JP2006252686A - Manufacturing method of glass original disk - Google Patents

Manufacturing method of glass original disk Download PDF

Info

Publication number
JP2006252686A
JP2006252686A JP2005068673A JP2005068673A JP2006252686A JP 2006252686 A JP2006252686 A JP 2006252686A JP 2005068673 A JP2005068673 A JP 2005068673A JP 2005068673 A JP2005068673 A JP 2005068673A JP 2006252686 A JP2006252686 A JP 2006252686A
Authority
JP
Japan
Prior art keywords
gas
photoresist pattern
photoresist
glass substrate
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005068673A
Other languages
Japanese (ja)
Inventor
Toyohito Asanuma
豊人 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005068673A priority Critical patent/JP2006252686A/en
Publication of JP2006252686A publication Critical patent/JP2006252686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a glass original disk in which the roughness of the side wall of a concave part is reduced. <P>SOLUTION: The method comprises of a process in which after a photoresist 2 is applied on a quartz glass substrate 1 and the photoresist 2 is exposed using a laser beam, development is performed and a photoresist pattern 4 is formed, a process in which the photoresist pattern 4 is irradiated with ultraviolet rays in an inert gas state in which oxygen does not exist, a process in which after the quartz substrate 1 irradiated with ultraviolet rays is placed on one side of a pair of electrodes arranged oppositely in a reactive ion etching apparatus and evacuated, and a process in which a fluorocarbon system gas and an Ar gas mixed at a prescribed rate are introduced, high frequency power is applied between the pair of electrodes, dry etching is performed making the photoresist pattern 4 as a mask in a state of prescribed gas pressure, a concave part 5 is formed on the surface of the quartz glass substrate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、CDやDVD等の光ディスクの成形に用いられるガラス原盤の製造方法に関する。   The present invention relates to a method of manufacturing a glass master used for forming an optical disc such as a CD or a DVD.

一般にオーディオ、画像用途、コンピュ−タメモリとして高密度データが蓄積できる光ディスクは、ガラス原盤を用いて作製される。
従来のガラス原盤を用いた光ディスクの製造方法は、特許文献1に記載されている。
In general, an optical disc capable of storing high-density data as audio, image applications, or a computer memory is manufactured using a glass master.
A method for manufacturing an optical disk using a conventional glass master is described in Patent Document 1.

即ち、ガラス基板上にフォトレジストを塗布した後、レーザビ−ムを照射してフォトレジストパターンの潜像を形成し、前記フォトレジストパターンの潜像をアルカリ性現像液を用いて現像して、第1凹部を形成する。次に、酸素や空気雰囲気下で前記フォトレジストパターン上から波長150nm〜400nmの紫外線を照射して、前記フォトレジストパターンの凹部に隣接する上部の稜線部を曲面化する。次に、前記フォトレジストパターンをマスクとして、反応性イオンエッチングにより異方性エッチングを行なって、前記ガラス基板表面を所定深さにする。次に、前記フォトジスジストパターンを除去して、表面に凹を有したガラス原盤を作製する。次に、前記ガラス原盤上にニッケル膜を形成した後、電気メッキによりニッケルメッキを行なってスタンパを作製する。次に、このスタンパを金型にして予め表面に紫外線硬化樹脂が形成された基板上にスタンパの凹凸パターンを転写してディスク基板を作製する。次に、前記ディスク基板の凹凸パターン上に記録層、保護層を形成して光ディスクを作製する。
特開2003−281787号公報
That is, after applying a photoresist on a glass substrate, a laser beam is irradiated to form a latent image of the photoresist pattern, and the latent image of the photoresist pattern is developed using an alkaline developer. A recess is formed. Next, ultraviolet rays having a wavelength of 150 nm to 400 nm are irradiated from above the photoresist pattern in an oxygen or air atmosphere, and the upper ridge line portion adjacent to the concave portion of the photoresist pattern is curved. Next, anisotropic etching is performed by reactive ion etching using the photoresist pattern as a mask, so that the glass substrate surface has a predetermined depth. Next, the photo resist pattern is removed to produce a glass master having a recess on the surface. Next, after forming a nickel film on the glass master, nickel is plated by electroplating to produce a stamper. Next, this stamper is used as a mold, and the concave / convex pattern of the stamper is transferred onto a substrate on which an ultraviolet curable resin has been formed on the surface in advance to produce a disk substrate. Next, an optical disk is manufactured by forming a recording layer and a protective layer on the concave-convex pattern of the disk substrate.
JP 2003-281787 A

しかしながら、前記レーザ光は、その光強度が中心で高く、外側で低いガウス分布を有しているため、前記ガラス原盤における前記凹部の底部は平らであるが、前記凹部の側壁は、側壁荒れるが生じていた。
特に、光ディスクの大容量化が図れるDWDD(Domain Wall Displacement Detection)にあっては、磁壁がスムーズに移動できるように側壁荒れを低減し、グルーブノイズを抑える必要があった。
However, since the laser light has a high Gaussian distribution at the center and a low Gaussian distribution on the outside, the bottom of the recess in the glass master is flat, but the side wall of the recess is rough. It was happening.
In particular, in DWDD (Domain Wall Displacement Detection) that can increase the capacity of an optical disk, it is necessary to reduce the side wall roughness and suppress the groove noise so that the domain wall can move smoothly.

そこで、本発明は、前述の課題に鑑みて提案されるものであって、凹部の側壁に荒れを低減したガラス原盤の製造方法を提供することを目的とする。   Then, this invention is proposed in view of the above-mentioned subject, Comprising: It aims at providing the manufacturing method of the glass original disc which reduced the roughness on the side wall of a recessed part.

本願発明における第1の発明は、石英ガラス基板上にフォトレジストを塗布し、レーザ光を用いて、前記フォトレジストの露光を行った後、現像を行ってフォトレジストパターンを形成する第1工程と、前記フォトレジストパターンに波長150nm〜200nmの紫外線を酸素の存在しない不活性ガス雰囲気中で照射する第2工程と、前記紫外線照射された前記石英ガラス基板を反応性イオンエッチング装置内で対向配置された一対の電極のうちの一方の上に載置した後、真空引きする第3工程と、前記真空チャンバ内に所定割合で混合されたフロロカーボン系ガスとArガスとを導入して、所定ガス圧にした状態で、前記一対の電極に所定の高周波電力を印加して、前記フォトレジストパターンをマスクとして、ドライエッチングを行なって、前記石英ガラス基板表面に凹部を形成する第4工程と、からなることを特徴とするガラス原盤の製造方法を提供する。
第2の発明は、前記フロロカーボン系ガスに対する前記Arガスの割合は、5〜80%であり、前記所定ガス圧は、0.5Pa〜5Pa、前記所定の高周波電力の直流成分Vdcは、50〜500V、前記所定の高周波電力は、100〜200Wであることを特徴とする請求項1記載のガラス原盤の製造方法を提供する。
According to a first aspect of the present invention, there is provided a first step of applying a photoresist on a quartz glass substrate, exposing the photoresist using a laser beam, and then developing to form a photoresist pattern. A second step of irradiating the photoresist pattern with ultraviolet rays having a wavelength of 150 nm to 200 nm in an inert gas atmosphere without oxygen, and the quartz glass substrate irradiated with the ultraviolet rays is disposed oppositely in a reactive ion etching apparatus. A third step of evacuating after being placed on one of the pair of electrodes, and introducing a fluorocarbon-based gas and an Ar gas mixed in a predetermined ratio into the vacuum chamber, thereby providing a predetermined gas pressure. In this state, a predetermined high frequency power is applied to the pair of electrodes, and dry etching is performed using the photoresist pattern as a mask. Te, to provide a method of manufacturing a glass master, wherein a fourth step of forming a recess in the quartz glass substrate surface, in that it consists of.
In the second invention, the ratio of the Ar gas to the fluorocarbon-based gas is 5 to 80%, the predetermined gas pressure is 0.5 Pa to 5 Pa, and the DC component Vdc of the predetermined high-frequency power is 50 to 50%. The glass master disc manufacturing method according to claim 1, wherein the predetermined high frequency power is 500 to 200 W.

本発明によれば、石英ガラス基板上にフォトレジストを塗布し、レーザ光を用いて、前記フォトレジストの露光を行った後、現像を行ってフォトレジストパターンを形成する第1工程と、前記フォトレジストパターンに波長150nm〜200nmの紫外線を酸素の存在しない不活性ガス雰囲気中で照射する第2工程と、前記紫外線照射された前記石英ガラス基板を反応性イオンエッチング装置内で対向配置された一対の電極のうちの一方の上に載置した後、真空引きする第3工程と、前記真空チャンバ内に所定割合で混合されたフロロカーボン系ガスとArガスとを導入して、所定ガス圧にした状態で、前記一対の電極に所定の高周波電力を印加して、前記フォトレジストパターンをマスクとして、ドライエッチングを行なって、前記石英ガラス基板表面に凹部を形成する第4工程と、からなるので、前記凹部の側壁に荒れを低減したガラス原盤が得られる。   According to the present invention, a first step of applying a photoresist on a quartz glass substrate, exposing the photoresist using laser light, and developing to form a photoresist pattern; and A second step of irradiating the resist pattern with ultraviolet rays having a wavelength of 150 nm to 200 nm in an inert gas atmosphere without oxygen, and a pair of quartz glass substrates irradiated with the ultraviolet rays facing each other in a reactive ion etching apparatus A third step of evacuating after placing on one of the electrodes, and introducing a fluorocarbon-based gas and an Ar gas mixed at a predetermined ratio into the vacuum chamber to obtain a predetermined gas pressure Then, a predetermined high frequency power is applied to the pair of electrodes, dry etching is performed using the photoresist pattern as a mask, and the quartz A fourth step of forming recesses in the glass substrate surface, since the glass master with a reduced roughness on the side wall of the recess is obtained.

以下、本発明に係るガラス原盤の製造方法の実施の形態について、図1乃至図4を参照して詳細に説明する。
図1は、本発明の実施の形態に係るガラス原盤の製造方法を示す断面図であり、(A)は(潜像形成工程)、(B)は(フォトレジストパターン形成工程)、(C)は(紫外線照射工程)、(D)は(エッチング工程)、(E)は(アッシング工程)を示している。図2は、本発明の実施の形態におけるガラス原盤のSEMの斜め断面図である。図3は、従来エッチングにおけるガラス原盤のSEMの斜め断面図である。図4は、酸素存在下のエキシマ光照射とフロロカーボン系ガスにArガスを混合しないでエッチング処理したガラス原盤のSEMの斜め断面図である。
Hereinafter, an embodiment of a method for producing a glass master according to the present invention will be described in detail with reference to FIGS. 1 to 4.
1A and 1B are cross-sectional views illustrating a method for producing a glass master according to an embodiment of the present invention, wherein FIG. 1A is a (latent image forming step), FIG. 1B is a (photoresist pattern forming step), and FIG. (UV irradiation process), (D) shows (etching process), and (E) shows (ashing process). FIG. 2 is an oblique sectional view of the SEM of the glass master in the embodiment of the present invention. FIG. 3 is an oblique sectional view of an SEM of a glass master in conventional etching. FIG. 4 is an oblique cross-sectional view of an SEM of a glass master that has been etched without mixing Ar gas with excimer light irradiation in the presence of oxygen and a fluorocarbon-based gas.

(潜像形成工程)
図1(A)に示すように、光学研磨を施した石英ガラス基板1を洗浄、乾燥した後、フォトレジスト2を塗布し、次に、レーザ光をレンズで集光させて潜像3を形成する。フォトレジスト2は、G線用(吸収波長が436nm)であり、レーザ光の波長は、405nmである。
(Latent image forming process)
As shown in FIG. 1A, the quartz glass substrate 1 that has been optically polished is washed and dried, and then a photoresist 2 is applied, and then a laser beam is condensed by a lens to form a latent image 3. To do. The photoresist 2 is for G-line (absorption wavelength is 436 nm), and the wavelength of the laser beam is 405 nm.

(フォトレジストパターン形成工程)
この後、同図(B)に示すように、潜像3の露光及び現像を行って凹凸部4A、4Bからなるフォトレジストパターン4を形成する。前記したように、レーザ光は、その光強度が中心で高く、外側で低いガウス分布を有しているため、フォトレジストパターン4の凹部4Aの中心は、設計通りにエッチングされるが、凹部4Aの側壁4aは、荒れてギザギザ(側壁荒れ)を生じる。
(Photoresist pattern formation process)
Thereafter, as shown in FIG. 5B, exposure and development of the latent image 3 are performed to form a photoresist pattern 4 including uneven portions 4A and 4B. As described above, since the laser light has a high Gaussian distribution at the center and a low Gaussian distribution on the outside, the center of the recess 4A of the photoresist pattern 4 is etched as designed. The side wall 4a is rough and causes jaggedness (side wall roughness).

(紫外線照射工程)
次に、同図(C)に示すように、フォトレジストパターン4を酸素の存在しないN2雰囲気中で波長が172nm、照射エネルギーが1620mJの紫外線(エキシマレーザ光)を照射して、凹部4Aの側壁4aのギザギザを収縮させてなめらかにする。
この際の環境温度は、例えば25℃である。また、紫外線の波長は150nm〜200nmである。
(UV irradiation process)
Next, as shown in FIG. 6C, the photoresist pattern 4 is irradiated with ultraviolet rays (excimer laser light) having a wavelength of 172 nm and an irradiation energy of 1620 mJ in an N 2 atmosphere in which oxygen does not exist, The knurled side wall 4a is shrunk and smoothed.
The environmental temperature at this time is 25 ° C., for example. The wavelength of the ultraviolet light is 150 nm to 200 nm.

(エッチング工程)
次に、同図(D)に示すように、フォトレジストパターン4が形成された石英ガラス基板1を図示しない真空チャンバ内に導入して、図示しない反応性イオンエッチング装置内で対向配置された一対の電極のうちの一方の上に載置する。
この後、前記真空チャンバ内を2×10-6Torrの真空にする。
前記真空チャンバ内にフロロカーボン系のCHF3ガスとArガスとの流量比を1:1にした混合ガスを5sccm流す。次に、前記図示しない一対の電極間に高周波電源から周波数13.56MHz、高周波電力100Wを印加すると、前記一対の電極間のVdcは、150Vになり、プラズマが発生する。
(Etching process)
Next, as shown in FIG. 4D, the quartz glass substrate 1 on which the photoresist pattern 4 is formed is introduced into a vacuum chamber (not shown), and a pair arranged in a reactive ion etching apparatus (not shown) facing each other. On one of the electrodes.
Thereafter, the vacuum chamber is evacuated to 2 × 10 −6 Torr.
A mixed gas having a flow ratio of 1: 1 between fluorocarbon-based CHF 3 gas and Ar gas is flowed into the vacuum chamber at 5 sccm. Next, when a frequency of 13.56 MHz and a high frequency power of 100 W are applied between the pair of electrodes (not shown) from a high frequency power source, Vdc between the pair of electrodes becomes 150 V and plasma is generated.

フォトレジストパターン4をマスクとして、前記真空チャンバ内を4Paにして、異方性の高いドライエッチングを行って、凹部5を形成する。この際、混合ガスの流量を調整して、前記真空チャンバ内の圧力を0.5Pa〜5Pa、CHF3ガスとArガスとを流量比を5〜80%の範囲で変化させても同様な効果が得られる。 Using the photoresist pattern 4 as a mask, the inside of the vacuum chamber is set to 4 Pa, and highly anisotropic dry etching is performed to form the recess 5. At this time, the same effect can be obtained by adjusting the flow rate of the mixed gas so that the pressure in the vacuum chamber is changed from 0.5 Pa to 5 Pa and the flow rate ratio between CHF 3 gas and Ar gas is changed in the range of 5 to 80%. Is obtained.

真空チャンバ内へ前記した混合ガスを流して、0.5Pa〜5Paの範囲としているのは、0.5Pa以下では、凹部5の側壁が荒れるからであり、5Pa以上ではエッチングレートが上がらず、エッチングがほとんどできないからである。また、フロロカーボン系ガスとしては、CHF3以外にCF4、C38、C48を用いることができる。また、Vdcは、50〜500Vでも同様な効果を得ることができる。 The reason why the mixed gas is flowed into the vacuum chamber to be in the range of 0.5 Pa to 5 Pa is that the side wall of the recess 5 is rough at 0.5 Pa or less, and the etching rate does not increase at 5 Pa or more, and etching is performed. It is because there is almost no. As the fluorocarbon-based gas, CF 4 , C 3 F 8 and C 4 F 8 can be used in addition to CHF 3 . Moreover, the same effect can be acquired even if Vdc is 50-500V.

(アッシング工程)
次に、同図(E)に示すように、前記混合ガスの前記真空チャンバ内へ流すことを停止し、前記真空チャンバ内に14.7Paの酸素を導入し、高周波電力100W、3分間の酸素アッシングを行って、フォトレジストパターン4を除去して凹部5を有したガラス原盤6を作製する。
このガラス原盤6を用いたスタンパ及び光ディスクは、公知の製造方法により作製することができる。
(Ashing process)
Next, as shown in FIG. 5E, the flow of the mixed gas into the vacuum chamber is stopped, 14.7 Pa of oxygen is introduced into the vacuum chamber, high-frequency power of 100 W, and oxygen for 3 minutes. Ashing is performed to remove the photoresist pattern 4 to produce a glass master 6 having a recess 5.
A stamper and an optical disk using the glass master 6 can be manufactured by a known manufacturing method.

ここで、(紫外線照射工程)における紫外線照射の有無及び(エッチング工程)におけるエッチングガスの種類を変化させた試料1〜3を作製して側壁荒れの評価を行なった。その結果を図2乃至図4に示す。
試料1は、本発明の実施形態により作製されたガラス原盤、試料2は、紫外線照射無し、エッチングガスがCHF3で作製されたガラス原盤、試料3は、紫外線照射有り、エッチングガスが酸素で作製されたガラス原盤である。これらの試料に用いられた紫外線の照射エネルギーは、16200mJであり、アッシングは、14.7Paの酸素雰囲気ガス下、高周波電力100W、300秒間で行った。
Here, samples 1 to 3 in which the presence / absence of ultraviolet irradiation in the (ultraviolet irradiation process) and the type of etching gas in the (etching process) were changed were prepared, and the side wall roughness was evaluated. The results are shown in FIGS.
Sample 1 is a glass master produced according to an embodiment of the present invention, Sample 2 is a glass master produced without UV irradiation and etching gas is CHF 3 , Sample 3 is produced with UV irradiation and etching gas is oxygen. This is a glass master. The irradiation energy of ultraviolet rays used for these samples was 16200 mJ, and ashing was performed in an oxygen atmosphere gas of 14.7 Pa at a high frequency power of 100 W for 300 seconds.

図2に示すように、本発明の実施の形態における試料1では、凹部5の側壁荒れがなくなっていることがわかる。図3及び図4に示すように、試料2、3は、紫外線照射による収縮効果がないため、凹部5の側壁荒れが生じている。図4に対して図2は、フロロカーボン系ガスにArを混合するとフォトレジストパターン4をArガスがソフトエッチングしてスムージングした後、フロロカーボン系ガスで石英ガラス基板1をエッチングするので、凹部4Aの側壁4aが滑らかになっているのがわかる。   As shown in FIG. 2, it can be seen that the sample 1 according to the embodiment of the present invention has no side wall roughness of the recess 5. As shown in FIGS. 3 and 4, the samples 2 and 3 have no shrinkage effect due to ultraviolet irradiation, and thus the side walls of the recesses 5 are roughened. In contrast to FIG. 4, FIG. 2 shows that when Ar is mixed with a fluorocarbon-based gas, the photoresist pattern 4 is soft-etched and smoothed by Ar gas, and then the quartz glass substrate 1 is etched with the fluorocarbon-based gas. It can be seen that 4a is smooth.

以上のように、本発明の実施の形態によれば、石英ガラス基板1上にフォトレジストパターン4を形成した後、このフォトレジストパターンに波長150nm〜200nmの紫外線を照射し、紫外線照射された石英ガラス基板1を反応性イオンエッチング装置内で対向配置された一対の電極のうちの一方の上に載置した後、真空引きを行い、前記一対の電極間にVdcが50〜500V、100W〜200Wの高周波電力を印加し、フロロカーボン系ガスに対するArガスの割合を5〜80%にし、0.5Pa〜5Paの雰囲気ガス下でドライエッチングするので、凹部5の側壁の荒れを低減したガラス原盤6が得られる。この結果、このガラス原盤6を用いて作製された光ディスクは、良好なトラッキングエラーが得られ、グルーブノイズを低減できる。   As described above, according to the embodiment of the present invention, after forming the photoresist pattern 4 on the quartz glass substrate 1, the photoresist pattern is irradiated with ultraviolet rays having a wavelength of 150 nm to 200 nm, and the quartz irradiated with the ultraviolet rays is irradiated. After placing the glass substrate 1 on one of a pair of electrodes opposed to each other in the reactive ion etching apparatus, vacuuming is performed, and Vdc is 50 to 500 V, 100 W to 200 W between the pair of electrodes. Is applied, and the ratio of Ar gas to fluorocarbon gas is 5 to 80%, and dry etching is performed under an atmosphere gas of 0.5 Pa to 5 Pa. can get. As a result, an optical disk manufactured using this glass master 6 can obtain a good tracking error and reduce groove noise.

本発明の実施の形態に係るガラス原盤の製造方法を示す断面図であり、(A)は(潜像形成工程)、(B)は(フォトレジストパターン形成工程)、(C)は(紫外線照射工程)、(D)は(エッチング工程)、(E)は(アッシング工程)を示している。It is sectional drawing which shows the manufacturing method of the glass original disk concerning embodiment of this invention, (A) is (latent image formation process), (B) is (photoresist pattern formation process), (C) is (ultraviolet irradiation) (Process), (D) shows (etching process), (E) shows (ashing process). 本発明の実施の形態におけるガラス原盤のSEMの斜め断面図である。It is a diagonal sectional view of SEM of the glass original disk in embodiment of this invention. 従来エッチングにおけるガラス原盤のSEMの斜め断面図である。It is SEM diagonal sectional drawing of the glass original disc in the conventional etching. 酸素存在下のエキシマ光照射とフロロカーボン系ガスにArガスを混合しないでエッチング処理したガラス原盤のSEMの斜め断面図である。FIG. 3 is an oblique cross-sectional view of an SEM of a glass master that is etched without mixing Ar gas with excimer light irradiation in the presence of oxygen and a fluorocarbon-based gas.

符号の説明Explanation of symbols

1…石英ガラス基板、2…フォトレジスト、3…潜像、4…フォトレジストパターン、4A、5…凹部、4a…側壁、4B…凸部、6…ガラス原盤

DESCRIPTION OF SYMBOLS 1 ... Quartz glass substrate, 2 ... Photoresist, 3 ... Latent image, 4 ... Photoresist pattern, 4A, 5 ... Concave, 4a ... Side wall, 4B ... Convex part, 6 ... Glass master

Claims (2)

石英ガラス基板上にフォトレジストを塗布し、レーザ光を用いて、前記フォトレジストの露光を行った後、現像を行ってフォトレジストパターンを形成する第1工程と、
前記フォトレジストパターンに波長150nm〜200nmの紫外線を酸素の存在しない不活性ガス雰囲気中で照射する第2工程と、
前記紫外線照射された前記石英ガラス基板を反応性イオンエッチング装置内で対向配置された一対の電極のうちの一方の上に載置した後、真空引きする第3工程と、
前記真空チャンバ内に所定割合で混合されたフロロカーボン系ガスとArガスとを導入して、所定ガス圧にした状態で、前記一対の電極に所定の高周波電力を印加して、前記フォトレジストパターンをマスクとして、ドライエッチングを行なって、前記石英ガラス基板表面に凹部を形成する第4工程と、
からなることを特徴とするガラス原盤の製造方法。
A first step of applying a photoresist on a quartz glass substrate, exposing the photoresist using a laser beam, and developing to form a photoresist pattern;
A second step of irradiating the photoresist pattern with ultraviolet light having a wavelength of 150 nm to 200 nm in an inert gas atmosphere without oxygen;
A third step of evacuating after placing the quartz glass substrate irradiated with ultraviolet light on one of a pair of electrodes opposed to each other in a reactive ion etching apparatus;
A predetermined high frequency power is applied to the pair of electrodes in a state where a fluorocarbon-based gas and an Ar gas mixed at a predetermined ratio in the vacuum chamber are introduced and a predetermined gas pressure is applied, and the photoresist pattern is formed. As a mask, a fourth step of performing a dry etching to form a recess in the surface of the quartz glass substrate;
A method for producing a glass master, comprising:
前記フロロカーボン系ガスに対する前記Arガスの割合は、5〜80%であり、前記所定ガス圧は、0.5Pa〜5Pa、前記所定の高周波電力の直流成分Vdcは、50〜500V、前記所定の高周波電力は、100〜200Wであることを特徴とする請求項1記載のガラス原盤の製造方法。

The ratio of the Ar gas to the fluorocarbon-based gas is 5 to 80%, the predetermined gas pressure is 0.5 Pa to 5 Pa, the direct current component Vdc of the predetermined high frequency power is 50 to 500 V, and the predetermined high frequency The method for producing a glass master according to claim 1, wherein the electric power is 100 to 200W.

JP2005068673A 2005-03-11 2005-03-11 Manufacturing method of glass original disk Pending JP2006252686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068673A JP2006252686A (en) 2005-03-11 2005-03-11 Manufacturing method of glass original disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068673A JP2006252686A (en) 2005-03-11 2005-03-11 Manufacturing method of glass original disk

Publications (1)

Publication Number Publication Date
JP2006252686A true JP2006252686A (en) 2006-09-21

Family

ID=37092998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068673A Pending JP2006252686A (en) 2005-03-11 2005-03-11 Manufacturing method of glass original disk

Country Status (1)

Country Link
JP (1) JP2006252686A (en)

Similar Documents

Publication Publication Date Title
US6913706B2 (en) Double-metal EUV mask absorber
WO2011125571A1 (en) Resist developer, method for forming a resist pattern and method for manufacturing a mold
US8778574B2 (en) Method for etching EUV material layers utilized to form a photomask
JP5036726B2 (en) Method for etching a substrate for photolithography
JP3058062B2 (en) How to make a recording master for optical discs
JP2009072956A (en) Method of manufacturing imprint mold
JP4818524B2 (en) Method for forming photosensitive film pattern of semiconductor element
JPH04241237A (en) Stamper for high-density recording disk and production thereof
JP4967630B2 (en) Imprint mold and imprint mold manufacturing method
JP2009038360A (en) Method of forming pattern
US20030003326A1 (en) Recording medium and process for manufacturing the medium
US5064748A (en) Method for anisotropically hardening a protective coating for integrated circuit manufacture
JP2007253544A (en) Imprinting method
JP2004013973A (en) Manufacturing method of photoresist master disk, manufacturing method of stamper for producing optical recording medium, stamper, photoresist master disk, stamper intermediate body and optical recording medium
JP2006252686A (en) Manufacturing method of glass original disk
JP4165396B2 (en) Reproduction master for optical recording medium having irregularities, stamper, and manufacturing method of optical recording medium
JP4122802B2 (en) Stamper manufacturing method, master processing equipment
US6348288B1 (en) Resolution enhancement method for deep quarter micron technology
JP2006079686A (en) Method of manufacturing glass master
JP2011215242A (en) Method for forming resist pattern and method for manufacturing mold
KR100762235B1 (en) Method of repairing the bridge in the phase shift mask
JP2008108318A (en) Manufacturing method of glass original disk
JP2004110882A (en) Manufacturing method of stamper and substrate for information recording medium, and information recording medium
JPH09297940A (en) Production of stamper
JP2003036574A (en) Method for manufacturing stamper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090626