JP2006252612A - 光ピックアップ装置 - Google Patents

光ピックアップ装置 Download PDF

Info

Publication number
JP2006252612A
JP2006252612A JP2005064320A JP2005064320A JP2006252612A JP 2006252612 A JP2006252612 A JP 2006252612A JP 2005064320 A JP2005064320 A JP 2005064320A JP 2005064320 A JP2005064320 A JP 2005064320A JP 2006252612 A JP2006252612 A JP 2006252612A
Authority
JP
Japan
Prior art keywords
light
light receiving
wavelength
semiconductor laser
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064320A
Other languages
English (en)
Inventor
Katsushige Masui
克栄 増井
Tomohiko Yoshida
智彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005064320A priority Critical patent/JP2006252612A/ja
Publication of JP2006252612A publication Critical patent/JP2006252612A/ja
Pending legal-status Critical Current

Links

Images

Abstract


【課題】 信号の検出精度を向上することができ、小形化を図ることができる光ピックアップ装置を提供する。
【解決手段】 第1〜第3半導体レーザ素子51〜53から発せられて、光記録媒体61で反射される第1〜第3波長の光ビームは、それぞれホログラム素子54のホログラム回折格子70によって回折される。ホログラム回折格子70によって回折される第1〜第3波長の光ビームは、受光素子55の異なる受光領域でそれぞれ受光される。受光素子55が、たとえば半導体受光素子によって実現される場合、pn接合の接合深さなどの寸法が各波長に応じた寸法になるように、受光領域を形成することによって、第1〜第3波長の光ビームを、各受光領域でそれぞれ確実に受光することができる。したがって、各受光領域で受光した光ビームに基づいて正確な信号を検出することができる。
【選択図】 図1

Description

本発明は、規格の異なる複数の光記録媒体の情報を読取る処理、および光記録媒体に情報を記録する処理の少なくともいずれか一方の処理をする光ピックアップ装置に関する。
光ディスク状記録媒体(以下、単に「光記録媒体」と表記する)に対して情報の読取りおよび記録を行うために、光ピックアップ装置が用いられる。従来から、光だけを用いて情報の読取りおよび記録を行うコンパクトディスク(Compact Disk;略称:CD)ファミリと呼ばれる光記録媒体が用いられており、この光記録媒体に対する情報の読取りおよび記録を行うときには、発振波長が780nmの赤外波長のレーザ光を発する半導体レーザ素子が用いられる。
また、光と磁気とを用いて情報の読取りおよび記録を行い、記録できる情報量がCDファミリに比べて大きい、ディジタルバーサタイルディスク(Digital Versatile Disk;略称:DVD)ファミリと呼ばれる光記録媒体も大量に用いられるようになってきており、この光記録媒体に対する情報の読取りおよび記録を行うときには、たとえば発振波長が630nm以上690nm未満の赤色波長のレーザ光を発する半導体レーザ素子が用いられる。
第1の従来の技術の焦点誤差検出装置は、対物レンズおよびシリンドリカルレンズの代わりに1枚のグレーティングレンズを設けることによって、情報記録面からの反射光を回折させて光検出器へ導き、焦点誤差検出を行うように構成される(たとえば、特許文献1参照)。
第2の従来の技術の光学ヘッドは、光ディスクからの反射光をタンジェンシャル方向およびラジアル方向に4分割し、それぞれの光強度をフォトダイオードによる受光パターンで検出する。第1の出力回路によりタンジェンシャル方向で分割された領域の光強度の差を出力してプッシュプル法による第1のトラッキングエラー信号を演算可能とすると共に、第2の出力回路により対角な領域の光強度の差を出力して位相差法による第2のトラッキングエラー信号を演算可能とする。そして光学ヘッドは、光ディスクの仕様によっていずれかのトラッキングエラー信号を用いて常に安定したトラッキング制御を行えるように構成される(たとえば、特許文献2参照)。
第3の従来の技術の光ピックアップ装置は、ホログラム素子によって、光ディスクからの戻り光を第1光路と第2光路とに分割するとともに、各分割光路の光に所定の非点収差を付与し、所定の焦点を付与することによって、第1ディテクタおよび第2ディテクタによって受光検出し、所定の演算によってフォーカスエラー信号を得るように構成される(たとえば、特許文献3参照)。
近年では、記録可能な情報量を増やすために、ブルーレイ(Blu-ray)ディスクおよび高密度DVD(High Definition-Digital Versatile Disk;略称:HD−DVD)などの大容量光記録媒体が開発されており、これらの光記録媒体に対する情報の読取りおよび記録を行うときには、たとえば発振波長が400nmの青色波長のレーザ光を発する半導体レーザ素子が用いられる。したがって、CDファミリ、DVDファミリおよびブルーレイなどのいずれの光記録媒体に対しても情報の読取りおよび記録を行うことが可能な光ピックアップ装置が要求され、開発が進められている。CD−R(Compact Disk-
Recordable)およびDVD−R(Digital Versatile-Recordable)などの色素を用いた光記録媒体に対しては波長依存性があるので、前記の3種類の互いに異なる発振波長のレーザ光を発する光源を用いることが必要となる。
第4の従来の技術の光学ヘッドは、4つの3角プリズムの頂角を互いに向き合わせて紫外線硬化接着剤などによって頂角を含む2面を光学的に接着し、略6面体の波長分離プリズムを形成する。さらに波長分離プリズムの対角線上において互いに交差する4つの波長分離膜のうち2つの波長分離膜の膜特性と、残余の2つの波長分離膜の膜特性とを同じにして、波長分離膜を有するビームスプリッタを構成する。これによって互いに波長が異なる3種類の半導体レーザ素子に対して対応可能な波長分離機能を有するビームスプリッタを実現することが可能となる(たとえば、特許文献4参照)。
図6は、第5の従来の技術の光ピックアップ装置1の構成を簡略化して示す図である。光ピックアップ装置1は、第1半導体レーザ素子11、第2半導体レーザ素子12、第3半導体レーザ素子13、トーリックレンズ14、受光素子15、プリズム16、第1ビームスプリッタ17、第2ビームスプリッタ18、絞り19および対物レンズ20を含んで構成される。第1半導体レーザ素子11は、発振波長がたとえば405nmの青色波長のレーザ光を発する光源であり、第2半導体レーザ素子12は、発振波長がたとえば650nmの赤色波長のレーザ光を発する光源であり、第3半導体レーザ素子13は、発振波長がたとえば780nmの赤外波長のレーザ光を発する光源である。
トーリック(toric)レンズ14は、信号光に非点収差を与える。受光素子15は、各半導体レーザ素子11〜13から発せられて、光記録媒体21で反射された光ビームを受光する。プリズム16は、光記録媒体21に向かう光ビームと、光記録媒体21で反射された光ビームとを分離する。第1ビームスプリッタ17は、第1半導体レーザ素子11から発せられたレーザ光の光軸を、光軸L1と一致させる。第2ビームスプリッタ18は、第3半導体レーザ素子13から発せられるレーザ光の光軸を、光軸L1と一致させる。絞り19は、光記録媒体21に応じて、各半導体レーザ素子11〜13から発せられる光ビームを制限する。対物レンズ20は、光記録媒体21の情報記録面22に対して、各半導体レーザ素子11〜13から発せられるレーザ光を集光させる。
光源である各半導体レーザ素子11〜13から発せられる光ビームは、それぞれ同一の光軸L1に合わせられて、絞り19および対物レンズ20を介して光記録媒体21の情報記録面22に集光される。光記録媒体21の情報記録面22にはデジタル信号が記録されたピットと呼ばれる微小な凹凸が形成されており、このピットの有無によって、光記録媒体21で反射される光の強度が変化する。このように光記録媒体21で強度変調されて反射された光ビームは、元の光経路を辿り、プリズム16によって反射された後、トーリックレンズ14によって非点収差が与えられ、受光素子15によって受光される。受光素子15では、受光した光ビームに基づいて、光記録媒体21のピットに記録された信号を検出する(たとえば、特許文献5参照)。
図7は、第6の従来の技術の光ピックアップ装置30の構成を簡略化して示す図である。図7(1)は、光ピックアップ装置30を簡略化して示す平面図であり、図7(2)は、光ピックアップ装置30を簡略化して示す側面図である。光ピックアップ装置30は、第1半導体レーザユニット31、第1コリメートレンズ32、第2半導体レーザユニット33、第2コリメートレンズ34、第3半導体レーザユニット35、第3コリメートレンズ36、第1ビームスプリッタ37、ビームエキスパンダ38、第2ビームスプリッタ39、立上げミラー40および対物レンズ41を含んで構成される。
第1半導体レーザユニット31は、第1半導体レーザ素子、第1受光素子および第1回折素子を含む。第1半導体レーザ素子は、発振波長がたとえば405nmの青色波長のレーザ光を発する光源である。第2半導体レーザユニット33は、第2半導体レーザ素子、第2受光素子および第2回折素子を含む。第2半導体レーザ素子は、発振波長がたとえば650nmの赤色波長のレーザ光を発する光源である。第3半導体レーザユニット35は、第3半導体レーザ素子、第3受光素子および第3回折素子を含む。第3半導体レーザ素子は、発振波長がたとえば780nmの赤外波長のレーザ光を発する光源である。以下、「レーザ光」を「光ビーム」と表記する場合がある。
第1コリメートレンズ32は、第1半導体レーザ素子から発せられるレーザ光を平行光にする。第2コリメートレンズ34は、第2半導体レーザ素子から発せられるレーザ光を平行光にする。第3コリメートレンズ36は、第3半導体レーザ素子から発せられるレーザ光を平行光にする。第1ビームスプリッタ37は、第2半導体レーザ素子から発せられるレーザ光の光軸を、光軸L2に合わせる。
ビームエキスパンダ38は、光記録媒体のピットを保護する透明な保護層による球面収差を補償するための光学素子である。保護層の薄い光記録媒体の場合、保護層の厚み方向の長さ寸法(以下、「厚み寸法」と表記する場合がある)の製造誤差によって球面収差の大きさが光記録媒体毎に変わるので、その変化を補償するために、ビームエキスパンダ38が設けられている。長波長レーザで読取る光記録媒体の場合は、保護層の厚み寸法が1.2mmと比較的厚いので、厚み寸法の製造誤差は補償の必要がない程度である。
第2ビームスプリッタ39は、第3半導体レーザ素子から発せられるレーザ光の光軸を、光軸L2に合わせる。立上げミラー40は、各半導体レーザ素子から発せられ、第2ビームスプリッタ39を通過したレーザ光の光経路を90度屈曲させ、前記レーザ光を対物レンズ41へ導く。対物レンズ41は、立上げミラー40によって屈曲された前記レーザ光を光記録媒体に集光させる。
光源である各半導体レーザ素子から発せられる光ビームは、第2ビームスプリッタ39および立上ミラー40を通過した後、対物レンズ41によって光記録媒体の情報記録面上に集光される。光記録媒体で反射された光ビームは、元の光経路を辿って、各半導体レーザユニット31,33,35に入射する。そして、各ホログラムレーザユニット31,33,35に含まれる各回折素子によって、前記光ビームのうち一部の光ビームが回折される。各回折素子によって回折された光ビームは、各受光素子に入射する。各受光素子は、受光した光ビームの強度を検出して、光記録媒体のピットに記録された信号を検出する(たとえば、特許文献6参照)。
特開昭59−177734号公報 特開平9−245356号公報 特開2000−276742号公報 特開2004−234818号公報 特開2004−6005号公報 特開2004−103135号公報
第5の従来の技術の光ピックアップ装置1では、前記3つの光ビームを受光素子15の同一の受光領域で受光して、信号を検出するように構成されているけれども、受光素子15は波長によって単位長さ当りの光の吸収量が異なる。したがって受光する光ビームの波長によって構造、たとえば半導体受光素子ではpn接合の接合深さが異なる。さらに述べると、CDに対して情報の読取りおよび記録をするときに用いられる受光素子と、ブルーレイディスクに対して情報の読取りおよび記録をするときに用いられる受光素子とでは、受光素子に対する光ビームの侵入深さが大きく異なる。
したがって受光素子の接合深さなどの長さ寸法を、一方の波長の光ビームが受光可能な寸法にすると、他方の波長の光ビームを受光することができない場合がある。換言すると、波長の異なる複数の光ビームを確実に受光することができない場合があり、正確な信号検出ができなくなり、信号検出の精度が低下するという問題がある。また受光素子15の表面部における反射損失を減らすために設けられる反射防止膜の厚み方向の長さ寸法を、前記3つの波長帯域のいずれにも適するように設計することは困難である。
第6の従来の技術の光ピックアップ装置30では、各半導体レーザユニット31,33,35に受光素子がそれぞれ設けられ、各半導体レーザ素子から発せられて光記録媒体で反射された光ビームを受光するように構成される。光記録媒体で反射された光ビームには、ピットの有無の情報信号(略称:RFS)と、ピットに対物レンズの焦点が合っているか否かを表すフォーカス誤差信号(略称:FES)と、光記録媒体のトラックの中心に光ビームが集光しているか否かを表すトラック誤差信号(略称:TES)とが重畳される。各半導体レーザユニット31,33,35に設けられる各受光素子には、少なくとも前記の信号を出力する端子が必要となり、1つの受光素子に対して、共通信号線(アース)の端子を含めて少なくとも4つの端子が必要となる。
したがって、各半導体レーザユニット31,33,35にそれぞれ受光素子が設けられる光ピックアップ装置30では、電気端子数が増大し、電気配線の引き回しが複雑になるという問題がある。また電気端子数が増大することによって、電気信号線を配設する領域も増大するので、光ピックアップ装置が大形化してしまうという問題がある。
本発明の目的は、信号の検出精度を向上することができ、小形化を図ることができる光ピックアップ装置を提供することである。
本発明は、光記録媒体に対して光ビームを照射することによって、光記録媒体の情報を読取る処理および光記録媒体に情報を記録する処理の少なくともいずれか一方の処理をする光ピックアップ装置であって、
第1波長の光ビームを発する第1光源と、
第1波長とは異なる第2波長の光ビームを発する第2光源と、
第1および第2波長とは異なる第3波長の光ビームを発する第3光源と、
各光源から発せられて光記録媒体で反射される光ビームを、波長に応じて回折させる回折素子と、
回折素子によって回折される第1、第2および第3波長の光ビームを、それぞれ異なる受光領域で受光する受光素子とを含むことを特徴とする光ピックアップ装置である。
本発明に従えば、第1、第2および第3光源から発せられて、光記録媒体で反射された光ビームは、回折素子によって、各波長に応じて回折される。回折素子によって回折された第1、第2および第3波長の光ビームは、受光素子によって、それぞれ異なる受光領域で受光される。受光素子が、たとえば半導体受光素子によって実現される場合、pn接合の接合深さなどの寸法が各波長に応じた寸法になるように、受光領域を形成することによって、前記従来の技術のように波長の異なる複数の光ビームを受光することができなくなることを防ぐことができる。換言すると、回折素子によって回折された第1、第2および第3波長の光ビームを、各波長に応じて形成される各受光領域でそれぞれ確実に受光することができる。したがって、受光素子の各受光領域で受光した光ビームに基づいて、正確な信号を検出することができる。これによって、波長の異なる複数の光ビームを同一の受光領域で受光して信号を検出する前記従来の技術に比べて、受光素子における信号検出の精度を格段に向上することができる。
また各波長の光ビームを、1つの受光素子の異なる受光領域でそれぞれ受光するように構成されるので、前記従来の技術のように各波長の光ビームを受光する受光素子をそれぞれ個別に設ける場合に比べて、光ピックアップ装置の製造時における光学部品の部品点数を削減することができ、光ピックアップ装置の小形化を図ることができる。また部品点数を削減することによって、光ピックアップ装置の製造コストを低減することができる。
また本発明は、前記受光素子は、半導体基板上に形成されることを特徴とする。
本発明に従えば、受光素子は、シリコン基板などの半導体基板上に形成される。これによって、たとえばpn接合の接合深さの長さ寸法が、第1、第2および第3波長の光ビームを確実に受光することが可能な寸法である受光領域を有する受光素子を、半導体基板上に形成することができる。
また本発明は、前記第1〜第3光源のうち少なくともいずれか1つの光源と、受光素子とを収納するパッケージを有することを特徴とする。
本発明に従えば、第1〜第3光源のうち少なくともいずれか1つの光源と、受光素子とがパッケージに収納される。これによって、光源と受光素子とをパッケージに収納しない場合に比べて、光ピックアップ装置における電気端子数を低減することができ、電気配線の引き回し作業を容易にすることができる。また、光源と受光素子とをパッケージに収納することによって、光ピックアップ装置の製造時における組立て工数を削減することができ、光ピックアップ装置の製造コストを低減することができる。
本発明によれば、回折素子によって回折された第1、第2および第3波長の光ビームは、受光素子によって、それぞれ異なる受光領域で受光される。たとえば受光素子が半導体受光素子によって実現される場合、pn接合の接合深さなどの寸法が各波長に応じた寸法になるように、受光領域を形成することによって、前記従来の技術のように波長の異なる複数の光ビームを受光できなくなることを防ぐことができる。換言すると、回折素子によって回折された第1、第2および第3波長の光ビームを、各波長に応じて形成される各受光領域でそれぞれ確実に受光することができる。したがって、受光素子の各受光領域で受光した光ビームに基づいて、正確な信号を検出することができる。これによって、波長の異なる複数の光ビームを同一の受光領域で受光して信号を検出する前記従来の技術に比べて、受光素子における信号検出の精度を格段に向上することができる。
また各波長の光ビームを、1つの受光素子の異なる受光領域でそれぞれ受光するように構成されるので、前記従来の技術のように各波長の光ビームを受光する受光素子をそれぞれ個別に設ける場合に比べて、光ピックアップ装置の製造時における光学部品の部品点数を削減することができ、光ピックアップ装置の小形化を図ることができる。また部品点数を削減することによって、光ピックアップ装置の製造コストを低減することができる。
また本発明によれば、たとえばpn接合の接合深さの長さ寸法が、第1、第2および第3波長の光ビームを確実に受光することが可能な寸法である受光領域を有する受光素子を、半導体基板上に形成することができる。
また本発明によれば、光源と受光素子とをパッケージに収納しない場合に比べて、光ピックアップ装置における電気端子数を低減、換言すると電気配線を簡素化することができる。これによって、電気配線の引き回し作業を容易にすることができる。電気配線を簡素化することによって、外部ノイズを可及的に低減し、情報信号の信号対雑音比(S/N)の低下を防止することができる。また、光源と受光素子とをパッケージに収納することによって、光ピックアップ装置の製造時における組立て工数を削減することができ、光ピックアップ装置の製造コストを低減することができる。
以下に、本発明を実施するための複数の形態について説明する。各形態において、先行する形態で説明している事項に対応する部分については同一の参照符を付し、重複する説明を省略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。
図1は、本発明の第1の実施の形態である光ピックアップ装置50の構成を簡略化して示す図である。光ピックアップ装置50は、コンパクトディスク(Compact Disk;略称:CD)およびディジタルバーサタイルディスク(Digital Versatile Disk;略称:DVD)などの光ディスク状記録媒体(以下、単に「光記録媒体」と表記する)61に対して光ビームを照射することによって、光記録媒体61の情報を読取る処理および光記録媒体61に情報を記録する処理の少なくともいずれか一方の処理をする。
光ピックアップ装置50は、第1半導体レーザ素子51、第2半導体レーザ素子52、第3半導体レーザ素子53、ホログラム素子54、受光素子55、プリズム56、第1ビームスプリッタ57、第2ビームスプリッタ58および対物レンズ59を含んで構成される。第1半導体レーザ素子51は、発振波長が第1波長、たとえば405nmの青色波長のレーザ光を発する第1光源である。第1半導体レーザ素子52は、たとえばブルーレイ(Blu-ray)ディスクおよび高密度DVD(High Definition-Digital Versatile Disk;略称:HD−DVD)に記録された情報を読取る処理、ならびにブルーレイディスクおよびHD−DVDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。
第2半導体レーザ素子52は、発振波長が第2波長、たとえば650nmの赤色波長のレーザ光を発する第2光源である。第2半導体レーザ素子52は、たとえばDVDに記録された情報を読取る処理およびDVDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。
第3半導体レーザ素子53は、発振波長が第3波長、たとえば780nmの赤外波長のレーザ光を発する第3光源である。第3半導体レーザ素子53は、たとえばCDに記録された情報を読取る処理およびCDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。前述した各半導体レーザ素子51〜53から発せられるレーザ光(以下、「光ビーム」と表記する場合がある)の発振波長は一例であり、それぞれ±15nm程度のばらつきがあってもよい。
ホログラム素子54は、直方体状に形成される。ホログラム素子54の一表面部には、ホログラム回折格子70が形成される。ホログラム回折格子70は、第1〜第3半導体レーザ素子51〜53から発せられて、ブルーレイディスク、DVDおよびCDなどの光記録媒体61で反射される光ビームを、波長に応じて回折させる。本実施の形態において、ホログラム素子54は回折素子に相当する。
受光素子55は、たとえばフォトダイオードによって実現される。受光素子55は、ホログラム素子54によって回折される前記第1、第2および第3波長の光ビームを、それぞれ異なる受光領域で受光する。受光素子54は、受光した光ビームに基づいて、光電変換によって光を電気信号に変換して、光記録媒体61のピットの信号を検出する。
プリズム56は、光記録媒体61に向かう光ビームと、光記録媒体61で反射された光ビームとを分離する。さらに述べると、プリズム56は、第2半導体レーザ素子52から発せられる第2波長の光ビームを透過するとともに、光記録媒体61で反射された前記第1、第2および第3波長の光ビームの進行方向を90度屈曲させる。
第1ビームスプリッタ57には、第2半導体レーザ素子52から発せられる第2波長の光ビームの光軸L11に対して45度傾斜した長方形状の反射面が形成される。第1ビームスプリッタ57は、第1半導体レーザ素子51から発せられる第1波長の光ビームを反射面によって直角に反射させて、第1波長の光ビームの光軸を、前記光軸L11と一致させる。また第1ビームスプリッタ57は、光記録媒体61で反射された前記第1、第2および第3波長の光ビームを透過させる。
第2ビームスプリッタ58には、第2半導体レーザ素子52から発せられる第2波長の光ビームの光軸L11に対して45度傾斜した長方形状の反射面が形成される。第2ビームスプリッタ58は、第1ビームスプリッタ57を通過して入射した前記第1および第2半導体レーザ素子51,52から発せられる第1および第2波長の光ビームを透過させるとともに、第3半導体レーザ素子53から発せられる第3波長の光ビームを、反射面によって直角に反射させて、第3波長の光ビームの光軸を、前記光軸L11と一致させる。また第2ビームスプリッタ58は、光記録媒体61で反射された前記第1、第2および第3波長の光ビームを透過させる。
対物レンズ59は、光記録媒体61の情報記録面62に対して、第1〜第3半導体レーザ素子51〜53から発せられる光ビームを集光させる。
第1半導体レーザ素子51から発せられる第1波長の光ビームは、第1ビームスプリッタ57、第2ビームスプリッタ58および対物レンズを通過して光記録媒体61の情報記録面62に集光する。光記録媒体61で反射された前記第1波長の光ビームは、対物レンズ59、第2ビームスプリッタ58、第1ビームスプリッタ57およびプリズム56を通過してホログラム素子54に入射し、ホログラム素子54のホログラム回折格子70によって、受光素子55の所定の受光領域に回折され、受光素子55の所定の受光領域で受光される。
第2半導体レーザ素子52から発せられる第2波長の光ビームは、プリズム56、第1ビームスプリッタ57、第2ビームスプリッタ58および対物レンズ59を通過して光記録媒体61の情報記録面62に集光する。光記録媒体61で反射された前記第2波長の光ビームは、対物レンズ59、第2ビームスプリッタ58、第1ビームスプリッタ57およびプリズム56を通過してホログラム素子54に入射し、ホログラム素子54のホログラム回折格子70によって、受光素子55の所定の受光領域に回折され、受光素子55の所定の受光領域で受光される。
第3半導体レーザ素子53から発せられる第3波長の光ビームは、第2ビームスプリッタ58および対物レンズ59を通過して光記録媒体61の情報記録面62に集光する。光記録媒体61で反射された前記第3波長の光ビームは、対物レンズ59、第2ビームスプリッタ58、第1ビームスプリッタ57およびプリズム56を通過してホログラム素子54に入射し、ホログラム素子54のホログラム回折格子70によって、受光素子55の所定の受光領域に回折され、受光素子55の所定の受光領域で受光される。
図2は、ホログラム回折格子70およびホログラム回折格子70によって回折された光ビームを受光する受光素子55を簡略化して示す図である。図2に示すホログラム回折格子70は、第1〜第3半導体レーザ素子51〜53から発せられて、光記録媒体61の情報記録面62で反射された光ビームを回折して、受光素子55の各受光領域に導く。
光記録媒体61と対物レンズ59との相対的な移動によって受光素子55に入射する光ビームのスポット形状が変化したときの出力信号を検出して、光記録媒体61と対物レンズ59との間隔を一定に保持するためには、ホログラム回折格子70は、少なくとも2つ以上の格子領域に分割する必要がある。本実施の形態のホログラム回折格子70は、図2に示すように、円形状であって、第1格子領域72および第2格子領域73を有する。第1格子領域72は、光記録媒体61のトラック方向に垂直な方向に延びる分割線71によって分割される2つの半円形状の領域のうち一方の領域であり、第2格子領域73は、前記2つの半円形状の領域のうち他方の半円形状の領域である。
第1および第2格子領域72,73には、互いにピッチが異なる回折格子が形成される。本実施の形態では、第1格子領域72には、第2格子領域73に形成される回折格子よりもピッチが大きい回折格子が形成される。
受光素子55は、ホログラム回折格子70の第1および第2格子領域72,73によってそれぞれ回折される光ビームを受光する複数の受光領域を有する。本実施の形態の受光素子55は、図2に示すように、4つの受光領域75,76,77,78を有する。
第1受光領域75は、第1受光部75aおよび第2受光部75bを有する。第1受光部75aは、光記録媒体61のトラック方向に垂直な方向に延びる分割線75cによって2分割された部分のうち一方の部分であり、第2受光部75bは前記2分割された部分のうち他方の部分である。第2受光領域76は、第3受光部76aおよび第4受光部76bを有する。第3受光部76aは、光記録媒体61のトラック方向に垂直な方向に延びる分割線76cによって2分割された部分のうち一方の部分であり、第4受光部76bは前記2分割された部分のうち他方の部分である。
第3受光領域77は、第5受光部77aおよび第6受光部77bを有する。第5受光部77aは、光記録媒体61のトラック方向に垂直な方向に延びる分割線77cによって2分割された部分のうち一方の部分であり、第6受光部77bは前記2分割された部分のうち他方の部分である。第4受光領域78は、第7受光部78aおよび第8受光部78bを有する。第7受光部78aは、光記録媒体61のトラック方向に垂直な方向に延びる分割線78cによって2分割された部分のうち一方の部分であり、第8受光部78bは前記2分割された部分のうち他方の部分である。
第1〜第4受光領域75〜78は、光記録媒体61の情報を読取り、かつフォーカス誤差信号(略称:FES)、トラック誤差信号(略称:TES)および情報信号(略称:RFS)をそれぞれ検出するために選択的に用いられる。ここでFESは、光記録媒体61の面振れに追従して常に情報記録面62上に焦点を結ぶように調整する制御を行うために用いられる。TESは、光記録媒体61の情報記録面62に集光される光ビームのトラック中心からのずれを修正して、光ビームを正確にトラックに追従させる制御を行うために用いられる。
また第1〜第4受光領域75〜78は、光記録媒体61のトラック方向に垂直な方向に1列に並んで配設される。換言すると、各受光領域75〜78は、ホログラム回折格子70によって回折される光ビームが延びる方向に1列に並んで配設される。各受光領域75〜78は、それぞれ長方形状であって、長手方向は前記トラック方向に垂直な方向に平行な方向である。また、各受光領域75〜78の長手方向の長さ寸法は、光源である第1〜第3半導体レーザ素子51〜53の波長変動による入射位置の変動範囲よりも長くなるように形成する。これによって、温度変化などによる第1〜第3半導体レーザ素子51〜53の波長変動が生じて回折角が変化し、光ビームの受光領域に対する入射位置が変化した場合でも、光ビームを確実に受光して信号を検出することができる。また受光素子55は、各受光領域75〜78の長手方向の長さ寸法を大きくしすぎると静電容量が増加し、各受光領域75〜78の応答速度が低下するので、静電容量が応答速度に影響しない長さ寸法に形成するようにする。
光記録媒体61で反射された光ビームは、ホログラム回折格子70の中央部に入射し、ホログラム回折格子70によって回折される光のうち1次回折光が受光素子55の各受光領域75〜78に入射する。
第1半導体レーザ素子51から発せられて、光記録媒体61で反射された第1波長の光ビームのうち第1格子領域72の回折格子によって回折された光ビームA1は、第1受光領域75に入射し、前記第1波長の光ビームのうち第2格子領域73の回折格子によって回折された光ビームA2は、第2受光領域76に入射する。
第2半導体レーザ素子52から発せられて、光記録媒体61で反射された第2波長の光ビームのうち第1格子領域72の回折格子によって回折された光ビームB1は、第2受光領域76に入射し、前記第2波長の光ビームのうち第2格子領域73の回折格子によって回折された光ビームB2は、第3受光領域77に入射する。
第3半導体レーザ素子53から発せられて、光記録媒体61で反射された第3波長の光ビームのうち第1格子領域72の回折格子によって回折された光ビームC1は、第3受光領域77に入射し、前記第3波長の光ビームのうち第2格子領域73の回折格子によって回折された光ビームC2は、第4受光領域78に入射する。
対物レンズ59の焦点位置が光記録媒体61の情報記録面62上にある場合、換言すると対物レンズ59が、光記録媒体61の情報記録面62で焦点を結ぶ位置(以下、「合焦位置」と表記する場合がある)にある場合、光記録媒体61で反射され、ホログラム回折格子70によって回折された光ビームは、受光素子55の各受光領域75〜78の各分割線75c,76c,77c,78c上に集光される。
また、対物レンズ59が合焦位置よりも光記録媒体61に近づいた場合、および対物レンズ59が合焦位置よりも光記録媒体61から遠ざかった場合、光記録媒体61で反射され、ホログラム回折格子70によって回折されて各受光領域75〜78の各受光部に入射する光ビームのスポット形状は、たとえば図2に示すように半円形状となる。スポット形状は、対物レンズ59が合焦位置よりも光記録媒体61に近づいたり、遠ざかったりして生じる対物レンズ59の合焦位置に対するずれ量によって変化し、各受光領域75〜78の各分割線に関して線対称の形状となる場合もある。
本実施の形態において、たとえばDVDの情報を読取るときのFESは、第2受光領域76の第3および第4受光部76a,76bに入射する光ビームに基づいて出力される信号をそれぞれS76a,S76bとした場合、これらの信号の差(S76a−76b)を求めることによって検出する。また、CDの情報を読取るときのFESは、第3受光領域77の第5および第6受光部77a,77bに入射する光ビームに基づいて出力される信号をそれぞれS77a,S77bとした場合、これらの信号の差(S77a−S77b)を求めることによって検出する。また、ブルーレイディスクの情報を読取るときのFESは、第1受光領域75の第1および第2受光部75a,75bに入射する光ビームに基づいて出力される信号をそれぞれS75a,S75bとした場合、これらの信号の差(S75a−S75b)を求めることによって検出する。
さらにブルーレイディスク、DVDおよびCDの情報を読取るときのRFSは、各受光領域75〜78の各受光部に入射する光ビームに基づいて出力される信号の和を求めることによって検出する。つまりCD、DVDおよびブルーレイディスクに対するRFをそれぞれFRS(CD)、RFS(DVD)およびRFS(BD)とすると、以下に示す式(1)〜式(3)によってそれぞれ検出される。
RFS(CD)=S77a+S77b+S78a+S78b …(1)
RFS(DVD)=S76a+S76b+S77a+S77b …(2)
RFS(BD)=S75a+S75b+S76a+S76b …(3)
ブルーレイディスク、DVDおよびCDの情報を読取るときのTESについては、図示しない他の受光素子によって検出される。特にCDおよびDVDに対するTESは、3ビーム法、位相差(Differential Phase Detection;略称:DPD)法および差動プッシュプル(Differential Push-Pull;略称:DPP)法などによって検出される。
本実施の形態では、前記のようにして検出されるFESの値が0になるように、換言すると光記録媒体61の面振れに追従して常に情報記録面62上に焦点を結ぶように、光記録媒体61に対する対物レンズ59の位置を調整する制御、いわゆるフォーカスサーボ制御を行う。またTESの値が0になるように、換言すると光記録媒体61に偏心が生じたとしても、偏心に追従して光ビームが常にトラック上をトレースする制御、いわゆるトラックサーボ制御を行う。
受光素子55は、シリコン(Si)基板などの半導体基板上に形成される。各受光領域75〜78は、前記半導体基板上に、pn接合によって形成される。また各受光領域75〜78は、pn接合の接合深さおよび半導体基板の表面部に形成される表面保護層の厚み方向の長さ寸法が、第1、第2および第3波長の光ビームを確実に受光することができるように設計される。従来の技術のように、同一の受光領域で、複数の異なる波長の光ビームを受光する場合を考える。発振波長が405nmである第1波長の光ビームが、発振波長が650nmである第2波長の光ビームを受光するための受光領域に入射したとしても、拡散層深さなどの長さ寸法が大きいために、前記第1波長の光ビームがpn接合に到達するまでに殆ど吸収されてしまう。したがって第2波長用の受光領域で、第1波長の光ビームを受光することは難しく、信号の検出感度も低下する。このような理由から、本実施の形態では、波長に応じた複数の、具体的には4つの受光領域75〜78を、受光素子55に形成している。
前述のように本実施の形態によれば、第1半導体レーザ素子51から発せられて、光記録媒体61で反射された第1波長の光ビーム、第2半導体レーザ素子52から発せられて、光記録媒体61で反射された第2波長の光ビーム、および第3半導体レーザ素子53から発せられて、光記録媒体61で反射された第3波長の光ビームは、それぞれホログラム素子54のホログラム回折格子70によって、各波長に応じて回折される。ホログラム回折格子70によって回折された第1、第2および第3波長の光ビームは、受光素子55の異なる受光領域75〜78でそれぞれ受光される。
受光素子55が、たとえば半導体受光素子によって実現される場合、pn接合の接合深さなどの寸法が各波長に応じた寸法になるように、受光領域75〜78を形成することによって、前記従来の技術のように波長の異なる複数の光ビームを受光することができなくなることを防ぐことができる。換言すると、ホログラム回折格子70によって回折された第1、第2および第3波長の光ビームを、各波長に応じて受光素子55に形成される各受光領域75〜78でそれぞれ確実に受光することができる。したがって、受光素子55の各受光領域75〜78で受光した光ビームに基づいて、正確な信号を検出することができる。これによって、波長の異なる前記第1〜第3波長の光ビームを同一の受光領域で受光して信号を検出する前記従来の技術に比べて、受光素子55における信号検出の精度を格段に向上することができる。
また本実施の形態によれば、第1〜第3波長の各光ビームが、1つの受光素子55の異なる受光領域75〜78でそれぞれ受光するように構成される。したがって、前記従来の技術のように各波長の光ビームを受光する受光素子をそれぞれ個別に設ける場合に比べて、光ピックアップ装置50の製造時における光学部品の部品点数を削減することができ、光ピックアップ装置50の小形化を図ることができる。また部品点数を削減することによって、光ピックアップ装置50の製造コストを低減することができる。
また本実施の形態によれば、たとえばpn接合の接合深さの長さ寸法が、第1、第2および第3波長の光ビームを確実に受光することが可能な寸法である受光領域75〜78を有する受光素子55を、半導体基板上に形成することができる。
図3は、本発明の第2の実施の形態である光ピックアップ装置80の構成を簡略化して示す図である。図3(1)は、光ピックアップ装置80を簡略化して示す平面図であり、図3(2)は、光ピックアップ装置80を簡略化して示す側面図である。光ピックアップ装置80は、第1半導体レーザ素子81、ホログラムレーザユニット82、第3半導体レーザ素子83、第1コリメートレンズ84、第2コリメートレンズ85、第3コリメートレンズ86、第1ビームスプリッタ87、ビームエキスパンダ88、第2ビームスプリッタ89、立上げミラー90および対物レンズ91を含んで構成される。ホログラムレーザユニット82は、第2半導体レーザ素子、ホログラム素子および受光素子を含む。本実施の形態において、ホログラム素子は、波長に応じて光ビームを回折させる回折素子に相当する。
第1半導体レーザ素子84は、発振波長が第1波長、たとえば405nmの青色波長のレーザ光を発する第1光源である。第1半導体レーザ素子52は、たとえばブルーレイディスクおよびHD−DVDに記録された情報を読取る処理、ならびにブルーレイディスクおよびHD−DVDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。また第1半導体レーザ素子84として、フレーム型半導体レーザ素子を用いる。フレーム型半導体レーザ素子は、薄い金属板によって電極部が形成され、この電極部が樹脂によって一体化される。さらに金属板上に直接、またはサブマウントなどを介して半導体レーザチップが搭載される。半導体レーザチップが搭載される金属板の底面を、樹脂から露出させることによって効率よく放熱できる。
ホログラムレーザユニット82に含まれる第2半導体レーザ素子は、発振波長が第2波長、たとえば650nmの赤色波長のレーザ光を発する第2光源である。第2半導体レーザ素子52は、たとえばDVDに記録された情報を読取る処理およびDVDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。ホログラムレーザユニット82に含まれるホログラム素子および受光素子は、前述の第1の実施の形態におけるホログラム素子54および受光素子55と同様の構成であり、同一の機能を有する。
ホログラムレーザユニット82の第2半導体レーザ素子および受光素子は、1つのパッケージに収納される。さらに述べると、第2半導体レーザ素子および受光素子は、板状に形成されるステムの厚み方向一表面部に設けられる。そして、第2半導体レーザ素子および受光素子と外部との接触を避けるために封止するキャップが、ステムの厚み方向一表面部に装着される。これによって第2半導体レーザ素子および受光素子は、ステムおよびキャップによって密封される。本実施の形態において、ステムおよびキャップは、パッケージに相当する。ホログラムレーザユニット82のホログラム素子は、キャップの厚み方向一表面部に、紫外線硬化型接着剤などを介して搭載される。
第3半導体レーザ素子83は、発振波長が第3波長、たとえば780nmの赤外波長のレーザ光を発する第3光源である。第3半導体レーザ素子53は、たとえばCDに記録された情報を読取る処理およびCDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。第3半導体レーザ素子83として、第1半導体レーザ素子81と同様に、フレーム型半導体レーザ素子を用いる。以下の本実施の形態の説明において、各半導体レーザ素子から発せられる「レーザ光」を、「光ビーム」と表記する場合がある。
第1コリメートレンズ84は、第1半導体レーザ素子81から発せられる第1波長の光ビームを平行光にする。第2コリメートレンズ85は、第2半導体レーザ素子から発せられる第2波長の光ビームを平行光にする。第3コリメートレンズ86は、第3半導体レーザ素子83から発せられる光ビームを平行光にする。
第1ビームスプリッタ87には、第2半導体レーザ素子から発せられる第2波長の光ビームの光軸に対して45度傾斜した長方形状の反射面が形成される。第1ビームスプリッタ87は、第2半導体レーザ素子から発せられる第2波長の光ビームを反射面によって直角に反射させて、第2波長の光ビームの光軸を、第1波長の光ビームの光軸と一致させる。また第1ビームスプリッタ87は、光記録媒体で反射された前記第1、第2および第3波長の光ビームを反射面によって直角に反射させて光軸を変換する。
ビームエキスパンダ88は、2枚のレンズを有し、光記録媒体毎に異なるカバー層の厚み方向の長さ寸法によって、情報記録面上の光ビームスポットに発生する球面収差の大きさを補償する。これは、比較的短い波長の光ビームによって情報が読取られる光記録媒体の場合に顕著である。比較的短い波長の光ビームを用いて情報の読取りおよび情報の記録が行われる光記録媒体では、カバー層の厚み方向の長さ寸法が0.1mm程度と極めて薄く設計されるので、光記録媒体全体の厚み方向の長さ寸法に対するカバー層の厚み方向の長さ寸法の製造誤差が生じる割合が高くなるためである。ここでカバー層は、ブルーレイディスクなどの光記録媒体の記録層を保護するために設けられる層であり、カバー層の厚み方向の長さ寸法は、光記録媒体の厚み方向一表面部から記録層の厚み方向一表面部までの寸法である。
このような比較的短い波長の光ビームを用いて光記録媒体の情報の読取り、および光記録媒体への情報の記録をする場合は、光記録媒体が光ディスク記録再生装置などに配設されたとき、最初にカバー層の厚み方向の長さ寸法を測定し、球面収差の補正量に応じてビームエキスパンダを構成する2枚のレンズの距離を調整する。
比較的長い波長の光ビームを用いて情報の読取りおよび記録をする光記録媒体では、カバー層の厚み方向の長さ寸法が約1.2mmであり、比較的短い波長の光ビームを用いて情報の読取りおよび情報の記録をする光記録媒体よりもカバー層の厚み方向の長さ寸法が大きいので、比較的長い波長、たとえば第3波長の光ビームは、ビームエキスパンダ88を通過させる必要はない。
第2ビームスプリッタ89には、第3半導体レーザ素子83から発せられる第3波長の光ビームの光軸に対して45度傾斜した長方形状の反射面が形成される。第2ビームスプリッタ89は、第3半導体レーザ素子83から発せられる第3波長の光ビームを反射面によって直角に反射させて、第3波長の光ビームの光軸を、第1波長の光ビームの光軸と一致させる。また第2ビームスプリッタ89は、光記録媒体で反射された前記第1、第2および第3波長の光ビームを透過させる。
立上ミラー90は、入射した光ビームの光経路を90度屈曲させて、入射した光ビームを対物レンズ91へ導く。立上ミラー90を用いることによって、光ピックアップ装置80の厚み方向、換言すると図3(1)では紙面に垂直な方向の長さ寸法を小さくすることができ、光ピックアップ装置80を小形化することができる。対物レンズ91は、立上げミラー90によって光経路が屈曲された光ビームを光記録媒体に集光させる。
第1半導体レーザ素子81から発せられる第1波長の光ビームは、第1コリメートレンズ84、第1ビームスプリッタ87、ビームエキスパンダ88および第2ビームスプリッタ89を透過し、立上げミラー90によって対物レンズ91に導かれた後、光記録媒体の情報記録面に集光する。光記録媒体で反射された前記第1波長の光ビームは、対物レンズ91、立上げミラー90、第2ビームスプリッタ89、ビームエキスパンダ88を透過し、第1ビームスプリッタ87によって光経路が90度屈曲されて、第2コリメートレンズ85を介してホログラムレーザユニット82に入射する。ホログラムレーザユニット82に入射した第1波長の光ビームは、ホログラム素子のホログラム回折格子によって回折され、受光素子の所定の受光領域で受光される。
ホログラムレーザユニット82の第2半導体レーザ素子から発せられる第2波長の光ビームは、第2コリメートレンズ85を透過し、第1ビームスプリッタ87によって光経路が90度屈曲されて、ビームエキスパンダ88、第2ビームスプリッタ89を透過し、立上げミラー90によって対物レンズ91に導かれた後、光記録媒体の情報記録面に集光する。光記録媒体で反射された前記第2波長の光ビームは、対物レンズ91、立上げミラー90、第2ビームスプリッタ89、ビームエキスパンダ88を透過し、第1ビームスプリッタ87によって光経路が90度屈曲されて、第2コリメートレンズ85を介してホログラムレーザユニット82に入射する。ホログラムレーザユニット82に入射した第2波長の光ビームは、ホログラム素子のホログラム回折格子によって回折され、受光素子の所定の受光領域で受光される。
第3半導体レーザ素子83から発せられる第3波長の光ビームは、第3コリメートレンズ86を透過し、第2ビームスプリッタ89によって光経路が90度屈曲されて、立上げミラー90に入射し、この立上げミラー90によって対物レンズ91に導かれた後、光記録媒体の情報記録面に集光する。光記録媒体で反射された前記第3波長の光ビームは、対物レンズ91、立上げミラー90、第2ビームスプリッタ89、ビームエキスパンダ88を透過し、第1ビームスプリッタ87によって光経路が90度屈曲されて、第2コリメートレンズ85を介してホログラムレーザユニット82に入射する。ホログラムレーザユニット82に入射した第3波長の光ビームは、ホログラム素子のホログラム回折格子によって回折され、受光素子の所定の受光領域で受光される。
前述のように本実施の形態によれば、第1半導体レーザ素子81、第2半導体レーザ素子および第3半導体レーザ素子83からそれぞれ発せられて、光記録媒体で反射された第1〜第3波長の光ビームは、ホログラム素子に形成されるホログラム回折格子によって回折され、受光素子の所定の受光領域で受光される。本実施の形態において、ブルーレイディスク、DVDおよびCDの情報を読取るときのFESおよびRFSは、前述の第1の実施の形態と同様の方法によって検出する。またDVDおよびCDの情報を読取るときのTESについても、3ビーム法、DPD法およびDPP法のうちいずれか1つによって検出する。
受光素子が、たとえば半導体受光素子によって実現される場合、pn接合の接合深さなどの寸法が各波長に応じた寸法になるように、受光領域を受光素子に形成することによって、前記従来の技術のように波長の異なる複数の光ビームを受光することができなくなることを防ぐことができる。換言すると、ホログラム回折格子によって回折された第1、第2および第3波長の光ビームを、各波長に応じて受光素子に形成される各受光領域で確実に受光することができる。したがって、受光素子の各受光領域で受光した光ビームに基づいて、正確な信号を検出することができる。これによって、波長の異なる前記第1〜第3波長の光ビームを同一の受光領域で受光する前記従来の技術に比べて、受光素子における信号検出の精度を格段に向上することができる。
また本実施の形態によれば、第1〜第3波長の各光ビームは、1つの受光素子の異なる受光領域でそれぞれ受光するように構成される。したがって、前記従来の技術のように各波長の光ビームを受光する受光素子をそれぞれ個別に設ける場合に比べて、光ピックアップ装置80の製造時における光学部品の部品点数を削減することができ、光ピックアップ装置80の小形化を図ることができる。また部品点数を削減することによって、光ピックアップ装置80の製造コストを低減することができる。
また本実施の形態によれば、第2半導体レーザ素子および受光素子を1つのパッケージに収納し、かつホログラム素子を一体にして構成されるホログラムレーザユニット82を用いている。これによって、半導体レーザ素子と受光素子とをパッケージに収納しない場合に比べて、光ピックアップ装置80における電気端子数を低減、換言すると電気配線を簡素化することができる。これによって、電気配線の引き回し作業を容易にすることができる。電気配線を簡素化することによって、外部ノイズを可及的に低減し、情報信号の信号対雑音比(S/N)の低下を防止することができる。また電気端子数を低減することによって、電気信号線を配設する領域も低減することができるので、光ピックアップ装置80が大形化することを防ぐことができる。
また本実施の形態によれば、第2半導体レーザ素子と受光素子とをパッケージに収納し、かつホログラム素子を一体にしたホログラムレーザユニット82を用いることによって、光ピックアップ装置80の製造時における組立て工数を削減することができ、光ピックアップ装置80の製造コストをさらに低減することができる。
図4は、本発明の第3の実施の形態である光ピックアップ装置100を簡略化して示す図である。図4(1)は、光ピックアップ装置100を簡略化して示す平面図であり、図4(2)は、光ピックアップ装置100を簡略化して示す側面図である。図5は、ホログラムレーザユニット102の構成を簡略化して示す斜視図である。図5では、後述するキャップ126の一部を切り欠いて示している。光ピックアップ装置100は、第1半導体レーザ素子101、ホログラムレーザユニット102、第1コリメートレンズ103、1/4波長板(以下、「λ/4板」と表記する場合がある)104、第2コリメートレンズ105、ビームスプリッタ106、ビームエキスパンダ88、立上げミラー90および対物レンズ91を含んで構成される。
第1半導体レーザ素子101は、発振波長が第1波長、たとえば405nmの青色波長のレーザ光を発する第1光源である。第1半導体レーザ素子52は、たとえばブルーレイディスクおよびHD−DVDに記録された情報を読取る処理、ならびにブルーレイディスクおよびHD−DVDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。また第1半導体レーザ素子84として、フレーム型半導体レーザ素子を用いる。
ホログラムレーザユニット102は、半導体レーザ装置110、ホログラム素子111および偏光ビームスプリッタ112を含んで構成される。半導体レーザ装置110は、第2半導体レーザ素子121、第3半導体レーザ素子122、受光素子123、ヒートシンク124、ステム125、キャップ126および電極127を含む。ホログラム素子111は、グレーティング131、偏光ホログラム回折格子132およびホログラム回折格子133を含む。本実施の形態において、ホログラム素子111は、波長に応じて光ビームを回折させる回折素子に相当する。偏光ホログラム回折格子132およびホログラム回折格子133は、前述の第1の実施の形態のホログラム回折格子70と同様に、2つの格子領域を有する回折格子である。
第2半導体レーザ素子121は、発振波長が第2波長、たとえば650nmの赤色波長のレーザ光を発する第2光源である。第2半導体レーザ素子121は、たとえばDVDに記録された情報を読取る処理およびDVDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。第3半導体レーザ素子122は、発振波長が第3波長、たとえば780nmの赤外波長のレーザ光を発する第3光源である。第3半導体レーザ素子122は、たとえばCDに記録された情報を読取る処理およびCDに情報を記録する処理の少なくともいずれか一方の処理をするときに用いられる。
第2半導体レーザ素子121から発せられるレーザ光の光軸L21、および第3半導体レーザ素子122から発せられるレーザ光の光軸L22は互いに平行であり、第2および第3半導体レーザ素子121,122は、互いに隣接し、かつ板状に形成されるステム125の厚み方向一表面部に配設される。以下の本実施の形態の説明において、各半導体レーザ素子から発せられる「レーザ光」を、「光ビーム」と表記する場合がある。
受光素子123は、直方体状に形成されるヒートシンク124の厚み方向一表面部に配設される。ヒートシンク124は、ステム125の厚み方向一表面部に、第2および第3半導体レーザ素子121,122と間隔をあけて配設される。
キャップ126は、第2および第3半導体レーザ素子121,122ならびに受光素子123と外部との物理的接触を避けるために、第2および第3半導体レーザ素子121,122ならびに受光素子123を封止する封止部材であり、ステム125の厚み方向一表面部に装着される。これによって、第2および第3半導体レーザ素子部121,122ならびに受光素子123は、ステム125およびキャップ126によって密封される。本実施の形態において、ステム125およびキャップ126は、第2および第3半導体レーザ素子121,122ならびに受光素子123を収納するパッケージに相当する。
電極127は、ステム125の厚み方向他表面部からステム125の厚み方向他方に突出して設けられ、第2および第3半導体レーザ素子121,122ならびに受光素子123と電気的に接続されている。
半導体レーザ装置110には、紫外線硬化型接着剤などを介して、直方体状のホログラム素子111が搭載される。さらに述べると、キャップ126の厚み方向一表面部にホログラム素子111が搭載される。ホログラム素子111の厚み方向他表面部には、グレーティング131が形成され、グレーティング131が形成される表面部と対向する表面部、換言するとホログラム素子111の厚み方向一表面部には、偏光ホログラム回折格子132およびホログラム回折格子133が形成される。偏光ホログラム回折格子132およびホログラム回折格子133は、ホログラム素子111の長手方向に間隔をあけて形成される。
ホログラム素子111の厚み方向一表面部には、紫外線硬化型接着剤などを介して、直方体状の偏光ビームスプリッタ112が搭載される。偏光ビームスプリッタ112には、第2および第3半導体レーザ素子121,122から発せられる光ビームの光軸L21,L22に対して45度傾斜した長方形状の第1反射面135および第2反射面136が形成される。第1反射面135および第2反射面136は、偏光ビームスプリッタ112の長手方向に間隔をあけて、互いに平行に形成される。
第1コリメートレンズ103は、第1半導体レーザ素子101から発せられる第1波長の光ビームを平行光にする。λ/4板104は、第2および第3半導体レーザ素子121,122から発せられる2つの異なる波長の光ビームに対して略90度の位相差を生じさせる偏光素子である。λ/4板104は、直線偏光の光ビームが入射されると円偏光の光ビームに変換して出射し、円偏光の光ビームが入射されると直線偏光の光ビームに変換して出射する。第2および第3半導体レーザ素子121,122から発せられる光ビームは直線偏光であり、この直線偏光の光ビームがλ/4板104に入射すると、円偏光の光ビームに変換される。
第2コリメートレンズ105は、ホログラムレーザユニット102の第2および第3半導体レーザ素子121,122から発せられて、λ/4板104を透過した第2および第3波長の光ビームを平行光にする。
ビームスプリッタ106には、第1〜第3波長の各光ビームの光軸に対して45度傾斜した長方形状の反射面が形成される。ビームスプリッタ106は、第1半導体レーザ素子101から発せられる第1波長の光ビームを反射面によって直角に反射させて、第1波長の光ビームの光軸を、第2および第3波長の光ビームの光軸と一致させる。またビームスプリッタ106は、光記録媒体で反射された前記第1、第2および第3波長の光ビームを透過させる。
第1半導体レーザ素子101から発せられる第1波長の光ビームは、第1コリメートレンズ103を透過し、ビームスプリッタ106に入射する。ビームスプリッタ106に入射した第1波長の光ビームは、反射面によって約50%が直角に反射され、残余の光ビームはビームスプリッタ106を透過して図示しないモニタ用受光素子に入射する。ビームスプリッタ106によって反射された第1波長の光ビームは、ビームエキスパンダ88を透過し、立上げミラー90によって対物レンズ91に導かれた後、光記録媒体の情報記録面に集光する。
光記録媒体で反射された前記第1波長の光ビームは、対物レンズ91、立上げミラー90、ビームエキスパンダ88、ビームスプリッタ106、第2コリメートレンズ105およびλ/4板104を透過し、ホログラムレーザユニット102の偏光ビームスプリッタ112に入射する。第1波長の光ビームがλ/4板104に入射した場合、λ/4板104は透光性の平行平板として機能する。偏光ビームスプリッタ112に入射した第1波長の光ビームは、第1反射面135を透過し、ホログラム素子111の偏光ホログラム回折格子132によって回折される。偏光ホログラム回折格子132によって回折された第1波長の光ビームは、グレーティング131によってさらに回折され、受光素子123の所定の受光領域で受光される。
ホログラムレーザユニット102の第2および第3半導体レーザ素子121から発せられる第2および第3波長の光ビームのうち略100%の光ビームは、ホログラム素子111の偏光ホログラム回折格子132を透過し、さらに偏光ビームスプリッタ112の第1反射面135を透過する。偏光ビームスプリッタ112の第1反射面135を透過した第2および第3波長の光ビームは、λ/4板104を通過して、直線偏光の光ビームから円偏光の光ビームに変換される。λ/4板104によって円偏光の光ビームに変換された第2および第3波長の光ビームは、第2コリメートレンズ105、ビームスプリッタ106、ビームエキスパンダ88を透過し、立上げミラー90によって対物レンズ91に導かれた後、光記録媒体の情報記録面に集光する。
光記録媒体で反射された前記第2および第3波長の光ビームは、対物レンズ91、立上げミラー90、ビームエキスパンダ88、ビームスプリッタ106および第2コリメートレンズ105を透過し、λ/4板104に入射する。λ/4板104に再度入射した第2および第3波長の光ビームは、円偏光の光ビームから、第2および第3半導体レーザ素子121,122から発せられる直線偏光の光ビームと偏光方向が直交する直線偏光の光ビームに変換される。λ/4板104を透過した第2および第3波長の光ビームは、ホログラムレーザユニット102の偏光ビームスプリッタ112に入射する。
偏光ビームスプリッタ112に入射した第2波長の光ビームは、第1反射面135によってすべて反射され、さらに第2反射面136によって反射されて、ホログラム素子111のホログラム回折格子133に入射する。ホログラム回折格子133に入射した第2波長の光ビームは、ホログラム回折格子133によって回折され、受光素子123の所定の受光領域で受光される。また光記録媒体で反射されて、偏光ビームスプリッタ112に入射した第3波長の光ビームは、第1反射面135を透過し、ホログラム素子111に入射する。ホログラム素子111に入射した第3波長の光ビームのうち略100%の光ビームは、偏光ホログラム回折格子132によって回折されて、受光素子123の所定の受光領域で受光される。
本実施の形態では、ホログラムレーザユニット102の組立て作業時に、第2および第3半導体レーザ素子121,122、ホログラム素子111および偏光ビームスプリッタ112の光学的調整をすることによって、ホログラムレーザユニット102に含まれる第2および第3半導体レーザ素子121,122からそれぞれ発せられる第2波長の光ビームおよび第3波長の光ビームについては、それぞれ同一の受光領域で受光するようにし、FES、TESおよびRFSなどの信号を検出するようにしている。本実施の形態において、ブルーレイディスク、DVDおよびCDの情報を読取るときのFESおよびRFSは、前述の第1の実施の形態と同様の方法によって検出する。またDVDおよびCDの情報を読取るときのTESについても、3ビーム法、DPD法およびDPP法のうちいずれか1つによって検出する。
前述のように本実施の形態によれば、第1半導体レーザ素子101、第2半導体レーザ素子121および第3半導体レーザ素子122からそれぞれ発せられて、光記録媒体で反射された第1〜第3波長の光ビームは、ホログラム素子111に形成される偏光ホログラム回折格子132、ホログラム回折格子133およびグレーティング131のうち少なくともいずれか1つによって回折され、受光素子123の所定の受光領域で受光される。
受光素子123が、たとえば半導体受光素子によって実現される場合、pn接合の接合深さなどの寸法が各波長に応じた寸法になるように、受光領域を受光素子123に形成することによって、前記従来の技術のように波長の異なる複数の光ビームを受光することができなくなることを防ぐことができる。換言すると、ホログラム素子111によって回折された第1、第2および第3波長の光ビームを、各波長に応じて受光素子123に形成される各受光領域でそれぞれ確実に受光することができる。したがって、受光素子123の各受光領域で受光した光ビームに基づいて、正確な信号を検出することができる。これによって、波長の異なる前記第1〜第3波長の光ビームを同一の受光領域で受光して信号を検出する前記従来の技術に比べて、受光素子123における信号検出の精度を格段に向上することができる。
また本実施の形態によれば、第2および第3波長の光ビームに対しては、受光素子123の同一の受光領域で受光して、信号を検出するようにしている。これによって受光素子123に形成する受光領域の数量を少なくすることができ、光ピックアップ装置100の製造時における製造工数を削減することができる。これによって光ピックアップ装置100の製造コストを低減することができる。また、受光素子123に形成する受光領域の数量を少なくすることによって、受光素子123の寸法を小さくすることができるので、光ピックアップ装置100の小形化を図ることができる。
また本実施の形態によれば、受光素子123を含むホログラムレーザユニット102を用いることによって、ホログラムレーザユニット102のみに電気信号線が接続されるので、光ピックアップ装置100における電気端子数を低減、換言すると電気配線を簡素化することができる。これによって、電気配線の引き回し作業を容易にすることができる。電気配線を簡素化することによって、外部ノイズを可及的に低減し、情報信号の信号対雑音比(S/N)の低下を防止することができる。また電気端子数を低減することによって、電気信号線を配設する領域も低減することができるので、光ピックアップ装置100が大形化することを防ぐことができる。
また本実施の形態によれば、第2および第3半導体レーザ素子121,122と、受光素子123とを収納し、かつホログラム素子111および偏光ビームスプリッタ112を一体にしたホログラムレーザユニット102を用いることによって、光ピックアップ装置100の製造時における組立て工数を削減することができ、光ピックアップ装置100の製造コストをさらに低減することができる。
前述の各実施の形態は、本発明の例示に過ぎず、発明の範囲内において構成を変更することができる。たとえば前述の各実施の形態では、発振波長が405nmの第1半導体レーザ素子を第1光源、発振波長が650nmの第2半導体レーザ素子を第2光源、発振波長が780nmの第3半導体レーザ素子を第3光源とした場合の光ピックアップ装置50,80,100の構成について説明したけれども、各光源に用いる半導体レーザ素子の組合せは、前述の組合せに限らず、各光源から発せられる光ビームの発振波長が重複しない組合せであればよい。
また前述の第2の実施の形態では、ホログラムレーザユニット82に第2波長の光ビームを発する第2半導体レーザ素子を含む構成にしているが、本発明の他の実施の形態では、第1波長の光ビームを発する第1半導体レーザ素子および第3波長の光ビームを発する第3半導体レーザ素子のいずれか一方を含むように、ホログラムレーザユニット82を構成してもよい。
また前述の各実施の形態におけるホログラム回折格子70,133および偏光ホログラム回折格子132として、2つの格子領域を有する回折格子、いわゆる2分割ホログラム回折格子を適用した場合の光ピックアップ装置の構成について説明したが、本発明の他の実施の形態では、2分割ホログラム回折格子に限らず、3つ以上の格子領域を有する回折格子、いわゆる多分割ホログラム回折格子であってもよい。
また前述の各実施の形態で説明した光ピックアップ装置50,80,100の構成に限らず、特に組合せに支障が生じなければ、本発明の他の実施の形態では、各実施の形態の光ピックアップ装置50,80,100の構成を適宜組合せてもよい。
本発明の第1の実施の形態である光ピックアップ装置50の構成を簡略化して示す図である。 ホログラム回折格子70およびホログラム回折格子70によって回折された光ビームを受光する受光素子55を簡略化して示す図である。 本発明の第2の実施の形態である光ピックアップ装置80の構成を簡略化して示す図である。 本発明の第3の実施の形態である光ピックアップ装置100を簡略化して示す図である。 ホログラムレーザユニット102の構成を簡略化して示す斜視図である。 第5の従来の技術の光ピックアップ装置1の構成を簡略化して示す図である。 第6の従来の技術の光ピックアップ装置30の構成を簡略化して示す図である。
符号の説明
50,80,100 光ピックアップ装置
51,81,101 第1半導体レーザ素子
52,121 第2半導体レーザ素子
53,83,122 第3半導体レーザ素子
54,111 ホログラム素子
55,123 受光素子
56 プリズム
57 第1ビームスプリッタ
58 第2ビームスプリッタ
59,91 対物レンズ
61 光記録媒体
62 情報記録面
70,133 ホログラム回折格子
71,75c,76c,77c,78c 分割線
72 第1格子領域
73 第2格子領域
75 第1受光領域
75a 第1受光部
75b 第2受光部
76 第2受光領域
76a 第3受光部
76b 第4受光部
77 第3受光領域
77a 第5受光部
77b 第6受光部
78 第4受光領域
78a 第7受光部
78b 第8受光部
82,102 ホログラムレーザユニット
84,103 第1コリメートレンズ
85,105 第2コリメートレンズ
86 第3コリメートレンズ
87 第1ビームスプリッタ
88 ビームエキスパンダ
89 第2ビームスプリッタ
90 立上げミラー
104 1/4波長板
106 ビームスプリッタ
110 半導体レーザ装置
112 偏光ビームスプリッタ
124 ヒートシンク
125 ステム
126 キャップ
127 電極
131 グレーティング
132 偏光ホログラム回折格子
135 第1反射面
136 第2反射面

Claims (3)

  1. 光記録媒体に対して光ビームを照射することによって、光記録媒体の情報を読取る処理および光記録媒体に情報を記録する処理の少なくともいずれか一方の処理をする光ピックアップ装置であって、
    第1波長の光ビームを発する第1光源と、
    第1波長とは異なる第2波長の光ビームを発する第2光源と、
    第1および第2波長とは異なる第3波長の光ビームを発する第3光源と、
    各光源から発せられて光記録媒体で反射される光ビームを、波長に応じて回折させる回折素子と、
    回折素子によって回折される第1、第2および第3波長の光ビームを、それぞれ異なる受光領域で受光する受光素子とを含むことを特徴とする光ピックアップ装置。
  2. 前記受光素子は、半導体基板上に形成されることを特徴とする請求項1記載の光ピックアップ装置。
  3. 前記第1〜第3光源のうち少なくともいずれか1つの光源と、受光素子とを収納するパッケージを有することを特徴とする請求項1記載の光ピックアップ装置。
JP2005064320A 2005-03-08 2005-03-08 光ピックアップ装置 Pending JP2006252612A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064320A JP2006252612A (ja) 2005-03-08 2005-03-08 光ピックアップ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064320A JP2006252612A (ja) 2005-03-08 2005-03-08 光ピックアップ装置

Publications (1)

Publication Number Publication Date
JP2006252612A true JP2006252612A (ja) 2006-09-21

Family

ID=37092946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064320A Pending JP2006252612A (ja) 2005-03-08 2005-03-08 光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP2006252612A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040160A (ja) * 2008-07-11 2010-02-18 Victor Co Of Japan Ltd 光ピックアップ及び光デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040160A (ja) * 2008-07-11 2010-02-18 Victor Co Of Japan Ltd 光ピックアップ及び光デバイス
TWI399746B (zh) * 2008-07-11 2013-06-21 Victor Company Of Japan Optical pickup and optical components

Similar Documents

Publication Publication Date Title
JP2000353332A (ja) 光出力モジュール及びこれを採用した互換型光ピックアップ装置
JP2002025096A (ja) 半導体光源、光ピックアップヘッド装置及び情報記録再生装置
JP2004355790A (ja) ホログラム結合体およびその製造方法、ホログラムレーザユニットならびに光ピックアップ装置
WO2005093736A1 (ja) 光ピックアップ
US7697396B2 (en) Optical integrated unit and optical pickup device including same
KR100717020B1 (ko) 기록층의 두께 변화에 따른 구면 수차를 탐지하고 보상하는광픽업 장치
JP4156484B2 (ja) 光ピックアップ
JP4347280B2 (ja) 光集積ユニットおよびその調整方法、ならびに光ピックアップ装置
JP4753769B2 (ja) 対物レンズ保持装置、光ピックアップ装置
JP5126074B2 (ja) 光ピックアップ及び光デバイス
JP2006252612A (ja) 光ピックアップ装置
KR100546351B1 (ko) 호환형 광픽업 및 이를 채용한 광 기록 및/또는 재생기기
US7177242B2 (en) Condenser with first and second photodetectors with three sections each and having focal points before and after the surface of detectors
JP2003272218A (ja) 光ピックアップ装置および光再生装置
JP2006066011A (ja) ホログラムレーザユニットおよび光ピックアップ装置
JP2004039109A (ja) 光学素子及びその調整方法並びにそれを用いた光ピックアップ装置及び光再生装置
KR100659868B1 (ko) 광 픽업 장치
KR100324272B1 (ko) 광픽업 장치
JP4742159B2 (ja) 光情報再生方法
US20080159113A1 (en) Optical Pickup Apparatus
KR100211819B1 (ko) 광 픽업 장치
KR20050074565A (ko) 광학 헤드 및 광디스크 장치
US8045428B2 (en) Optical pickup apparatus
JP2005310298A (ja) 光ピックアップおよび光情報処理装置
JP2007109280A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804