JP2006249150A - Manufacturing method of bell-structured resin particle - Google Patents
Manufacturing method of bell-structured resin particle Download PDFInfo
- Publication number
- JP2006249150A JP2006249150A JP2005064460A JP2005064460A JP2006249150A JP 2006249150 A JP2006249150 A JP 2006249150A JP 2005064460 A JP2005064460 A JP 2005064460A JP 2005064460 A JP2005064460 A JP 2005064460A JP 2006249150 A JP2006249150 A JP 2006249150A
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- monomer solution
- solution
- resin particles
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、樹脂からなる殻体の空孔中に核微粒子が内包された鈴構造樹脂粒子を容易に製造することができる鈴構造樹脂粒子の製造方法に関する。 The present invention relates to a method for producing bell structure resin particles that can easily produce bell structure resin particles in which core fine particles are encapsulated in pores of a shell made of resin.
近年、振動を吸収したり、音を吸収したりする目的に用いる制振材や遮音板として、鈴構造体が注目されている。鈴構造体とは、殻体の空孔内に、該殻体よりも小さな核微粒子が内包された構造体を意味する。このような鈴構造体に振動や音を照射した場合、入射した運動エネルギーが殻体の空孔内での核微粒子の運動に変換され、消費されることから、極めて高い効率で振動や音を減衰させることができる。例えば、特許文献1には、このような鈴構造体を含む遮音板が記載されている。
In recent years, bell structures have attracted attention as damping materials and sound insulation plates used for the purpose of absorbing vibration and absorbing sound. The bell structure means a structure in which core fine particles smaller than the shell are encapsulated in the holes of the shell. When such a bell structure is irradiated with vibration or sound, the incident kinetic energy is converted into the motion of the nuclear particles in the vacancies of the shell and consumed. Can be attenuated. For example,
特許文献1では、多孔質の板状体の空孔中に核微粒子を配置しているが、例えば、鈴構造を有する粒子(鈴構造粒子)を用いれば、適当なバインダーに鈴構造粒子を懸濁させ塗工することにより、容易に制振性や遮音性が付与された部材を製造することができる。
特許文献2には、中空部を有する殻と、前記中空部に外から入射する運動エネルギーを吸収する核とを有する鈴構造粒子が開示されている。
In
このような鈴構造粒子を製造する方法としては、例えば、特許文献2には、殻と核との間に昇華特性又は蒸発特性を有する中間材を設けて、前記中間材を所定の温度に加熱して前記殻外に昇華又は蒸発させ、前記殻の内部であって前記殻と前記核との間に空間を形成する方法が開示されている。しかしながら、このような方法では昇華特性又は蒸発特性を有する中間材の取扱いが困難であり、工程を特殊な条件下で行う必要があるという問題点があった。
As a method for producing such bell structure particles, for example, in
本発明は、上記現状に鑑み、樹脂からなる殻体の空孔中に核微粒子が内包された鈴構造樹脂粒子を容易に製造することができる鈴構造樹脂粒子の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing bell structure resin particles, which can easily produce bell structure resin particles in which core fine particles are encapsulated in the pores of a shell made of resin in view of the above-described situation. And
本発明は、モノマー成分と重合開始剤とを含有するモノマー溶液中に、前記モノマー溶液と不溶な極性溶液中に核微粒子が分散した核微粒子分散液を添加、攪拌して、前記モノマー溶液中に前記核微粒子分散液からなる液滴が分散した乳化液を調製する一次乳化工程と、前記モノマー溶液中に前記核微粒子分散液からなる液滴が分散した乳化液を、前記モノマー溶液と不溶な極性溶液中に添加、攪拌して、前記核微粒子分散液を内包するモノマー溶液からなる液滴が、前記モノマー溶液と不溶な極性溶液中に分散した乳化液を調製する二次乳化工程と、前記モノマー成分を重合して、前記核微粒子分散液を内包する樹脂粒子を得る重合工程と、前記核微粒子分散液を内包する樹脂粒子から、内包されている極性溶液を除去して鈴構造樹脂粒子を得る乾燥工程とを有する鈴構造樹脂粒子の製造方法である。
以下に本発明を詳述する。
In the monomer solution containing the monomer component and the polymerization initiator, the present invention adds and stirs a fine particle dispersion in which fine particles are dispersed in a polar solution insoluble in the monomer solution, A primary emulsification step of preparing an emulsion in which droplets of the nuclear fine particle dispersion are dispersed, and an emulsion in which droplets of the nuclear fine particle dispersion are dispersed in the monomer solution. A secondary emulsification step of preparing an emulsion in which droplets made of a monomer solution containing the nuclear fine particle dispersion are dispersed in a polar solution insoluble in the monomer solution by adding and stirring in the solution; and the monomer Polymerization step of polymerizing components to obtain resin particles enclosing the core fine particle dispersion, and removing the polar solution contained from the resin particles enclosing the core fine particle dispersion to produce bell structure resin particles A method for producing a tin structure resin particles having a get drying step.
The present invention is described in detail below.
本発明の鈴構造樹脂粒子の製造方法は、モノマー成分と重合開始剤とを含有するモノマー溶液中に、上記モノマー溶液と不溶な極性溶液中に核微粒子が分散した核微粒子分散液を添加、攪拌して、前記モノマー溶液中に前記核微粒子分散液からなる液滴が分散した乳化液(いわゆるW/O型エマルジョン:以下、一次乳化液ともいう)を調製する一次乳化工程を有する。 In the method for producing bell structure resin particles of the present invention, a core particle dispersion in which core particles are dispersed in a monomer solution containing a monomer component and a polymerization initiator is added and stirred. And a primary emulsification step of preparing an emulsion (so-called W / O type emulsion: hereinafter also referred to as a primary emulsion) in which droplets of the nuclear fine particle dispersion are dispersed in the monomer solution.
上記モノマー成分は、重合することにより得られる鈴構造樹脂粒子の殻部分を構成するものである。
上記モノマー成分としては特に限定されず、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン等の芳香族ビニルモノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;塩化ビニル、塩化ビニリデン等のハロゲン含有モノマー;エチレン、プロピレン、ブタジエン;アクリル系モノマー等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。なかでも、アクリル系モノマーを用いた場合には、比較的親水性が高く広い用途に応用可能な鈴構造樹脂粒子が得られることから好ましい。
The said monomer component comprises the shell part of the bell structure resin particle obtained by superposing | polymerizing.
The monomer component is not particularly limited, and examples thereof include aromatic vinyl monomers such as styrene, α-methylstyrene, p-methylstyrene, and p-chlorostyrene; vinyl esters such as vinyl acetate and vinyl propionate; vinyl chloride and chloride. And halogen-containing monomers such as vinylidene; ethylene, propylene, butadiene; acrylic monomers, and the like. These may be used alone or in combination of two or more. Among these, when an acrylic monomer is used, it is preferable because bell structure resin particles having a relatively high hydrophilicity and applicable to a wide range of uses can be obtained.
上記アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、クミル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート;(メタ)アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリル酸、グリシジル(メタ)アクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−アクリロイルオキシエチルフタル酸、イタコン酸、フマル酸、ジメチルアミノメチルメタクリレート等が挙げられる。 Examples of the acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, cumyl (meth) acrylate, cyclohexyl (meth) acrylate, and myristyl (meth) acrylate. , Alkyl (meth) acrylates such as palmityl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate; (meth) acrylonitrile, (meth) acrylamide, (meth) acrylic acid, glycidyl (meth) acrylate, 2- Examples thereof include hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-acryloyloxyethylphthalic acid, itaconic acid, fumaric acid, dimethylaminomethyl methacrylate and the like.
また、上記アクリル系モノマーとしては、多官能のものも用いることができる。多官能アクリル系モノマーを用いた場合には、得られる鈴構造樹脂粒子の機械的強度が向上する。上記多官能アクリル系モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等のジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のトリ(メタ)アクリレート等が挙げられる。 Moreover, as the acrylic monomer, a polyfunctional monomer can be used. When a polyfunctional acrylic monomer is used, the mechanical strength of the resulting bell structure resin particles is improved. Examples of the polyfunctional acrylic monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and trimethylolpropane. Di (meth) acrylates such as di (meth) acrylate; Tri (meth) acrylates such as trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, etc. Can be mentioned.
上記重合開始剤としては特に限定されず、用いるモノマー成分の種類に応じて適宜選択すればよいが、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジブチルパーオキシジカーボネート、α−クミルパーオキシネオデカノエート等の有機系過酸化物;アゾビスイソブチロニトリル等のアゾ系開始剤;レドックス開始剤等が挙げられる。 The polymerization initiator is not particularly limited and may be appropriately selected depending on the type of monomer component used. For example, benzoyl peroxide, lauroyl peroxide, dibutyl peroxydicarbonate, α-cumylperoxyneodecano Organic peroxides such as ate; azo initiators such as azobisisobutyronitrile; redox initiators and the like.
上記モノマー溶液は、親油性乳化剤を含有することが好ましい。親油性乳化剤を含有することにより、一次乳化液の乳化安定性をより向上させることができる。上記親油性乳化剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル等が挙げられる。 The monomer solution preferably contains a lipophilic emulsifier. By containing a lipophilic emulsifier, the emulsion stability of the primary emulsion can be further improved. The lipophilic emulsifier is not particularly limited. For example, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, propylene glycol fatty acid ester, etc. Is mentioned.
上記モノマー溶液中における、上記親油性乳化剤の配合量としては特に限定されないが、好ましい下限はモノマー成分の合計量の0.01重量%、好ましい上限は50重量%である。0.01重量%未満であると、良好な一次乳化ができないことがあり、50重量%を超えると、ポリマー骨格内部に多数の乳化剤が混入して、得られる鈴構造樹脂粒子の強度が低下することがある。より好ましい下限は0.1重量%、より好ましい上限は20重量%である。 The blending amount of the lipophilic emulsifier in the monomer solution is not particularly limited, but a preferred lower limit is 0.01% by weight of the total amount of monomer components, and a preferred upper limit is 50% by weight. If it is less than 0.01% by weight, good primary emulsification may not be possible. If it exceeds 50% by weight, a large number of emulsifiers are mixed inside the polymer skeleton, and the strength of the resulting bell structure resin particles decreases. Sometimes. A more preferred lower limit is 0.1% by weight, and a more preferred upper limit is 20% by weight.
上記モノマー溶液は、更に、非重合性有機溶剤を含有してもよい。非重合性有機溶剤を含有することにより、得られる鈴構造樹脂微粒子の殻の空孔の大きさを調整することができる。上記非重合性有機溶剤としては特に限定されず、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、トルエン、キシレン、酢酸エチル、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等が挙げられる。 The monomer solution may further contain a non-polymerizable organic solvent. By containing a non-polymerizable organic solvent, the size of the pores in the shell of the resulting bell structure resin fine particles can be adjusted. The non-polymerizable organic solvent is not particularly limited, and examples thereof include butane, pentane, hexane, heptane, cyclohexane, toluene, xylene, ethyl acetate, methyl chloride, methylene chloride, chloroform, and carbon tetrachloride.
上記モノマー溶液中における上記非重合性有機溶剤の配合量としては特に限定されないが、モノマー成分100重量部に対する好ましい上限は400重量部である。400重量部を超えると、得られる鈴構造樹脂粒子の強度が低下することがある。より好ましい上限は100重量部である。下限については特に限定されない。 A blending amount of the non-polymerizable organic solvent in the monomer solution is not particularly limited, but a preferable upper limit with respect to 100 parts by weight of the monomer component is 400 parts by weight. If it exceeds 400 parts by weight, the strength of the resulting bell structure resin particles may be lowered. A more preferred upper limit is 100 parts by weight. The lower limit is not particularly limited.
上記核微粒子分散液は、上記モノマー溶液と不溶な極性溶液に核微粒子が分散したものである。
なお、本明細書において不溶であるとは、混合したときに完全に分離して相を形成することを意味し、互いに極微量程度溶解することはかまわない。
一次乳化工程において用いる上記モノマー溶液と不溶な極性溶液としては、上記モノマー溶液と不溶であれば特に限定されないが、水、グリセリン等のポリオール等が好適である。
The nuclear fine particle dispersion is obtained by dispersing nuclear fine particles in a polar solution insoluble in the monomer solution.
In addition, insoluble in this specification means that when mixed, they are completely separated to form a phase, and may be dissolved in a very small amount.
The polar solution insoluble in the monomer solution used in the primary emulsification step is not particularly limited as long as it is insoluble in the monomer solution, but water, polyols such as glycerin, and the like are preferable.
上記モノマー溶液と不溶な極性溶液は、水性重合禁止剤を含有することが好ましい。水性重合禁止剤を含有することにより、上記モノマー溶液と不溶な極性溶液中に上記モノマー溶液が僅かに溶け込んだ場合にも、重合するのを抑制することができる。
上記水性重合禁止剤としては、例えば、亜硝酸ナトリウム、塩化銅、塩化鉄、塩化チタン、ヒドロキノン等が挙げられる。
The polar solution insoluble with the monomer solution preferably contains an aqueous polymerization inhibitor. By containing the aqueous polymerization inhibitor, it is possible to suppress polymerization even when the monomer solution is slightly dissolved in the polar solution insoluble with the monomer solution.
Examples of the aqueous polymerization inhibitor include sodium nitrite, copper chloride, iron chloride, titanium chloride, and hydroquinone.
上記核微粒子は、得られる鈴状樹脂粒子の核となるものであり、本発明の鈴構造樹脂粒子に運動エネルギーを入射したときに、その運動エネルギーを吸収する役割を有するものである。
上記核微粒子としては上記モノマー溶液と不溶な極性溶液に分散可能なものであれば特に限定されないが、例えば、ポリアクリルビーズ、ポリスチレンビーズ、ポリ塩化ビニルビーズ、ポリエチレンビーズ、ポリプロピレンビーズ、カーボンブラック等の有機微粒子、酸化チタン、酸化アルミニウム、炭化ケイ素、シリカ、マイカ、炭酸カルシウム、硫酸バリウム、フェライト、フライアッシュ、ガラスビーズ、ガラス粉末、タングステン粉末等の無機微粒子からなるものが好適である。なかでも、ポリアクリルビーズ、ポリスチレンビーズ、酸化チタン、酸化アルミニウム、シリカ、炭酸カルシウム等がより好適である。
The core fine particles serve as nuclei of the resulting bell-shaped resin particles, and have a role of absorbing kinetic energy when the kinetic energy is incident on the bell-structure resin particles of the present invention.
The core fine particle is not particularly limited as long as it can be dispersed in the polar solution insoluble in the monomer solution. For example, polyacryl beads, polystyrene beads, polyvinyl chloride beads, polyethylene beads, polypropylene beads, carbon black, etc. Those composed of inorganic fine particles such as organic fine particles, titanium oxide, aluminum oxide, silicon carbide, silica, mica, calcium carbonate, barium sulfate, ferrite, fly ash, glass beads, glass powder, and tungsten powder are preferable. Of these, polyacryl beads, polystyrene beads, titanium oxide, aluminum oxide, silica, calcium carbonate and the like are more preferable.
上記核微粒子の形状としては特に限定されないが、得られる鈴状樹脂粒子での運度が容易で、高い制振性、遮音性を発揮するためには真球状に近いことが好ましい。
上記核微粒子の粒子径としては特に限定されないが、好ましい下限は0.1μm、好ましい上限は2000μmである。0.1μm未満であると、得られた鈴構造樹脂粒子の振動吸収性が劣化することがあり、2000μmを超えると、上記モノマー溶液に不溶な極性溶液中に安定して分散させることが困難となり、鈴構造樹脂粒子の収率が悪化することがある。
The shape of the above-mentioned core fine particles is not particularly limited, but it is preferably close to a true sphere in order to facilitate the mobility of the obtained bell-shaped resin particles and to exhibit high vibration damping properties and sound insulation properties.
The particle diameter of the core fine particle is not particularly limited, but a preferable lower limit is 0.1 μm and a preferable upper limit is 2000 μm. If it is less than 0.1 μm, vibration absorption of the resulting bell structure resin particles may be deteriorated, and if it exceeds 2000 μm, it becomes difficult to stably disperse in the polar solution insoluble in the monomer solution. The yield of bell structure resin particles may be deteriorated.
一次乳化工程では、上記モノマー溶液中に、上記核微粒子分散液を添加し、攪拌して乳化させる。上記乳化の方法としては特に限定されず、従来公知の方法を用いることができる。
得られる鈴構造樹脂粒子の中空部の大きさ等は、一次乳化工程で得られる乳化液中の核微粒子分散液からなる液滴の大きさに対応する。
図1に、上記一次乳化工程により得られた乳化液の状態を示す模式図を示した。図1に示した乳化液ではモノマー溶液からなる媒体2中に、モノマー溶液と不溶な極性溶液からなる液滴1が分散しており、更に液滴1中には核微粒子3が分散している。
In the primary emulsification step, the core fine particle dispersion is added to the monomer solution and stirred to emulsify. The emulsification method is not particularly limited, and a conventionally known method can be used.
The size or the like of the hollow portion of the resulting bell structure resin particles corresponds to the size of the droplets composed of the core fine particle dispersion in the emulsion obtained in the primary emulsification step.
In FIG. 1, the schematic diagram which shows the state of the emulsion obtained by the said primary emulsification process was shown. In the emulsified liquid shown in FIG. 1,
本発明の鈴構造樹脂粒子の製造方法は、上記モノマー溶液中に核微粒子分散液からなる液滴が分散した乳化液(一次乳化液)を、上記モノマー溶液に不溶な極性溶液中に添加、攪拌して、上記核微粒子分散液を内包するモノマー溶液からなる液滴が、モノマー溶液に不溶な極性溶液中に分散した乳化液(いわゆるW/O/W型エマルジョン:以下、二次乳化液ともいう)を調製する二次乳化工程を有する。 In the method for producing bell structure resin particles of the present invention, an emulsion (primary emulsion) in which droplets composed of a nuclear fine particle dispersion are dispersed in the monomer solution is added to a polar solution insoluble in the monomer solution and stirred. Thus, an emulsion (a so-called W / O / W type emulsion: hereinafter also referred to as a secondary emulsion) in which droplets composed of a monomer solution containing the nuclear fine particle dispersion are dispersed in a polar solution insoluble in the monomer solution. A secondary emulsification step of preparing a).
上記二次乳化工程で用いるモノマー溶液と不溶な極性溶液としては、上記一次乳化工程で用いるものと同様のものを用いることができ、上記一次乳化工程で用いるものと同じであっても異なっていてもよい。
また、上記乳化の方法としては特に限定されず、従来公知の方法を用いることができる。
The monomer solution used in the secondary emulsification step and the polar solution insoluble can be the same as those used in the primary emulsification step, and may be the same as those used in the primary emulsification step. Also good.
Moreover, it does not specifically limit as said emulsification method, A conventionally well-known method can be used.
図2に、上記二次乳化工程により得られた分散液の状態を示す模式図を示した。図2に示した分散液ではモノマー溶液と不溶な極性溶液からなる媒体4中に、モノマー溶液からなる液滴2が分散しており、モノマー溶液からなる液滴2は、モノマー溶液と不溶な極性溶液1を内包しており、更に、モノマー溶液と不溶な極性溶液1中には核微粒子3が分散している。
In FIG. 2, the schematic diagram which shows the state of the dispersion liquid obtained by the said secondary emulsification process was shown. In the dispersion shown in FIG. 2,
本発明の鈴構造樹脂粒子の製造方法は、上記モノマー成分を重合して、上記核微粒子分散液を内包する樹脂粒子を得る重合工程を有する。
重合工程により、モノマー成分が重合されて、鈴構造樹脂粒子の殻の部分が形成される。上記重合の方法としては特に限定されず、モノマー成分や重合開始剤の種類により適宜最適な方法を選択すればよいが、通常は、加熱することが好ましい。
The method for producing bell-structure resin particles of the present invention includes a polymerization step in which the monomer component is polymerized to obtain resin particles containing the core particle dispersion.
In the polymerization step, the monomer component is polymerized to form the shell portion of the bell structure resin particles. The polymerization method is not particularly limited, and an optimal method may be appropriately selected depending on the types of the monomer component and the polymerization initiator, but heating is usually preferable.
本発明の鈴構造樹脂粒子の製造方法は、上記核微粒子分散液を内包する樹脂粒子から、内包されている極性溶液を除去して鈴構造樹脂粒子を得る乾燥工程を有する。
上記除去の方法としては特に限定されないが、真空乾燥等が好適である。真空乾燥により、樹脂粒子に内包された極性溶液は、樹脂からなる殻の分子の隙間や、モノマー溶液が非重合性有機溶剤を含有していた場合には、それが抜けて形成された空孔から蒸散する。
これにより、鈴構造樹脂粒子が得られる。
The manufacturing method of the bell structure resin particles of the present invention includes a drying step of removing the polar solution included from the resin particles including the core particle dispersion to obtain the bell structure resin particles.
The removal method is not particularly limited, but vacuum drying or the like is preferable. The polar solution encapsulated in the resin particles by vacuum drying is the gap between the resin shell molecules, and, if the monomer solution contains a non-polymerizable organic solvent, the pores formed by the removal. Transpiration from.
Thereby, bell structure resin particles are obtained.
図3に本発明の鈴構造樹脂粒子の製造方法により得られる鈴構造樹脂粒子の一例の断面図を示した。図3Aに示した例では、樹脂からなる殻体中にただ1つの核微粒子が存在し、図3Bに示した例では、樹脂からなる殻体中に複数の核微粒子が存在している。いずれの態様の鈴構造樹脂粒子も、優れた制振性や遮音性を発揮できる。
どのような態様の鈴構造樹脂粒子が得られるかは、用いるモノマー成分の種類、核微粒子の種類や大きさ、一次乳化工程における液滴の粒子径、二次乳化工程における液滴の粒子径により制御することができる。
FIG. 3 shows a cross-sectional view of an example of bell structure resin particles obtained by the method for producing bell structure resin particles of the present invention. In the example shown in FIG. 3A, only one nuclear fine particle exists in the shell made of resin, and in the example shown in FIG. 3B, a plurality of nuclear fine particles exist in the shell made of resin. The bell structure resin particles of any aspect can exhibit excellent vibration damping properties and sound insulation properties.
The type of bell structure resin particles obtained depends on the type of monomer component used, the type and size of the core fine particles, the particle size of the droplets in the primary emulsification step, and the particle size of the droplets in the secondary emulsification step. Can be controlled.
本発明によれば、樹脂からなる殻体の空孔中に核微粒子が内包された鈴構造樹脂粒子を容易に製造することができる鈴構造樹脂粒子の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the bell structure resin particle which can manufacture easily the bell structure resin particle in which the core fine particle was included in the void | hole of the shell which consists of resin can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(1)核微粒子分散液の調製
塩化ナトリウムを1重量%、水溶性重合禁止剤としての亜硝酸ナトリウムを0.02重量%含有するイオン交換水に、粒子径50μmの炭酸カルシウムからなる核微粒子を10重量%の濃度になるように加え、攪拌分散装置を用いて攪拌し核微粒子分散液を得た。
Example 1
(1) Preparation of nuclear fine particle dispersion Liquid fine particles of calcium carbonate having a particle diameter of 50 μm are added to ion-exchanged water containing 1% by weight of sodium chloride and 0.02% by weight of sodium nitrite as a water-soluble polymerization inhibitor. It added so that it might become a density | concentration of 10 weight%, and it stirred using the stirring dispersion apparatus, and obtained the nuclear fine particle dispersion.
(2)一次乳化液の調製
単官能アクリル系モノマーとしてメチルメタクリレート40重量部、多官能アクリル系モノマーとしてトリメチロールプロパントリアクリレート10重量部、重合開始剤としてアゾビスイソブチロニトリル(AIBN)0.25重量部及び親油性乳化剤としてグリセリンモノステアレート2重量部とを混合、攪拌してモノマー溶液を調製した。
得られたモノマー溶液に、核微粒子分散液50重量部を加え、攪拌分散装置を用いて攪拌、乳化させて一次分散液を得た。
(2) Preparation of primary emulsion 40 parts by weight of methyl methacrylate as a monofunctional acrylic monomer, 10 parts by weight of trimethylolpropane triacrylate as a polyfunctional acrylic monomer, and azobisisobutyronitrile (AIBN) 0. 25 parts by weight and 2 parts by weight of glycerin monostearate as a lipophilic emulsifier were mixed and stirred to prepare a monomer solution.
50 parts by weight of the core fine particle dispersion was added to the obtained monomer solution, and the mixture was stirred and emulsified using a stirring and dispersing device to obtain a primary dispersion.
(3)二次乳化液の調製
分散剤としてポリビニルアルコール1重量%と、水溶性重合禁止剤として亜硝酸ナトリウムを0.02重量%含有するイオン交換水300重量部中に、得られた一次分散液102.25重量部を加え、核微粒子分散液を加え、攪拌分散装置を用いて攪拌、乳化させて二次分散液を得た。
(3) Preparation of secondary emulsion The primary dispersion obtained in 300 parts by weight of ion-exchanged water containing 1% by weight of polyvinyl alcohol as a dispersant and 0.02% by weight of sodium nitrite as a water-soluble polymerization inhibitor. 102.25 parts by weight of the liquid was added, the core fine particle dispersion was added, and the mixture was stirred and emulsified using a stirring and dispersing device to obtain a secondary dispersion.
(4)重合
攪拌機、ジャケット、還流冷却機及び温度計を備えた20L容の重合器を準備し、上記重合器内を減圧して容器内を脱酸素した後窒素雰囲気にした。この重合器内に、得られた二次分散液10Lを一括投入し、重合器を60℃まで昇温し、重合を開始した。4時間重合後、更に80℃にまで昇温し1時間熟成させた後、室温にまで冷却した。
得られたスラリーを脱水装置により脱水した後、真空乾燥して平均粒径約200μmの鈴構造樹脂粒子を得た。
(4) A 20 L polymerization vessel equipped with a polymerization stirrer, jacket, reflux condenser and thermometer was prepared, the inside of the polymerization vessel was depressurized and the inside of the container was deoxygenated, and then the atmosphere was changed to a nitrogen atmosphere. Into this polymerization vessel, 10 L of the obtained secondary dispersion was charged all at once, the temperature of the polymerization vessel was raised to 60 ° C., and polymerization was started. After polymerization for 4 hours, the temperature was further raised to 80 ° C. and the mixture was aged for 1 hour, and then cooled to room temperature.
The obtained slurry was dehydrated by a dehydrator and then vacuum-dried to obtain bell structure resin particles having an average particle diameter of about 200 μm.
(5)構造評価
得られた鈴構造粒子をエポキシ樹脂に包埋し、切削断面を走査型電子顕微鏡にて観察したところ、粒子内部に1又は数個の核微粒子の存在が確認された。
(5) Structural evaluation The obtained bell structure particles were embedded in an epoxy resin, and the cut cross section was observed with a scanning electron microscope. As a result, the presence of one or several nuclear fine particles was confirmed inside the particles.
本発明によれば、樹脂からなる殻体の空孔中に核微粒子が内包された鈴構造樹脂粒子を容易に製造することができる鈴構造樹脂粒子の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the bell structure resin particle which can manufacture easily the bell structure resin particle in which the core fine particle was included in the void | hole of the shell which consists of resin can be provided.
1 モノマー溶液と不溶な極性溶液からなる液滴、又は、モノマー溶液と不溶な極性溶液2 モノマー溶液からなる媒体、又は、モノマー溶液からなる液滴
3 核微粒子4 モノマー溶液と不溶な極性溶液からなる媒体
1 Droplet composed of a monomer solution and an insoluble polar solution, or a polar solution insoluble to a monomer solution 2 A medium composed of a monomer solution, or a droplet composed of a monomer solution 3 A core particle 4 A composed of a monomer solution and an insoluble polar solution Medium
Claims (2)
前記モノマー溶液中に前記核微粒子分散液からなる液滴が分散した乳化液を、前記モノマー溶液と不溶な極性溶液中に添加、攪拌して、前記核微粒子分散液を内包するモノマー溶液からなる液滴が、前記モノマー溶液と不溶な極性溶液中に分散した乳化液を調製する二次乳化工程と、
前記モノマー成分を重合して、前記核微粒子分散液を内包する樹脂粒子を得る重合工程と、
前記核微粒子分散液を内包する樹脂粒子から、内包されている極性溶液を除去して鈴構造樹脂粒子を得る乾燥工程とを有する
ことを特徴とする鈴構造樹脂粒子の製造方法。 In a monomer solution containing a monomer component and a polymerization initiator, a nuclear fine particle dispersion in which nuclear fine particles are dispersed in a polar solution insoluble in the monomer solution is added and stirred to disperse the nuclear fine particles in the monomer solution. A primary emulsification step for preparing an emulsion in which liquid droplets are dispersed;
A liquid consisting of a monomer solution containing the nuclear fine particle dispersion is added to and stirred in a polar solution that is insoluble in the monomer solution, and an emulsion in which droplets of the nuclear fine particle dispersion are dispersed in the monomer solution. A secondary emulsification step of preparing an emulsion in which droplets are dispersed in a polar solution insoluble in the monomer solution;
A polymerization step of polymerizing the monomer component to obtain resin particles enclosing the nuclear fine particle dispersion;
A method for producing bell structure resin particles, comprising: removing a polar solution contained from the resin particles containing the core fine particle dispersion to obtain bell structure resin particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005064460A JP4630696B2 (en) | 2005-03-08 | 2005-03-08 | Method for producing bell structure resin particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005064460A JP4630696B2 (en) | 2005-03-08 | 2005-03-08 | Method for producing bell structure resin particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006249150A true JP2006249150A (en) | 2006-09-21 |
JP4630696B2 JP4630696B2 (en) | 2011-02-09 |
Family
ID=37089977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005064460A Expired - Fee Related JP4630696B2 (en) | 2005-03-08 | 2005-03-08 | Method for producing bell structure resin particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4630696B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222810A (en) * | 2007-03-12 | 2008-09-25 | Sekisui Plastics Co Ltd | Single-hole hollow particle and its production method |
JP2011126213A (en) * | 2009-12-20 | 2011-06-30 | Nihon Press Kogyo Kk | Method for manufacturing window structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10265581A (en) * | 1997-03-26 | 1998-10-06 | Reika Kogyo Kk | Porous particle, sustained release particles and production thereof |
JP2000148156A (en) * | 1998-11-05 | 2000-05-26 | Hiroshi Yamada | Bell structured particle, its manufacture, and vibration absorber |
JP2003010617A (en) * | 2001-07-05 | 2003-01-14 | Sekisui Chem Co Ltd | Manufacturing method for porous ceramic filter |
JP2003183087A (en) * | 2001-12-18 | 2003-07-03 | Sekisui Chem Co Ltd | Porous ceramic filter using hollow polymer particle |
JP2004501740A (en) * | 2000-04-19 | 2004-01-22 | シンジェンタ リミテッド | Formulation |
-
2005
- 2005-03-08 JP JP2005064460A patent/JP4630696B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10265581A (en) * | 1997-03-26 | 1998-10-06 | Reika Kogyo Kk | Porous particle, sustained release particles and production thereof |
JP2000148156A (en) * | 1998-11-05 | 2000-05-26 | Hiroshi Yamada | Bell structured particle, its manufacture, and vibration absorber |
JP2004501740A (en) * | 2000-04-19 | 2004-01-22 | シンジェンタ リミテッド | Formulation |
JP2003010617A (en) * | 2001-07-05 | 2003-01-14 | Sekisui Chem Co Ltd | Manufacturing method for porous ceramic filter |
JP2003183087A (en) * | 2001-12-18 | 2003-07-03 | Sekisui Chem Co Ltd | Porous ceramic filter using hollow polymer particle |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222810A (en) * | 2007-03-12 | 2008-09-25 | Sekisui Plastics Co Ltd | Single-hole hollow particle and its production method |
JP2011126213A (en) * | 2009-12-20 | 2011-06-30 | Nihon Press Kogyo Kk | Method for manufacturing window structure |
Also Published As
Publication number | Publication date |
---|---|
JP4630696B2 (en) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5588880B2 (en) | Method for producing hollow microsphere and method for producing porous ceramic molded body | |
JP2023072023A (en) | Production method of latex and production method of hollow resin particles | |
KR101774079B1 (en) | Hollow polymer particle and method for manufacturing the same | |
WO2014109413A1 (en) | Microcapsule heat storage material, production method thereof and use thereof | |
JPH07500849A (en) | Method for producing uniform macroporous polymer beads | |
CN111171221A (en) | Method for preparing thermal expansion microspheres by using SPG emulsion membrane technology | |
WO2012014279A1 (en) | Method for manufacturing single-hole hollow polymer microparticles | |
WO2021172402A1 (en) | Method for producing hollow resin particles | |
CN1265678A (en) | High internal phase emulsions and porous materials prepared therefrom | |
JP4630696B2 (en) | Method for producing bell structure resin particles | |
JP2006257415A (en) | Heat storage capsule and utilization thereof | |
JPS61215602A (en) | Production of polymer particle | |
JP4183603B2 (en) | Method for producing hollow resin particles and hollow resin particles | |
JP2003181274A (en) | Method for manufacturing hollow polymer particles | |
JPS61215604A (en) | Production of polymer particle | |
JP2005281470A (en) | Method for producing porous resin particle | |
JP2021172771A (en) | Method for producing hollow particle | |
JP4224368B2 (en) | Method for producing hollow resin particles and hollow resin particles | |
JP5626716B2 (en) | Method for producing porous hollow polymer particles and porous hollow polymer particles | |
JP7476804B2 (en) | Method for producing hollow resin particles | |
JPS61190504A (en) | Production of polymer particles | |
JPH07228608A (en) | Production of polymer fine particle | |
CN115057963B (en) | Thermally expandable microsphere and preparation method thereof | |
JPH11158204A (en) | Suspension polymerization | |
JPH01314962A (en) | Filler for liquid chromatography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4630696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |