even if the gate potential of the transistor Ma is lower than the source potential of the transistor Ma, the gate potential of the transistor Ma (for example, -0.3V) as seen from the source potential of the transistor Ma is the transistor. If it is higher than the gate threshold voltage of Ma (for example, ⁇ 0.5 V), the transistor Ma is turned on.
  • the transistors Mc and Md and the output transistor Mo are P-channel MOSFETs. Each source of the transistors Mc, Md and Mo is connected to a power supply voltage line LNVddd to which a predetermined positive power supply voltage Vdd is applied. The gates of the transistors Mc and Md, the drain of the transistor Mc, and the drain of the transistor Mb are connected to each other. The drain of the transistor Md, the drain of the transistor Ma, and the gate of the output transistor Mo are connected to each other. Each source of the transistors Ma and Mb is connected to ground via resistors Rs (specifically, connected to a ground line LNgnd having a ground potential).
  • the gate of the transistor Mb is connected to the ground (that is, the ground line LNgnd) via the resistor Rb, while the gate of the transistor Ma is directly connected to the ground (that is, the ground line LNgnd).
  • the drain of the output transistor Mo is connected to the gate of the transistor Mb.
  • the transistor Mc functions as a current input side transistor in the current mirror circuit CM1
  • the transistor Md functions as a current output side transistor in the current mirror circuit CM1.
  • the transistors Mc and Md are a pair of transistors having the same structure and having the same electrical characteristics as each other. Therefore, in the current mirror circuit CM1, a drain current having the same current value as the drain current of the transistor Mc acts to flow in the transistor Md. At this time, the drain current of the transistor Mc is output toward the transistor Mb, while the drain current of the transistor Md is output toward the transistor Ma.
  • the current mirror circuit CM1 operates so that a uniform current is output toward the drain of the transistor Ma and the drain of the transistor Mb (that is, currents having the same current value are output from each other).
  • uniformity and “same” here are concepts including errors (the same applies to any other embodiment described later).
  • the structure is a concept including the size of the transistor, and therefore, for any plurality of transistors, the same structure means that the sizes of the plurality of transistors are also the same. (The same applies to any other embodiment described below).
  • the drain of the output transistor Mo is connected to the output terminal OUT of the constant voltage source 1100, and the output voltage Vout of the constant voltage source 1100 is generated at the output terminal OUT.
  • the constant voltage source 1100 can supply a current to the load of the constant voltage source 1100 (not shown; a load that receives the output voltage Vout) through the output transistor Mo and the output terminal OUT.
  • the output transistor Mo in order to form the output transistor Mo, two basic MOSFETs having the same structure as the transistor Mc or Mb are prepared, and the output transistor Mo is formed by the parallel circuit of the two basic MOSFETs.
  • the waveform C_Ma represents the relationship between the gate-source voltage and the drain current in the transistor Ma
  • the waveform C_Mb represents the relationship between the gate-source voltage and the drain current in the transistor Mb.
  • the circuit can be balanced in a state where the values of the drain currents of the transistors Ma and Mb are the same as each other.
  • the gate voltage VG_Mb of the transistor Mb becomes higher than the gate voltage of the transistor Ma due to the difference in the electrical characteristics of the transistors Ma and Mb.
  • the current value I_blns represents the value of each drain current of the transistors Ma and Mb in the balanced state.
  • the voltage V GS _Ma_blns represents the gate-source voltage of the transistor Ma when the drain current of the current value I_blns flows through the transistor Ma
  • the voltage V GS _Mb_blns is the transistor when the drain current of the current value I_blns flows through the transistor Mb. Represents the gate-source voltage of Mb.
  • the gate voltage VG_Mb of the transistor Mb is the sum of the gate-source voltage of the transistor Mb and the voltage drop V_Rs at the resistor Rs.
  • the balanced gate voltage has a positive voltage value corresponding to the electrical characteristics of the transistors Ma and Mb. Since the gate voltage of the output transistor Mo is adjusted by the transistors Ma to Md so that the gate voltage VG_Mb of the transistor Mb matches the balanced gate voltage, the output voltage Vout is stabilized by the balanced gate voltage (substantially). Matches the balance gate voltage). That is, the output voltage Vout corresponding to the balance gate voltage is generated.
  • a constant voltage source can be formed with a simple configuration (hence, with a small area).
  • the accuracy of the output voltage Vout is not necessarily high.
  • the configuration according to this embodiment is particularly suitable for such applications.
  • the constant voltage source 1100 includes a voltage output circuit that generates an output voltage Vout according to the gate voltage ( VG_Mb ) of the transistor Mb based on the drain voltage of the transistor Ma.
  • the voltage output circuit includes an output transistor Mo. By applying a predetermined DC voltage (Vdd) to the series circuit of the output transistor Mo and the resistor Rb, the output voltage Vout is generated through the output transistor Mo.
  • the output voltage Vout has the same voltage value as the gate voltage VG_Mb of the transistor Mb, but even if the constant voltage source 1100 is modified so that the output voltage Vout and the gate voltage VG_Mb are different. good.
  • the constant voltage source 1100 of FIG. 16 may be modified as shown in the constant voltage source 1100'of FIG.
  • the resistor Rb' is inserted between the connection node 1121 between the drain of the output transistor Mo and the output terminal OUT and the connection node 1122 between the gate of the transistor Mb and the resistor Rb. .. Except for this insertion, the configurations of the constant voltage sources 1100 and 1100'are common.
  • both the transistors Ma and Mb may be enhancement type MOSFETs (the same applies to any other embodiment described later). However, in that case, it is necessary to apply a positive bias voltage to the gate of the transistor Ma.
  • the configuration in which the resistance Rs is inserted between each source of the transistors Ma and Mb and the ground is mentioned, instead of the resistance Rs, an active load is inserted between each source of the transistors Ma and Mb and the ground. It may be (the same applies to any other embodiment described later).
  • Example EX2_2 will be described.
  • a constant current source can also be formed by applying the configuration shown in Example EX2_1.
  • FIG. 19 shows a circuit diagram of the constant current source 1200 according to the example EX2_2.
  • the constant current source 1200 includes transistors Ma and Mb (first and second differential transistors), transistors Mc and Md forming the current mirror circuit CM1, transistors Me and Mf forming the current mirror circuit CM2, and resistors Rs. And Rb.
  • the constant current source 1200 may be configured by a semiconductor integrated circuit.
  • each source of the transistors Mc and Md is connected to the power supply voltage line LNVdd to which a predetermined positive power supply voltage Vdd is applied.
  • the gates of the transistors Mc and Md, the drain of the transistor Mc, and the drain of the transistor Mb are connected to each other, and the drains of the transistors Ma and Md are connected to each other.
  • Each source of the transistors Ma and Mb is connected to ground via resistors Rs (specifically, connected to a ground line LNgnd having a ground potential).
  • the gate of the transistor Mb is connected to the ground (that is, the ground line LNgnd) via the resistor Rb, while the gate of the transistor Ma is directly connected to the ground (that is, the ground line LNgnd).
  • a drain current having the same current value as the drain current of the transistor Mc acts to flow through the transistor Md.
  • the drain current of the transistor Mc is output toward the transistor Mb, while the drain current of the transistor Md is output toward the transistor Ma. That is, the current mirror circuit CM1 operates so that a uniform current is output toward the drain of the transistor Ma and the drain of the transistor Mb (that is, currents having the same current value are output from each other).
  • Transistors Me and Mf are P-channel type MOSFETs. The sources of the transistors Me and Mf are connected to the power supply voltage line LNVdd, and the gates of the transistors Me and Mf are connected to the drain of the transistor Ma. The drain of the transistor Me is connected to the gate of the transistor Mb.
  • the transistor Me functions as a current input side transistor in the current mirror circuit CM2, while the transistor Mf functions as a current output side transistor in the current mirror circuit CM2.
  • the transistors Me and Mf are a pair of transistors having the same structure and the same electrical characteristics as each other, and therefore, a drain current having the same current value as the drain current of the transistor Me flows through the transistor Mf ( However, it is assumed that a load (not shown in FIG. 19) is connected to the drain of the transistor Mf).
  • a load (not shown in FIG. 19) is connected to the drain of the transistor Mf).
  • two basic MOSFETs having the same structure as the transistor Mc or Mb are prepared, and the transistor Me is formed by the parallel circuit of the two basic MOSFETs. The same applies to the transistor Mf.
  • the configuration of FIG. 19 balances the circuit in a state where the values of the drain currents of the transistors Ma and Mb are the same as each other. Therefore, as in the case described in Example EX2_1, the gate voltages of the transistors Me and Mf are adjusted by the transistors Ma to Md so that the gate voltage VG_Mb of the transistor Mb matches the balance gate voltage. As a result, a drain current having a current value obtained by dividing the balance gate voltage by the value of the resistor Rb flows through the transistor Me, and a constant current ICC having the same current value as the current value flows as the drain current of the transistor Mf (however, FIG. 19). Assuming a load not shown in is connected to the drain of the transistor Mf).
  • a predetermined DC voltage (Vdd) is applied to the series circuit of the transistor Me and the resistor Rb, but between the drain of the transistor Me and the gate of the transistor Mb and the resistor Rb.
  • Another resistor (not shown) may be inserted between the connection node and the connection node.
  • the value of the constant current ICC may be adjusted by arbitrarily adjusting the ratio between the number of basic MOSFETs constituting the transistor Me and the number of basic MOSFETs constituting the transistor Mf.
  • one or more other transistors having the same structure and the same electrical characteristics as the transistor Me or Mf are added to the current mirror circuit CM2, and each gate of the transistor Me or Mf and one or more other transistors are added. If the gate of the transistor is connected in common, a constant current can be obtained from the drain of one or more other transistors.
  • a constant current source can be formed with a simple configuration (hence, with a small area).
  • the constant current source 1200 may be used to form at least one of the constant current circuits CC IG and CC OTPG (see FIG. 6) shown in the first embodiment.
  • the constant current circuit CC IG is formed by using the constant current source 1200
  • the constant current ICC functions as the constant current IG (see FIG. 6)
  • the constant current source 1200 is used to form the constant current.
  • the constant current ICC functions as a constant current OTPG (see FIG. 6).
  • a configuration may be adopted in which the drain of the transistor Mf in the constant current source 1200 is connected to the ground via the resistor Rf.
  • an output voltage Vout' having a voltage value determined by each value of the resistance Rf and the constant current ICC is generated between both ends of the resistance Rf. That is, the configuration of FIG. 20 functions as a constant voltage source.
  • the values of the resistors Rb and Rf are set to be the same, a voltage that duplicates the gate voltage VG_Mb (balanced gate voltage) of the transistor Mb can be obtained as the output voltage Vout'.
  • Example EX2_3 will be described.
  • a comparator can also be formed by applying the configuration shown in Example EX2_1.
  • FIG. 21 shows a circuit diagram of the comparator 1300 according to the example EX2_3.
  • the comparator 1300 includes transistors Ma and Mb (first and second differential transistors), transistors Mc and Md forming the current mirror circuit CM1, resistors Rs, and an output circuit 1310.
  • the comparator 1300 may be configured by a semiconductor integrated circuit.
  • each source of the transistors Mc and Md is connected to the power supply voltage line LNVdd to which a predetermined positive power supply voltage Vdd is applied.
  • the gates of the transistors Mc and Md, the drain of the transistor Mc, and the drain of the transistor Mb are connected to each other, and the drains of the transistors Ma and Md are connected to each other.
  • Each source of the transistors Ma and Mb is connected to ground via resistors Rs (specifically, connected to a ground line LNgnd having a ground potential).
  • the gate of the transistor Ma is directly connected to the ground (that is, the ground line LNgnd).
  • a drain current having the same current value as the drain current of the transistor Mc acts to flow through the transistor Md.
  • the drain current of the transistor Mc is output toward the transistor Mb, while the drain current of the transistor Md is output toward the transistor Ma. That is, the current mirror circuit CM1 operates so that a uniform current is output toward the drain of the transistor Ma and the drain of the transistor Mb (that is, currents having the same current value are output from each other). However, whether a uniform current is actually output depends on the input voltage Vin.
  • the output circuit 1310 is composed of an inverter. Therefore, the output circuit 1310 is also referred to as an inverter 1310.
  • the input terminal of the inverter 1310 is connected to the drain of the transistor Ma, and the signal CMPout is output from the output terminal of the inverter 1310.
  • the inverter 1310 outputs an inverted signal of an input signal to its own input terminal from its own output terminal. Specifically, the inverter 1310 outputs a high-level signal from its own output terminal when the input voltage to its own input terminal is less than a predetermined threshold voltage, and the input voltage to its own input terminal has a predetermined threshold voltage. When the voltage is higher than the voltage, a low level signal is output from its own output terminal.
  • the inverter 1310 is driven based on the power supply voltage Vdd, and the threshold voltage of the inverter 1310 is approximately half of the power supply voltage Vdd. However, a hysteresis characteristic may be added to the threshold voltage of the inverter 1310.
  • a voltage Vin is input to the gate of the transistor Mb.
  • the voltage Vin is an input voltage to the comparator 1300, and the comparator 1300 outputs a signal CMPout indicating a high-low relationship between the input voltage Vin and a predetermined voltage.
  • This predetermined voltage is the balance gate voltage determined by the electrical characteristics of the transistors Ma and Mb.
  • the drain voltage of the transistor Ma drops and falls below the threshold voltage of the inverter 1310, so that the signal CMPout is at a high level.
  • the drain voltage of the transistor Ma rises and exceeds the threshold voltage of the inverter 1310, so that the signal CMPout becomes a low level. That is, the signal CMPout shows the high-low relationship between the input voltage Vin and the predetermined voltage (balance gate voltage).
  • the comparator can be formed with a simple configuration (hence, with a small area).
  • the output circuit 1310 may be a circuit other than the inverter (for example, a buffer circuit).
  • the output circuit 1310 can output a first level signal based on the decrease in the drain voltage of the transistor Ma in response to the input voltage Vin being lower than the balanced gate voltage, and the input voltage Vin is higher than the balanced gate voltage. Any circuit may be used as long as it can output a second level signal based on an increase in the drain voltage of the responsive transistor Ma (the first and second levels are different from each other).
  • the non-volatile memory according to the present disclosure has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and is a source of the first transistor. With respect to the resistor to which the first end is connected, between the gate of the first transistor and the second end of the resistor, and between the gate and the source of the second transistor, the first and the above.
  • a lead voltage supply circuit configured to supply a lead voltage for turning on at least one of the second transistors, and in a read operation in which the lead voltage is supplied by the lead voltage supply circuit.
  • a signal output circuit configured to output a signal associated with the first value or a signal associated with the second value based on the drain currents of the first and second transistors. It is a configuration (first configuration).
  • the signal output circuit corresponds to the first value when the drain current of the second transistor is larger than the drain current of the first transistor in the read operation.
  • the attached signal is output, and when the drain current of the first transistor is larger than the drain current of the second transistor, the signal associated with the second value is output (second configuration). There may be.
  • a configuration further comprising a program circuit configured to perform a program operation for increasing the gate threshold voltage of the second transistor by injecting hot carriers into the second transistor ( It may be the third configuration).
  • the drain current of the second transistor is larger than the drain current of the first transistor and is executed after the program operation.
  • the drain current of the first transistor is larger than the drain current of the second transistor as the gate threshold voltage of the second transistor increases due to the program operation (fourth configuration). It may be.
  • the first and second transistors have the same structure as each other, and the first and second transistors have the same gate threshold voltage as each other before the program operation. It may have a configuration (fifth configuration).
  • the other non-volatile memory has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and the first transistor.
  • a lead voltage supply circuit configured to be able to supply a resistor to which the first end is connected to the source of the above and a read voltage for turning on at least one of the first and second transistors.
  • the signal associated with the first value or the second value is supported based on the drain currents of the first and second transistors. It is a configuration (sixth configuration) including a signal output circuit configured to be able to output the attached signal.
  • the signal output circuit is the first when the drain current of the second transistor is larger than the drain current of the first transistor when the read operation is performed. It is configured to be able to output the signal associated with the value of, and when the drain current of the first transistor is larger than the drain current of the second transistor, the signal associated with the second value can be output. It may be a configured configuration (seventh configuration).
  • the non-volatile memory according to the seventh configuration further includes a program circuit configured to be able to execute a program operation for increasing the gate threshold voltage of the second transistor by injecting hot carriers into the second transistor. (Eighth configuration) may be used.
  • the drain current of the second transistor when the read operation is executed before the program operation, the drain current of the second transistor is larger than the drain current of the first transistor in the read operation.
  • the drain current of the first transistor becomes the drain current of the second transistor as the gate threshold voltage of the second transistor increases due to the program operation.
  • the configuration may be larger than the drain current (9th configuration).
  • the first and second transistors have the same structure as each other, and the first and second transistors have the same gate threshold voltage as each other before the program operation. It may have a configuration (tenth configuration).
  • the constant voltage source (see FIG. 16) according to the present disclosure is a differential pair composed of a first differential transistor (Ma) and a second differential transistor (Mb) in which the sources are connected to each other and have different gate threshold voltages. And a drain side circuit (CM1) connected to each drain of the first and second differential transistors and outputting a current toward the drain of the first differential transistor and the drain of the second differential transistor. It has a configuration WB1 including a voltage output circuit (Mo) that generates an output voltage (Vout) corresponding to the gate voltage of the second differential transistor based on the drain voltage of the first differential transistor.
  • Mo voltage output circuit
  • the first differential transistor is a depletion type MOSFET
  • the second differential transistor is an enhancement type MOSFET
  • the gate of the first differential transistor is ground.
  • the gate of the second differential transistor may be configured WB2 connected to the ground via a resistor (Rb) while being directly connected to the second differential transistor.
  • the voltage output circuit has an output transistor (Mo) that receives the drain voltage of the first differential transistor as a gate voltage, and is a series circuit including the output transistor and the resistor.
  • the configuration WB3 may be such that a predetermined DC voltage (Vdd) is applied and the output voltage is generated through the output transistor.
  • the drain side circuit operates so as to output a uniform current toward the drain of the first differential transistor and the drain of the second differential transistor. It may be the configuration WB4 which is the drain side current mirror circuit (CM1).
  • the constant current source according to the present disclosure is a differential pair composed of a first differential transistor (Ma) and a second differential transistor (Mb) in which the sources are connected to each other and have different gate threshold voltages. And a drain side circuit (CM1) connected to each drain of the first and second differential transistors and outputting a current toward the drain of the first differential transistor and the drain of the second differential transistor. It has a configuration WC1 that generates a constant current ( ICC ) based on the drain voltage of the first differential transistor and the gate voltage of the second differential transistor.
  • CM1 drain side circuit
  • the first differential transistor is a depletion type MOSFET
  • the second differential transistor is an enhancement type MOSFET
  • the gate of the first differential transistor is ground.
  • the gate of the second differential transistor may be configured WC2 connected to ground via a resistor while being directly connected to.
  • the constant current source according to WC2 includes a current mirror circuit (CM2) composed of a plurality of transistors that receive the drain voltage of the first differential transistor as a gate voltage, and the plurality of transistors are transistors for the first mirror (Me). ) And a second mirror transistor (Mf), a predetermined DC voltage (Vdd) is applied to the series circuit including the first mirror transistor and the resistor, and the constant current is applied through the second mirror transistor.
  • CM2 current mirror circuit
  • Vdd predetermined DC voltage
  • the drain side circuit operates so as to output a uniform current toward the drain of the first differential transistor and the drain of the second differential transistor. It may be the configuration WC4 which is the drain side current mirror circuit (CM1).
  • the comparator includes a differential pair composed of a first differential transistor (Ma) and a second differential transistor (Mb) in which sources are connected to each other and have different gate threshold voltages.
  • a drain side circuit (CM1) connected to each of the drains of the first and second differential transistors and outputting a current toward the drain of the first differential transistor and the drain of the second differential transistor is provided. It has a configuration WD1 that receives an input voltage (Vin) at the gate of the second differential transistor and outputs a signal ( CMPout ) indicating a high-low relationship between the input voltage and a predetermined voltage.
  • the first differential transistor is a depletion type MOSFET
  • the second differential transistor is an enhancement type MOSFET
  • the gate of the first differential transistor is connected to the ground. It may be the configuration WD2 to be formed.
  • the predetermined voltage is determined based on the electrical characteristics of each differential transistor, and the height relationship between the input voltage and the predetermined voltage is determined based on the drain voltage of the first differential transistor.
  • the configuration WD3 may be such that the signal shown above is output.
  • the drain side circuit operates to output a uniform current toward the drain of the first differential transistor and the drain of the second differential transistor. It may be a configuration WD4 which is a side current mirror circuit (CM1).
  • the relationship between the high level and the low level can be reversed from the above, without compromising the above-mentioned gist.
  • the types of FET (field effect transistors) channels shown in each embodiment are examples, so that the N-channel type FET is changed to a P-channel type FET, or the P-channel type FET is an N-channel.
  • the configuration of the circuit containing the FET can be modified so that it is changed to a type FET.
  • the above-mentioned arbitrary transistor may be any kind of transistor as long as no inconvenience occurs.
  • any transistor described above as a MOSFET can be replaced with a junction FET, an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor as long as no inconvenience occurs.
  • Any transistor has a first electrode, a second electrode and a control electrode.
  • the FET one of the first and second electrodes is a drain, the other is a source, and the control electrode is a gate.
  • the IGBT one of the first and second electrodes is a collector, the other is an emitter, and the control electrode is a gate.
  • a bipolar transistor that does not belong to an IGBT one of the first and second electrodes is a collector, the other is an emitter, and the control electrode is a base.
  • Storage circuit 10 Memory unit 20 Read voltage supply circuit 30 Signal output circuit 40 Program circuit

Abstract

The present invention comprises: first and second transistors of which the gates are connected in common; a resistor having a first end and a second end, the first end being connected to a source of the first transistor; a lead voltage supply circuit configured so as to supply a lead voltage for turning on either the first or the second transistor between the gate of the first transistor and the second end of the resistor and between the gate and source of the second transistor; and a signal output circuit configured so as to output a signal associated with a first value or a second value on the basis of drain currents of the first and second transistors during a lead operation in which the lead voltage is supplied by the voltage supply circuit.

Description

不揮発性メモリNon-volatile memory
 本開示は、不揮発性メモリに関する。 This disclosure relates to non-volatile memory.
 トランジスタへのホットキャリア注入を利用した不揮発性メモリがある。この種の不揮発性メモリは、初期状態において特性が揃えられた第1及び第2トランジスタ(図22のm1及びm2に対応)をメモリ素子として備え、何れか一方のトランジスタに対してのみホットキャリアを注入して特性を劣化させる。その後のリード動作では、第1及び第2トランジスタに共通のゲート電圧を供給したときのドレイン電流の大小関係に基づき、“0”のデータが記憶されているのか、“1”のデータが記憶されているのかを読み出す。例えば、第1トランジスタのドレイン電流の方が小さい状態(第1トランジスタが劣化している状態)は“0”のデータが記憶されている状態に相当し、第2トランジスタのドレイン電流の方が小さい状態(第2トランジスタが劣化している状態)は“1”のデータが記憶されている状態に相当する。 There is a non-volatile memory that uses hot carrier injection into a transistor. This type of non-volatile memory includes first and second transistors (corresponding to m1 and m2 in FIG. 22) having the same characteristics in the initial state as memory elements, and hot carriers are provided only for one of the transistors. It is injected to deteriorate the characteristics. In the subsequent read operation, "0" data is stored or "1" data is stored based on the magnitude relationship of the drain current when a common gate voltage is supplied to the first and second transistors. Read if it is. For example, a state in which the drain current of the first transistor is smaller (a state in which the first transistor is deteriorated) corresponds to a state in which "0" data is stored, and the drain current of the second transistor is smaller. The state (the state in which the second transistor is deteriorated) corresponds to the state in which the data of "1" is stored.
 但し、上記の不揮発性メモリでは初期状態での記憶データが不定となる。初期状態での記憶データが不定とならないよう、初期状態において、第1及び第2トランジスタの内、何れが一方により多くのドレイン電流が流れるよう構成された不揮発性メモリも提案されている。 However, in the above non-volatile memory, the stored data in the initial state is undefined. A non-volatile memory configured so that a larger drain current flows in either of the first and second transistors in the initial state so that the stored data in the initial state does not become undefined has also been proposed.
特開2011-103158号公報Japanese Unexamined Patent Publication No. 2011-103158
 回路全体のサイズ縮小のためにメモリ素子(第1及び第2トランジスタ)のサイズ縮小が求められることも多く、メモリ素子のサイズが小さくなるとメモリ素子間で特性のミスマッチが大きくなる。特性を揃えることを目指して形成された複数のトランジスタの特性が実際には大きくずれることもあり、このずれがミスマッチに相当する。このようなミスマッチは、正しいデータの記憶及び読み出しを阻害するなどの不都合を招く(これについては、後に詳説される)。ミスマッチの影響を受け難い不揮発性メモリの開発が期待される。 In order to reduce the size of the entire circuit, it is often required to reduce the size of the memory elements (first and second transistors), and as the size of the memory elements decreases, the characteristic mismatch between the memory elements increases. The characteristics of a plurality of transistors formed with the aim of aligning the characteristics may actually deviate significantly, and this deviation corresponds to a mismatch. Such a mismatch causes inconveniences such as hindering the storage and reading of correct data (this will be described in detail later). The development of non-volatile memory that is not easily affected by mismatches is expected.
 本開示は、ミスマッチの影響を受け難い不揮発性メモリを提供することを目的とする。 The present disclosure aims to provide a non-volatile memory that is less susceptible to mismatches.
 本開示に係る不揮発性メモリは、第1トランジスタと、前記第1トランジスタのゲートに共通接続されたゲートを有する第2トランジスタと、第1端及び第2端を有し、前記第1トランジスタのソースに前記第1端が接続された抵抗と、前記第1トランジスタのゲートと前記抵抗の前記第2端との間に対し、及び、前記第2トランジスタのゲート及びソース間に対し、前記第1及び第2トランジスタの内の少なくとも一方をオン状態とさせるためのリード用電圧を供給するよう構成されたリード用電圧供給回路と、前記リード用電圧供給回路により前記リード用電圧が供給されるリード動作において、前記第1及び第2トランジスタの各ドレイン電流に基づき、第1の値に対応付けられた信号又は第2の値に対応付けられた信号を出力するよう構成された信号出力回路と、を備える。 The non-volatile memory according to the present disclosure has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and is a source of the first transistor. With respect to the resistor to which the first end is connected, between the gate of the first transistor and the second end of the resistor, and between the gate and the source of the second transistor, the first and the above. In a lead voltage supply circuit configured to supply a lead voltage for turning on at least one of the second transistors, and in a read operation in which the lead voltage is supplied by the lead voltage supply circuit. , A signal output circuit configured to output a signal associated with the first value or a signal associated with the second value based on the drain currents of the first and second transistors. ..
 本開示に係る他の不揮発性メモリは、第1トランジスタと、前記第1トランジスタのゲートに共通接続されたゲートを有する第2トランジスタと、第1端及び第2端を有し、前記第1トランジスタのソースに前記第1端が接続された抵抗と、前記第1及び第2トランジスタの内の少なくとも一方をオン状態とさせるためのリード用電圧を供給可能に構成されるリード用電圧供給回路と、前記リード用電圧供給回路により前記リード用電圧が供給されるリード動作において、前記第1及び第2トランジスタの各ドレイン電流に基づき、第1の値に対応付けられた信号又は第2の値に対応付けられた信号を出力可能に構成される信号出力回路と、を備える。 The other non-volatile memory according to the present disclosure has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and the first transistor. A lead voltage supply circuit configured to be able to supply a resistor to which the first end is connected to the source of the above and a read voltage for turning on at least one of the first and second transistors. In the read operation in which the lead voltage is supplied by the lead voltage supply circuit, the signal associated with the first value or the second value is supported based on the drain currents of the first and second transistors. It includes a signal output circuit configured to be able to output the attached signal.
 本開示によれば、ミスマッチの影響を受け難い不揮発性メモリを提供することが可能となる。 According to the present disclosure, it is possible to provide a non-volatile memory that is not easily affected by a mismatch.
図1は、本開示の基準実施形態に係る記憶回路の構成図である。FIG. 1 is a block diagram of a storage circuit according to a standard embodiment of the present disclosure. 図2は、図1では1つの素子として図示されるトランジスタ(MOSFET)が、複数の単位MOSFETの並列回路にて構成される様子を示す図である。FIG. 2 is a diagram showing a state in which a transistor (MOSFET) shown as one element in FIG. 1 is composed of a parallel circuit of a plurality of unit MOSFETs. 図3は、図1の各トランジスタの特性を示す図である。FIG. 3 is a diagram showing the characteristics of each transistor of FIG. 図4は、本開示の第1実施形態に係る記憶回路の構成図である。FIG. 4 is a block diagram of a storage circuit according to the first embodiment of the present disclosure. 図5は、図4の各トランジスタの特性を示す図である。FIG. 5 is a diagram showing the characteristics of each transistor of FIG. 図6は、本開示の第1実施形態に属する実施例EX1_1に係り、記憶回路の構成を示す図である。FIG. 6 is a diagram showing a configuration of a storage circuit according to Example EX1_1 belonging to the first embodiment of the present disclosure. 図7は、本開示の第1実施形態に属する実施例EX1_1に係り、記憶回路の構成を示す図である。FIG. 7 is a diagram showing a configuration of a storage circuit according to Example EX1_1 belonging to the first embodiment of the present disclosure. 図8は、本開示の第1実施形態に属する実施例EX1_1に係り、プログラム動作前のリード動作のタイミングチャートである。FIG. 8 is a timing chart of the read operation before the program operation according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure. 図9は、本開示の第1実施形態に属する実施例EX1_1に係り、リード動作におけるプリチャージ期間の状態(スイッチ状態)を示す図である。FIG. 9 is a diagram showing a state (switch state) of the precharge period in the read operation according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure. 図10は、本開示の第1実施形態に属する実施例EX1_1に係り、リード動作におけるリード期間の状態(スイッチ状態)を示す図である。FIG. 10 is a diagram showing a state (switch state) of a lead period in a read operation according to Example EX1_1 belonging to the first embodiment of the present disclosure. 図11は、本開示の第1実施形態に属する実施例EX1_1に係り、複数の信号間の関係を示す図である。FIG. 11 is a diagram showing a relationship between a plurality of signals according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure. 図12は、本開示の第1実施形態に属する実施例EX1_1に係り、プログラム動作後のリード動作のタイミングチャートである。FIG. 12 is a timing chart of the read operation after the program operation according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure. 図13は、本開示の第1実施形態に属する実施例EX1_1に係り、プログラム期間の状態(スイッチ状態)を示す図である。FIG. 13 is a diagram showing a state (switch state) of the program period according to the embodiment EX1_1 belonging to the first embodiment of the present disclosure. 図14Aは、本開示の第2実施形態に係る定電圧源の構成を示す図である。FIG. 14A is a diagram showing a configuration of a constant voltage source according to the second embodiment of the present disclosure. 図14Bは、本開示の第2実施形態に係る定電圧源の構成を示す図である。FIG. 14B is a diagram showing a configuration of a constant voltage source according to the second embodiment of the present disclosure. 図15Aは、本開示の第2実施形態に係り、複数の箇所にて定電圧源の出力電圧が要求されるときの対応を示す図である。FIG. 15A is a diagram showing correspondence when the output voltage of a constant voltage source is required at a plurality of locations according to the second embodiment of the present disclosure. 図15Bは、本開示の第2実施形態に係り、複数の箇所にて定電圧源の出力電圧が要求されるときの対応を示す図である。FIG. 15B is a diagram showing correspondence when the output voltage of a constant voltage source is required at a plurality of locations according to the second embodiment of the present disclosure. 図16は、本開示の第2実施形態に属する実施例EX2_1に係り、定電圧源の回路構成を示す図である。FIG. 16 is a diagram showing a circuit configuration of a constant voltage source according to Example EX2_1 belonging to the second embodiment of the present disclosure. 図17は、本開示の第2実施形態に属する実施例EX2_1に係り、差動対を構成する2つのトランジスタの特性を示す図である。FIG. 17 is a diagram showing the characteristics of the two transistors constituting the differential pair according to the embodiment EX2_1 belonging to the second embodiment of the present disclosure. 図18は、本開示の第2実施形態に属する実施例EX2_1に係り、定電圧源の変形回路構成を示す図である。FIG. 18 is a diagram showing a modified circuit configuration of a constant voltage source according to Example EX2_1 belonging to the second embodiment of the present disclosure. 図19は、本開示の第2実施形態に属する実施例EX2_2に係り、定電流源の回路構成を示す図である。FIG. 19 is a diagram showing a circuit configuration of a constant current source according to Example EX2_2 belonging to the second embodiment of the present disclosure. 図20は、本開示の第2実施形態に属する実施例EX2_2に係り、図19の回路構成に対する変形技術を示す図である。FIG. 20 is a diagram showing a modification technique for the circuit configuration of FIG. 19 according to Example EX2_2 belonging to the second embodiment of the present disclosure. 図21は、本開示の第2実施形態に属する実施例EX2_3に係り、コンパレータの回路構成を示す図である。FIG. 21 is a diagram showing a circuit configuration of a comparator according to Example EX2_3 belonging to the second embodiment of the present disclosure. 図22は、参考構成に係る不揮発性メモリの要部を示す図である。FIG. 22 is a diagram showing a main part of the non-volatile memory according to the reference configuration.
 以下、本開示の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、素子又は部位等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、素子又は部位等の名称を省略又は略記することがある。例えば、後述の“20”によって参照されるリード用電圧供給回路は(図4参照)、リード用電圧供給回路20と表記されることもあるし、回路20と略記されることもあり得るが、それらは全て同じものを指す。 Hereinafter, an example of the embodiment of the present disclosure will be specifically described with reference to the drawings. In each of the referenced figures, the same parts are designated by the same reference numerals, and duplicate explanations regarding the same parts will be omitted in principle. In this specification, for the sake of simplification of description, by describing a symbol or a code that refers to an information, a signal, a physical quantity, an element or a part, etc., the information, a signal, a physical quantity, an element or a part corresponding to the symbol or the code is described. Etc. may be omitted or abbreviated. For example, the lead voltage supply circuit referred to by “20” described later (see FIG. 4) may be referred to as a lead voltage supply circuit 20 or may be abbreviated as circuit 20. They all refer to the same thing.
 まず、本開示の実施形態の記述にて用いられる幾つかの用語について説明を設ける。グランドとは、基準となる0V(ゼロボルト)の電位を有する基準導電部を指す又は0Vの電位そのものを指す。基準導電部は金属等の導体にて形成される。0Vの電位をグランド電位と称することもある。本開示の実施形態において、特に基準を設けずに示される電圧は、グランドから見た電位を表す。レベルとは電位のレベルを指し、任意の注目した信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。任意の注目した信号又は電圧について、信号又は電圧がハイレベルにあるとは信号又は電圧のレベルがハイレベルにあることを意味し、信号又は電圧がローレベルにあるとは信号又は電圧のレベルがローレベルにあることを意味する。信号についてのレベルは信号レベルと表現されることがあり、電圧についてのレベルは電圧レベルと表現されることがある。 First, some terms used in the description of the embodiments of the present disclosure will be explained. The ground refers to a reference conductive portion having a reference potential of 0 V (zero volt) or refers to the potential of 0 V itself. The reference conductive portion is formed of a conductor such as metal. The potential of 0V may be referred to as a ground potential. In the embodiments of the present disclosure, the voltage shown without any particular reference represents the potential seen from ground. Level refers to the level of potential, where a high level has a higher potential than a low level for any signal or voltage of interest. For any signal or voltage of interest, a signal or voltage at a high level means that the signal or voltage level is at a high level, and a signal or voltage at a low level means that the signal or voltage level is at a low level. It means being at a low level. A level for a signal is sometimes referred to as a signal level, and a level for a voltage is sometimes referred to as a voltage level.
 MOSFETを含むFET(電界効果トランジスタ)として構成された任意のトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通している状態を指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通となっている状態(遮断状態)を指す。FETに分類されないトランジスタについても同様である。MOSFETは、特に記述無き限り、エンハンスメント型のMOSFETであると解される。MOSFETは“metal-oxide-semiconductor field-effect transistor”の略称である。 For any transistor configured as a FET (Field Effect Transistor) including MOSFETs, the on state refers to the state in which the drain and source of the transistor are conducting, and the off state means the drain and source of the transistor. Refers to a state in which the interval is non-conducting (blocked state). The same applies to transistors that are not classified as FETs. Unless otherwise specified, MOSFETs are understood to be enhancement-type MOSFETs. MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor".
 MOSFETの電気的特性にはゲート閾電圧が含まれる。Nチャネル型且つエンハンスメント型のMOSFETである任意のトランジスタについて、当該トランジスタのゲート電位が当該トランジスタのソース電位よりも高く、且つ、当該トランジスタのゲート-ソース間電圧(ソース電位から見たゲート電位)の大きさが当該トランジスタのゲート閾電圧以上であるとき、当該トランジスタはオン状態となり、そうでないとき、当該トランジスタはオフ状態となる。Pチャネル型且つエンハンスメント型のMOSFETである任意のトランジスタについて、当該トランジスタのゲート電位が当該トランジスタのソース電位よりも低く、且つ、当該トランジスタのゲート-ソース間電圧(ソース電位から見たゲート電位)の大きさが当該トランジスタのゲート閾電圧以上であるとき、当該トランジスタはオン状態となり、そうでないとき、当該トランジスタはオフ状態となる。 The electrical characteristics of the MOSFET include the gate threshold voltage. For any transistor that is an N-channel type and enhancement type MOSFET, the gate potential of the transistor is higher than the source potential of the transistor, and the gate-source voltage of the transistor (gate potential seen from the source potential). When the magnitude is equal to or greater than the gate threshold voltage of the transistor, the transistor is turned on, and when not, the transistor is turned off. For any transistor that is a P-channel type and enhancement type MOSFET, the gate potential of the transistor is lower than the source potential of the transistor, and the gate-source voltage of the transistor (gate potential seen from the source potential). When the magnitude is equal to or greater than the gate threshold voltage of the transistor, the transistor is turned on, and when not, the transistor is turned off.
 任意のスイッチを1以上のFET(電界効果トランジスタ)にて構成することができ、或るスイッチがオン状態のときには当該スイッチの両端間が導通する一方で或るスイッチがオフ状態のときには当該スイッチの両端間が非導通となる。以下、任意のトランジスタ又はスイッチについて、オン状態、オフ状態を、単に、オン、オフと表現することもある。 Any switch can be configured with one or more FETs (Field Effect Transistors), and when a switch is on, both ends of the switch conduct, while when a switch is off, the switch There is no conduction between both ends. Hereinafter, for any transistor or switch, the on state and the off state may be simply expressed as on and off.
 ハイレベル又はローレベルの信号レベルをとる任意の信号について、当該信号のレベルがハイレベルとなる期間をハイレベル期間と称し、当該信号のレベルがローレベルとなる期間をローレベル期間と称する。ハイレベル又はローレベルの電圧レベルをとる任意の電圧についても同様である。 For any signal that takes a high level or low level signal level, the period when the level of the signal becomes high level is called the high level period, and the period when the level of the signal becomes low level is called the low level period. The same is true for any voltage that has a high or low level voltage level.
<<基本実施形態>>
 本開示の基本実施形態を説明する。図1は、基本実施形態に係る記憶回路901の要部を示す構成図である。記憶回路901は、1ビットのデータを記憶する不揮発性メモリであり、メモリ部910、リード用電圧供給回路920、信号出力回路930及びプログラム回路940を備える。記憶回路901は半導体集積回路にて構成されて良い。
<< Basic Embodiment >>
The basic embodiment of the present disclosure will be described. FIG. 1 is a configuration diagram showing a main part of a storage circuit 901 according to a basic embodiment. The storage circuit 901 is a non-volatile memory that stores 1-bit data, and includes a memory unit 910, a read voltage supply circuit 920, a signal output circuit 930, and a program circuit 940. The storage circuit 901 may be configured by a semiconductor integrated circuit.
 メモリ部910はメモリ素子911及び912から成り、メモリ部910において“0”のデータ又は“1”のデータを記憶する。メモリ素子911及び912の夫々はトランジスタである。故に、メモリ素子911、912を、トランジスタ911、912とも称する。トランジスタ911及び912の夫々はNチャネル型のMOSFETとして構成されている。但し、トランジスタ911は単一の単位MOSFETにて形成される一方で、図2に示す如くトランジスタ912はn個の単位MOSFETの並列回路にて形成される。nは2以上の任意の整数である。トランジスタ911を構成する単位MOSFET及びトランジスタ912を構成する各単位MOSFETは、互いに同じ構造を有し、プログラム回路940によるプログラム動作の実行前においては互いに同じ電気的特性(ゲート閾電圧を含む)を有する。 The memory unit 910 is composed of memory elements 911 and 912, and stores "0" data or "1" data in the memory unit 910. Each of the memory elements 911 and 912 is a transistor. Therefore, the memory elements 911 and 912 are also referred to as transistors 911 and 912. Each of the transistors 911 and 912 is configured as an N-channel MOSFET. However, while the transistor 911 is formed by a single unit MOSFET, the transistor 912 is formed by a parallel circuit of n unit MOSFETs as shown in FIG. n is any integer greater than or equal to 2. The unit MOSFETs constituting the transistor 911 and the unit MOSFETs constituting the transistor 912 have the same structure, and have the same electrical characteristics (including the gate threshold voltage) before the program operation by the program circuit 940 is executed. ..
 トランジスタ911及び912のゲート同士は互いに共通接続される。トランジスタ911及び912の各ソースはグランドに接続される。トランジスタ911及び912の各ドレインは信号出力回路930に接続される。 The gates of the transistors 911 and 912 are commonly connected to each other. Each source of transistors 911 and 912 is connected to ground. Each drain of the transistors 911 and 912 is connected to the signal output circuit 930.
 記憶回路901では、メモリ部910に記憶されたデータを読み出すためのリード動作と、メモリ部910に記憶されるデータを“0”から“1”に書き換えるプログラム動作(ライト動作)を実行できる。 In the storage circuit 901, a read operation for reading the data stored in the memory unit 910 and a program operation (write operation) for rewriting the data stored in the memory unit 910 from "0" to "1" can be executed.
 リード用電圧供給回路920は、リード動作において有効に機能する回路であり、リード動作においてトランジスタ911及び912の各ゲートに対し、トランジスタ911及び912の少なくとも一方をオン状態にするためのリード用電圧を供給する。リード用電圧は、少なくともトランジスタ911のゲート閾電圧より高い。信号出力回路930は、リード動作においてトランジスタ911及び912のドレイン電流の大小関係に基づきメモリ部910に記憶されるデータの値に対応する信号を出力する。 The lead voltage supply circuit 920 is a circuit that functions effectively in the read operation, and in the read operation, the lead voltage for turning on at least one of the transistors 911 and 912 is applied to each gate of the transistors 911 and 912. Supply. The read voltage is at least higher than the gate threshold voltage of the transistor 911. The signal output circuit 930 outputs a signal corresponding to the value of the data stored in the memory unit 910 based on the magnitude relationship of the drain currents of the transistors 911 and 912 in the read operation.
 プログラム動作はプログラム回路940により実現される。プログラム回路940は、プログラム動作において、トランジスタ912にホットキャリアを注入することでトランジスタ912の電気的特性を劣化させ、この劣化によりトランジスタ912のゲート閾電圧を増大(上昇)させる。 The program operation is realized by the program circuit 940. In the program operation, the program circuit 940 deteriorates the electrical characteristics of the transistor 912 by injecting hot carriers into the transistor 912, and the deterioration causes the gate threshold voltage of the transistor 912 to increase (rise).
 図3を参照する。図3において、実線波形962INIは、プログラム動作の実行前における(即ち記憶回路901の初期状態における)トランジスタ912のドレイン電流のゲート-ソース間電圧依存性を表しており、実線波形962PRGは、プログラム動作の実行後におけるトランジスタ912のドレイン電流のゲート-ソース間電圧依存性を表している。破線波形961はトランジスタ911のドレイン電流のゲート-ソース間電圧依存性を表している。プログラム動作においてトランジスタ911にはホットキャリアは注入されないため、トランジスタ911の電気的特性は、プログラム動作の実行前後において不変である。 See FIG. In FIG. 3, the solid line waveform 962 INI represents the gate-source voltage dependence of the drain current of the transistor 912 before the execution of the program operation (that is, in the initial state of the storage circuit 901), and the solid line waveform 962 PRG is It represents the gate-source voltage dependence of the drain current of the transistor 912 after the execution of the program operation. The dashed line waveform 961 represents the gate-source voltage dependence of the drain current of the transistor 911. Since hot carriers are not injected into the transistor 911 during the program operation, the electrical characteristics of the transistor 911 do not change before and after the execution of the program operation.
 プログラム動作の実行前において、トランジスタ911及び912を構成する各単位MOSFETは同じ電気的特性を持つため、それらのゲート閾電圧を超える共通の電圧をトランジスタ911及び912の各ゲートに供給したとき、トランジスタ912のドレイン電流の方がトランジスタ911のドレイン電流よりも大きくなる。トランジスタ912のドレイン電流の方がトランジスタ911のドレイン電流よりも大きい状態は、メモリ部910にて“0”のデータが記憶されている状態に相当する。このため、リード動作において、トランジスタ912のドレイン電流の方がトランジスタ911のドレイン電流よりも大きいとき、信号出力回路930は、“0”のデータに対応する信号(例えばローレベルの信号)を出力する。 Before executing the program operation, each unit MOSFET constituting the transistors 911 and 912 has the same electrical characteristics. Therefore, when a common voltage exceeding their gate threshold voltage is supplied to the gates of the transistors 911 and 912, the transistors The drain current of the 912 is larger than the drain current of the transistor 911. The state in which the drain current of the transistor 912 is larger than the drain current of the transistor 911 corresponds to the state in which the data of "0" is stored in the memory unit 910. Therefore, in the read operation, when the drain current of the transistor 912 is larger than the drain current of the transistor 911, the signal output circuit 930 outputs a signal corresponding to the data of “0” (for example, a low level signal). ..
 プログラム動作の実行によりトランジスタ912の各単位MOSFETにホットキャリアが注入されることで、トランジスタ912の各単位MOSFETのゲート閾電圧が増大する。これは、トランジスタ912のゲート閾電圧が増大することに相当する。プログラム動作の実行後においてトランジスタ912のゲート閾電圧がトランジスタ911のゲート閾電圧よりも十分に高くなるよう、プログラム動作が実行される。プログラム動作の実行後におけるトランジスタ912のゲート閾電圧はリード用電圧よりも高くて良く、プログラム動作の実行後にリード動作が行われると、トランジスタ911のドレイン電流の方がトランジスタ912のドレイン電流よりも大きくなる。トランジスタ911のドレイン電流の方がトランジスタ912のドレイン電流よりも大きい状態は、メモリ部910にて“1”のデータが記憶されている状態に相当する。このため、リード動作において、トランジスタ911のドレイン電流の方がトランジスタ912のドレイン電流よりも大きいとき、信号出力回路930は、“1”のデータに対応する信号(例えばハイレベルの信号)を出力する。 By executing the program operation, hot carriers are injected into each unit MOSFET of the transistor 912, so that the gate threshold voltage of each unit MOSFET of the transistor 912 increases. This corresponds to an increase in the gate threshold voltage of the transistor 912. After executing the program operation, the program operation is executed so that the gate threshold voltage of the transistor 912 becomes sufficiently higher than the gate threshold voltage of the transistor 911. The gate threshold voltage of the transistor 912 after the execution of the program operation may be higher than the read voltage, and when the read operation is performed after the execution of the program operation, the drain current of the transistor 911 is larger than the drain current of the transistor 912. Become. The state in which the drain current of the transistor 911 is larger than the drain current of the transistor 912 corresponds to the state in which the data of "1" is stored in the memory unit 910. Therefore, in the read operation, when the drain current of the transistor 911 is larger than the drain current of the transistor 912, the signal output circuit 930 outputs a signal corresponding to the data of “1” (for example, a high level signal). ..
 初期状態での記憶データが不定となる不揮発性メモリを構成することもできる。但し、そのような不揮発性メモリが用いられる場合には、記憶データが不定であることに対応するための処理を他の周辺回路にて行う必要があり、回路規模の観点等から都合が悪いこともある。図1の記憶回路901によれば、初期状態において記憶データを“0”に確定させることができ、プログラム動作が実行された場合に限り記憶データを“1”とすることができる。 It is also possible to configure a non-volatile memory in which the stored data in the initial state is indefinite. However, when such a non-volatile memory is used, it is necessary to perform processing for dealing with the indefinite storage data in another peripheral circuit, which is inconvenient from the viewpoint of circuit scale. There is also. According to the storage circuit 901 of FIG. 1, the stored data can be fixed to "0" in the initial state, and the stored data can be set to "1" only when the program operation is executed.
 但し、回路全体のサイズ縮小のためにメモリ素子(911、912)のサイズ縮小が求められることも多く、メモリ素子のサイズが小さくなるとメモリ素子間で特性のミスマッチが大きくなる。即ち、トランジスタ911及び912の各単位MOSFETの電気的特性が同一となることを目指して各単位MOSFETを半導体基板上に形成するのであるが、実際には、各単位MOSFETの電気的特性にばらつきが生じる。このばらつきがミスマッチに相当する。このようなミスマッチは、正しいデータの記憶及び読み出しを阻害する。或いは、ミスマッチを考慮した上で正しいデータの記憶及び読み出しを実現するために上記「n」の値を相当に大きくするといった対応が必要となる。以下の第1実施形態において、上記ミスマッチの影響を受け難い記憶回路を説明する。 However, in order to reduce the size of the entire circuit, it is often required to reduce the size of the memory elements (911, 912), and as the size of the memory element becomes smaller, the characteristic mismatch between the memory elements becomes larger. That is, each unit MOSFET is formed on the semiconductor substrate with the aim of making the electrical characteristics of the unit MOSFETs of the transistors 911 and 912 the same, but in reality, the electrical characteristics of each unit MOSFET vary. Occurs. This variation corresponds to a mismatch. Such a mismatch hinders the storage and reading of correct data. Alternatively, it is necessary to take measures such as considerably increasing the value of the above "n" in order to realize correct data storage and reading in consideration of the mismatch. In the following first embodiment, a storage circuit that is not easily affected by the mismatch will be described.
<<第1実施形態>>
 本開示の第1実施形態を説明する。図4は、第1実施形態に係る記憶回路1の要部を示す構成図である。記憶回路1は、1ビットのデータを記憶する不揮発性メモリであり、メモリ部10、リード用電圧供給回路20、信号出力回路30及びプログラム回路40を備えると共に、抵抗R1を備える。記憶回路1は半導体集積回路にて構成されて良い。
<< First Embodiment >>
The first embodiment of the present disclosure will be described. FIG. 4 is a configuration diagram showing a main part of the storage circuit 1 according to the first embodiment. The storage circuit 1 is a non-volatile memory that stores 1-bit data, and includes a memory unit 10, a read voltage supply circuit 20, a signal output circuit 30, and a program circuit 40, as well as a resistor R1. The storage circuit 1 may be configured by a semiconductor integrated circuit.
 メモリ部10はメモリ素子M1及びM2を備え、メモリ部10において“0”のデータ又は“1”のデータを記憶する。メモリ素子M1及びM2の夫々はトランジスタである。故に、メモリ素子M1、M2を、トランジスタM1、M2(第1、第2トランジスタ)とも称する。トランジスタM1及びM2の夫々はNチャネル型のMOSFETとして構成されている。トランジスタM1及びM2は、互いに同じ構造を有し、プログラム回路40によるプログラム動作の実行前においては互いに同じ電気的特性を有する。従って、プログラム回路40によるプログラム動作の実行前においては、トランジスタM1及びM2は互いに同じゲート閾電圧を有する。ここで、トランジスタについて、構造とは、トランジスタの大きさを含む概念であり、従って、任意の複数のトランジスタについて、構造が互いに同じであるとは、複数のトランジスタの大きさも互いに同じであることを意味する。但し、任意の複数のトランジスタの構造及び電気的特性(ゲート閾電圧など)について、構造又は電気的特性が同じであるとは、設計上、それらが同じであることを意味し、実際には誤差を含みうる(即ち、同じとは誤差を含む概念であると解される)。 The memory unit 10 includes memory elements M1 and M2, and stores "0" data or "1" data in the memory unit 10. Each of the memory elements M1 and M2 is a transistor. Therefore, the memory elements M1 and M2 are also referred to as transistors M1 and M2 (first and second transistors). Each of the transistors M1 and M2 is configured as an N-channel MOSFET. The transistors M1 and M2 have the same structure as each other, and have the same electrical characteristics as each other before the program operation by the program circuit 40 is executed. Therefore, before the program operation by the program circuit 40 is executed, the transistors M1 and M2 have the same gate threshold voltage. Here, for a transistor, the structure is a concept including the size of the transistor, and therefore, for any plurality of transistors, the same structure means that the sizes of the plurality of transistors are also the same. means. However, with respect to the structure and electrical characteristics (gate threshold voltage, etc.) of any plurality of transistors, the same structure or electrical characteristics means that they are the same in design, and an error is actually obtained. (Ie, the same is understood to be a concept involving errors).
 トランジスタM1及びM2のゲート同士は互いに共通接続される。トランジスタM1のソースは抵抗R1を介してグランドに接続される。即ち、トランジスタM1のソースは抵抗R1の一端に接続され、抵抗R1の他端はグランドに接続される。これに対し、トランジスタM2のソースはグランドに直接接続される。トランジスタM1及びM2の各ドレインは信号出力回路30に接続される。トランジスタM1のドレイン電流を記号“ID1”にて参照し、トランジスタM2のドレイン電流を記号“ID2”にて参照する。 The gates of the transistors M1 and M2 are commonly connected to each other. The source of the transistor M1 is connected to ground via the resistor R1. That is, the source of the transistor M1 is connected to one end of the resistor R1 and the other end of the resistor R1 is connected to the ground. On the other hand, the source of the transistor M2 is directly connected to the ground. Each drain of the transistors M1 and M2 is connected to the signal output circuit 30. The drain current of the transistor M1 is referred to by the symbol “ ID1 ”, and the drain current of the transistor M2 is referred to by the symbol “ ID2 ”.
 記憶回路1では、メモリ部10に記憶されたデータを読み出すためのリード動作と、メモリ部10に記憶されるデータを“0”から“1”に書き換えるプログラム動作(ライト動作)を実行できる。 In the storage circuit 1, a read operation for reading the data stored in the memory unit 10 and a program operation (write operation) for rewriting the data stored in the memory unit 10 from "0" to "1" can be executed.
 リード用電圧供給回路20は、リード動作において有効に機能する回路であり、リード動作においてトランジスタM1及びM2の各ゲートに対し、トランジスタM1及びM2の少なくとも一方をオン状態にするためのリード用電圧を供給する。但し、トランジスタM1のソースは抵抗R1を介して接続されているため、リード動作において、トランジスタM1のゲート-ソース間には、リード用電圧から抵抗R1の電圧降下を差し引いた電圧が加わる(つまり、抵抗R1の両端の内、グランドに接続される一端と、トランジスタM1のゲートとの間に、リード用電圧が印可される)。これに対し、リード動作において、トランジスタM2のゲート-ソース間には、リード用電圧がそのまま加わる。リード用電圧は、少なくともトランジスタM1のゲート閾電圧より高い。故に、リード動作においては、少なくともトランジスタM1はオン状態となり、ドレイン電流ID1を流すことが可能な状態となる。信号出力回路30は、リード動作においてトランジスタM1及びM2のドレイン電流の大小関係に基づきメモリ部10に記憶されるデータの値に対応する信号DOUTを出力する。 The lead voltage supply circuit 20 is a circuit that functions effectively in the read operation, and in the read operation, the lead voltage for turning on at least one of the transistors M1 and M2 is applied to each gate of the transistors M1 and M2. Supply. However, since the source of the transistor M1 is connected via the resistor R1, in the read operation, a voltage obtained by subtracting the voltage drop of the resistor R1 from the read voltage is applied between the gate and the source of the transistor M1 (that is,). A read voltage is applied between both ends of the resistor R1 and one end connected to the ground and the gate of the transistor M1). On the other hand, in the read operation, the read voltage is directly applied between the gate and the source of the transistor M2. The read voltage is at least higher than the gate threshold voltage of the transistor M1. Therefore, in the read operation, at least the transistor M1 is turned on, and the drain current ID1 can flow. The signal output circuit 30 outputs a signal D OUT corresponding to the value of the data stored in the memory unit 10 based on the magnitude relationship of the drain currents of the transistors M1 and M2 in the read operation.
 プログラム動作はプログラム回路40により実現される。プログラム回路40は、プログラム動作において、トランジスタM2にホットキャリアを注入することでトランジスタM2の電気的特性を劣化させ、この劣化によりトランジスタM2のゲート閾電圧を増大(上昇)させる。 The program operation is realized by the program circuit 40. In the program operation, the program circuit 40 deteriorates the electrical characteristics of the transistor M2 by injecting hot carriers into the transistor M2, and the deterioration causes the gate threshold voltage of the transistor M2 to increase (rise).
 図5を参照する。図5において、実線波形800M2INIは、プログラム動作の実行前における(即ち記憶回路1の初期状態における)トランジスタM2のドレイン電流のゲート-ソース間電圧依存性を表しており、実線波形800M2PRGは、プログラム動作の実行後におけるトランジスタM2のドレイン電流のゲート-ソース間電圧依存性を表している。破線波形800M1はトランジスタM1のドレイン電流のゲート-ソース間電圧依存性を表している。プログラム動作においてトランジスタM1にはホットキャリアは注入されないため、トランジスタM1の電気的特性は、プログラム動作の実行前後において不変である。理想的には、波形800M1及び800M2INIは互いに重なり合う。図5では、図示の便宜上、波形800M1及び800M2INIを若干ずらして示している。 See FIG. In FIG. 5, the solid line waveform 800M2 INI represents the gate-source voltage dependence of the drain current of the transistor M2 before the execution of the program operation (that is, in the initial state of the storage circuit 1), and the solid line waveform 800M2 PRG is It represents the gate-source voltage dependence of the drain current of the transistor M2 after the execution of the program operation. The dashed line waveform 800M1 represents the gate-source voltage dependence of the drain current of the transistor M1. Since hot carriers are not injected into the transistor M1 during the program operation, the electrical characteristics of the transistor M1 do not change before and after the execution of the program operation. Ideally, the waveforms 800M1 and 800M2 INI will overlap each other. In FIG. 5, for convenience of illustration, the waveforms 800M1 and 800M2 INI are shown with a slight shift.
 プログラム動作の実行前においては、トランジスタM1及びM2は同じ電気的特性を持つため、それらのゲート閾電圧を超える共通の電圧をトランジスタM1及びM2の各ゲートに供給したとき、トランジスタM2のドレイン電流ID2の方がトランジスタM1のドレイン電流ID1よりも大きくなる。ドレイン電流ID2の方がドレイン電流ID1よりも大きい状態は、メモリ部10にて“0”のデータが記憶されている状態に相当する。このため、リード動作において、ドレイン電流ID2の方がドレイン電流ID1よりも大きいとき、信号出力回路30は“0”のデータに対応する信号DOUT(例えばローレベルの信号DOUT)を出力する。プログラム動作の実行前のリード動作では、ドレイン電流ID2の方がドレイン電流ID1よりも大きい。 Since the transistors M1 and M2 have the same electrical characteristics before the execution of the program operation, when a common voltage exceeding their gate threshold voltage is supplied to each gate of the transistors M1 and M2, the drain current I of the transistor M2 D2 is larger than the drain current I D1 of the transistor M1. The state in which the drain current I D2 is larger than the drain current I D1 corresponds to the state in which the data of "0" is stored in the memory unit 10. Therefore, in the read operation, when the drain current I D2 is larger than the drain current I D1 , the signal output circuit 30 outputs a signal D OUT (for example, a low level signal D OUT ) corresponding to the data of “0”. do. In the read operation before the execution of the program operation, the drain current I D2 is larger than the drain current I D1 .
 プログラム動作の実行によりトランジスタM2にホットキャリアが注入されることで、トランジスタM2のゲート閾電圧が増大する。プログラム動作の実行後においてトランジスタM2のゲート閾電圧がトランジスタM1のゲート閾電圧よりも十分に高くなるよう、プログラム動作が実行される。プログラム動作の実行後におけるトランジスタM2のゲート閾電圧はリード用電圧よりも高くて良い。プログラム動作の実行後にリード動作が行われると、ドレイン電流ID1の方がドレイン電流ID2よりも大きくなる。ドレイン電流ID1の方がドレイン電流ID2よりも大きい状態は、メモリ部10にて“1”のデータが記憶されている状態に相当する。このため、リード動作において、ドレイン電流ID1の方がドレイン電流ID2よりも大きいとき、信号出力回路30は “1”のデータに対応する信号DOUT(例えばハイレベルの信号DOUT)を出力する。 By injecting hot carriers into the transistor M2 by executing the program operation, the gate threshold voltage of the transistor M2 increases. After executing the program operation, the program operation is executed so that the gate threshold voltage of the transistor M2 becomes sufficiently higher than the gate threshold voltage of the transistor M1. The gate threshold voltage of the transistor M2 after executing the program operation may be higher than the read voltage. When the read operation is performed after the execution of the program operation, the drain current ID1 becomes larger than the drain current ID2 . The state in which the drain current I D1 is larger than the drain current I D2 corresponds to the state in which the data of "1" is stored in the memory unit 10. Therefore, in the read operation, when the drain current I D1 is larger than the drain current I D2 , the signal output circuit 30 outputs a signal D OUT (for example, a high level signal D OUT ) corresponding to the data of “1”. do.
 図4の回路構成を採用することにより、上記ミスマッチの影響を受け難い記憶回路を構成することができる。 By adopting the circuit configuration of FIG. 4, it is possible to configure a storage circuit that is not easily affected by the above mismatch.
 尚、図4の接続関係及び図4の回路について上述した接続関係はリード動作が実行されるときの接続関係を表しており、プログラム動作の実行時には、トランジスタM2のソース及びドレインが入れ替わっても良い(但し、これは必須ではない)。即ち、トランジスタM2が有する第1電極及び第2電極の内、高電位側の電極がドレインとして且つ低電位側の電極がソースとして機能することになるが、トランジスタM2が有する第1電極及び第2電極の内、リード動作ではグランドに接続される電極(ソースとして機能する電極)が、プログラム動作の実行時にはドレインとして機能するように、スイッチ等(図4では不図示)を用いて各回路の接続関係を変更しても良い(これを実現する詳細な回路例は後述)。 The connection relationship of FIG. 4 and the connection relationship described above for the circuit of FIG. 4 represent the connection relationship when the read operation is executed, and the source and drain of the transistor M2 may be exchanged when the program operation is executed. (However, this is not mandatory). That is, of the first and second electrodes of the transistor M2, the electrode on the high potential side functions as a drain and the electrode on the low potential side functions as a source, but the first electrode and the second electrode of the transistor M2 have. Of the electrodes, each circuit is connected using a switch or the like (not shown in FIG. 4) so that the electrode connected to the ground in the lead operation (the electrode that functions as the source) functions as the drain when the program operation is executed. The relationship may be changed (detailed circuit examples to achieve this will be described later).
 第1実施形態は、以下の実施例EX1_1~EX1_4を含む。第1実施形態にて上述した事項は、特に記述無き限り且つ矛盾無き限り、以下の実施例EX1_1~EX1_4に適用され、各実施例において、第1実施形態で上述した事項と矛盾する事項については各実施例での記載が優先されて良い。また矛盾無き限り、実施例EX1_1~EX1_4の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち複数の実施例の内の任意の2以上の実施例を組み合わせることも可能である)。 The first embodiment includes the following examples EX1_1 to EX1_4. The above-mentioned matters in the first embodiment are applied to the following Examples EX1_1 to EX1_4 unless otherwise specified and without contradiction, and in each embodiment, the matters inconsistent with the above-mentioned matters in the first embodiment are described. The description in each embodiment may be prioritized. Further, as long as there is no contradiction, the matters described in any of the examples EX1_1 to EX1_4 can be applied to any other embodiment (that is, any two or more implementations in the plurality of examples). It is also possible to combine examples).
[実施例EX1_1]
 実施例EX1_1を説明する。図6に実施例EX1_1に係る記憶回路1Aの構成を示す。記憶回路1Aは図4の記憶回路1の例である。記憶回路1Aは、トランジスタM1~M4、M11~M14、M21及びM22と、スイッチSW1~SW12と、抵抗R1、R3及びR4と、コンデンサC1及びC2と、インバータINV1~INV5と、定電流回路CCIG及びCCOTPGと、制御回路60と、を備える。記憶回路1Aは半導体集積回路にて構成されて良い。
[Example EX1_1]
Example EX1_1 will be described. FIG. 6 shows the configuration of the storage circuit 1A according to the embodiment EX1_1. The storage circuit 1A is an example of the storage circuit 1 of FIG. The storage circuit 1A includes transistors M1 to M4, M11 to M14, M21 and M22, switches SW1 to SW12, resistors R1, R3 and R4, capacitors C1 and C2, inverters INV1 to INV5, and a constant current circuit CC IG . And CC OTPG , and a control circuit 60. The storage circuit 1A may be configured by a semiconductor integrated circuit.
 トランジスタM1~M4及びM11~M14はNチャネル型のMOSFETであり、トランジスタM21及びM22はPチャネル型のMOSFETである。制御回路60から信号XRST及びPRGが出力される。信号XRST及びPRGはローレベル又はハイレベルの信号レベルをとる二値化信号である。信号XRST及びPRGに基づきスイッチSW1~SW12のオン/オフが制御されるが、図6では全スイッチがオフ状態であると仮定したときの様子が示されている(後述の図7でも同様)。 Transistors M1 to M4 and M11 to M14 are N-channel MOSFETs, and transistors M21 and M22 are P-channel MOSFETs. The signals XRST and PRG are output from the control circuit 60. Signals XRST and PRG are binarized signals that take low or high level signal levels. The on / off of the switches SW1 to SW12 is controlled based on the signals XRST and PRG, and FIG. 6 shows the situation when it is assumed that all the switches are in the off state (the same applies to FIG. 7 described later).
 記憶回路1Aの各構成要素の接続関係を説明する。電源ラインLNVDDには正の電源電圧VDDが加わる。電源電圧VDDは所定の正の直流電圧値を有する。グランドラインLNGNDは0Vのグランド電位を持つ。 The connection relationship of each component of the storage circuit 1A will be described. A positive power supply voltage VDD is applied to the power supply line LN VDD . The power supply voltage VDD has a predetermined positive DC voltage value. The ground line LN GND has a ground potential of 0 V.
 トランジスタM21及びM22の各ソース並びにスイッチSW3及びSW4の各一端は電源ラインLNVDDに接続される。スイッチSW3の他端はトランジスタM21のゲートに接続され、スイッチSW4の他端はトランジスタM22のゲートに接続される。トランジスタM21のゲートに接続される配線をラインLN2と称し、ラインLN2に加わる電圧を電圧V2と称する。トランジスタM22のゲートに接続される配線をラインLN1と称し、ラインLN1に加わる電圧を電圧V1と称する。トランジスタM21のドレインはラインLN1に接続され、トランジスタM22のドレインはラインLN2に接続される。 Each source of the transistors M21 and M22 and one end of each of the switches SW3 and SW4 are connected to the power supply line LN VDD . The other end of the switch SW3 is connected to the gate of the transistor M21, and the other end of the switch SW4 is connected to the gate of the transistor M22. The wiring connected to the gate of the transistor M21 is referred to as a line LN2, and the voltage applied to the line LN2 is referred to as a voltage V2. The wiring connected to the gate of the transistor M22 is referred to as a line LN1, and the voltage applied to the line LN1 is referred to as a voltage V1. The drain of the transistor M21 is connected to the line LN1, and the drain of the transistor M22 is connected to the line LN2.
 インバータINV1の入力端子はラインLN1に接続される。インバータINV1の出力端子はインバータINV2の入力端子に接続される。インバータINV2の出力端子はインバータINV3の入力端子に接続されると共にコンデンサC1を介してラインLN1に接続される。インバータINV4の入力端子はラインLN2に接続される。インバータINV4の出力端子はインバータINV5の入力端子に接続される。インバータINV5の出力端子はコンデンサC2を介してラインLN2に接続される。 The input terminal of the inverter INV1 is connected to the line LN1. The output terminal of the inverter INV1 is connected to the input terminal of the inverter INV2. The output terminal of the inverter INV2 is connected to the input terminal of the inverter INV3 and is also connected to the line LN1 via the capacitor C1. The input terminal of the inverter INV4 is connected to the line LN2. The output terminal of the inverter INV4 is connected to the input terminal of the inverter INV5. The output terminal of the inverter INV5 is connected to the line LN2 via the capacitor C2.
 スイッチSW5の一端はラインLN1に接続され、スイッチSW5の他端はスイッチSW1の一端に接続される。スイッチSW1の他端はグランドラインLNGNDに接続される。スイッチSW6の一端はラインLN2に接続され、スイッチSW6の他端はスイッチSW2の一端に接続される。スイッチSW2の他端はグランドラインLNGNDに接続される。 One end of the switch SW5 is connected to the line LN1, and the other end of the switch SW5 is connected to one end of the switch SW1. The other end of the switch SW1 is connected to the ground line LN GND . One end of the switch SW6 is connected to the line LN2, and the other end of the switch SW6 is connected to one end of the switch SW2. The other end of the switch SW2 is connected to the ground line LN GND .
 トランジスタM11~M14の各ゲートはゲートラインLNIGに共通接続される。ゲートラインLNIGに加わる電圧をゲート電圧VIGと称する。トランジスタM1~M3の各ゲートはゲートラインLNOTPGに共通接続される。ゲートラインLNOTPGに加わる電圧をゲート電圧VOTPGと称する。 Each gate of the transistors M11 to M14 is commonly connected to the gate line LN IG . The voltage applied to the gate line LN IG is called the gate voltage V IG . Each gate of the transistors M1 to M3 is commonly connected to the gate line LN OTPG . The voltage applied to the gate line LN OTPG is referred to as the gate voltage V OTPG .
 トランジスタM11のドレインはラインLN1に接続され、トランジスタM11のソースはトランジスタM1のドレインに接続される。トランジスタM1のソースは抵抗R1を介してグランドラインLNGNDに接続される。即ち、トランジスタM1のソースは抵抗R1の一端に接続され、抵抗R1の他端はグランドラインLNGNDに接続される。 The drain of the transistor M11 is connected to the line LN1, and the source of the transistor M11 is connected to the drain of the transistor M1. The source of the transistor M1 is connected to the ground line LN GND via the resistor R1. That is, the source of the transistor M1 is connected to one end of the resistor R1 and the other end of the resistor R1 is connected to the ground line LN GND .
 トランジスタM12のドレインはラインLN2に接続され、トランジスタM12のソースはトランジスタM2の電極E1に接続される。トランジスタM2の電極E1とグランドラインLNGNDとの間に直列にスイッチSW9が挿入される。トランジスタM2の電極E2とグランドラインLNGNDとの間に直列にスイッチSW10が挿入される。また、トランジスタM2の電極E2と電源ラインLNVDDとの間に直列にスイッチSW11が挿入される。トランジスタM2において、電極E1及びE2の内、高電位側の電極がドレインとして機能し且つ低電位側の電極がソースとして機能する。後述の説明から明らかとなるが、リード動作においては、スイッチSW9、SW10、SW11が、夫々、オフ、オン、オフとされることで電極E1がドレインとして機能し、プログラム動作においては、スイッチSW9、SW10、SW11が、夫々、オン、オフ、オンとされることで電極E2がドレインとして機能する。 The drain of the transistor M12 is connected to the line LN2, and the source of the transistor M12 is connected to the electrode E1 of the transistor M2. A switch SW9 is inserted in series between the electrode E1 of the transistor M2 and the ground line LN GND . A switch SW10 is inserted in series between the electrode E2 of the transistor M2 and the ground line LN GND . Further, the switch SW11 is inserted in series between the electrode E2 of the transistor M2 and the power supply line LN VDD . In the transistor M2, among the electrodes E1 and E2, the electrode on the high potential side functions as a drain and the electrode on the low potential side functions as a source. As will be clarified from the explanation described later, in the read operation, the switches SW9, SW10, and SW11 are turned off, on, and off, respectively, so that the electrode E1 functions as a drain, and in the program operation, the switch SW9, When SW10 and SW11 are turned on, off, and on, respectively, the electrode E2 functions as a drain.
 電源ラインLNVDDとゲートラインLNOTPGとの間にスイッチSW12が直列に挿入され、ゲートラインLNOTPGとグランドラインLNGNDとの間にスイッチSW7が直列に挿入される。トランジスタM13のドレインはゲートラインLNOTPGに接続され、トランジスタM13のソースはトランジスタM3のドレインに接続される。トランジスタM3のソースは抵抗R3を介してグランドラインLNGNDに接続される。 The switch SW12 is inserted in series between the power line LN VDD and the gate line LN OTPG , and the switch SW7 is inserted in series between the gate line LN OTPG and the ground line LN GND . The drain of the transistor M13 is connected to the gate line LN OTPG , and the source of the transistor M13 is connected to the drain of the transistor M3. The source of the transistor M3 is connected to the ground line LN GND via the resistor R3.
 ゲートラインLNIGとグランドラインLNGNDとの間にスイッチSW8が直列に挿入される。トランジスタM14のドレインはゲートラインLNIGに接続され、トランジスタM14のソースはトランジスタM4のドレインに接続される。トランジスタM4のゲート及びドレインは互いに接続される。トランジスタM4のソースは抵抗R4を介してグランドラインLNGNDに接続される。 A switch SW8 is inserted in series between the gate line LN IG and the ground line LN GND . The drain of the transistor M14 is connected to the gate line LN IG , and the source of the transistor M14 is connected to the drain of the transistor M4. The gate and drain of the transistor M4 are connected to each other. The source of the transistor M4 is connected to the ground line LN GND via the resistor R4.
 定電流回路CCIGはゲートラインLNIGに接続される。定電流回路CCIGは、リード動作が行われる期間を含む必要な期間において、電源電圧VDDを元に定電流IGを生成し、定電流IGをゲートラインLNIGに供給する。定電流回路CCOTPGはゲートラインLNOTPGに接続される。定電流回路CCOTPGは、リード動作が行われる期間を含む必要な期間において、電源電圧VDDを元に定電流OTPGを生成し、定電流OTPGをゲートラインLNOTPGに供給する。 The constant current circuit CC IG is connected to the gate line LN IG . The constant current circuit CC IG generates a constant current IG based on the power supply voltage VDD and supplies the constant current IG to the gate line LN IG during a necessary period including a period in which the read operation is performed. The constant current circuit CC OTPG is connected to the gate line LN OTPG . The constant current circuit CC OTPG generates a constant current OTPG based on the power supply voltage VDD and supplies the constant current OTPG to the gate line LN OTPG in a necessary period including a period in which the read operation is performed.
 インバータINV1~INV5の何れかであるインバータは、自身の入力端子への入力信号の反転信号を自身の出力端子から出力する。詳細には、インバータは、自身の入力端子への入力電圧が所定の閾電圧未満であるときには当該閾電圧よりも十分に高いハイレベルの信号を自身の出力端子から出力し、自身の入力端子への入力電圧が所定の閾電圧以上であるときには当該閾電圧よりも十分に低いローレベルの信号を自身の出力端子から出力する。インバータINV1~INV5は電源電圧VDDを元に駆動し、各インバータの閾電圧は概ね電源電圧VDDの半分である。但し、各インバータの閾電圧にはヒステリシス特性が付与されていて良い。インバータINV3の出力信号が記憶回路1Aの出力信号DOUTである。トランジスタM1及びM2から成るメモリ部10にて記憶されているデータの値に応じた信号が、リード動作を経て、出力信号DOUTとして出力される。 Inverter An inverter, which is any of INV1 to INV5, outputs an inverted signal of an input signal to its own input terminal from its own output terminal. Specifically, when the input voltage to its input terminal is less than a predetermined threshold voltage, the inverter outputs a high-level signal sufficiently higher than the threshold voltage from its output terminal to its own input terminal. When the input voltage of is equal to or higher than a predetermined threshold voltage, a low-level signal sufficiently lower than the threshold voltage is output from its own output terminal. The inverters INV1 to INV5 are driven based on the power supply voltage VDD, and the threshold voltage of each inverter is approximately half of the power supply voltage VDD. However, a hysteresis characteristic may be added to the threshold voltage of each inverter. The output signal of the inverter INV3 is the output signal D OUT of the storage circuit 1A. A signal corresponding to the value of the data stored in the memory unit 10 composed of the transistors M1 and M2 is output as an output signal D OUT through a read operation.
 スイッチSW5の制御端子はインバータINV1の出力端子に接続される。スイッチSW5は、インバータINV1の出力信号がハイレベル、ローレベルであるときに、夫々、オン状態、オフ状態となる。スイッチSW6の制御端子はインバータINV4の出力端子に接続される。スイッチSW6は、インバータINV4の出力信号がハイレベル、ローレベルであるときに、夫々、オン状態、オフ状態となる。 The control terminal of the switch SW5 is connected to the output terminal of the inverter INV1. The switch SW5 is turned on and off, respectively, when the output signal of the inverter INV1 is high level and low level. The control terminal of the switch SW6 is connected to the output terminal of the inverter INV4. The switch SW6 is turned on and off, respectively, when the output signal of the inverter INV4 is high level and low level.
 上述したように、トランジスタM1及びM2は、互いに同じ構造を有し、プログラム動作の実行前においては互いに同じ電気的特性(ゲート閾電圧を含む)を有する。更に、ここでは、以下に示すような構成が記憶回路1Aに採用されているものとする(図7参照)。即ち、記憶回路1AにNチャネル型の第1~第5の単位MOSFETを形成し、第1、第2、第3の単位MOSFETにより、夫々、トランジスタM1、M2、M3を形成する一方、第4及び第5の単位MOSFETの並列回路によりトランジスタM4を形成する。第1~第5の単位MOSFETは、互いに同じ構造を有し、プログラム動作の実行前においては互いに同じ電気的特性(ゲート閾電圧を含む)を有する。加えて、抵抗R1及びR3の抵抗値を互いに同じとし、且つ、抵抗R4の抵抗値を抵抗R1の抵抗値の半分に設定する。定電流IGは定電流OTPGの2倍に設定される。また、トランジスタM1~M14は互いに同じ構造及び電気的特性(ゲート閾電圧を含む)を有するトランジスタであって良い。 As described above, the transistors M1 and M2 have the same structure as each other, and have the same electrical characteristics (including the gate threshold voltage) before the execution of the program operation. Further, here, it is assumed that the configuration shown below is adopted in the storage circuit 1A (see FIG. 7). That is, the N-channel type first to fifth unit MOSFETs are formed in the storage circuit 1A, and the transistors M1, M2, and M3 are formed by the first, second, and third unit MOSFETs, respectively, while the fourth unit is formed. And the transistor M4 is formed by the parallel circuit of the fifth unit MOSFET. The first to fifth unit MOSFETs have the same structure as each other and have the same electrical characteristics (including the gate threshold voltage) before the execution of the program operation. In addition, the resistance values of the resistors R1 and R3 are set to be the same as each other, and the resistance value of the resistor R4 is set to half the resistance value of the resistor R1. The constant current IG is set to twice the constant current OTPG. Further, the transistors M1 to M14 may be transistors having the same structure and electrical characteristics (including a gate threshold voltage).
---プログラム動作前のリード動作RDINI---
 以下、説明の便宜上、プログラム動作の実行前に実行されるリード動作を特にリード動作RDINIと称することがあり、プログラム動作の実行後に実行されるリード動作をリード動作RDPRGと称することがある。単にリード動作と述べた場合、それは、プログラム動作の実行前又は実行後のリード動作を指す。
--- Read operation before program operation RD INI ---
Hereinafter, for convenience of description, the read operation executed before the execution of the program operation may be referred to as a read operation RD INI , and the read operation executed after the execution of the program operation may be referred to as a read operation RD PRG . When simply referred to as a read operation, it refers to a read operation before or after the execution of the program operation.
 図8はリード動作RDINIのタイミングチャートである。リード動作において、信号XRSTのローレベル期間をプリチャージ期間と称し、信号XRSTのハイレベル期間の内、スイッチSW5及びSW6の双方がオフ状態である期間をリード期間と称する。プリチャージ期間を経た後のリード期間にてリード動作が実現される。プログラム動作が行われない期間(プリチャージ期間及びリード期間を含む)では信号PRGがローレベルに維持される。信号PRGがローレベルであることを前提に、信号XRSTがローレベルからハイレベルに切り替わることでプリチャージ期間からリード期間に遷移し、メモリ部10にて記憶されているデータに応じた信号が、リード期間を経て、出力信号DOUTとして出力される。 FIG. 8 is a timing chart of the read operation RD INI . In the read operation, the low level period of the signal XRST is referred to as a precharge period, and the period in which both the switches SW5 and SW6 are in the off state among the high level periods of the signal XRST is referred to as a read period. The read operation is realized in the read period after the precharge period has passed. The signal PRG is maintained at a low level during the period when no program operation is performed (including the precharge period and the read period). Assuming that the signal PRG is at the low level, the signal XRST is switched from the low level to the high level to transition from the precharge period to the read period, and the signal corresponding to the data stored in the memory unit 10 is generated. After the read period, it is output as an output signal D OUT .
 プリチャージ期間では、ローレベルの信号XRST及びPRGに基づき、図9に示す如く、スイッチSW1及びSW2がオフとされる一方でスイッチSW3、SW4、SW7及びSW8がオンとされ、且つ、定電流回路CCIG及びCCOTPGによる定電流の生成及び出力動作は停止している。また、信号PRGのローレベル期間では、ローレベルの信号PRGに基づき、スイッチSW9、SW11及びSW12がオフ且つスイッチSW10がオンとされる。プログラム動作が行われない期間(プリチャージ期間及びリード期間を含む)では、トランジスタM2において、電極E1がドレインとして機能し、電極E2がソースとして機能する。 During the precharge period, based on the low level signals XRST and PRG, as shown in FIG. 9, switches SW1 and SW2 are turned off, while switches SW3, SW4, SW7 and SW8 are turned on, and a constant current circuit. The constant current generation and output operations by CC IG and CC OTPG are stopped. Further, during the low level period of the signal PRG, the switches SW9, SW11 and SW12 are turned off and the switch SW10 is turned on based on the low level signal PRG. In the period in which the program operation is not performed (including the precharge period and the read period), the electrode E1 functions as a drain and the electrode E2 functions as a source in the transistor M2.
 図8において、破線波形INIV1はリード動作RDINIにおける電圧V1の波形を表し、実線波形INIV2はリード動作RDINIにおける電圧V2の波形を表す。プリチャージ期間からリード期間の前半にかけて波形INIV1及びINIV2は互いに重なり合っている。プリチャージ期間において電圧VIG及びVOTPGは0Vであるため、トランジスタM1~M4及びM11~M14は全てオフ状態にある。また、プリチャージ期間においてスイッチSW4及びSW3を通じラインLN1及びLN2に正の電荷が供給され、電圧V1及びV2は電源電圧VDDのレベルに達する。このため、プリチャージ期間において、インバータINV1及びINV4の出力信号はローレベルであり、結果、スイッチSW5及びSW6はオフである。 In FIG. 8, the broken line waveform INI V1 represents the waveform of the voltage V1 in the lead operation RD INI , and the solid line waveform INI V2 represents the waveform of the voltage V2 in the lead operation RD INI . From the precharge period to the first half of the read period, the waveforms INI V1 and INI V2 overlap each other. Since the voltages VIG and VOTPG are 0V during the precharge period, the transistors M1 to M4 and M11 to M14 are all in the off state. Further, during the precharge period, positive charges are supplied to the lines LN1 and LN2 through the switches SW4 and SW3, and the voltages V1 and V2 reach the level of the power supply voltage VDD. Therefore, during the precharge period, the output signals of the inverters INV1 and INV4 are at a low level, and as a result, the switches SW5 and SW6 are off.
 信号XRSTがローレベルからハイレベルに切り替わることでプリチャージ期間からリード期間に遷移する。リード期間では、ハイレベルの信号XRST及びローレベルの信号PRGに基づき、図10に示す如く、スイッチSW1及びSW2がオンとされる一方でスイッチSW3、SW4、SW7及びSW8がオフとされる。更に、リード期間では、定電流回路CCIG及びCCOTPGによる定電流の生成及び出力動作が行われる。結果、リード期間では、定電流IIGによりゲート電圧VIGが上昇してゆくと共に定電流IOTPGによりゲート電圧VOTPGが上昇してゆく。この際、定電流IIGを定電流IOTPGより大きくしておくことでゲート電圧VIGがゲート電圧VOTPGよりも速く上昇し(例えば“IIG=IOTPG×2”としておくことでゲート電圧VIGがゲート電圧VOTPGと比べて2倍の速度で上昇し)、ゲート電圧VOTPGがトランジスタM1又はM2のゲート閾電圧に達する前に、トランジスタM11~M14をオン状態にしておくことができる。尚、図8では、ゲート電圧VIG及びVOTPGの内、何れか一方の電圧の波形を代表して図示している(後述の図12でも同様)。 The signal XRST switches from the low level to the high level to transition from the precharge period to the read period. In the read period, based on the high level signal XRST and the low level signal PRG, the switches SW1 and SW2 are turned on while the switches SW3, SW4, SW7 and SW8 are turned off as shown in FIG. Further, during the read period, constant current generation and output operation are performed by the constant current circuits CC IG and CC OTPG . As a result, during the read period, the gate voltage V IG rises due to the constant current I IG , and the gate voltage V OTPG rises due to the constant current I OTPG . At this time, by making the constant current I IG larger than the constant current I OTPG , the gate voltage V IG rises faster than the gate voltage VOTPG (for example, by setting “I IG = I OTPG × 2”, the gate voltage V IG rises twice as fast as the gate voltage VOTPG ), and the transistors M11-M14 can be left on before the gate voltage VOTPG reaches the gate threshold voltage of the transistor M1 or M2. .. Note that FIG. 8 shows the waveform of one of the gate voltages VIG and VTPG as a representative (the same applies to FIG. 12 described later).
 リード期間において、ゲート電圧VIG及びVOTPGの上昇に伴い、トランジスタM4及びM11~M14がオン状態となり、トランジスタM1~M3にドレイン電流が流れる。リード期間において、トランジスタM1に流れるドレイン電流は記号“ID1”にて参照され、トランジスタM2に流れるドレイン電流は記号“ID2”にて参照される(図10参照)。また、リード期間におけるゲート電圧VOTPGが上述のリード用電圧に相当する。ゲート電圧VOTPG(リード用電圧)から抵抗R1の電圧降下を差し引いた電圧がトランジスタM1のゲート-ソース間に加わる一方、トランジスタM2のゲート-ソース間にはゲート電圧VOTPG(リード用電圧)がそのまま加わる(但しスイッチSW10のオン抵抗は十分に小さいとして無視)。このため、プログラム動作が実行される前のリード期間においては、ドレイン電流ID2の方がドレイン電流ID1よりも大きくなり、結果、電圧V2が電圧V1よりも速く低下する。また、電圧V2が低下する過程でトランジスタM21にドレイン電流が流れるようになるため、電圧V2がある程度低下した段階で電圧V1の低下は停止し、電圧V1は電源電圧VDDのレベルへと上昇する。 During the read period, the transistors M4 and M11 to M14 are turned on as the gate voltages VIG and VTPG increase , and the drain current flows through the transistors M1 to M3. During the read period, the drain current flowing through the transistor M1 is referred to by the symbol “ ID1 ”, and the drain current flowing through the transistor M2 is referred to by the symbol “ ID2 ” (see FIG. 10). Further, the gate voltage VTPG in the read period corresponds to the above-mentioned read voltage. The gate voltage VOTPG (lead voltage) minus the voltage drop of the resistor R1 is applied between the gate and source of the transistor M1, while the gate voltage VOTPG (lead voltage) is applied between the gate and source of the transistor M2. It is added as it is (however, the on-resistance of the switch SW10 is ignored because it is sufficiently small). Therefore, in the read period before the program operation is executed, the drain current I D2 becomes larger than the drain current I D1 , and as a result, the voltage V2 drops faster than the voltage V1. Further, since the drain current flows through the transistor M21 in the process of lowering the voltage V2, the lowering of the voltage V1 stops at the stage where the voltage V2 drops to some extent, and the voltage V1 rises to the level of the power supply voltage VDD.
 “V1>V2”の状態で電圧V2がインバータINV4の閾電圧を下回ることによりインバータINV4の出力信号がローレベルからハイレベルに切り替わり、スイッチSW6がオフ状態からオン状態に切り替わる。信号ENDは、図11に示す如く、インバータINV1の出力信号とインバータINV4の出力信号の論理和信号であり、従って、インバータINV1及びINV4の出力信号の内、少なくとも一方がハイレベルとなると、信号ENDはハイレベルとなる。信号ENDは制御回路60内で生成される内部信号であると解して良い。 When the voltage V2 falls below the threshold voltage of the inverter INV4 in the state of "V1> V2", the output signal of the inverter INV4 is switched from the low level to the high level, and the switch SW6 is switched from the off state to the on state. As shown in FIG. 11, the signal END is a logical sum signal of the output signal of the inverter INV1 and the output signal of the inverter INV4. Therefore, when at least one of the output signals of the inverters INV1 and INV4 becomes a high level, the signal END Will be at a high level. The signal END may be understood as an internal signal generated in the control circuit 60.
 信号ENDがハイレベルになったことを受けて、制御回路60は、定電流回路CCIG及びCCOTPGによる定電流の生成及び出力動作を停止させると共にスイッチSW7及びSW8をオフからオンに切り替える。これにより、ゲート電圧VIG及びVOTPGは0Vに低下する。 In response to the signal END becoming high level, the control circuit 60 stops the generation and output operation of the constant current by the constant current circuits CC IG and CC OTPG , and switches the switches SW7 and SW8 from off to on. As a result, the gate voltages VIG and VOTPG drop to 0V.
 リード動作において信号ENDがハイレベルとなった後の信号DOUTを、特に、リード確定信号DOUTと称する。リード確定信号DOUTは、メモリ部10にて記憶されているデータの値(メモリ部10から読み出されたデータの値)を表し、リード確定信号DOUTがローレベルであることは当該データの値が“0”であることを意味し、リード確定信号DOUTがハイレベルであることは当該データの値が“1”であることを意味する。リード動作RDINIにおいては、インバータINV1の出力信号がローレベルで維持されるが故にリード確定信号DOUTもローレベルとなり、“0”のデータ(即ち初期値のデータ)が読み出されることになる。リード動作RDINIにおいて信号ENDがハイレベルとなった後には“0”のデータを表すリード確定信号DOUTが出力され続けるので、後段にラッチ回路を設ける必要もなく、リード確定信号DOUTを必要とする回路(例えば、メモリ部10の記憶データに応じてオン/オフされるトリミング用スイッチ)にリード確定信号DOUTを直接供給することができる。 The signal D OUT after the signal END becomes high level in the read operation is particularly referred to as a read confirmation signal D OUT . The read confirmation signal D OUT represents the value of the data stored in the memory unit 10 (the value of the data read from the memory unit 10), and the low level of the read confirmation signal D OUT indicates that the data is at a low level. The value is "0", and the high level of the read confirmation signal D OUT means that the value of the data is "1". In the read operation RD INI , since the output signal of the inverter INV1 is maintained at a low level, the read confirmation signal D OUT also becomes a low level, and “0” data (that is, initial value data) is read out. Since the read confirmation signal D OUT representing the data of “0” continues to be output after the signal END becomes high level in the read operation RD INI , it is not necessary to provide a latch circuit in the subsequent stage, and the read confirmation signal D OUT is required. The read confirmation signal D OUT can be directly supplied to the circuit (for example, a trimming switch that is turned on / off according to the stored data of the memory unit 10).
---プログラム動作後のリード動作RDPRG---
 図12は、リード動作RDPRG(即ちプログラム動作の実行後に行われるリード動作)のタイミングチャートである。図12において、破線波形PRGV1はリード動作RDPRGにおける電圧V1の波形を表し、実線波形PRGV2はリード動作RDPRGにおける電圧V2の波形を表す。プリチャージ期間からリード期間の前半にかけて波形PRGV1及びPRGV2は互いに重なり合っている。
--- Read operation after program operation RD PRG ---
FIG. 12 is a timing chart of the read operation RD PRG (that is, the read operation performed after the execution of the program operation). In FIG. 12, the broken line waveform PRG V1 represents the waveform of the voltage V1 in the lead operation RD PRG , and the solid line waveform PRG V2 represents the waveform of the voltage V2 in the lead operation RD PRG . From the precharge period to the first half of the read period, the waveforms PRG V1 and PRG V2 overlap each other.
 プリチャージ期間及びリード期間における各スイッチの状態制御を含むリード動作の内容は、プログラム動作の実行前とプログラム動作の実行後とで相違は無い。但し、リード動作RDPRGの前に実行されたプログラム動作により、トランジスタM1及びM2の内、トランジスタM2のみが劣化して、トランジスタM2のゲート閾電圧のみが大きく増大している。このため、リード動作RDPRGにおけるリード期間においては、ドレイン電流ID1の方がドレイン電流ID2よりも大きくなり、結果、電圧V1が電圧V2よりも速く低下する。また、電圧V1が低下する過程でトランジスタM22にドレイン電流が流れるようになるため、電圧V1がある程度低下した段階で電圧V2の低下は停止し、電圧V2は電源電圧VDDのレベルへと上昇する。 There is no difference in the content of the read operation including the state control of each switch during the precharge period and the read period between before the execution of the program operation and after the execution of the program operation. However, due to the program operation executed before the read operation RD PRG , only the transistor M2 is deteriorated among the transistors M1 and M2, and only the gate threshold voltage of the transistor M2 is greatly increased. Therefore, during the read period in the read operation RD PRG , the drain current I D1 becomes larger than the drain current I D2 , and as a result, the voltage V1 drops faster than the voltage V2. Further, since the drain current flows through the transistor M22 in the process of lowering the voltage V1, the lowering of the voltage V2 stops at the stage where the voltage V1 drops to some extent, and the voltage V2 rises to the level of the power supply voltage VDD.
 “V1<V2”の状態で電圧V1がインバータINV1の閾電圧を下回ることによりインバータINV1の出力信号がローレベルからハイレベルに切り替わり、スイッチSW5がオフ状態からオン状態に切り替わる。また、インバータINV1の出力信号がローレベルからハイレベルに切り替わると信号ENDもローレベルからハイレベルに切り替わる(図11参照)。信号ENDがハイレベルになったことを受けて、制御回路60は、定電流回路CCIG及びCCOTPGによる定電流の生成及び出力動作を停止させると共にスイッチSW7及びSW8をオフからオンに切り替える。これにより、ゲート電圧VIG及びVOTPGは0Vに低下する。 When the voltage V1 falls below the threshold voltage of the inverter INV1 in the state of "V1 <V2", the output signal of the inverter INV1 is switched from the low level to the high level, and the switch SW5 is switched from the off state to the on state. Further, when the output signal of the inverter INV1 is switched from the low level to the high level, the signal END is also switched from the low level to the high level (see FIG. 11). In response to the signal END becoming high level, the control circuit 60 stops the generation and output operation of the constant current by the constant current circuits CC IG and CC OTPG , and switches the switches SW7 and SW8 from off to on. As a result, the gate voltages VIG and VOTPG drop to 0V.
 リード動作において信号ENDがハイレベルとなった後の信号DOUTは、上述したように特にリード確定信号DOUTと称される。リード動作RDPRGにおいては、電圧V1の低下を受けてインバータINV1の出力信号がハイレベルとなるため、リード確定信号DOUTはハイレベルとなり、“1”のデータを表すことになる。リード動作RDPRGにおいて信号ENDがハイレベルとなった後には“1”のデータを表すリード確定信号DOUTが出力され続けるので、後段にラッチ回路を設ける必要もなく、リード確定信号DOUTを必要とする回路(例えば、メモリ部10の記憶データに応じてオン/オフされるトリミング用スイッチ)にリード確定信号DOUTを直接供給することができる。 The signal D OUT after the signal END becomes high level in the read operation is particularly referred to as a read confirmation signal D OUT as described above. In the read operation RD PRG , since the output signal of the inverter INV1 becomes high level due to the decrease of the voltage V1, the read confirmation signal D OUT becomes high level and represents the data of “1”. Since the read confirmation signal D OUT representing the data of “1” continues to be output after the signal END becomes high level in the read operation RD PRG , it is not necessary to provide a latch circuit in the subsequent stage, and the read confirmation signal D OUT is required. The read confirmation signal D OUT can be directly supplied to the circuit (for example, a trimming switch that is turned on / off according to the stored data of the memory unit 10).
---プログラム動作---
 このように、リード動作(リード期間)においてドレイン電流ID2の方がドレイン電流ID1よりも大きい状態は、メモリ部10にて“0”のデータが記憶されている状態に相当し、図8のリード動作RDINIでは、ドレイン電流ID2の方がドレイン電流ID1よりも大きくなるため“0”のデータに対応するリード確定信号DOUT(ここではローレベルの信号DOUT)が出力される。逆に、リード動作(リード期間)においてドレイン電流ID1の方がドレイン電流ID2よりも大きい状態は、メモリ部10にて“1”のデータが記憶されている状態に相当し、図12のリード動作RDPRGでは、ドレイン電流ID1の方がドレイン電流ID2よりも大きくなるため“1”のデータに対応するリード確定信号DOUT(ここではハイレベルの信号DOUT)が出力される。
--- Program operation ---
As described above, the state in which the drain current ID 2 is larger than the drain current ID 1 in the read operation (read period) corresponds to the state in which the data of “0” is stored in the memory unit 10, and FIG. In the read operation RD INI of, since the drain current I D2 is larger than the drain current I D1 , the read confirmation signal D OUT (here, the low level signal D OUT ) corresponding to the data of “0” is output. .. On the contrary, the state in which the drain current I D1 is larger than the drain current I D2 in the read operation (read period) corresponds to the state in which the data of "1" is stored in the memory unit 10, and is corresponding to the state in which the data of "1" is stored in FIG. In the read operation RD PRG , since the drain current I D1 is larger than the drain current I D2 , the read confirmation signal D OUT (here, the high level signal D OUT ) corresponding to the data of “1” is output.
 図6の記憶回路1Aにおいて、図8のリード動作RDINIから図12のリード動作RDPRGへの変化をもたらすプログラム動作は、以下のように実現される。 In the storage circuit 1A of FIG. 6, the program operation that causes the change from the read operation RD INI of FIG. 8 to the read operation RD PRG of FIG. 12 is realized as follows.
 図13に、プログラム動作が実行される期間(以下、プログラム期間と称する)における、記憶回路1A内の各スイッチの状態を示す。プログラム期間では、信号XRSTがローレベル且つ信号PRGがハイレベルとされ、それらの信号XRST及びPRGに基づき、スイッチSW1、SW2、SW7及びSW10がオフとされる一方、スイッチSW3、SW4、SW8、SW9、SW11及びSW12がオンとされ、また、定電流回路CCIG及びCCOTPGによる定電流の生成及び出力動作が停止される。これにより、トランジスタM2の電極E2及びゲートに電源電圧VDDが加わる一方でトランジスタM2の電極E1の電位は0Vとなる。またスイッチSW8のオンによりトランジスタM11~M14は全てオフする。 FIG. 13 shows the state of each switch in the storage circuit 1A during the period in which the program operation is executed (hereinafter referred to as the program period). During the program period, the signal XRST is set to low level and the signal PRG is set to high level, and the switches SW1, SW2, SW7 and SW10 are turned off based on those signals XRST and PRG, while the switches SW3, SW4, SW8 and SW9 are turned off. , SW11 and SW12 are turned on, and the constant current generation and output operation by the constant current circuits CC IG and CC OTPG is stopped. As a result, the power supply voltage VDD is applied to the electrode E2 of the transistor M2 and the gate, while the potential of the electrode E1 of the transistor M2 becomes 0V. Further, when the switch SW8 is turned on, all the transistors M11 to M14 are turned off.
 プログラム期間では、電極E2がトランジスタM2のドレインとして機能すると共に電極E1がトランジスタM2のソースとして機能し、電極E2から電極E1に向けて電流が流れる。この電流が流れる過程で、トランジスタM2にホットキャリアが注入されてトランジスタM2の特性が劣化してゆき、トランジスタM2のゲート閾電圧が増大してゆく。トランジスタM2のゲート閾電圧を十分に増大させるだけの時間分、図13の状態を維持した後、信号PRGをハイレベルからローレベルに切り替えることでプログラム動作を終える。 During the program period, the electrode E2 functions as a drain of the transistor M2 and the electrode E1 functions as a source of the transistor M2, and a current flows from the electrode E2 toward the electrode E1. In the process of this current flowing, hot carriers are injected into the transistor M2, the characteristics of the transistor M2 deteriorate, and the gate threshold voltage of the transistor M2 increases. After maintaining the state of FIG. 13 for a time sufficient to sufficiently increase the gate threshold voltage of the transistor M2, the program operation is completed by switching the signal PRG from the high level to the low level.
---記憶回路1及び1A間の対応関係---
 図4の記憶回路1と図6の記憶回路1Aの対応関係について説明を補足する。まず、トランジスタM1及びM2によりメモリ部10が構成されることは、記憶回路1及び1A間で共通である。
--- Correspondence between storage circuits 1 and 1A ---
The description of the correspondence between the storage circuit 1 of FIG. 4 and the storage circuit 1A of FIG. 6 will be supplemented. First, it is common between the storage circuits 1 and 1A that the memory unit 10 is composed of the transistors M1 and M2.
 図4のリード用電圧供給回路20は、図6の記憶回路1Aでは、主として、トランジスタM3、抵抗R3、定電流回路CCOTPG及びスイッチSW7により構成され、トランジスタM13も回路20の構成要素に含まれると解することも可能である。図6の記憶回路1Aでは、トランジスタM1及びM2へのドレイン電流(ID1、ID2)の供給を許可又は遮断するためのドレイン電流制御回路が設けられていると言え、当該ドレイン電流制御回路は、トランジスタM11~M14及びM4、抵抗R4、定電流回路CCIG並びにスイッチSW8を含んで構成される。 The read voltage supply circuit 20 of FIG. 4 is mainly composed of a transistor M3, a resistor R3, a constant current circuit CC OTPG , and a switch SW7 in the storage circuit 1A of FIG. 6, and the transistor M13 is also included in the components of the circuit 20. It is also possible to understand that. It can be said that the storage circuit 1A of FIG. 6 is provided with a drain current control circuit for permitting or cutting off the supply of drain currents ( ID1 and ID2 ) to the transistors M1 and M2, and the drain current control circuit is said to be provided. , M11 to M14 and M4, a resistor R4, a constant current circuit CC IG , and a switch SW8.
 図4の信号出力回路30は、図6の記憶回路1Aでは、主として、トランジスタM21及びM22、スイッチSW1~SW6、インバータINV1~INV5、並びに、コンデンサC1及びC2により構成される、尚、ラインLN1及びLN2に付加される寄生容量の大きさによっては、コンデンサC1及びC2並びにインバータINV5を省略することもできる。 The signal output circuit 30 of FIG. 4 is mainly composed of transistors M21 and M22, switches SW1 to SW6, inverters INV1 to INV5, and capacitors C1 and C2 in the storage circuit 1A of FIG. Depending on the size of the parasitic capacitance added to LN2, the capacitors C1 and C2 and the inverter INV5 may be omitted.
 図4のプログラム回路40は、図6の記憶回路1AではスイッチSW9~SW12を含んで構成される。ホットキャリアの注入のためには、当然、電源電圧VDDが必要となるため、電源電圧VDDを生成及び出力する電源回路(不図示)もプログラム回路40の構成要素に含まれる、と解することもできる。リード用電圧供給回路20及び信号出力回路30についても同様である。 The program circuit 40 of FIG. 4 includes switches SW9 to SW12 in the storage circuit 1A of FIG. Since the power supply voltage VDD is naturally required for hot carrier injection, it can be understood that the power supply circuit (not shown) that generates and outputs the power supply voltage VDD is also included in the components of the program circuit 40. can. The same applies to the lead voltage supply circuit 20 and the signal output circuit 30.
 図6の制御回路60は、図4のリード用電圧供給回路20、信号出力回路30及びプログラム回路40の動作を制御する回路(更に上述のドレイン電流制御回路の動作を制御する回路)である、と解することができる。或いは、制御回路60は、回路20、30及び40の各一部として、リード動作及びプログラム動作の実現のために、回路20、30及び40に兼用される回路である、と考えることも可能である。 The control circuit 60 of FIG. 6 is a circuit that controls the operation of the lead voltage supply circuit 20, the signal output circuit 30, and the program circuit 40 of FIG. 4 (furthermore, a circuit that controls the operation of the drain current control circuit described above). Can be understood as. Alternatively, it can be considered that the control circuit 60 is a circuit that is also used as the circuits 20, 30 and 40 for realizing the read operation and the program operation as each part of the circuits 20, 30 and 40. be.
 尚、記憶回路1及び1Aでは、リード動作において、“ID2>ID1”であるときには第1の値に対応付けられた信号DOUT(リード確定信号DOUT)が出力され、“ID2<ID1”であるときには第2の値に対応付けられた信号DOUT(リード確定信号DOUT)が出力される。上述の動作例では、第1の値が“0”であって且つ第2の値が“1”であるが、第1及び第2の値が相違する限り、第1及び第2の値は任意である。また、第1の値に対応付けられた信号DOUTがハイレベルの信号となるように且つ第2の値に対応付けられた信号DOUTがローレベルの信号となるように、回路構成を変形しても良い。 In the storage circuits 1 and 1A, in the read operation, when “ ID2 > ID1 ”, the signal D OUT (read confirmation signal D OUT ) associated with the first value is output, and “ ID2 <. When it is " ID1 ", the signal D OUT (read confirmation signal D OUT ) associated with the second value is output. In the above operation example, the first value is "0" and the second value is "1", but as long as the first and second values are different, the first and second values are Optional. Further, the circuit configuration is modified so that the signal D OUT associated with the first value becomes a high-level signal and the signal D OUT associated with the second value becomes a low-level signal. You may.
[実施例EX1_2]
 実施例EX1_2を説明する。図4又は図6に示される記憶回路1又は1Aは1ビット分のデータを記憶する第1の不揮発性メモリであるが、記憶回路1又は1Aを単位セルとして複数備えて複数ビット分のデータを記憶する第2の不揮発性メモリを構成することもできる。
[Example EX1_2]
Example EX1_2 will be described. The storage circuit 1 or 1A shown in FIG. 4 or FIG. 6 is a first non-volatile memory that stores data for one bit, but a plurality of storage circuits 1 or 1A are provided as a unit cell to store data for a plurality of bits. A second non-volatile memory for storage can also be configured.
 或いは、メモリ部10及び信号出力回路30の組にて単位セルを構成し、当該単位セルを複数設けた第3の不揮発性メモリを構成しても良く、第3の不揮発性メモリにおいては、リード用電圧供給回路20及びプログラム回路40が複数の単位セル間で共用される。即ち例えば、第3の不揮発性メモリにおいて、上記複数の単位セルに含まれる2以上の単位セルにてリード動作を行う際、リード用電圧供給回路20は、当該2以上の単位セルの夫々におけるトランジスタM1及びM2の各ゲートにリード用電圧を供給して良い。同様に例えば、第3の不揮発性メモリにおいて、上記複数の単位セルに含まれる2以上の単位セルにてプログラム動作を行う際、プログラム回路40は、当該2以上の単位セルの夫々におけるトランジスタM2にホットキャリアを注入して良い。 Alternatively, a unit cell may be configured by a set of the memory unit 10 and the signal output circuit 30, and a third non-volatile memory provided with a plurality of the unit cells may be configured. In the third non-volatile memory, the read The voltage supply circuit 20 and the program circuit 40 are shared among a plurality of unit cells. That is, for example, in the third non-volatile memory, when the read operation is performed by two or more unit cells included in the plurality of unit cells, the read voltage supply circuit 20 is a transistor in each of the two or more unit cells. A lead voltage may be supplied to each of the gates of M1 and M2. Similarly, for example, in a third non-volatile memory, when a program operation is performed on two or more unit cells included in the plurality of unit cells, the program circuit 40 is connected to the transistor M2 in each of the two or more unit cells. Hot carriers may be injected.
 何れにせよ、本開示に係る不揮発性メモリにおいて、記憶データのビット数は1以上であれば任意であり、記憶データのビット数分だけメモリ部10が設けられる。 In any case, in the non-volatile memory according to the present disclosure, the number of bits of the stored data is arbitrary as long as it is 1 or more, and the memory unit 10 is provided for the number of bits of the stored data.
[実施例EX1_3]
 実施例EX1_3を説明する。実施例EX1_1では、定電流を用いてリード用電圧を生成する回路構成を挙げたが、図4のリード用電圧供給回路20はリード動作において直流のリード用電圧をトランジスタM1及びM2の各ゲートに供給する直流電圧源であっても良い。
[Example EX1_3]
Example EX1_3 will be described. In Example EX1_1, a circuit configuration for generating a read voltage using a constant current is given. However, in the lead voltage supply circuit 20 of FIG. 4, a DC lead voltage is applied to each gate of the transistors M1 and M2 in the read operation. It may be a DC voltage source to be supplied.
[実施例EX1_4]
 実施例EX1_4を説明する。第1実施形態に係る不揮発性メモリ(例えば上述の実施例EX1_2に挙げた任意の不揮発性メモリ)を、所定の機能動作を実現する任意の回路又は装置に組み込むことができる。
[Example EX1_4]
Example EX1_4 will be described. The non-volatile memory according to the first embodiment (for example, any non-volatile memory mentioned in the above-mentioned Example EX1_2) can be incorporated into any circuit or device that realizes a predetermined functional operation.
 不揮発性メモリが組み込まれた回路又は装置に対して電源電圧が供給されて当該回路又は当該装置が起動すると、当該回路又は当該装置は、不揮発性メモリに記憶されたデータをリード動作により読み出して、読み出したデータに応じて所定の機能動作を実現する。 When a power supply voltage is supplied to a circuit or device in which the non-volatile memory is incorporated and the circuit or device is started, the circuit or device reads out the data stored in the non-volatile memory by a read operation. A predetermined functional operation is realized according to the read data.
 例えば、トリミングデータに応じて増幅率を可変させることのできる増幅回路(不図示)に不揮発性メモリを組み込み、不揮発性メモリにて記憶される1以上のデータをトリミングデータとして増幅回路に供給することで当該増幅回路の増幅率を最適に調整する、といったことができる。 For example, a non-volatile memory is incorporated in an amplifier circuit (not shown) that can change the amplification factor according to the trimming data, and one or more data stored in the non-volatile memory is supplied to the amplifier circuit as trimming data. It is possible to optimally adjust the amplification factor of the amplifier circuit.
 また、DC/DCコンバータ用の半導体集積回路、モータドライバ用の半導体集積回路など、様々な用途の半導体集積回路に第1実施形態に係る不揮発性メモリを組み込むことができる。上記増幅回路は、これらの半導体集積回路に設けられる回路の例である。 Further, the non-volatile memory according to the first embodiment can be incorporated into a semiconductor integrated circuit for various purposes such as a semiconductor integrated circuit for a DC / DC converter and a semiconductor integrated circuit for a motor driver. The amplifier circuit is an example of a circuit provided in these semiconductor integrated circuits.
<<第2実施形態>>
 本開示の第2実施形態を説明する。図14Aに示す如く、相応の電流出力能力が要求される一般的な定電圧源1910は、バンドギャップリファレンス等で構成される基準電圧源1911と、基準電圧源1911の出力電圧を低インピーダンスにて出力するバッファアンプ1912と、で構成され、バッファアンプ1912から出力電圧Voを出力する。図14Bに、バッファアンプ1912の内部回路例を含む定電圧源1910の構成を示す。
<< Second Embodiment >>
A second embodiment of the present disclosure will be described. As shown in FIG. 14A, a general constant voltage source 1910 that requires a corresponding current output capacity is a reference voltage source 1911 composed of a band gap reference or the like, and the output voltage of the reference voltage source 1911 with low impedance. It is composed of a buffer amplifier 1912 to be output, and outputs an output voltage Vo from the buffer amplifier 1912. FIG. 14B shows the configuration of the constant voltage source 1910 including the internal circuit example of the buffer amplifier 1912.
 任意の半導体集積回路内の複数の回路の夫々において定電圧源が必要とされる場合には、図15Aに示す如く、単一のバッファアンプ1912の出力電圧Voが加わる配線を半導体集積回路内の必要な箇所まで引き回すか、或いは、図15Bに示す如く、電圧Voを必要とする各箇所において定電圧源1910を配置する必要がある。 If a constant voltage source is required for each of the plurality of circuits in any semiconductor integrated circuit, wiring in the semiconductor integrated circuit to which the output voltage Vo of a single buffer amplifier 1912 is applied, as shown in FIG. 15A. It is necessary to route to the required place or to arrange the constant voltage source 1910 at each place where the voltage Vo is required, as shown in FIG. 15B.
 但し、図15Aの方法では、引き回される配線に関してクロストークやノイズ等の影響を配慮する必要があり、影響を考えれば引き回し自体が不能となることもある。図15Bの方法では、定電圧源1910ごとにバンドギャップリファレンス等で構成される基準電圧源1911が必要となり、回路面積が増大する。 However, in the method of FIG. 15A, it is necessary to consider the influence of crosstalk, noise, etc. on the wiring to be routed, and the routing itself may not be possible considering the influence. In the method of FIG. 15B, a reference voltage source 1911 composed of a bandgap reference or the like is required for each constant voltage source 1910, and the circuit area increases.
 簡素な構成にて定電圧源を構成できれば、必要な箇所に小面積で定電圧源を形成することが可能であり、メリットが大きい。尚、定電圧源に関わる事情について上述したが、同様の事情が定電流源やコンパレータにも当てはまり、簡素な構成にて定電流源又はコンパレータを構成できれば、小面積で定電流源又はコンパレータを形成することが可能であり、メリットが大きい。 If a constant voltage source can be configured with a simple configuration, it is possible to form a constant voltage source in a small area at a required location, which is a great merit. Although the circumstances related to the constant voltage source have been described above, the same circumstances also apply to the constant current source and the comparator, and if the constant current source or the comparator can be configured with a simple configuration, the constant current source or the comparator can be formed in a small area. It is possible to do so, and the merit is great.
 第2実施形態は以下の実施例EX2_1~EX2_3を含み、実施例EX2_1~EX2_3にて、構成の簡素化等に寄与する技術を説明する。 The second embodiment includes the following Examples EX2_1 to EX2_3, and the techniques that contribute to the simplification of the configuration and the like will be described in Examples EX2_1 to EX2_3.
[実施例EX2_1]
 実施例EX2_1を説明する。図16に実施例EX2_1に係る定電圧源1100の回路図を示す。定電圧源1100は、トランジスタMa及びMb(第1及び第2差動トランジスタ)と、カレントミラー回路CM1を形成するトランジスタMc及びMdと、出力トランジスタMoと、抵抗Rs及びRbを備える。定電圧源1100は半導体集積回路にて構成されて良い。
[Example EX2_1]
Example EX2_1 will be described. FIG. 16 shows a circuit diagram of the constant voltage source 1100 according to the embodiment EX2_1. The constant voltage source 1100 includes transistors Ma and Mb (first and second differential transistors), transistors Mc and Md forming the current mirror circuit CM1, output transistors Mo, and resistors Rs and Rb. The constant voltage source 1100 may be configured by a semiconductor integrated circuit.
 トランジスタMa及びMbはNチャネル型のMOSFETであって、それらのゲートは互いに接続される。即ち、トランジスタMa及びMbはゲート同士が互いに共通接続された差動対を形成する。但し、特徴的な構成としてトランジスタMa及びMbのゲート閾電圧は互いに相違する。詳細には、トランジスタMaはデプレッション型のMOSFETであって、負のゲート閾電圧を有し、トランジスタMbはエンハンスメンス型のMOSFETであって、正のゲート閾電圧を有する。 Transistors Ma and Mb are N-channel MOSFETs, and their gates are connected to each other. That is, the transistors Ma and Mb form a differential pair in which the gates are commonly connected to each other. However, as a characteristic configuration, the gate threshold voltages of the transistors Ma and Mb are different from each other. Specifically, the transistor Ma is a depletion type MOSFET and has a negative gate threshold voltage, and the transistor Mb is an enhancement type MOSFET and has a positive gate threshold voltage.
 トランジスタMaは負のゲート閾電圧を有するため、トランジスタMaのソース電位よりトランジスタMaのゲート電位が低くても、トランジスタMaのソース電位から見たトランジスタMaのゲート電位(例えば-0.3V)がトランジスタMaのゲート閾電圧(例えば-0.5V)よりも高ければトランジスタMaはオン状態となる。 Since the transistor Ma has a negative gate threshold voltage, even if the gate potential of the transistor Ma is lower than the source potential of the transistor Ma, the gate potential of the transistor Ma (for example, -0.3V) as seen from the source potential of the transistor Ma is the transistor. If it is higher than the gate threshold voltage of Ma (for example, −0.5 V), the transistor Ma is turned on.
 トランジスタMc及びMd並びに出力トランジスタMoはPチャネル型のMOSFETである。トランジスタMc、Md及びMoの各ソースは、所定の正の電源電圧Vddが加わる電源電圧ラインLNVddに接続される。トランジスタMc及びMdの各ゲートと、トランジスタMcのドレインと、トランジスタMbのドレインは、互いに接続される。トランジスタMdのドレインと、トランジスタMaのドレインと、出力トランジスタMoのゲートは、互いに接続される。トランジスタMa及びMbの各ソースは抵抗Rsを介してグランドに接続される(詳細には言えば、グランド電位を有するグランドラインLNgndに接続される)。トランジスタMbのゲートは抵抗Rbを介してグランド(即ちグランドラインLNgnd)に接続される一方で、トランジスタMaのゲートはグランド(即ちグランドラインLNgnd)に直接接続される。出力トランジスタMoのドレインはトランジスタMbのゲートに接続される。 The transistors Mc and Md and the output transistor Mo are P-channel MOSFETs. Each source of the transistors Mc, Md and Mo is connected to a power supply voltage line LNVddd to which a predetermined positive power supply voltage Vdd is applied. The gates of the transistors Mc and Md, the drain of the transistor Mc, and the drain of the transistor Mb are connected to each other. The drain of the transistor Md, the drain of the transistor Ma, and the gate of the output transistor Mo are connected to each other. Each source of the transistors Ma and Mb is connected to ground via resistors Rs (specifically, connected to a ground line LNgnd having a ground potential). The gate of the transistor Mb is connected to the ground (that is, the ground line LNgnd) via the resistor Rb, while the gate of the transistor Ma is directly connected to the ground (that is, the ground line LNgnd). The drain of the output transistor Mo is connected to the gate of the transistor Mb.
 トランジスタMcはカレントミラー回路CM1における電流の入力側トランジスタとして機能する一方、トランジスタMdはカレントミラー回路CM1における電流の出力側トランジスタとして機能する、と考えることができる。ここで、トランジスタMc及びMdは互いに同一の構造を有し、互いに同じ電気的特性を有する一対のトランジスタである。故に、カレントミラー回路CM1において、トランジスタMcのドレイン電流と同じ電流値を持つドレイン電流がトランジスタMdに流れるよう作用する。この際、トランジスタMcのドレイン電流はトランジスタMbに向けて出力される一方で、トランジスタMdのドレイン電流はトランジスタMaに向けて出力される。つまり、カレントミラー回路CM1は、トランジスタMaのドレインとトランジスタMbのドレインに向けて均一の電流が出力されるよう(即ち互いに同じ電流値を持つ電流が出力されるよう)動作する。但し、ここにおける“均一”、“同じ”は誤差を含む概念である(後述の他の任意の実施例でも同様)。また、トランジスタについて、構造とは、トランジスタの大きさを含む概念であり、従って、任意の複数のトランジスタについて、構造が互いに同じであるとは、複数のトランジスタの大きさも互いに同じであることを意味する(後述の他の任意の実施例でも同様)。 It can be considered that the transistor Mc functions as a current input side transistor in the current mirror circuit CM1, while the transistor Md functions as a current output side transistor in the current mirror circuit CM1. Here, the transistors Mc and Md are a pair of transistors having the same structure and having the same electrical characteristics as each other. Therefore, in the current mirror circuit CM1, a drain current having the same current value as the drain current of the transistor Mc acts to flow in the transistor Md. At this time, the drain current of the transistor Mc is output toward the transistor Mb, while the drain current of the transistor Md is output toward the transistor Ma. That is, the current mirror circuit CM1 operates so that a uniform current is output toward the drain of the transistor Ma and the drain of the transistor Mb (that is, currents having the same current value are output from each other). However, "uniformity" and "same" here are concepts including errors (the same applies to any other embodiment described later). Further, for a transistor, the structure is a concept including the size of the transistor, and therefore, for any plurality of transistors, the same structure means that the sizes of the plurality of transistors are also the same. (The same applies to any other embodiment described below).
 出力トランジスタMoのドレインは定電圧源1100の出力端子OUTに接続され、出力端子OUTに定電圧源1100の出力電圧Voutが生じる。定電圧源1100は、出力トランジスタMo及び出力端子OUTを通じ、定電圧源1100の負荷(不図示;出力電圧Voutを受ける負荷)に対して電流を供給することができる。図16の例では、出力トランジスタMoを形成するために、トランジスタMc又はMbと同じ構造を有する基本MOSFETが2つ用意され、当該2つの基本MOSFETの並列回路にて出力トランジスタMoが形成される。 The drain of the output transistor Mo is connected to the output terminal OUT of the constant voltage source 1100, and the output voltage Vout of the constant voltage source 1100 is generated at the output terminal OUT. The constant voltage source 1100 can supply a current to the load of the constant voltage source 1100 (not shown; a load that receives the output voltage Vout) through the output transistor Mo and the output terminal OUT. In the example of FIG. 16, in order to form the output transistor Mo, two basic MOSFETs having the same structure as the transistor Mc or Mb are prepared, and the output transistor Mo is formed by the parallel circuit of the two basic MOSFETs.
 図17において、波形C_Maは、トランジスタMaにおけるゲート-ソース間電圧とドレイン電流との関係を表し、波形C_Mbは、トランジスタMbにおけるゲート-ソース間電圧とドレイン電流との関係を表す。 In FIG. 17, the waveform C_Ma represents the relationship between the gate-source voltage and the drain current in the transistor Ma, and the waveform C_Mb represents the relationship between the gate-source voltage and the drain current in the transistor Mb.
 上述の構成により、トランジスタMa及びMbのドレイン電流の値が互いに同じとなる状態で回路のバランスがとれる。トランジスタMa及びMbのドレイン電流の値が互いに同じとなる状態では、トランジスタMa及びMbの電気的特性の相違から、トランジスタMbのゲート電圧V_MbはトランジスタMaのゲート電圧よりも高くなる。図17において、電流値I_blnsは、上記バランスがとれた状態でのトランジスタMa及びMbの各ドレイン電流の値を表す。電圧VGS_Ma_blnsは、トランジスタMaに電流値I_blnsのドレイン電流が流れるときのトランジスタMaのゲート-ソース間電圧を表し、電圧VGS_Mb_blnsは、トランジスタMbに電流値I_blnsのドレイン電流が流れるときのトランジスタMbのゲート-ソース間電圧を表す。 With the above configuration, the circuit can be balanced in a state where the values of the drain currents of the transistors Ma and Mb are the same as each other. When the values of the drain currents of the transistors Ma and Mb are the same, the gate voltage VG_Mb of the transistor Mb becomes higher than the gate voltage of the transistor Ma due to the difference in the electrical characteristics of the transistors Ma and Mb. In FIG. 17, the current value I_blns represents the value of each drain current of the transistors Ma and Mb in the balanced state. The voltage V GS _Ma_blns represents the gate-source voltage of the transistor Ma when the drain current of the current value I_blns flows through the transistor Ma, and the voltage V GS _Mb_blns is the transistor when the drain current of the current value I_blns flows through the transistor Mb. Represents the gate-source voltage of Mb.
 トランジスタMaのゲート電圧はゼロである一方で、トランジスタMbのゲート電圧V_Mbは、トランジスタMbのゲート-ソース間電圧と、抵抗Rsでの電圧降下V_Rsとの和となる。 While the gate voltage of the transistor Ma is zero, the gate voltage VG_Mb of the transistor Mb is the sum of the gate-source voltage of the transistor Mb and the voltage drop V_Rs at the resistor Rs.
 電圧降下V_Rsと電圧VGS_Mb_blnsとの和の電圧(V_Rs+VGS_Mb_blns)を、バランスゲート電圧と称する。バランスゲート電圧は、トランジスタMa及びMbの電気的特性に応じた正の電圧値を持つ。トランジスタMbのゲート電圧V_Mbがバランスゲート電圧と一致するようトランジスタMa~Mdにより出力トランジスタMoのゲート電圧が調整されるので、出力電圧Voutはバランスゲート電圧にて安定化される(実質的にバランスゲート電圧と一致する)。つまり、バランスゲート電圧に応じた出力電圧Voutが生成される。 The voltage (V_Rs + VGS_Mb_blns ), which is the sum of the voltage drop V_Rs and the voltage VGS_Mb_blns , is referred to as a balanced gate voltage. The balanced gate voltage has a positive voltage value corresponding to the electrical characteristics of the transistors Ma and Mb. Since the gate voltage of the output transistor Mo is adjusted by the transistors Ma to Md so that the gate voltage VG_Mb of the transistor Mb matches the balanced gate voltage, the output voltage Vout is stabilized by the balanced gate voltage (substantially). Matches the balance gate voltage). That is, the output voltage Vout corresponding to the balance gate voltage is generated.
 本実施例の方法により、簡素な構成にて(従って小面積で)定電圧源を形成することができる。本実施例に係る構成において、出力電圧Voutの精度は必ずしも高くない。しかし、それほど高い電圧精度が必要されない定電圧源の用途は多く存在し、そのような用途に対して本実施例に係る構成は特に適している。 By the method of this embodiment, a constant voltage source can be formed with a simple configuration (hence, with a small area). In the configuration according to this embodiment, the accuracy of the output voltage Vout is not necessarily high. However, there are many applications for constant voltage sources that do not require such high voltage accuracy, and the configuration according to this embodiment is particularly suitable for such applications.
 定電圧源1100は、トランジスタMaのドレイン電圧に基づき、トランジスタMbのゲート電圧(V_Mb)に応じた出力電圧Voutを生成する電圧出力回路を内包している。図16の構成において、電圧出力回路は出力トランジスタMoを含んで構成される。出力トランジスタMo及び抵抗Rbの直列回路に対して所定の直流電圧(Vdd)が印可されることで、出力トランジスタMoを通じ出力電圧Voutが生成される。 The constant voltage source 1100 includes a voltage output circuit that generates an output voltage Vout according to the gate voltage ( VG_Mb ) of the transistor Mb based on the drain voltage of the transistor Ma. In the configuration of FIG. 16, the voltage output circuit includes an output transistor Mo. By applying a predetermined DC voltage (Vdd) to the series circuit of the output transistor Mo and the resistor Rb, the output voltage Vout is generated through the output transistor Mo.
 図16の構成において、出力電圧VoutはトランジスタMbのゲート電圧V_Mbと同じ電圧値を有するが、出力電圧Voutとゲート電圧V_Mbとが相違するように定電圧源1100を変形しても良い。例えば、図16の定電圧源1100を図18の定電圧源1100’のように変形しても良い。図18の定電圧源1100’では、出力トランジスタMoのドレイン及び出力端子OUT間の接続ノード1121と、トランジスタMbのゲート及び抵抗Rb間の接続ノード1122との間に抵抗Rb’が挿入されている。この挿入を除き、定電圧源1100及び1100’の構成は共通である。抵抗Rb’が挿入された場合、出力トランジスタMo、抵抗Rb’及びRbの直列回路に対して所定の直流電圧(Vdd)が印可されることになり、ゲート電圧V_Mbと抵抗Rb及びRb’間の抵抗値比とで定まる電圧にて出力電圧Voutが安定化することになる。 In the configuration of FIG. 16, the output voltage Vout has the same voltage value as the gate voltage VG_Mb of the transistor Mb, but even if the constant voltage source 1100 is modified so that the output voltage Vout and the gate voltage VG_Mb are different. good. For example, the constant voltage source 1100 of FIG. 16 may be modified as shown in the constant voltage source 1100'of FIG. In the constant voltage source 1100'in FIG. 18, the resistor Rb'is inserted between the connection node 1121 between the drain of the output transistor Mo and the output terminal OUT and the connection node 1122 between the gate of the transistor Mb and the resistor Rb. .. Except for this insertion, the configurations of the constant voltage sources 1100 and 1100'are common. When the resistance Rb'is inserted, a predetermined DC voltage (Vdd) is applied to the series circuit of the output transistor Mo, the resistance Rb'and Rb, and the gate voltage VG_Mb and the resistances Rb and Rb' The output voltage Vout is stabilized at a voltage determined by the resistance value ratio between them.
 尚、トランジスタMa及びMbのゲート閾電圧が互いに相違するのであれば、トランジスタMa及びMbの双方はエンハンスメント型のMOSFETであっても良い(後述の他の任意の実施例でも同様)。但し、その場合には、トランジスタMaのゲートに正のバイアス電圧を与える必要がある。また、トランジスタMa及びMbの各ソースとグランドとの間に抵抗Rsを挿入する構成を挙げたが、抵抗Rsの代わりに、トランジスタMa及びMbの各ソースとグランドとの間に能動負荷を挿入しても良い(後述の他の任意の実施例でも同様)。 If the gate threshold voltages of the transistors Ma and Mb are different from each other, both the transistors Ma and Mb may be enhancement type MOSFETs (the same applies to any other embodiment described later). However, in that case, it is necessary to apply a positive bias voltage to the gate of the transistor Ma. Further, although the configuration in which the resistance Rs is inserted between each source of the transistors Ma and Mb and the ground is mentioned, instead of the resistance Rs, an active load is inserted between each source of the transistors Ma and Mb and the ground. It may be (the same applies to any other embodiment described later).
[実施例EX2_2]
 実施例EX2_2を説明する。実施例EX2_1に示した構成を応用することで定電流源を形成することもできる。図19に実施例EX2_2に係る定電流源1200の回路図を示す。定電流源1200は、トランジスタMa及びMb(第1及び第2差動トランジスタ)と、カレントミラー回路CM1を形成するトランジスタMc及びMdと、カレントミラー回路CM2を形成するトランジスタMe及びMfと、抵抗Rs及びRbを備える。定電流源1200は半導体集積回路にて構成されて良い。
[Example EX2_2]
Example EX2_2 will be described. A constant current source can also be formed by applying the configuration shown in Example EX2_1. FIG. 19 shows a circuit diagram of the constant current source 1200 according to the example EX2_2. The constant current source 1200 includes transistors Ma and Mb (first and second differential transistors), transistors Mc and Md forming the current mirror circuit CM1, transistors Me and Mf forming the current mirror circuit CM2, and resistors Rs. And Rb. The constant current source 1200 may be configured by a semiconductor integrated circuit.
 定電流源1200において、トランジスタMa、Mb、Mc及びMd並びに抵抗Rs及びRbは実施例EX2_1に示したものと同じものであって、それらの接続関係は実施例EX2_1に示した通りである。即ち、トランジスタMc及びMdの各ソースは所定の正の電源電圧Vddが加わる電源電圧ラインLNVddに接続される。トランジスタMc及びMdの各ゲートとトランジスタMcのドレインとトランジスタMbのドレインは互いに接続され、トランジスタMa及びMdのドレイン同士は互いに接続される。トランジスタMa及びMbの各ソースは抵抗Rsを介してグランドに接続される(詳細には言えば、グランド電位を有するグランドラインLNgndに接続される)。トランジスタMbのゲートは抵抗Rbを介してグランド(即ちグランドラインLNgnd)に接続される一方で、トランジスタMaのゲートはグランド(即ちグランドラインLNgnd)に直接接続される。 In the constant current source 1200, the transistors Ma, Mb, Mc and Md and the resistors Rs and Rb are the same as those shown in Example EX2_1, and their connection relationships are as shown in Example EX2_1. That is, each source of the transistors Mc and Md is connected to the power supply voltage line LNVdd to which a predetermined positive power supply voltage Vdd is applied. The gates of the transistors Mc and Md, the drain of the transistor Mc, and the drain of the transistor Mb are connected to each other, and the drains of the transistors Ma and Md are connected to each other. Each source of the transistors Ma and Mb is connected to ground via resistors Rs (specifically, connected to a ground line LNgnd having a ground potential). The gate of the transistor Mb is connected to the ground (that is, the ground line LNgnd) via the resistor Rb, while the gate of the transistor Ma is directly connected to the ground (that is, the ground line LNgnd).
 カレントミラー回路CM1において、トランジスタMcのドレイン電流と同じ電流値を持つドレイン電流がトランジスタMdに流れるよう作用する。この際、トランジスタMcのドレイン電流はトランジスタMbに向けて出力される一方で、トランジスタMdのドレイン電流はトランジスタMaに向けて出力される。つまり、カレントミラー回路CM1は、トランジスタMaのドレインとトランジスタMbのドレインに向けて均一の電流が出力されるよう(即ち互いに同じ電流値を持つ電流が出力されるよう)動作する。 In the current mirror circuit CM1, a drain current having the same current value as the drain current of the transistor Mc acts to flow through the transistor Md. At this time, the drain current of the transistor Mc is output toward the transistor Mb, while the drain current of the transistor Md is output toward the transistor Ma. That is, the current mirror circuit CM1 operates so that a uniform current is output toward the drain of the transistor Ma and the drain of the transistor Mb (that is, currents having the same current value are output from each other).
 トランジスタMe及びMfはPチャネル型のMOSFETである。トランジスタMe及びMfの各ソースは電源電圧ラインLNVddに接続され、トランジスタMe及びMfの各ゲートはトランジスタMaのドレインに接続される。トランジスタMeのドレインはトランジスタMbのゲートに接続される。 Transistors Me and Mf are P-channel type MOSFETs. The sources of the transistors Me and Mf are connected to the power supply voltage line LNVdd, and the gates of the transistors Me and Mf are connected to the drain of the transistor Ma. The drain of the transistor Me is connected to the gate of the transistor Mb.
 トランジスタMeはカレントミラー回路CM2における電流の入力側トランジスタとして機能する一方、トランジスタMfはカレントミラー回路CM2における電流の出力側トランジスタとして機能する、と考えることができる。ここでは、トランジスタMe及びMfは互いに同一の構造を有し、互いに同じ電気的特性を有する一対のトランジスタであり、故に、トランジスタMeのドレイン電流と同じ電流値を持つドレイン電流がトランジスタMfに流れる(但し図19には示されていない負荷がトランジスタMfのドレインに接続されると仮定)。図19の例では、トランジスタMeを形成するために、トランジスタMc又はMbと同じ構造を有する基本MOSFETが2つ用意され、当該2つの基本MOSFETの並列回路にてトランジスタMeが形成される。トランジスタMfについても同様である。 It can be considered that the transistor Me functions as a current input side transistor in the current mirror circuit CM2, while the transistor Mf functions as a current output side transistor in the current mirror circuit CM2. Here, the transistors Me and Mf are a pair of transistors having the same structure and the same electrical characteristics as each other, and therefore, a drain current having the same current value as the drain current of the transistor Me flows through the transistor Mf ( However, it is assumed that a load (not shown in FIG. 19) is connected to the drain of the transistor Mf). In the example of FIG. 19, in order to form the transistor Me, two basic MOSFETs having the same structure as the transistor Mc or Mb are prepared, and the transistor Me is formed by the parallel circuit of the two basic MOSFETs. The same applies to the transistor Mf.
 図19の構成により図16の構成と同様、トランジスタMa及びMbのドレイン電流の値が互いに同じとなる状態で回路のバランスがとれる。このため、実施例EX2_1で述べたものと同様、トランジスタMbのゲート電圧V_Mbが上記バランスゲート電圧と一致するよう、トランジスタMa~MdによりトランジスタMe及びMfの各ゲート電圧が調整される。結果、バランスゲート電圧を抵抗Rbの値で割った電流値を持つドレイン電流がトランジスタMeに流れ、その電流値と同じ電流値を持つ定電流ICCがトランジスタMfのドレイン電流として流れる(但し図19には示されていない負荷がトランジスタMfのドレインに接続されると仮定)。 Similar to the configuration of FIG. 16, the configuration of FIG. 19 balances the circuit in a state where the values of the drain currents of the transistors Ma and Mb are the same as each other. Therefore, as in the case described in Example EX2_1, the gate voltages of the transistors Me and Mf are adjusted by the transistors Ma to Md so that the gate voltage VG_Mb of the transistor Mb matches the balance gate voltage. As a result, a drain current having a current value obtained by dividing the balance gate voltage by the value of the resistor Rb flows through the transistor Me, and a constant current ICC having the same current value as the current value flows as the drain current of the transistor Mf (however, FIG. 19). Assuming a load not shown in is connected to the drain of the transistor Mf).
 尚、図19の定電流源1200では、トランジスタMe及び抵抗Rbの直列回路に対して所定の直流電圧(Vdd)が印可されているが、トランジスタMeのドレインと、トランジスタMbのゲート及び抵抗Rb間の接続ノードと、の間に他の抵抗(不図示)が挿入されても良い。 In the constant current source 1200 of FIG. 19, a predetermined DC voltage (Vdd) is applied to the series circuit of the transistor Me and the resistor Rb, but between the drain of the transistor Me and the gate of the transistor Mb and the resistor Rb. Another resistor (not shown) may be inserted between the connection node and the connection node.
 また、トランジスタMeを構成する基本MOSFETの個数とトランジスタMfを構成する基本MOSFETの個数との比を任意に調整することなどによって、定電流ICCの値を調整しても良い。 Further, the value of the constant current ICC may be adjusted by arbitrarily adjusting the ratio between the number of basic MOSFETs constituting the transistor Me and the number of basic MOSFETs constituting the transistor Mf.
 また、カレントミラー回路CM2に対し、トランジスタMe又はMfと同じ構造及び同じ電気的特性を持つ他の1以上のトランジスタ(不図示)を追加し、トランジスタMe又はMfの各ゲートと他の1以上のトランジスタのゲートとを共通接続すれば、他の1以上のトランジスタのドレインからも定電流が得られる。 Further, one or more other transistors (not shown) having the same structure and the same electrical characteristics as the transistor Me or Mf are added to the current mirror circuit CM2, and each gate of the transistor Me or Mf and one or more other transistors are added. If the gate of the transistor is connected in common, a constant current can be obtained from the drain of one or more other transistors.
 本実施例の方法により、簡素な構成にて(従って小面積で)定電流源を形成することができる。 By the method of this embodiment, a constant current source can be formed with a simple configuration (hence, with a small area).
 例えば、実施例EX2_2に係る定電流源1200を用いて、第1実施形態にて示した定電流回路CCIG及びCCOTPG(図6参照)の少なくとも一方を形成しても良い。この場合において、定電流源1200を用いて定電流回路CCIGを形成する場合にあっては定電流ICCが定電流IG(図6参照)として機能し、定電流源1200を用いて定電流回路CCOTPGを形成する場合にあっては定電流ICCが定電流OTPG(図6参照)として機能する。第2実施形態(特に実施例EX2_2)を第1実施形態と組み合わせる場合、電源電圧ラインLNVdd及びLNVDDは互いに同じものを指し(従って“Vdd=VDD”であり)、グランドラインLNgnd及びLNGNDは互いに同じものを指すと解される(図6及び図19参照)。 For example, the constant current source 1200 according to the embodiment EX2_2 may be used to form at least one of the constant current circuits CC IG and CC OTPG (see FIG. 6) shown in the first embodiment. In this case, when the constant current circuit CC IG is formed by using the constant current source 1200, the constant current ICC functions as the constant current IG (see FIG. 6), and the constant current source 1200 is used to form the constant current. When forming the circuit CC OTPG , the constant current ICC functions as a constant current OTPG (see FIG. 6). When the second embodiment (particularly Example EX2_2) is combined with the first embodiment, the power supply voltage lines LNVdd and LN VDD point to the same one (hence “Vdd = VDD”), and the ground lines LNgnd and LN GND refer to each other. It is understood that they refer to the same thing (see FIGS. 6 and 19).
 尚、図20に示すように、定電流源1200におけるトランジスタMfのドレインを抵抗Rfを介してグランドに接続する構成を採用しても良い。図20の構成では、抵抗Rf及び定電流ICCの各値で定まる電圧値を有した出力電圧Vout’が、抵抗Rfの両端間に発生する。つまり、図20の構成は定電圧源として機能する。この際例えば、抵抗Rb及びRfの値を同じに設定すれば、トランジスタMbのゲート電圧V_Mb(バランスゲート電圧)を複製した電圧を出力電圧Vout’として得ることができる。 As shown in FIG. 20, a configuration may be adopted in which the drain of the transistor Mf in the constant current source 1200 is connected to the ground via the resistor Rf. In the configuration of FIG. 20, an output voltage Vout'having a voltage value determined by each value of the resistance Rf and the constant current ICC is generated between both ends of the resistance Rf. That is, the configuration of FIG. 20 functions as a constant voltage source. At this time, for example, if the values of the resistors Rb and Rf are set to be the same, a voltage that duplicates the gate voltage VG_Mb (balanced gate voltage) of the transistor Mb can be obtained as the output voltage Vout'.
[実施例EX2_3]
 実施例EX2_3を説明する。実施例EX2_1に示した構成を応用することでコンパレータを形成することもできる。図21に実施例EX2_3に係るコンパレータ1300の回路図を示す。コンパレータ1300は、トランジスタMa及びMb(第1及び第2差動トランジスタ)と、カレントミラー回路CM1を形成するトランジスタMc及びMd、抵抗Rsと、出力回路1310と、を備える。コンパレータ1300は半導体集積回路にて構成されて良い。
[Example EX2_3]
Example EX2_3 will be described. A comparator can also be formed by applying the configuration shown in Example EX2_1. FIG. 21 shows a circuit diagram of the comparator 1300 according to the example EX2_3. The comparator 1300 includes transistors Ma and Mb (first and second differential transistors), transistors Mc and Md forming the current mirror circuit CM1, resistors Rs, and an output circuit 1310. The comparator 1300 may be configured by a semiconductor integrated circuit.
 コンパレータ1300において、トランジスタMa、Mb、Mc及びMd並びに抵抗Rsは実施例EX2_1に示したものと同じものであって、それらの接続関係は実施例EX2_1に示した通りである。即ち、トランジスタMc及びMdの各ソースは所定の正の電源電圧Vddが加わる電源電圧ラインLNVddに接続される。トランジスタMc及びMdの各ゲートとトランジスタMcのドレインとトランジスタMbのドレインは互いに接続され、トランジスタMa及びMdのドレイン同士は互いに接続される。トランジスタMa及びMbの各ソースは抵抗Rsを介してグランドに接続される(詳細には言えば、グランド電位を有するグランドラインLNgndに接続される)。トランジスタMaのゲートはグランド(即ちグランドラインLNgnd)に直接接続される。 In the comparator 1300, the transistors Ma, Mb, Mc and Md and the resistance Rs are the same as those shown in Example EX2_1, and their connection relationships are as shown in Example EX2_1. That is, each source of the transistors Mc and Md is connected to the power supply voltage line LNVdd to which a predetermined positive power supply voltage Vdd is applied. The gates of the transistors Mc and Md, the drain of the transistor Mc, and the drain of the transistor Mb are connected to each other, and the drains of the transistors Ma and Md are connected to each other. Each source of the transistors Ma and Mb is connected to ground via resistors Rs (specifically, connected to a ground line LNgnd having a ground potential). The gate of the transistor Ma is directly connected to the ground (that is, the ground line LNgnd).
 カレントミラー回路CM1において、トランジスタMcのドレイン電流と同じ電流値を持つドレイン電流がトランジスタMdに流れるよう作用する。この際、トランジスタMcのドレイン電流はトランジスタMbに向けて出力される一方で、トランジスタMdのドレイン電流はトランジスタMaに向けて出力される。つまり、カレントミラー回路CM1は、トランジスタMaのドレインとトランジスタMbのドレインに向けて均一の電流が出力されるよう(即ち互いに同じ電流値を持つ電流が出力されるよう)動作する。但し、実際に均一の電流が出力されるかは入力電圧Vinに依存する。 In the current mirror circuit CM1, a drain current having the same current value as the drain current of the transistor Mc acts to flow through the transistor Md. At this time, the drain current of the transistor Mc is output toward the transistor Mb, while the drain current of the transistor Md is output toward the transistor Ma. That is, the current mirror circuit CM1 operates so that a uniform current is output toward the drain of the transistor Ma and the drain of the transistor Mb (that is, currents having the same current value are output from each other). However, whether a uniform current is actually output depends on the input voltage Vin.
 図21のコンパレータ1300では、出力回路1310がインバータにて構成される。このため、出力回路1310をインバータ1310とも称する。インバータ1310の入力端子はトランジスタMaのドレインに接続され、インバータ1310の出力端子から信号CMPoutが出力される。インバータ1310は、自身の入力端子への入力信号の反転信号を自身の出力端子から出力する。詳細には、インバータ1310は、自身の入力端子への入力電圧が所定の閾電圧未満であるときにはハイレベルの信号を自身の出力端子から出力し、自身の入力端子への入力電圧が所定の閾電圧以上であるときにはローレベルの信号を自身の出力端子から出力する。インバータ1310は電源電圧Vddを元に駆動し、インバータ1310の閾電圧は概ね電源電圧Vddの半分である。但し、インバータ1310の閾電圧にはヒステリシス特性が付与されていて良い。 In the comparator 1300 of FIG. 21, the output circuit 1310 is composed of an inverter. Therefore, the output circuit 1310 is also referred to as an inverter 1310. The input terminal of the inverter 1310 is connected to the drain of the transistor Ma, and the signal CMPout is output from the output terminal of the inverter 1310. The inverter 1310 outputs an inverted signal of an input signal to its own input terminal from its own output terminal. Specifically, the inverter 1310 outputs a high-level signal from its own output terminal when the input voltage to its own input terminal is less than a predetermined threshold voltage, and the input voltage to its own input terminal has a predetermined threshold voltage. When the voltage is higher than the voltage, a low level signal is output from its own output terminal. The inverter 1310 is driven based on the power supply voltage Vdd, and the threshold voltage of the inverter 1310 is approximately half of the power supply voltage Vdd. However, a hysteresis characteristic may be added to the threshold voltage of the inverter 1310.
 コンパレータ1300において、トランジスタMbのゲートには電圧Vinが入力される。電圧Vinはコンパレータ1300への入力電圧であって、コンパレータ1300は、入力電圧Vinと所定電圧との高低関係を示す信号CMPoutを出力する。この所定電圧は、トランジスタMa及びMbの各電気的特性にて定まる上記バランスゲート電圧である。 In the comparator 1300, a voltage Vin is input to the gate of the transistor Mb. The voltage Vin is an input voltage to the comparator 1300, and the comparator 1300 outputs a signal CMPout indicating a high-low relationship between the input voltage Vin and a predetermined voltage. This predetermined voltage is the balance gate voltage determined by the electrical characteristics of the transistors Ma and Mb.
 入力電圧Vinがバランスゲート電圧と一致する状態を基準に、入力電圧Vinがバランスゲート電圧よりも低くなると、トランジスタMaのドレイン電圧が低下してインバータ1310の閾電圧を下回ることで信号CMPoutはハイレベルとなり、逆に、入力電圧Vinがバランスゲート電圧よりも高くなると、トランジスタMaのドレイン電圧が上昇してインバータ1310の閾電圧を上回ることで信号CMPoutはローレベルとなる。つまり、信号CMPoutにて入力電圧Vinと所定電圧(バランスゲート電圧)との高低関係が示される。 When the input voltage Vin becomes lower than the balance gate voltage based on the state where the input voltage Vin matches the balance gate voltage, the drain voltage of the transistor Ma drops and falls below the threshold voltage of the inverter 1310, so that the signal CMPout is at a high level. On the contrary, when the input voltage Vin becomes higher than the balance gate voltage, the drain voltage of the transistor Ma rises and exceeds the threshold voltage of the inverter 1310, so that the signal CMPout becomes a low level. That is, the signal CMPout shows the high-low relationship between the input voltage Vin and the predetermined voltage (balance gate voltage).
 本実施例の方法により、簡素な構成にて(従って小面積で)コンパレータを形成することができる。 By the method of this embodiment, the comparator can be formed with a simple configuration (hence, with a small area).
 尚、出力回路1310はインバータ以外の回路(例えばバッファ回路)であっても良い。出力回路1310は、入力電圧Vinがバランスゲート電圧より低いことに応答したトランジスタMaのドレイン電圧の低下に基づき第1のレベルの信号を出力でき、且つ、入力電圧Vinがバランスゲート電圧より高いことに応答したトランジスタMaのドレイン電圧の上昇に基づき第2のレベルの信号を出力できる回路であれば良い(第1及び第2のレベルは互いに異なる)。 The output circuit 1310 may be a circuit other than the inverter (for example, a buffer circuit). The output circuit 1310 can output a first level signal based on the decrease in the drain voltage of the transistor Ma in response to the input voltage Vin being lower than the balanced gate voltage, and the input voltage Vin is higher than the balanced gate voltage. Any circuit may be used as long as it can output a second level signal based on an increase in the drain voltage of the responsive transistor Ma (the first and second levels are different from each other).
[付記1]
 上述の実施形態にて具体的構成例が示された本開示について付記を設ける。
[Appendix 1]
A supplementary note is provided regarding the present disclosure in which a specific configuration example is shown in the above-described embodiment.
 本開示に係る不揮発性メモリは、第1トランジスタと、前記第1トランジスタのゲートに共通接続されたゲートを有する第2トランジスタと、第1端及び第2端を有し、前記第1トランジスタのソースに前記第1端が接続された抵抗と、前記第1トランジスタのゲートと前記抵抗の前記第2端との間に対し、及び、前記第2トランジスタのゲート及びソース間に対し、前記第1及び第2トランジスタの内の少なくとも一方をオン状態とさせるためのリード用電圧を供給するよう構成されたリード用電圧供給回路と、前記リード用電圧供給回路により前記リード用電圧が供給されるリード動作において、前記第1及び第2トランジスタの各ドレイン電流に基づき、第1の値に対応付けられた信号又は第2の値に対応付けられた信号を出力するよう構成された信号出力回路と、を備える構成(第1の構成)である。 The non-volatile memory according to the present disclosure has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and is a source of the first transistor. With respect to the resistor to which the first end is connected, between the gate of the first transistor and the second end of the resistor, and between the gate and the source of the second transistor, the first and the above. In a lead voltage supply circuit configured to supply a lead voltage for turning on at least one of the second transistors, and in a read operation in which the lead voltage is supplied by the lead voltage supply circuit. , A signal output circuit configured to output a signal associated with the first value or a signal associated with the second value based on the drain currents of the first and second transistors. It is a configuration (first configuration).
 上記第1の構成に係る不揮発性メモリにおいて、前記信号出力回路は、前記リード動作において、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きいとき、前記第1の値に対応付けられた信号を出力し、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きいとき、前記第2の値に対応付けられた信号を出力する構成(第2の構成)であっても良い。 In the non-volatile memory according to the first configuration, the signal output circuit corresponds to the first value when the drain current of the second transistor is larger than the drain current of the first transistor in the read operation. The attached signal is output, and when the drain current of the first transistor is larger than the drain current of the second transistor, the signal associated with the second value is output (second configuration). There may be.
 上記第2の構成に係る不揮発性メモリにおいて、前記第2トランジスタにホットキャリアを注入することで前記第2トランジスタのゲート閾電圧を増大させるプログラム動作を行うよう構成されたプログラム回路を更に備える構成(第3の構成)であっても良い。 In the non-volatile memory according to the second configuration, a configuration further comprising a program circuit configured to perform a program operation for increasing the gate threshold voltage of the second transistor by injecting hot carriers into the second transistor ( It may be the third configuration).
 上記第3の構成に係る不揮発性メモリにおいて、前記プログラム動作前に実行される前記リード動作においては、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きく、前記プログラム動作後に実行される前記リード動作においては、前記プログラム動作による前記第2トランジスタのゲート閾電圧の増大に伴い、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きい構成(第4の構成)であっても良い。 In the read operation executed before the program operation in the non-volatile memory according to the third configuration, the drain current of the second transistor is larger than the drain current of the first transistor and is executed after the program operation. In the read operation, the drain current of the first transistor is larger than the drain current of the second transistor as the gate threshold voltage of the second transistor increases due to the program operation (fourth configuration). It may be.
 上記第3又は第4の構成に係る不揮発性メモリにおいて、前記第1及び第2トランジスタは互いに同じ構造を有し、前記プログラム動作前においては前記第1及び第2トランジスタは互いに同じゲート閾電圧を持つ構成(第5の構成)であっても良い。 In the non-volatile memory according to the third or fourth configuration, the first and second transistors have the same structure as each other, and the first and second transistors have the same gate threshold voltage as each other before the program operation. It may have a configuration (fifth configuration).
 本開示に係る他の不揮発性メモリは、第1トランジスタと、前記第1トランジスタのゲートに共通接続されたゲートを有する第2トランジスタと、第1端及び第2端を有し、前記第1トランジスタのソースに前記第1端が接続された抵抗と、前記第1及び第2トランジスタの内の少なくとも一方をオン状態とさせるためのリード用電圧を供給可能に構成されるリード用電圧供給回路と、前記リード用電圧供給回路により前記リード用電圧が供給されるリード動作において、前記第1及び第2トランジスタの各ドレイン電流に基づき、第1の値に対応付けられた信号又は第2の値に対応付けられた信号を出力可能に構成される信号出力回路と、を備える構成(第6の構成)である。 The other non-volatile memory according to the present disclosure has a first transistor, a second transistor having a gate commonly connected to the gate of the first transistor, and first and second ends, and the first transistor. A lead voltage supply circuit configured to be able to supply a resistor to which the first end is connected to the source of the above and a read voltage for turning on at least one of the first and second transistors. In the read operation in which the lead voltage is supplied by the lead voltage supply circuit, the signal associated with the first value or the second value is supported based on the drain currents of the first and second transistors. It is a configuration (sixth configuration) including a signal output circuit configured to be able to output the attached signal.
 上記第6の構成に係る不揮発性メモリにおいて、前記信号出力回路は、前記リード動作が行われる場合において、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きいとき、前記第1の値に対応付けられた信号を出力可能に構成され、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きいとき、前記第2の値に対応付けられた信号を出力可能に構成される構成(第7の構成)であっても良い。 In the non-volatile memory according to the sixth configuration, the signal output circuit is the first when the drain current of the second transistor is larger than the drain current of the first transistor when the read operation is performed. It is configured to be able to output the signal associated with the value of, and when the drain current of the first transistor is larger than the drain current of the second transistor, the signal associated with the second value can be output. It may be a configured configuration (seventh configuration).
 上記第7の構成に係る不揮発性メモリにおいて、前記第2トランジスタにホットキャリアを注入することで前記第2トランジスタのゲート閾電圧を増大させるプログラム動作を実行可能に構成されるプログラム回路を更に備える構成(第8の構成)であっても良い。 The non-volatile memory according to the seventh configuration further includes a program circuit configured to be able to execute a program operation for increasing the gate threshold voltage of the second transistor by injecting hot carriers into the second transistor. (Eighth configuration) may be used.
 上記第8の構成に係る不揮発性メモリにおいて、前記プログラム動作前に前記リード動作が実行される場合、当該リード動作においては、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きく、前記プログラム動作後に前記リード動作が実行される場合、当該リード動作においては、前記プログラム動作による前記第2トランジスタのゲート閾電圧の増大に伴い、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きい構成(第9の構成)であっても良い。 In the non-volatile memory according to the eighth configuration, when the read operation is executed before the program operation, the drain current of the second transistor is larger than the drain current of the first transistor in the read operation. When the read operation is executed after the program operation, in the read operation, the drain current of the first transistor becomes the drain current of the second transistor as the gate threshold voltage of the second transistor increases due to the program operation. The configuration may be larger than the drain current (9th configuration).
 上記第8又は第9の構成に係る不揮発性メモリにおいて、前記第1及び第2トランジスタは互いに同じ構造を有し、前記プログラム動作前においては前記第1及び第2トランジスタは互いに同じゲート閾電圧を持つ構成(第10の構成)であっても良い。 In the non-volatile memory according to the eighth or ninth configuration, the first and second transistors have the same structure as each other, and the first and second transistors have the same gate threshold voltage as each other before the program operation. It may have a configuration (tenth configuration).
[付記2]
 第2実施形態にて具体例された本開示に係る定電圧源について説明を追加する。
[Appendix 2]
A description of the constant voltage source according to the present disclosure, which is a specific example in the second embodiment, will be added.
 本開示に係る定電圧源(図16参照)は、ソース同士が互いに接続され且つ互いに異なるゲート閾電圧を有する第1差動トランジスタ(Ma)及び第2差動トランジスタ(Mb)から成る差動対と、前記第1及び第2差動トランジスタの各ドレインに接続され、前記第1差動トランジスタのドレインと前記第2差動トランジスタのドレインに向けて電流を出力するドレイン側回路(CM1)と、前記第1差動トランジスタのドレイン電圧に基づき、前記第2差動トランジスタのゲート電圧に応じた出力電圧(Vout)を生成する電圧出力回路(Mo)と、を備えた構成WB1を有する。 The constant voltage source (see FIG. 16) according to the present disclosure is a differential pair composed of a first differential transistor (Ma) and a second differential transistor (Mb) in which the sources are connected to each other and have different gate threshold voltages. And a drain side circuit (CM1) connected to each drain of the first and second differential transistors and outputting a current toward the drain of the first differential transistor and the drain of the second differential transistor. It has a configuration WB1 including a voltage output circuit (Mo) that generates an output voltage (Vout) corresponding to the gate voltage of the second differential transistor based on the drain voltage of the first differential transistor.
 構成WB1に係る定電圧源において、前記第1差動トランジスタはデプレッション型のMOSFETである一方で、前記第2差動トランジスタはエンハンスメント型のMOSFETであり、前記第1差動トランジスタのゲートはグランドに直接接続される一方、前記第2差動トランジスタのゲートは抵抗(Rb)を介してグランドに接続される構成WB2であって良い。 In the constant voltage source according to the configuration WB1 , the first differential transistor is a depletion type MOSFET, the second differential transistor is an enhancement type MOSFET, and the gate of the first differential transistor is ground. The gate of the second differential transistor may be configured WB2 connected to the ground via a resistor (Rb) while being directly connected to the second differential transistor.
 構成WB2に係る定電圧源において、前記電圧出力回路は、前記第1差動トランジスタのドレイン電圧をゲート電圧として受ける出力トランジスタ(Mo)を有し、前記出力トランジスタ及び前記抵抗を含む直列回路に対して所定の直流電圧(Vdd)が印可され、前記出力トランジスタを通じて前記出力電圧が生成される構成WB3であって良い。 In the constant voltage source according to the configuration WB2 , the voltage output circuit has an output transistor (Mo) that receives the drain voltage of the first differential transistor as a gate voltage, and is a series circuit including the output transistor and the resistor. On the other hand, the configuration WB3 may be such that a predetermined DC voltage (Vdd) is applied and the output voltage is generated through the output transistor.
 構成WB1~WB3の何れかに係る定電圧源において、前記ドレイン側回路は、前記第1差動トランジスタのドレインと前記第2差動トランジスタのドレインに向けて均一の電流を出力するよう動作するドレイン側カレントミラー回路(CM1)である構成WB4であって良い。 In the constant voltage source according to any one of the configurations WB1 to WB3 , the drain side circuit operates so as to output a uniform current toward the drain of the first differential transistor and the drain of the second differential transistor. It may be the configuration WB4 which is the drain side current mirror circuit (CM1).
 本開示に係る定電流源(図19参照)は、ソース同士が互いに接続され且つ互いに異なるゲート閾電圧を有する第1差動トランジスタ(Ma)及び第2差動トランジスタ(Mb)から成る差動対と、前記第1及び第2差動トランジスタの各ドレインに接続され、前記第1差動トランジスタのドレインと前記第2差動トランジスタのドレインに向けて電流を出力するドレイン側回路(CM1)と、を備え、前記第1差動トランジスタのドレイン電圧と前記第2差動トランジスタのゲート電圧に基づき、定電流(ICC)を生成する構成WC1を有する。 The constant current source according to the present disclosure (see FIG. 19) is a differential pair composed of a first differential transistor (Ma) and a second differential transistor (Mb) in which the sources are connected to each other and have different gate threshold voltages. And a drain side circuit (CM1) connected to each drain of the first and second differential transistors and outputting a current toward the drain of the first differential transistor and the drain of the second differential transistor. It has a configuration WC1 that generates a constant current ( ICC ) based on the drain voltage of the first differential transistor and the gate voltage of the second differential transistor.
 構成WC1に係る定電流源において、前記第1差動トランジスタはデプレッション型のMOSFETである一方で、前記第2差動トランジスタはエンハンスメント型のMOSFETであり、前記第1差動トランジスタのゲートはグランドに直接接続される一方、前記第2差動トランジスタのゲートは抵抗を介してグランドに接続される構成WC2であって良い。 In the constant current source according to the configuration WC1 , the first differential transistor is a depletion type MOSFET, the second differential transistor is an enhancement type MOSFET, and the gate of the first differential transistor is ground. The gate of the second differential transistor may be configured WC2 connected to ground via a resistor while being directly connected to.
 構成WC2に係る定電流源において、前記第1差動トランジスタのドレイン電圧をゲート電圧として受ける複数のトランジスタから成るカレントミラー回路(CM2)を備え、前記複数のトランジスタは第1ミラー用トランジスタ(Me)及び第2ミラー用トランジスタ(Mf)を含み、前記第1ミラー用トランジスタ及び前記抵抗を含む直列回路に対して所定の直流電圧(Vdd)が印可され、前記第2ミラー用トランジスタを通じて前記定電流が出力される構成WC3であって良い。 Configuration The constant current source according to WC2 includes a current mirror circuit (CM2) composed of a plurality of transistors that receive the drain voltage of the first differential transistor as a gate voltage, and the plurality of transistors are transistors for the first mirror (Me). ) And a second mirror transistor (Mf), a predetermined DC voltage (Vdd) is applied to the series circuit including the first mirror transistor and the resistor, and the constant current is applied through the second mirror transistor. May be the configuration WC3 to which is output.
 構成WC1~WC3の何れかに係る定電流源において、前記ドレイン側回路は、前記第1差動トランジスタのドレインと前記第2差動トランジスタのドレインに向けて均一の電流を出力するよう動作するドレイン側カレントミラー回路(CM1)である構成WC4であって良い。 In the constant current source according to any one of the configurations WC1 to WC3 , the drain side circuit operates so as to output a uniform current toward the drain of the first differential transistor and the drain of the second differential transistor. It may be the configuration WC4 which is the drain side current mirror circuit (CM1).
 本開示に係るコンパレータ(図21参照)は、ソース同士が互いに接続され且つ互いに異なるゲート閾電圧を有する第1差動トランジスタ(Ma)及び第2差動トランジスタ(Mb)から成る差動対と、前記第1及び第2差動トランジスタの各ドレインに接続され、前記第1差動トランジスタのドレインと前記第2差動トランジスタのドレインに向けて電流を出力するドレイン側回路(CM1)と、を備え、前記第2差動トランジスタのゲートにて入力電圧(Vin)を受け、前記入力電圧と所定電圧との高低関係を示す信号(CMPout)を出力する構成WD1を有する。 The comparator (see FIG. 21) according to the present disclosure includes a differential pair composed of a first differential transistor (Ma) and a second differential transistor (Mb) in which sources are connected to each other and have different gate threshold voltages. A drain side circuit (CM1) connected to each of the drains of the first and second differential transistors and outputting a current toward the drain of the first differential transistor and the drain of the second differential transistor is provided. It has a configuration WD1 that receives an input voltage (Vin) at the gate of the second differential transistor and outputs a signal ( CMPout ) indicating a high-low relationship between the input voltage and a predetermined voltage.
 構成WD1に係るコンパレータにおいて、前記第1差動トランジスタはデプレッション型のMOSFETである一方で、前記第2差動トランジスタはエンハンスメント型のMOSFETであり、前記第1差動トランジスタのゲートはグランドに接続される構成WD2であって良い。 In the comparator according to the configuration WD1 , the first differential transistor is a depletion type MOSFET, the second differential transistor is an enhancement type MOSFET, and the gate of the first differential transistor is connected to the ground. It may be the configuration WD2 to be formed.
 構成WD2に係るコンパレータにおいて、前記所定電圧は、各差動トランジスタの電気的特性に基づいて定まり、前記第1差動トランジスタのドレイン電圧に基づき、前記入力電圧と前記所定電圧との高低関係を示す前記信号が出力される構成WD3であって良い。 In the comparator according to the configuration WD2 , the predetermined voltage is determined based on the electrical characteristics of each differential transistor, and the height relationship between the input voltage and the predetermined voltage is determined based on the drain voltage of the first differential transistor. The configuration WD3 may be such that the signal shown above is output.
 構成WD1~WD3の何れかに係るコンパレータにおいて、前記ドレイン側回路は、前記第1差動トランジスタのドレインと前記第2差動トランジスタのドレインに向けて均一の電流を出力するよう動作するドレイン側カレントミラー回路(CM1)である構成WD4であって良い。 In the comparator according to any one of the configurations WD1 to WD3 , the drain side circuit operates to output a uniform current toward the drain of the first differential transistor and the drain of the second differential transistor. It may be a configuration WD4 which is a side current mirror circuit (CM1).
<<変形等>>
 本開示の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本開示の実施形態の例であって、本開示ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
<< Deformation, etc. >>
The embodiments of the present disclosure can be appropriately modified in various ways within the scope of the technical idea shown in the claims. The above embodiments are merely examples of the embodiments of the present disclosure, and the meanings of the terms of the present disclosure or each constituent requirement are not limited to those described in the above embodiments. The specific numerical values shown in the above description are merely examples, and as a matter of course, they can be changed to various numerical values.
 任意の信号又は電圧に関して、上述の主旨を損なわない形で、それらのハイレベルとローレベルの関係は上述したものの逆とされ得る。 For any signal or voltage, the relationship between the high level and the low level can be reversed from the above, without compromising the above-mentioned gist.
 各実施形態に示されたFET(電界効果トランジスタ)のチャネルの種類は例示であり、Nチャネル型のFETがPチャネル型のFETに変更されるように、或いは、Pチャネル型のFETがNチャネル型のFETに変更されるように、FETを含む回路の構成は変形され得る。 The types of FET (field effect transistors) channels shown in each embodiment are examples, so that the N-channel type FET is changed to a P-channel type FET, or the P-channel type FET is an N-channel. The configuration of the circuit containing the FET can be modified so that it is changed to a type FET.
 不都合が生じない限り、上述の任意のトランジスタは、任意の種類のトランジスタであって良い。例えば、MOSFETとして上述された任意のトランジスタを、不都合が生じない限り、接合型FET、IGBT(Insulated Gate Bipolar Transistor)又はバイポーラトランジスタに置き換えることも可能である。任意のトランジスタは第1電極、第2電極及び制御電極を有する。FETにおいては、第1及び第2電極の内の一方がドレインで他方がソースであり且つ制御電極がゲートである。IGBTにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がゲートである。IGBTに属さないバイポーラトランジスタにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がベースである。 The above-mentioned arbitrary transistor may be any kind of transistor as long as no inconvenience occurs. For example, any transistor described above as a MOSFET can be replaced with a junction FET, an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor as long as no inconvenience occurs. Any transistor has a first electrode, a second electrode and a control electrode. In the FET, one of the first and second electrodes is a drain, the other is a source, and the control electrode is a gate. In the IGBT, one of the first and second electrodes is a collector, the other is an emitter, and the control electrode is a gate. In a bipolar transistor that does not belong to an IGBT, one of the first and second electrodes is a collector, the other is an emitter, and the control electrode is a base.
  1 記憶回路
 10 メモリ部
 20 リード用電圧供給回路
 30 信号出力回路
 40 プログラム回路
1 Storage circuit 10 Memory unit 20 Read voltage supply circuit 30 Signal output circuit 40 Program circuit

Claims (10)

  1.  第1トランジスタと、
     前記第1トランジスタのゲートに共通接続されたゲートを有する第2トランジスタと、
     第1端及び第2端を有し、前記第1トランジスタのソースに前記第1端が接続された抵抗と、
     前記第1トランジスタのゲートと前記抵抗の前記第2端との間に対し、及び、前記第2トランジスタのゲート及びソース間に対し、前記第1及び第2トランジスタの内の少なくとも一方をオン状態とさせるためのリード用電圧を供給するよう構成されたリード用電圧供給回路と、
     前記リード用電圧供給回路により前記リード用電圧が供給されるリード動作において、前記第1及び第2トランジスタの各ドレイン電流に基づき、第1の値に対応付けられた信号又は第2の値に対応付けられた信号を出力するよう構成された信号出力回路と、を備える
    、不揮発性メモリ。
    With the first transistor
    A second transistor having a gate commonly connected to the gate of the first transistor,
    A resistance having a first end and a second end and having the first end connected to the source of the first transistor,
    At least one of the first and second transistors is turned on between the gate of the first transistor and the second end of the resistor and between the gate and the source of the second transistor. A lead voltage supply circuit configured to supply lead voltage for
    In the read operation in which the lead voltage is supplied by the lead voltage supply circuit, the signal associated with the first value or the second value is supported based on the drain currents of the first and second transistors. A non-volatile memory comprising a signal output circuit configured to output the attached signal.
  2.  前記信号出力回路は、前記リード動作において、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きいとき、前記第1の値に対応付けられた信号を出力し、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きいとき、前記第2の値に対応付けられた信号を出力する
    、請求項1に記載の不揮発性メモリ。
    In the read operation, the signal output circuit outputs a signal associated with the first value when the drain current of the second transistor is larger than the drain current of the first transistor, and the first transistor outputs a signal associated with the first value. The non-volatile memory according to claim 1, wherein when the drain current of the second transistor is larger than the drain current of the second transistor, a signal associated with the second value is output.
  3.  前記第2トランジスタにホットキャリアを注入することで前記第2トランジスタのゲート閾電圧を増大させるプログラム動作を行うよう構成されたプログラム回路を更に備える
    、請求項2に記載の不揮発性メモリ。
    The non-volatile memory according to claim 2, further comprising a program circuit configured to perform a program operation for increasing the gate threshold voltage of the second transistor by injecting hot carriers into the second transistor.
  4.  前記プログラム動作前に実行される前記リード動作においては、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きく、
     前記プログラム動作後に実行される前記リード動作においては、前記プログラム動作による前記第2トランジスタのゲート閾電圧の増大に伴い、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きい
    、請求項3に記載の不揮発性メモリ。
    In the read operation executed before the program operation, the drain current of the second transistor is larger than the drain current of the first transistor.
    In the read operation executed after the program operation, the drain current of the first transistor is larger than the drain current of the second transistor as the gate threshold voltage of the second transistor increases due to the program operation. Item 3. The non-volatile memory according to Item 3.
  5.  前記第1及び第2トランジスタは互いに同じ構造を有し、
     前記プログラム動作前においては前記第1及び第2トランジスタは互いに同じゲート閾電圧を持つ
    、請求項3又は4に記載の不揮発性メモリ。
    The first and second transistors have the same structure as each other and have the same structure.
    The non-volatile memory according to claim 3 or 4, wherein the first and second transistors have the same gate threshold voltage before the program operation.
  6.  第1トランジスタと、
     前記第1トランジスタのゲートに共通接続されたゲートを有する第2トランジスタと、
     第1端及び第2端を有し、前記第1トランジスタのソースに前記第1端が接続された抵抗と、
     前記第1及び第2トランジスタの内の少なくとも一方をオン状態とさせるためのリード用電圧を供給可能に構成されるリード用電圧供給回路と、
     前記リード用電圧供給回路により前記リード用電圧が供給されるリード動作において、前記第1及び第2トランジスタの各ドレイン電流に基づき、第1の値に対応付けられた信号又は第2の値に対応付けられた信号を出力可能に構成される信号出力回路と、を備える
    、不揮発性メモリ。
    With the first transistor
    A second transistor having a gate commonly connected to the gate of the first transistor,
    A resistance having a first end and a second end and having the first end connected to the source of the first transistor,
    A read voltage supply circuit configured to be able to supply a read voltage for turning on at least one of the first and second transistors.
    In the read operation in which the lead voltage is supplied by the lead voltage supply circuit, the signal associated with the first value or the second value is supported based on the drain currents of the first and second transistors. A non-volatile memory comprising a signal output circuit configured to be able to output the attached signal.
  7.  前記信号出力回路は、前記リード動作が行われる場合において、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きいとき、前記第1の値に対応付けられた信号を出力可能に構成され、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きいとき、前記第2の値に対応付けられた信号を出力可能に構成される
    、請求項6に記載の不揮発性メモリ。
    The signal output circuit can output a signal associated with the first value when the drain current of the second transistor is larger than the drain current of the first transistor when the read operation is performed. The non-volatile property according to claim 6, wherein the signal associated with the second value can be output when the drain current of the first transistor is larger than the drain current of the second transistor. memory.
  8.  前記第2トランジスタにホットキャリアを注入することで前記第2トランジスタのゲート閾電圧を増大させるプログラム動作を実行可能に構成されるプログラム回路を更に備える
    、請求項7に記載の不揮発性メモリ。
    The non-volatile memory according to claim 7, further comprising a program circuit configured to be able to execute a program operation for increasing the gate threshold voltage of the second transistor by injecting hot carriers into the second transistor.
  9.  前記プログラム動作前に前記リード動作が実行される場合、当該リード動作においては、前記第2トランジスタのドレイン電流が前記第1トランジスタのドレイン電流よりも大きく、
     前記プログラム動作後に前記リード動作が実行される場合、当該リード動作においては、前記プログラム動作による前記第2トランジスタのゲート閾電圧の増大に伴い、前記第1トランジスタのドレイン電流が前記第2トランジスタのドレイン電流よりも大きい
    、請求項8に記載の不揮発性メモリ。
    When the read operation is executed before the program operation, the drain current of the second transistor is larger than the drain current of the first transistor in the read operation.
    When the read operation is executed after the program operation, in the read operation, the drain current of the first transistor becomes the drain of the second transistor as the gate threshold voltage of the second transistor increases due to the program operation. The non-volatile memory according to claim 8, which is larger than the current.
  10.  前記第1及び第2トランジスタは互いに同じ構造を有し、
     前記プログラム動作前においては前記第1及び第2トランジスタは互いに同じゲート閾電圧を持つ
    、請求項8又は9に記載の不揮発性メモリ。
    The first and second transistors have the same structure as each other and have the same structure.
    The non-volatile memory according to claim 8 or 9, wherein the first and second transistors have the same gate threshold voltage before the program operation.
PCT/JP2021/029134 2020-09-18 2021-08-05 Non-volatile memory WO2022059378A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/021,606 US20230307049A1 (en) 2020-09-18 2021-08-05 Non-volatile memory
DE112021003866.4T DE112021003866T5 (en) 2020-09-18 2021-08-05 NON-VOLATILE MEMORY
JP2022550406A JPWO2022059378A1 (en) 2020-09-18 2021-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020156967 2020-09-18
JP2020-156967 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059378A1 true WO2022059378A1 (en) 2022-03-24

Family

ID=80775768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029134 WO2022059378A1 (en) 2020-09-18 2021-08-05 Non-volatile memory

Country Status (4)

Country Link
US (1) US20230307049A1 (en)
JP (1) JPWO2022059378A1 (en)
DE (1) DE112021003866T5 (en)
WO (1) WO2022059378A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353106A (en) * 2002-12-19 2005-12-22 Kazuyuki Nakamura Cmis semiconductor nonvolatile storage circuit
JP2006277799A (en) * 2005-03-28 2006-10-12 Renesas Technology Corp Otp fuse circuit
JP2007087441A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Nonvolatile semiconductor storage apparatus
US20110063924A1 (en) * 2009-09-11 2011-03-17 Semiconductor Manufacturing International (Shanghai) Corporation Method of flash memory design with differential cell for better endurance
JP2011103158A (en) * 2009-11-11 2011-05-26 Rohm Co Ltd Semiconductor non-volatile memory circuit
JP2015185180A (en) * 2014-03-20 2015-10-22 株式会社東芝 configuration memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353106A (en) * 2002-12-19 2005-12-22 Kazuyuki Nakamura Cmis semiconductor nonvolatile storage circuit
JP2006277799A (en) * 2005-03-28 2006-10-12 Renesas Technology Corp Otp fuse circuit
JP2007087441A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Nonvolatile semiconductor storage apparatus
US20110063924A1 (en) * 2009-09-11 2011-03-17 Semiconductor Manufacturing International (Shanghai) Corporation Method of flash memory design with differential cell for better endurance
JP2011103158A (en) * 2009-11-11 2011-05-26 Rohm Co Ltd Semiconductor non-volatile memory circuit
JP2015185180A (en) * 2014-03-20 2015-10-22 株式会社東芝 configuration memory

Also Published As

Publication number Publication date
JPWO2022059378A1 (en) 2022-03-24
US20230307049A1 (en) 2023-09-28
DE112021003866T5 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US7825698B2 (en) Method and apparatus for systematic and random variation and mismatch compensation for multilevel flash memory operation
US6051999A (en) Low voltage programmable complementary input stage sense amplifier
US10454466B1 (en) Biasing cascode transistors of an output buffer circuit for operation over a wide range of supply voltages
JP3085803B2 (en) Differential current source circuit
US7042374B1 (en) Calibration of a current source array
US6111456A (en) Semiconductor circuit
WO2022059378A1 (en) Non-volatile memory
JP4069963B2 (en) MOS transistor threshold compensation circuit and flip-flop type sense amplifier having the same
JP3794326B2 (en) Negative voltage generating circuit, ferroelectric memory circuit having the same, and integrated circuit device
US5136293A (en) Differential current source type d/a converter
JP2901973B2 (en) Semiconductor integrated circuit device
JPS5855597B2 (en) bistable semiconductor memory cell
JP4606884B2 (en) Switch control circuit
JPH0618293B2 (en) Operational amplifier
WO2022075002A1 (en) Non-volatile memory
US10498313B1 (en) Level shift circuit
JP3259700B2 (en) comparator
JP2871902B2 (en) Current cell circuit
WO2022074967A1 (en) Non-volatile memory
WO2022074968A1 (en) Non-volatile memory
JP7414578B2 (en) audio circuit
WO2023176724A1 (en) Non-volatile memory device
JP4671894B2 (en) 3-value detection circuit
US20070103200A1 (en) Buffer circuit and use thereof
CN116802979A (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550406

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21869065

Country of ref document: EP

Kind code of ref document: A1