JP2006250036A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2006250036A
JP2006250036A JP2005067613A JP2005067613A JP2006250036A JP 2006250036 A JP2006250036 A JP 2006250036A JP 2005067613 A JP2005067613 A JP 2005067613A JP 2005067613 A JP2005067613 A JP 2005067613A JP 2006250036 A JP2006250036 A JP 2006250036A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
altitude
temperature
ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005067613A
Other languages
Japanese (ja)
Inventor
Takekazu Ito
丈和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005067613A priority Critical patent/JP2006250036A/en
Publication of JP2006250036A publication Critical patent/JP2006250036A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique by which the saturation of a purifying ability of a purifying catalyst can be suppressed when used on high grounds in an exhaust emission control device for an internal combustion engine equipped with the purifying catalyst having NO<SB>x</SB>occlusion ability and/or PM trapping ability. <P>SOLUTION: The exhaust emission control device for an internal combustion engine for causing the internal combustion engine to perform a low temperature combustion operation when sulfur poisoning is eliminated or the PM trapping ability is regenerated of a filter having the NO<SB>x</SB>occlusion ability and/or the PM trapping ability is characterized in that, by further narrowing the performing region of the low temperature combustion operation as the altitude of the service space becomes higher, elimination of sulfur poisoning or regeneration of the PM trapping ability can be performed while suppressing overheating of the purifying catalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、NO吸蔵能および/またはPM捕集能を有する浄化触媒を備えた内燃機関の排気浄化技術に関する。 The present invention relates to an exhaust purification technology for an internal combustion engine provided with a purification catalyst having NO x storage ability and / or PM collection ability.

内燃機関の排気浄化装置としては、排気の酸素濃度が高い時は排気中のNOを吸蔵(吸収)し排気の酸素濃度が低い時は吸蔵していたNOを放出及び浄化する吸蔵還元型NO触媒や、排気中の微粒子(PM)を捕集するパティキュレートフィルタ等の浄化触媒を備えたものが知られている。 As an exhaust gas purification device for an internal combustion engine, when the oxygen concentration of the exhaust gas is high, NO x in the exhaust gas is occluded (absorbed), and when the oxygen concentration of the exhaust gas is low, the occluded reduction type that releases and purifies the stored NO x the NO x catalyst and, those with purifying catalyst such as a particulate filter for trapping particulate (PM) in the exhaust gas are known.

上記したような内燃機関の排気浄化装置は、吸蔵還元型NO触媒の硫黄被毒を解消させるためのSO再生処理やパティキュレートフィルタのPM捕集能力を再生させるためのPM再生処理等を適宜行う必要がある。 An exhaust purification system of an internal combustion engine as described above, the PM regeneration treatment or the like for reproducing the SO x regeneration process and PM trapping ability of the particulate filter for causing the eliminating sulfur poisoning of the storage-reduction the NO x catalyst It is necessary to do it appropriately.

SO再生処理やPM再生処理を実行する方法の1つとして、内燃機関を低温燃焼運転させる方法が知られている(例えば、特許文献1を参照)。
特開2003−120373号公報 特開2001−349230号公報 特開2003−120365号公報
One way to perform the SO x regeneration process and the PM regeneration processing, there is known a method for low temperature combustion operating an internal combustion engine (e.g., see Patent Document 1).
JP 2003-120373 A JP 2001-349230 A JP 2003-120365 A

上記したようなSO再生処理やPM再生処理の実行時には、浄化触媒におけるSOやPMの浄化反応によって発生する熱量と、浄化触媒を通過する排気によって該浄化触媒から奪われる熱量との収支が適当に釣り合うため、浄化触媒の過熱や過冷却が抑制される。 During the execution of the SO x regeneration process and the PM regeneration process as described above, the balance between the amount of heat generated by the purification reaction of SO x and PM in the purification catalyst and the amount of heat taken away from the purification catalyst by the exhaust gas passing through the purification catalyst is In order to balance appropriately, overheating and overcooling of the purification catalyst are suppressed.

しかしながら、高度の高い場所(高地)で内燃機関が使用される場合には、空気密度の低下に伴って排気の密度も低下するため、浄化触媒から排気へ伝達される熱量が過少となる可能性がある。   However, when the internal combustion engine is used at a high altitude (high altitude), the exhaust density also decreases as the air density decreases, so the amount of heat transferred from the purification catalyst to the exhaust may be too small. There is.

SO再生処理やPM再生処理の実行時に浄化触媒から排気へ伝達される熱量が過少になると、浄化触媒が過熱して劣化等を誘発する可能性がある。これに対し、高地におけるSO再生処理及びPM再生処理の実行を禁止する方法も考えられるが、内燃機関が高地で使用される期間が長くなると、浄化触媒の浄化能力が飽和して排気エミッショの悪化を招く可能性がある。 When SO x amount of heat transferred from the purifying catalyst during execution of the regeneration process and the PM regeneration processing to the exhaust is too small, there is a possibility to induce deterioration purifying catalyst is overheated. In contrast, a method of inhibiting the execution of the SO x regeneration process and the PM regeneration processing is also contemplated in the highland, the internal combustion engine when a period used at high altitude increases, the purification catalyst purification ability of the exhaust Emissions; saturated It can lead to deterioration.

本発明は、上記した実情に鑑みてなされたものであり、その目的は、NO吸蔵能および/またはPM捕集能を有する浄化触媒を備えた内燃機関の排気浄化装置において、高地使用時に浄化触媒の浄化能力が飽和することを抑制可能な技術を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to purify at the time of high altitude use in an exhaust gas purification apparatus for an internal combustion engine provided with a purification catalyst having NO x storage ability and / or PM collection ability. An object of the present invention is to provide a technology capable of suppressing saturation of the purification capacity of a catalyst.

本発明は、上記した課題を解決するために、NO吸蔵能および/またはPM捕集能を有した浄化触媒の硫黄被毒を解消又はPM捕集能を再生させる時に内燃機関を低温燃焼運転させる内燃機関の排気浄化装置において、使用場所の高度が高くなるほど低温燃焼運転の実行領域を狭めることにより、浄化触媒の過熱を抑制しつつ硫黄被毒の解消やPM捕集能の再生を行えるようにしたことを特徴とする。 In order to solve the above-described problems, the present invention eliminates sulfur poisoning of a purification catalyst having NO x storage capacity and / or PM collection capacity or regenerates PM collection capacity at low temperature combustion operation. In the exhaust gas purification device of the internal combustion engine to be used, it is possible to eliminate sulfur poisoning and regenerate the PM trapping ability while suppressing the overheating of the purification catalyst by narrowing the execution region of the low temperature combustion operation as the altitude of use increases. It is characterized by that.

詳細には、本発明に係る内燃機関の排気浄化装置は、内燃機関が使用される場所の高度を検出する高度検出手段と、高度検出手段により検出される高度が高くなるほど低温燃焼運転可能な機関負荷の上限を低くする制限手段と、を備えるようにした。   Specifically, an exhaust emission control device for an internal combustion engine according to the present invention includes an altitude detection means for detecting an altitude at a place where the internal combustion engine is used, and an engine capable of low-temperature combustion operation as the altitude detected by the altitude detection means increases. Limiting means for lowering the upper limit of the load.

内燃機関が低温燃焼運転されている時には、浄化触媒においてSOやPMの浄化反応によって発生する熱量と、浄化触媒を通過する排気によって該浄化触媒から奪われる熱量との収支が適当に釣り合うため、浄化触媒が所望の目標温度域に保たれる。 When the internal combustion engine is operated at low temperature combustion, the balance between the amount of heat generated by the purification reaction of SO x and PM in the purification catalyst and the amount of heat taken away from the purification catalyst by the exhaust gas passing through the purification catalyst is appropriately balanced. The purification catalyst is maintained at a desired target temperature range.

しかしながら、内燃機関が高度の高い場所(高地)で使用されている時に通常通り(平地と同様)に低温燃焼運転が行われると、酸素不足による燃焼安定性の低下を回避するために内燃機関の目標空燃比をリーン側へ補正する必要がある。このような場合に、浄化触媒を所望の高温域まで昇温させるには、浄化触媒へ別途供給される燃料等の添加剤を増量しなければならない。このため、排気により浄化触媒から奪われる熱量が減少する上に浄化触媒で発生する反応熱量が増加する。その結果、浄化触媒が過昇温し易くなる。   However, when the internal combustion engine is used at a high altitude (high altitude) and the low-temperature combustion operation is performed as usual (similar to the flat ground), the internal combustion engine is prevented from deteriorating in combustion stability due to lack of oxygen. It is necessary to correct the target air-fuel ratio to the lean side. In such a case, in order to raise the temperature of the purification catalyst to a desired high temperature range, it is necessary to increase the amount of additives such as fuel separately supplied to the purification catalyst. For this reason, the amount of heat taken away from the purification catalyst by the exhaust gas is reduced, and the amount of reaction heat generated in the purification catalyst is increased. As a result, the purification catalyst is likely to overheat.

これに対し、内燃機関が使用される場所の高度が高くなるほど低温燃焼運転可能な機関負荷の上限が低くされると、低温燃焼運転可能な機関運転領域が狭くなるものの浄化触媒の過昇温を抑制しつつ硫黄被毒の解消やPM捕集能の再生を行うことが可能となる。   On the other hand, if the upper limit of the engine load capable of low-temperature combustion operation is lowered as the altitude of the place where the internal combustion engine is used becomes higher, the engine operating range in which low-temperature combustion operation can be performed becomes narrow, but the excessive temperature rise of the purification catalyst is suppressed. In addition, it is possible to eliminate sulfur poisoning and regenerate the PM trapping ability.

その結果、高地における内燃機関の使用期間(運転時間)が長くなるような場合であっても浄化触媒の浄化能が飽和し難くなり、以て排気エミッションの悪化を抑制することが可能となる。   As a result, even if the use period (operating time) of the internal combustion engine at high altitude is long, the purification ability of the purification catalyst is hardly saturated, and it is possible to suppress the deterioration of exhaust emission.

本発明において、制限手段は、高度検出手段により検出された高度が所定値以上となった場合には低温燃焼運転実行領域をアイドル運転領域に限定するようにしてもよい。内燃機関がアイドル運転状態にあるときは、内燃機関の排気に含有される熱量が少なくなる(排気温度が低くなるため)。このため、高度が比較的高い場合であっても浄化触媒の過昇温を抑制しつつ硫黄被毒の解消やPM捕集能の再生を行うことが可能となる。   In the present invention, the limiting means may limit the low-temperature combustion operation execution area to the idle operation area when the altitude detected by the altitude detection means exceeds a predetermined value. When the internal combustion engine is in an idle operation state, the amount of heat contained in the exhaust gas of the internal combustion engine is reduced (because the exhaust temperature is lowered). For this reason, even if the altitude is relatively high, it is possible to eliminate sulfur poisoning and regenerate the PM trapping ability while suppressing the excessive temperature rise of the purification catalyst.

また、本発明において、再生制御手段は、低温燃焼運転を実行する際の目標温度を段階的に高くようにしてもよい。この場合、浄化触媒に吸蔵或いは捕集されたSO或いはPMが一斉に反応し難くなるため、浄化触媒の過昇温を抑え易くなるとともに硫化硫黄(HS)の発生量を抑えることも可能になる。 In the present invention, the regeneration control means may increase the target temperature at the time of executing the low temperature combustion operation stepwise. In this case, since SO x or PM occluded or collected by the purification catalyst becomes difficult to react at the same time, it is easy to suppress the excessive temperature rise of the purification catalyst and also suppress the generation amount of sulfur sulfide (H 2 S). It becomes possible.

尚、本発明において、高度検出手段は、電波を発射して地表面からの反射時間を測る電波高度計のように高度自体を検出するものであってもよく、大気圧の変化を検出するものであってもよい。   In the present invention, the altitude detection means may detect altitude itself, such as a radio altimeter that emits radio waves and measures the reflection time from the ground surface, and detects changes in atmospheric pressure. There may be.

本発明によれば、NO吸蔵能および/またはPM捕集能を有する浄化触媒を備えた内燃機関の排気浄化装置において、内燃機関が高地で使用される場合に浄化触媒の過昇温を抑制しつつ硫黄被毒の解消やPM捕集能の再生を行うことが可能となる。 According to the present invention, in an exhaust gas purification apparatus for an internal combustion engine provided with a purification catalyst having NO x storage ability and / or PM collection ability, excessive temperature rise of the purification catalyst is suppressed when the internal combustion engine is used at high altitude. In addition, it is possible to eliminate sulfur poisoning and regenerate the PM trapping ability.

その結果、内燃機関が高地で使用される場合であっても浄化触媒の浄化能が飽和し難くなり、以て排気エミッションの悪化を抑制することが可能になる。   As a result, even when the internal combustion engine is used at a high altitude, the purification ability of the purification catalyst becomes difficult to saturate, and it becomes possible to suppress the deterioration of exhaust emission.

以下、本発明の具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

先ず、本発明の第1の実施例について図1〜図2に基づいて説明する。図1は、本発明を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)である。内燃機関1は、複数のシリンダ2を有し、各シリンダ2にはシリンダ2内へ直接燃料を噴射する燃料噴射弁3が配置されている。   First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine). The internal combustion engine 1 has a plurality of cylinders 2, and each cylinder 2 is provided with a fuel injection valve 3 that directly injects fuel into the cylinder 2.

内燃機関1には吸気通路4が接続されている。吸気通路4には遠心過給器(ターボチャージャ)5のコンプレッサ50が配置されている。コンプレッサ50より下流の吸気通路4には給気冷却器(インタークーラ)6が配置されている。インタークーラ6より下流の吸気通路4には吸気絞り弁13が配置されている。   An intake passage 4 is connected to the internal combustion engine 1. A compressor 50 of a centrifugal supercharger (turbocharger) 5 is disposed in the intake passage 4. An intake air cooler (intercooler) 6 is disposed in the intake passage 4 downstream of the compressor 50. An intake throttle valve 13 is disposed in the intake passage 4 downstream of the intercooler 6.

また、内燃機関1には排気通路7が接続されている。排気通路7の途中には、ターボチャージャ5のタービン51が配置されている。タービン51より下流の排気通路7には、本発明の浄化触媒としてのフィルタ8が配置されている。このフィルタ8は、排気中のPMを捕集するパティキュレートフィルタの担体に吸蔵還元型NOx触媒を担持したものである。   An exhaust passage 7 is connected to the internal combustion engine 1. A turbine 51 of the turbocharger 5 is disposed in the middle of the exhaust passage 7. A filter 8 as a purification catalyst of the present invention is disposed in the exhaust passage 7 downstream from the turbine 51. The filter 8 is a particulate filter carrier that collects PM in the exhaust, and the NOx storage reduction catalyst is supported on the carrier.

タービン51より上流の排気通路7には、該排気通路7内を流れる排気中へ燃料を添加する燃料添加弁9が配置されている。フィルタ8より下流の排気通路7には排気温度センサ10が配置されている。   In the exhaust passage 7 upstream from the turbine 51, a fuel addition valve 9 for adding fuel to the exhaust flowing in the exhaust passage 7 is disposed. An exhaust temperature sensor 10 is disposed in the exhaust passage 7 downstream of the filter 8.

吸気絞り弁13より下流の吸気通路4とタービン51より上流の排気通路7とは、EGR通路11によって接続されている。EGR通路11の途中には、EGRクーラ12、及びEGR弁13が配置されている。   The intake passage 4 downstream of the intake throttle valve 13 and the exhaust passage 7 upstream of the turbine 51 are connected by an EGR passage 11. In the middle of the EGR passage 11, an EGR cooler 12 and an EGR valve 13 are arranged.

このように構成された内燃機関1には、ECU14が併設されている。ECU14は、CPU、ROM、RAM、バックアップRAM等から構成される算術論理演算回路である。   The internal combustion engine 1 configured as described above is provided with an ECU 14. The ECU 14 is an arithmetic and logic circuit that includes a CPU, ROM, RAM, backup RAM, and the like.

ECU14は、上記した排気温度センサ10に加え大気圧センサ15等の各種センサと電気的に接続され、各種センサの出力信号を入力可能となっている。また、ECU14は、燃料噴射弁3、燃料添加弁9、吸気絞り弁13、EGR弁15等と電気的に接続され、それらを電気的に制御することができるようになっている。   The ECU 14 is electrically connected to various sensors such as the atmospheric pressure sensor 15 in addition to the exhaust gas temperature sensor 10 described above, and can input output signals of various sensors. The ECU 14 is electrically connected to the fuel injection valve 3, the fuel addition valve 9, the intake throttle valve 13, the EGR valve 15, and the like, and can electrically control them.

ECU14は、各種センサの出力信号に基づいて燃料噴射制御等の既知の制御に加え、本発明の要旨となるSOx再生処理を実行する。以下、SOx再生処理について具体的に述べる。   The ECU 14 executes SOx regeneration processing, which is the gist of the present invention, in addition to known control such as fuel injection control based on the output signals of various sensors. Hereinafter, the SOx regeneration process will be specifically described.

吸蔵還元型NOx触媒の硫黄被毒は該吸蔵還元型NOx触媒が凡そ600℃以上の高温且つリッチな雰囲気に曝された時に解消される。吸蔵還元型NOx触媒を高温且つリッチな雰囲気にする方法としては、内燃機関1を低温燃焼運転させる方法が知られている。   The sulfur poisoning of the NOx storage reduction catalyst is eliminated when the NOx storage reduction catalyst is exposed to a high temperature and rich atmosphere of approximately 600 ° C. or higher. As a method for bringing the NOx storage reduction catalyst into a high temperature and rich atmosphere, a method of operating the internal combustion engine 1 at low temperature combustion is known.

内燃機関1の低温燃焼運転は、EGRガス量を増加させることにより実現される。EGRガスが内燃機関1の吸気中に混入されると、気筒2内における燃焼温度が低下してNOxの発生量を抑えることができる。その際、吸気中に含まれるEGRガスの割合が所定の割合より高くなると煤の発生量が急激に増加してしまうため、通常のEGR制御は前記所定の割合より低い割合で行われる。   The low-temperature combustion operation of the internal combustion engine 1 is realized by increasing the EGR gas amount. When EGR gas is mixed into the intake air of the internal combustion engine 1, the combustion temperature in the cylinder 2 is lowered, and the amount of NOx generated can be suppressed. At that time, if the ratio of the EGR gas contained in the intake air becomes higher than a predetermined ratio, the amount of soot generated increases abruptly, so that normal EGR control is performed at a ratio lower than the predetermined ratio.

ところで、EGRガス割合が前記所定の割合より更に高くされていくと、再び煤が減少していき最終的には煤が殆ど発生しなくなる。これは、炭化水素(HC)が煤となり得る
温度に比して気筒2内の燃焼温度が低くなるためであると考えられる。
By the way, when the EGR gas ratio is further increased from the predetermined ratio, soot is reduced again, and finally soot is hardly generated. This is presumably because the combustion temperature in the cylinder 2 is lower than the temperature at which hydrocarbons (HC) can become soot.

煤に至る前に成長が停止した炭化水素(HC)は、フィルタ8に担持された吸蔵還元型NOx触媒の酸化能によって容易に酸化するため、フィルタ8が炭化水素(HC)の酸化反応熱を受けて昇温するようになる。また、上記したようにEGRガス割合が高くされると、吸気中に含まれる新気の量が減少するため、吸気及び排気がリッチな雰囲気となる。   The hydrocarbon (HC) whose growth has stopped before reaching soot is easily oxidized by the oxidation ability of the NOx storage reduction catalyst supported on the filter 8, so that the filter 8 generates the heat of oxidation reaction of the hydrocarbon (HC). In response, the temperature rises. Further, as described above, when the EGR gas ratio is increased, the amount of fresh air contained in the intake air is reduced, so that the atmosphere of the intake and exhaust becomes rich.

従って、内燃機関1が低温燃焼運転させられると、煤に代表される微粒子(PM)の排出量が抑制されるとともに、フィルタ8を高温且つリッチな雰囲気にすることができる。   Therefore, when the internal combustion engine 1 is operated at low temperature combustion, the emission amount of particulates (PM) represented by soot is suppressed, and the filter 8 can be made a high temperature and rich atmosphere.

尚、内燃機関1が高負荷運転されている時に低温燃焼運転を行うべくEGRガス量を増加させても気筒2内で燃焼に供される燃料量が多くなると同時に燃焼温度が高くなるため、炭化水素(HC)を煤に至る前の状態に留めることが困難となる。依って、上記したような低温燃焼運転は内燃機関1が高負荷運転状態にない時(言い換えれば、内燃機関1が中・低負荷運転状態にある時)に実施されることが好ましい。   Note that even if the amount of EGR gas is increased to perform low-temperature combustion operation when the internal combustion engine 1 is operating at a high load, the amount of fuel provided for combustion in the cylinder 2 increases and at the same time the combustion temperature increases. It becomes difficult to keep hydrogen (HC) in the state before reaching the soot. Therefore, the low-temperature combustion operation as described above is preferably performed when the internal combustion engine 1 is not in a high load operation state (in other words, when the internal combustion engine 1 is in a medium / low load operation state).

内燃機関1の高負荷運転状態時に吸蔵還元型NOx触媒の硫黄被毒を解消させる場合は、燃料噴射弁3から燃料をポスト噴射させ、或いは燃料添加弁9から排気中へ燃料を添加させることにより、フィルタ8を昇温させるとともにリッチな雰囲気に曝すようにしてもよい。   In order to eliminate sulfur poisoning of the NOx storage reduction catalyst when the internal combustion engine 1 is in a high load operation state, fuel is post-injected from the fuel injection valve 3 or fuel is added into the exhaust gas from the fuel addition valve 9. The filter 8 may be heated and exposed to a rich atmosphere.

上記したような方法によりSOx再生処理が実行されている時は、フィルタ8において炭化水素(HC)やSOの酸化・還元反応によって発生する熱量と、フィルタ8を通過する排気によって該フィルタ8から奪われる熱量との収支が適当に釣り合うようになるため、フィルタ8の過昇温が防止される。 When the SOx regeneration treatment is performed by a method as described above, the amount of heat generated by the oxidation-reduction reaction of hydrocarbons (HC) and SO x in the filter 8, from the filter 8 by the exhaust passing through the filter 8 Since the balance with the amount of heat taken is appropriately balanced, overheating of the filter 8 is prevented.

しかしながら、本実施例に係る内燃機関1が高地で使用される場合(例えば、内燃機関1を搭載した車両が高地を走行する場合)には、空気密度の低下によって排気の熱容量が減少するため、上記したような熱量の収支が釣り合わなくなる可能性がある。すなわち、フィルタ8において炭化水素(HC)やSOの酸化・還元反応によって発生する熱量に対して、フィルタ8を通過する排気によって該フィルタ8から奪われる熱量が過少となる可能性がある。 However, when the internal combustion engine 1 according to the present embodiment is used at high altitude (for example, when a vehicle on which the internal combustion engine 1 is mounted travels on high altitude), the heat capacity of the exhaust gas decreases due to the decrease in air density. There is a possibility that the balance of heat amount as described above may not be balanced. That is, for the amount of heat generated by the oxidation-reduction reaction of hydrocarbons (HC) and SO x in the filter 8, amount of heat removed from the filter 8 by the exhaust gas passing through the filter 8 may become too small.

このように熱量の収支が釣り合わなくなると、フィルタ8が過昇温して吸蔵還元型NOx触媒の熱劣化等を誘発する虞がある。この傾向は、高度が高く且つ排気温度が高くなるほど(すなわち、内燃機関1の負荷が高くなるほど)顕著となる。   If the balance of heat quantity is not balanced in this way, the filter 8 may overheat and induce thermal degradation or the like of the NOx storage reduction catalyst. This tendency becomes more prominent as the altitude is higher and the exhaust gas temperature is higher (that is, the load on the internal combustion engine 1 is higher).

そこで、本実施例におけるSOx再生処理では、ECU14は、大気圧センサ15の出力信号に基づいて内燃機関1が使用される場所の高度を判定し、判定された高度が平地の高度(大気圧が略1気圧となる高度)より所定量(例えば、1000m)以上高い場合には判定された高度が高くなるほどSOx再生処理の実行領域、言い換えれば低温燃焼運転の実行領域を狭めるようにした。   Therefore, in the SOx regeneration process in the present embodiment, the ECU 14 determines the altitude of the place where the internal combustion engine 1 is used based on the output signal of the atmospheric pressure sensor 15, and the determined altitude is the altitude of the flat ground (the atmospheric pressure is When the altitude determined is higher than a predetermined amount (for example, 1000 m) higher than the altitude of approximately 1 atm, the SOx regeneration process execution region, in other words, the low temperature combustion operation execution region is narrowed.

具体的には、ECU14は、図2に示すように、低温燃焼運転を実行可能な機関負荷(燃料噴射量)の上限値及び機関回転数の上限値を高度が高くなるほど低く制限する。例えば、図2の例では、高度が平地から1000mまでの範囲にある時は、機関負荷及び機関回転数は通常通りに設定される。   Specifically, as shown in FIG. 2, the ECU 14 limits the upper limit value of the engine load (fuel injection amount) and the upper limit value of the engine speed that can execute the low temperature combustion operation to be lower as the altitude is higher. For example, in the example of FIG. 2, when the altitude is in a range from flat ground to 1000 m, the engine load and the engine speed are set as usual.

高度が1000〜3000mまでの範囲にあるときは、機関負荷の上限値が図中のQmax1000〜Qmax3000までの範囲内において高度が高くなるほど低く設定され
るとともに、機関回転数の上限値は図中のNemax1000〜Nemax3000までの範囲内において高度が高くなるほど低く設定される。
When the altitude is in the range of 1000 to 3000 m, the upper limit value of the engine load is set lower as the altitude is higher within the range of Qmax 1000 to Qmax 3000 in the figure, and the upper limit value of the engine speed is Within the range from Nemax 1000 to Nemax 3000, the higher the altitude, the lower the setting.

高度が3000mを越えるときは、機関負荷の上限値がQmax3000に制限されるとともに機関負荷の上限値がNemax3000に制限される。ここで、Qmax3000及びNemax3000は、内燃機関1がアイドル運転状態にあるときの負荷及び機関回転数と同等になるように設定される。このため、高度が3000mを越える時には、内燃機関1がアイドル運転状態にある時に限り低温燃焼運転が実行されるようになる。   When the altitude exceeds 3000 m, the upper limit value of the engine load is limited to Qmax3000 and the upper limit value of the engine load is limited to Nemax3000. Here, Qmax 3000 and Nemax 3000 are set to be equal to the load and engine speed when the internal combustion engine 1 is in the idling operation state. For this reason, when the altitude exceeds 3000 m, the low-temperature combustion operation is executed only when the internal combustion engine 1 is in the idle operation state.

図2に示した例のように、低温燃焼運転を実行可能な機関負荷及び機関回転数の上限値が高度の変化に反比例して低くされると、高度が高くなるほど低温燃焼運転の実行可能領域が狭くなる。すなわち、低温燃焼運転の実行領域は、高度が高くなるほど負荷及び機関回転数が低い領域でのみ行われるようになる。   As in the example shown in FIG. 2, when the engine load capable of performing the low temperature combustion operation and the upper limit value of the engine speed are lowered in inverse proportion to the change in altitude, the feasible region of the low temperature combustion operation becomes higher as the altitude increases. Narrow. That is, the execution region of the low-temperature combustion operation is performed only in a region where the load and the engine speed are lower as the altitude is higher.

低温燃焼運転によるフィルタ8の過昇温は高度が高くなるほど発生し易くなるとともに機関負荷が高くなるほど発生し易くなるが、低温燃焼運転を実行可能な機関負荷の上限値が高度の上昇に反比例して低くされると、低温燃焼運転の実行によるフィルタ8の過昇温が発生し難くなる。   The excessive temperature rise of the filter 8 due to the low temperature combustion operation is more likely to occur as the altitude is higher and the engine load is higher, but the upper limit value of the engine load capable of performing the low temperature combustion operation is inversely proportional to the increase in altitude. If the temperature is lowered, it becomes difficult for the filter 8 to overheat due to the low temperature combustion operation.

従って、本実施例におけるSOx再生処理によれば、高度が高くなるほど低温燃焼運転を実行可能な機関運転領域が狭くなるものの、フィルタ8の過昇温を抑制しつつ硫黄被毒を解消することができる。依って、高地における内燃機関1の使用期間(運転時間)が長くなるような場合であってもフィルタ8の浄化能(この場合は、吸蔵還元型NOx触媒のNOx吸蔵能)が飽和し難くなり、排気エミッションの悪化が抑制されるようになる。   Therefore, according to the SOx regeneration process in the present embodiment, the engine operation region in which the low temperature combustion operation can be performed becomes narrower as the altitude becomes higher, but the sulfur poisoning can be eliminated while suppressing the excessive temperature rise of the filter 8. it can. Therefore, even if the period of use (operating time) of the internal combustion engine 1 at a high altitude is long, the purifying ability of the filter 8 (in this case, the NOx occlusion ability of the NOx storage reduction catalyst) is not easily saturated. As a result, deterioration of exhaust emission is suppressed.

また、高度が3000mを越えるような場合であっても、低温燃焼運転の実行領域をアイドル運転領域に限定することにより、フィルタ8の過昇温を抑制しつつ硫黄被毒を解消させることが可能となる。   Further, even when the altitude exceeds 3000 m, it is possible to eliminate sulfur poisoning while suppressing the excessive temperature rise of the filter 8 by limiting the execution region of the low temperature combustion operation to the idle operation region. It becomes.

尚、本実施例では、SOx再生処理の実行方法として低温燃焼運転を例に挙げたが、燃料噴射弁3から燃料をポスト噴射させ、或いは燃料添加弁9から排気中へ燃料を添加させることによりSOx再生処理を行う方法においても高度に応じてポスト噴射可能な運転領域又は排気中への燃料添加可能な運転領域を狭めることにより本実施例と同様の効果を得ることができる。   In the present embodiment, the low temperature combustion operation is taken as an example of the execution method of the SOx regeneration process. However, by post-injecting fuel from the fuel injection valve 3 or adding fuel into the exhaust gas from the fuel addition valve 9. Also in the method of performing the SOx regeneration process, the same effect as that of the present embodiment can be obtained by narrowing the operation region in which post injection can be performed or the operation region in which fuel can be added to exhaust gas depending on altitude.

また、SOx再生処理においてはフィルタ8の温度(図1の例では、排気温度センサ10の出力信号)が所望の目標温度となるようにEGRガスの割合(EGR弁13の開度)がフィードバック制御されるが、その際の目標温度は段階的に高くされるようにしてもよい。   In the SOx regeneration process, the ratio of EGR gas (the opening degree of the EGR valve 13) is feedback controlled so that the temperature of the filter 8 (the output signal of the exhaust temperature sensor 10 in the example of FIG. 1) becomes a desired target temperature. However, the target temperature at that time may be increased stepwise.

例えば、ECU14は、SOx再生処理の実行初期における目標温度を通常の目標温度(例えば、平地における目標温度)より低く設定し、SOx再生処理実行時間が長くなるほど目標温度が高くなるようにしても良い。   For example, the ECU 14 may set the target temperature at the initial stage of execution of the SOx regeneration process to be lower than the normal target temperature (for example, the target temperature on flat ground), and the target temperature becomes higher as the SOx regeneration process execution time becomes longer. .

吸蔵還元型NOx触媒に吸蔵されたSOxは個々の吸蔵状態によって浄化可能な温度域が異なるため、上記したように目標温度が段階的に高くされると吸蔵還元型NOx触媒に吸蔵されたSOxが一斉に浄化反応を起こし難くなる。その結果、フィルタ8の過昇温を抑えやすくなるとともに、硫化硫黄(HS)の単位時間当たりの発生量を抑えることも可能になる。 Since SOx stored in the NOx storage reduction catalyst has a different temperature range that can be purified depending on the individual storage states, the SOx stored in the NOx storage reduction catalyst is all at once when the target temperature is increased stepwise as described above. It is difficult to cause a purification reaction. As a result, it becomes easy to suppress the excessive temperature rise of the filter 8 and it is also possible to suppress the generation amount of sulfur sulfide (H 2 S) per unit time.

また、本実施例では、フィルタ8のSOx再生処理の実行可能領域を高度が高くなるほど狭める例について述べたが、フィルタ8のPM再生処理の実行可能領域を高度が高くなるほど狭めるようにしてもよい。   In the present embodiment, the example in which the SOx regeneration process executable region of the filter 8 is narrowed as the altitude increases is described. However, the PM regeneration process executable region of the filter 8 may be narrowed as the altitude increases. .

本発明を適用する内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. SOx再生処理を実行可能な運転領域と高度との関係を示す図である。It is a figure which shows the relationship between the driving | operation area | region which can perform SOx reproduction | regeneration processing, and altitude.

符号の説明Explanation of symbols

1・・・・・内燃機関
8・・・・・フィルタ(浄化触媒)
11・・・・EGR
12・・・・EGRクーラ
13・・・・EGR弁
14・・・・ECU
15・・・・大気圧センサ(高度検出手段)
1 ... Internal combustion engine 8 ... Filter (Purification catalyst)
11 .... EGR
12 .... EGR cooler 13 .... EGR valve 14 .... ECU
15 .... Atmospheric pressure sensor (altitude detection means)

Claims (3)

NO吸蔵能および/またはPM捕集能を有する浄化触媒と、前記浄化触媒の硫黄被毒を解消又はPM捕集能を再生させる時に内燃機関を低温燃焼運転させて前記浄化触媒を所望の目標温度まで昇温させる再生制御手段とを備えた内燃機関の排気浄化装置において、
前記内燃機関が使用される場所の高度を検出する高度検出手段と、
前記高度検出手段により検出される高度が高くなるほど、低温燃焼運転可能な機関負荷の上限を低くする制限手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
A purification catalyst having NO x storage ability and / or PM collection ability, and the purification catalyst is operated at a low temperature when the sulfur poisoning of the purification catalyst is eliminated or when the PM collection ability is regenerated. In an exhaust gas purification apparatus for an internal combustion engine comprising a regeneration control means for raising the temperature to a temperature,
Altitude detecting means for detecting the altitude of the place where the internal combustion engine is used;
Limiting means for lowering the upper limit of the engine load capable of low-temperature combustion operation, as the altitude detected by the altitude detecting means becomes higher,
An exhaust emission control device for an internal combustion engine, comprising:
請求項1において、前記制限手段は、前記高度検出手段により検出される高度が所定値以上となった場合には、低温燃焼運転実行領域をアイドル運転領域に限定することを特徴とする内燃機関の排気浄化装置。 2. The internal combustion engine according to claim 1, wherein the limiting means limits the low-temperature combustion operation execution area to an idle operation area when the altitude detected by the altitude detection means exceeds a predetermined value. Exhaust purification device. 請求項1又は2において、前記再生制御手段は、低温燃焼運転を実行する際の目標温度を段階的に高くすることを特徴とする内燃機関の排気浄化装置。 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the regeneration control means raises the target temperature at the time of executing the low temperature combustion operation in a stepwise manner.
JP2005067613A 2005-03-10 2005-03-10 Exhaust emission control device for internal combustion engine Pending JP2006250036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067613A JP2006250036A (en) 2005-03-10 2005-03-10 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067613A JP2006250036A (en) 2005-03-10 2005-03-10 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006250036A true JP2006250036A (en) 2006-09-21

Family

ID=37090791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067613A Pending JP2006250036A (en) 2005-03-10 2005-03-10 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006250036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443547B1 (en) * 2011-07-04 2014-09-23 가부시키가이샤 고마쓰 세이사쿠쇼 Regeneration control device for diesel particulate filter and regeneration control method therefor
WO2016098895A1 (en) * 2014-12-19 2016-06-23 いすゞ自動車株式会社 EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443547B1 (en) * 2011-07-04 2014-09-23 가부시키가이샤 고마쓰 세이사쿠쇼 Regeneration control device for diesel particulate filter and regeneration control method therefor
US9046017B2 (en) 2011-07-04 2015-06-02 Komatsu Ltd. Regeneration control device and regeneration control method of diesel particulate filter
WO2016098895A1 (en) * 2014-12-19 2016-06-23 いすゞ自動車株式会社 EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
JP2016118135A (en) * 2014-12-19 2016-06-30 いすゞ自動車株式会社 Exhaust emission control system

Similar Documents

Publication Publication Date Title
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
JP5257024B2 (en) Exhaust gas purification device for internal combustion engine
JP4314135B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP4267414B2 (en) Catalyst control device for internal combustion engine
JP4699331B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2013014788A1 (en) Exhaust gas purification device for internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP6230005B1 (en) Engine exhaust purification system
JP4254664B2 (en) Exhaust gas purification device for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2002188430A (en) Exhaust gas purifying device of internal combustion engine
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP2019196735A (en) Oxidation catalyst regeneration method and oxidation catalyst control device
JP6270247B1 (en) Engine exhaust purification system
JP2006250036A (en) Exhaust emission control device for internal combustion engine
JP2005076505A (en) Excessive sulfur poisoning recovery control method and apparatus for exhaust emission control catalyst
JP4357241B2 (en) Exhaust purification equipment
JP2008128212A (en) Exhaust emission control device of internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP7122873B2 (en) Exhaust gas temperature control method and exhaust gas purification device
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2009036153A (en) Exhaust-emission purifying apparatus of internal combustion engine
JP2003254041A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020