JP2005281470A - Method for producing porous resin particle - Google Patents

Method for producing porous resin particle Download PDF

Info

Publication number
JP2005281470A
JP2005281470A JP2004097095A JP2004097095A JP2005281470A JP 2005281470 A JP2005281470 A JP 2005281470A JP 2004097095 A JP2004097095 A JP 2004097095A JP 2004097095 A JP2004097095 A JP 2004097095A JP 2005281470 A JP2005281470 A JP 2005281470A
Authority
JP
Japan
Prior art keywords
resin particles
polymerizable monomer
resin
weight
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097095A
Other languages
Japanese (ja)
Other versions
JP4261403B2 (en
Inventor
Yukio Hama
幸男 浜
Akiyoshi Kusaka
明芳 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2004097095A priority Critical patent/JP4261403B2/en
Publication of JP2005281470A publication Critical patent/JP2005281470A/en
Application granted granted Critical
Publication of JP4261403B2 publication Critical patent/JP4261403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous resin particle having a large number of macropores and producible by a simple production method in high productivity. <P>SOLUTION: The method for the production of the porous resin particle comprises dissolution of 0.5-5 pts. wt. of a cellulose resin in 100 pts. wt. of polymerizable monomers composed of 5-100 wt.% one or more polyfunctional polymerizable monomers selected from a polyhydric alcohol (meth)acrylic acid ester and an aromatic divinyl compound and 0-95 wt.% monofunctional polymerizable monomer, the dispersion of the dissolved liquid in an aqueous dispersion medium, and the polymerization of the monomers. (Meth)acrylate monomers account for 50-100 wt.% of the monofunctional polymerizable monomer, and the most frequent pore diameter of the porous resin particle is 0.1-2.0 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多孔質樹脂粒子の製造方法に関し、さらに詳細には、孔径dが50nmを超える細孔いわゆるマクロ多孔を有する多孔質樹脂粒子の製造方法に関する。   The present invention relates to a method for producing porous resin particles, and more particularly, to a method for producing porous resin particles having pores with a pore diameter d exceeding 50 nm, so-called macroporosity.

粒子表面に形成される細孔は、一般にはその孔径によって次のように分類される。但しdは細孔の孔径である。
ミクロポア d≦2nm
メソポア 2nm<d≦50nm
マクロポア d>50nm
The pores formed on the particle surface are generally classified as follows according to the pore diameter. Where d is the pore diameter.
Micropore d ≦ 2nm
Mesopore 2nm <d ≦ 50nm
Macropore d> 50nm

懸濁重合により製造されるミクロンサイズのアクリル樹脂粒子は、例えば化粧品のすべり性付与剤、電子写真用トナー、担体、塗料、インキ、樹脂改質剤など幅広い分野で使用される。中でも多孔質樹脂粒子はその吸着特性や徐放性、触感の改善、粘度の調整、光拡散性の向上などを目的として利用されている。   Micron-sized acrylic resin particles produced by suspension polymerization are used in a wide range of fields such as cosmetic slipperiness imparting agents, electrophotographic toners, carriers, paints, inks, and resin modifiers. Among them, the porous resin particles are used for the purpose of their adsorption characteristics, sustained release, improvement in tactile sensation, adjustment of viscosity, improvement in light diffusibility, and the like.

マクロ多孔を有する多孔質粒子は一般に、たとえばトルエン、イソオクタン、メチルイソブチルケトン等の有機溶剤を多孔化剤として重合性単量体混合物と混和し、懸濁重合を行うことにより得ることが出来る。この場合、用いた多孔化剤は、粒子の乾燥工程によって取り除き、該溶剤が除去された部分が細孔となる(例えば、非特許文献1)。また、別のタイプの多孔質化剤として、先に述べた重合性単量体混合物に溶解する直鎖状のポリマーと、トルエン、イソオクタン、メチルイソブチルケトン等の多孔化剤を併用する方法など挙げられる(例えば、非特許文献1)。   In general, porous particles having macroporosity can be obtained by, for example, mixing with a polymerizable monomer mixture using an organic solvent such as toluene, isooctane, or methyl isobutyl ketone as a porosifying agent, and performing suspension polymerization. In this case, the used porogen is removed by a particle drying process, and the portion from which the solvent is removed becomes pores (for example, Non-Patent Document 1). Further, as another type of porosifying agent, a method of using a linear polymer dissolved in the polymerizable monomer mixture described above and a porosifying agent such as toluene, isooctane, methyl isobutyl ketone, etc. (For example, Non-Patent Document 1).

平山忠一著 「液体クロマトグラフィー用 ポリマー充填材料開発技術」株式会社アイピーシー発行 平成4年2月20日 p125〜136などAuthored by Tadakazu Hirayama “Polymer packing material development technology for liquid chromatography” published by IPC Corporation February 20, 1992, p125-136, etc.

これらの方法では、前記多孔化剤として使用した有機溶剤の回収工程が必要であり、工程が煩雑であり、生産性に劣る問題があった。   In these methods, a process for recovering the organic solvent used as the porosifying agent is necessary, and the process is complicated, resulting in poor productivity.

また、特許文献1、特許文献2、特許文献3には、架橋性単量体を含む重合性ビニル単量体に特定のポリオレフィン系樹脂、アクリル酸エステル系樹脂あるいはスチレン系エラストマー等の樹脂を溶解して懸濁重合することにより、多孔質状あるいは表面に皺状の凹凸を有する樹脂粒子が得られている。これらの技術は、ポリオレフィン系樹脂、アクリル酸エステル系樹脂あるいはスチレン系エラストマー等の線状高分子の相溶性が重合の進行に伴って生成する架橋共重合体に対して低下することで、多孔質あるいは表面に皺状の凹凸を持つ粒子が生成される。   In Patent Document 1, Patent Document 2, and Patent Document 3, a resin such as a specific polyolefin resin, acrylate resin or styrene elastomer is dissolved in a polymerizable vinyl monomer containing a crosslinkable monomer. By suspension polymerization, resin particles having porous or wrinkled irregularities on the surface are obtained. These technologies reduce the compatibility of the linear polymer such as polyolefin resin, acrylate resin or styrene elastomer with respect to the cross-linked copolymer produced as the polymerization proceeds. Or the particle | grains with a bowl-shaped unevenness | corrugation on the surface are produced | generated.

特開平10−7704号公報Japanese Patent Laid-Open No. 10-7704 特開平10−60011号公報JP-A-10-60011 特開平11−140139号公報JP-A-11-140139

しかしながら、これらの方法によれば、多量のポリオレフィン系樹脂、アクリル酸エステル系樹脂あるいはスチレン系エラストマー等の樹脂を溶解して懸濁重合する必要があり、更には実質的にトルエン等の有機溶剤の存在下により、これらの形状が得られるものであり、従来から知られている技術と何ら変わるものではなかった。また、最終的に得られる樹脂粒子は用いたオレフィン系樹脂あるいはスチレン系エラストマーの特性に影響され、化粧品などの充填剤として用いた場合、極めて流動性や触感に劣るものであった。また、最終的に添加された有機溶剤を樹脂粒子から除去するための工程が必要であり、生産性に劣るものであった。更にはトルエン等の有機溶剤が粒子中に残留する可能性があり、特に化粧品用途においては好ましくない。   However, according to these methods, it is necessary to dissolve and suspension polymerize a large amount of polyolefin resin, acrylate ester resin, styrene elastomer or the like. In the presence of these shapes, these shapes can be obtained, which is not different from the conventionally known techniques. In addition, the resin particles finally obtained are affected by the properties of the olefin resin or styrene elastomer used, and when used as a filler for cosmetics or the like, the resin particles are extremely inferior in fluidity and touch. Further, a process for removing the finally added organic solvent from the resin particles is necessary, and the productivity is poor. Furthermore, there is a possibility that an organic solvent such as toluene may remain in the particles, which is not preferable particularly for cosmetic use.

従って、本発明は、簡便な製造方法により、生産性よく、マクロ多孔を有する多孔質樹脂粒子を得ることを課題とする。   Accordingly, an object of the present invention is to obtain porous resin particles having macroporosity with high productivity by a simple production method.

本発明者らは上記のような問題を解決すべく鋭意研究した結果、多官能重合性単量体を含む重合性単量体にセルロース樹脂を溶解させ、これを懸濁重合することにより、マクロ多孔の多孔質樹脂粒子が得られることを見出した。
すなわち、請求項1記載の樹脂粒子の製造方法は、
多価アルコールの(メタ)アクリル酸エステルと芳香族ジビニル化合物の少なくとも1種の多官能重合性単量体5〜100重量%と単官能重合性単量体0〜95重量%からなる重合性単量体100重量部に対して、
セルロース樹脂0.5〜5重量部を溶解し、前記溶解液を水系分散媒体中に分散させて重合する多孔質樹脂粒子の製造方法であって、
前記単官能重合性単量体の50〜100重量%が(メタ)アクリル系単量体であり、前記多孔質樹脂粒子の最多孔径が0.1〜2.0μmの細孔径であることを特徴とする多孔質樹脂粒子の製造方法である。
As a result of diligent research to solve the above problems, the present inventors dissolved a cellulose resin in a polymerizable monomer containing a polyfunctional polymerizable monomer, and suspended the polymer to obtain a macromolecule. It has been found that porous porous resin particles can be obtained.
That is, the method for producing resin particles according to claim 1 is:
A polymerizable monomer comprising 5 to 100% by weight of at least one polyfunctional polymerizable monomer of (meth) acrylic acid ester of polyhydric alcohol and aromatic divinyl compound and 0 to 95% by weight of monofunctional polymerizable monomer. For 100 parts by weight of the mass,
A method for producing porous resin particles in which 0.5 to 5 parts by weight of a cellulose resin is dissolved, and the solution is dispersed in an aqueous dispersion medium and polymerized.
50 to 100% by weight of the monofunctional polymerizable monomer is a (meth) acrylic monomer, and the most porous diameter of the porous resin particles is a pore diameter of 0.1 to 2.0 μm. It is the manufacturing method of the porous resin particle made into.

前記水系分散媒体に用いられる分散安定剤としては、第三リン酸カルシウムまたはコロイダルシリカが好ましい。請求項2記載の製造方法は、懸濁重合時の分散安定剤として第三リン酸カルシウムまたはコロイダルシリカを用いた請求項1の多孔質樹脂粒子の製造法である。   As the dispersion stabilizer used in the aqueous dispersion medium, tricalcium phosphate or colloidal silica is preferable. The production method according to claim 2 is the method for producing porous resin particles according to claim 1, wherein tricalcium phosphate or colloidal silica is used as a dispersion stabilizer during suspension polymerization.

本発明によれば、簡便な製造方法により、生産性よく、粒子の最多孔径が0.1〜2.0μmの細孔を粒子表面に持つマクロ多孔構造を有する球状ポリマー微粒子を得ることができる。従来より知られている方法に比べ、トルエン等の有機溶剤を使用することなしにマクロ多孔を有する樹脂粒子の製造が可能となった。このようにして得られたマクロ多孔の樹脂粒子は、例えば塗料や化粧料に配合すると、その粘性特性、光散乱特性や触感を変化、調整するのに有利に用いることができる。   According to the present invention, it is possible to obtain spherical polymer fine particles having a macroporous structure having fine pores having a most porous diameter of 0.1 to 2.0 μm on the particle surface with high productivity by a simple production method. Compared to conventionally known methods, it has become possible to produce resin particles having macropores without using an organic solvent such as toluene. The macroporous resin particles obtained in this way can be advantageously used to change or adjust the viscosity characteristics, light scattering characteristics, and tactile sensation, for example, when blended in paints and cosmetics.

[多官能重合性単量体]
本発明で用いられる多官能重合性単量体は、多価アルコールのアクリル酸エステル、多価アルコールのメタクリル酸エステル及び芳香族ジビニル化合物が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。
[Polyfunctional polymerizable monomer]
Examples of the polyfunctional polymerizable monomer used in the present invention include polyhydric alcohol acrylic esters, polyhydric alcohol methacrylates, and aromatic divinyl compounds. These can be used alone or in combination of two or more.

具体的に例示すると、多価アルコールの(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリメタクリレート等、また、芳香族ジビニル化合物としてジビニルベンゼン、ジビニルナフタレン等である。   Specifically, as the (meth) acrylic acid ester of polyhydric alcohol, ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri Methacrylate and the like, and divinylbenzene, divinylnaphthalene and the like as aromatic divinyl compounds.

上記多官能重合性単量体は、全ての重合性単量体100重量部に対して、5〜100重量%、好ましくは5〜50重量%となるよう用いる。5重量%未満では目的とする樹脂粒子を得ることはできない。また、50重量%以上を用いても添加量に見合った効果はなくコストの面からも好ましくない。   The polyfunctional polymerizable monomer is used in an amount of 5 to 100% by weight, preferably 5 to 50% by weight, based on 100 parts by weight of all the polymerizable monomers. If it is less than 5% by weight, the desired resin particles cannot be obtained. Moreover, even if it uses 50 weight% or more, there is no effect corresponding to addition amount and it is unpreferable also from the surface of cost.

[単官能重合性単量体]
本発明で用いる単官能重合性単量体としては、(メタ)アクリル系単量体を用いることができる。またその他の単量体として、スチレン,o−メチルスチレン,m−メチルスチレン,p−メチルスチレン,p−エチルスチレン,2,4−ジメチルスチレン,p−n−ブチルスチレン,p−tert−ブチルスチレン,p−n−ヘキシルスチレン,p−nオクチルスチレン,p−n−ノニルスチレン,p−n−デシルスチレン,p−n−ドデシルスチレン,n−メトキシスチレン,p−フエニルスチレン,pクロルスチレン,3,4−ジクロルスチレン等のスチレンおよびその誘導体,エチレン,プロピレン,ブチレン,イソブチレンなどのエチレン不飽和モノオレフイン類,塩化ビニル,塩化ビニリデン,臭化ビニル,弗化ビニルなどのハロゲン化ビニル類,酢酸ビニル,プロピオン酸ビニル,酪酸ビニルなどのビニルエステル類,等をその他の単量体として用いてもよい。
[Monofunctional polymerizable monomer]
As the monofunctional polymerizable monomer used in the present invention, a (meth) acrylic monomer can be used. Other monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, p-tert-butylstyrene. , Pn-hexyl styrene, pn octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, n-methoxy styrene, p-phenyl styrene, p chlorostyrene, Styrene and its derivatives such as 3,4-dichlorostyrene, ethylene unsaturated monoolefins such as ethylene, propylene, butylene and isobutylene, vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl fluoride, Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, etc. It may be used as the other monomer.

上記(メタ)アクリル系単量体としては、例えば、アクリル酸メチル,アクリル酸エチル,アクリル酸n−ブチル,アクリル酸イソブチル,アクリル酸プロピル,アクリル酸n−オクチル,アクリル酸ドデシル,アクリル酸2−エチルヘキシル,アクリル酸ステアリル,アクリル酸2−クロルエチル,アクリル酸フエニル,α−クロルアクリル酸メチル,メタクリル酸メチル,メタクリル酸エチル,メタクリル酸プロピル,メタクリル酸n−ブチル,メタクリル酸イソブチル,メタクリル酸n−オクチル,メタクリル酸ドデシル,メタクリル酸2−エチルヘキシル,メタクリル酸ステアリル,メタクリル酸フエニル,アクリル酸ジメチルアミノエチル,メタクリル酸ジメチルアミノエチル,アクリル酸ジエチルアミノエチル,メタクリル酸ジエチルアミノエチル,などのα−メチレン脂肪族モノカルボン酸エステル類,アクリロニトリル,メタクリロニトリル,アクリルアミド,メタクリルアミド,アクリル酸2ヒドロキシエチル,アクリル酸2ヒドロキシプロピル,メタクリル酸2ヒドロキシエチル,メタクリル酸2ヒドロキシプロピル等のアクリル酸もしくはメタクリル酸誘導体,場合によってはアクリル酸,メタクリル酸,マレイン酸,フマール酸等も使用できるが、メタクリル酸メチルを最も好ましく用いることができる。   Examples of the (meth) acrylic monomer include, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl acrylate, n-octyl acrylate, dodecyl acrylate, 2-acrylic acid 2- Ethylhexyl, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl α-chloroacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate , Dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, dimethacrylate Α-methylene aliphatic monocarboxylic esters such as tilaminoethyl, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxy methacrylate Acrylic acid or methacrylic acid derivatives such as propyl, and in some cases acrylic acid, methacrylic acid, maleic acid, fumaric acid and the like can be used, but methyl methacrylate is most preferably used.

これらの単官能重合性単量体は、それぞれ単独で、または2種以上を組み合わせて用いることが出来る。これらの中でも、(メタ)アクリル酸エステルおよびその誘導体を好ましく用いることができ、必要に応じてスチレンおよびその誘導体、ビニルエステル類を(メタ)アクリル酸エステルおよびその誘導体に加えて用いてもよい。   These monofunctional polymerizable monomers can be used alone or in combination of two or more. Among these, (meth) acrylic acid esters and derivatives thereof can be preferably used. If necessary, styrene and derivatives thereof and vinyl esters may be used in addition to (meth) acrylic acid esters and derivatives thereof.

上記単官能重合性単量体は、全ての重合性単量体100重量部に対して、0〜95重量%、好ましくは50〜95重量%となるよう用いる。単官能重合性単量体を用いずに多官能重合性単量体単独でも使用することはできるが、多官能重合性単量体と単官能重合性単量体を併せて用いることにより、コストの面から好ましい。特に、前記単官能重合性単量体の50〜100重量%が(メタ)アクリル系単量体であることが、目的とする多孔質樹脂粒子を得る点で重要である。(メタ)アクリル系単量体が単官能重合性単量体の50重量%未満である場合、多孔質樹脂粒子を得ることができない。   The monofunctional polymerizable monomer is used in an amount of 0 to 95% by weight, preferably 50 to 95% by weight, based on 100 parts by weight of all the polymerizable monomers. Although the polyfunctional polymerizable monomer can be used alone without using the monofunctional polymerizable monomer, the cost can be reduced by using the polyfunctional polymerizable monomer and the monofunctional polymerizable monomer together. From the viewpoint of In particular, it is important that 50 to 100% by weight of the monofunctional polymerizable monomer is a (meth) acrylic monomer in order to obtain the desired porous resin particles. When the (meth) acrylic monomer is less than 50% by weight of the monofunctional polymerizable monomer, porous resin particles cannot be obtained.

[セルロース樹脂]
本発明ではセルロース樹脂を、前述したすべての重合性単量体100重量部に対し、0.5〜5重量%溶解し懸濁重合することにより、目的とするマクロ多孔性樹脂粒子を得ることが出来る。セルロース樹脂の中でもエチルセルロースが目的の粒子を得るためには最も好適である。なお、エチルセルロースは一般に、塩化エチルをアルカリセルロースに反応させて得られるエチルセルロースエーテルであり、市販のエチルセルロースはエトキシル基含有率が44%から50%を有するものである。本発明に好適に用いることの出来る、エチルセルロースとしては粘度(重量比でトルエン:エタノール=80:20の混合溶液にエチルセルロースを5%溶解したときの粘度)10〜200cPのものを好適に用いることが出来る。更に好ましくは、20〜100cPのものを用いるのがよい。200cPを越えるものを用いる場合には、溶解した重合性単量体混合物の粘度が高くなり、懸濁重合時の安定性や粒子径制御が困難になるため好ましくない。なお、本発明における上記粘度は、JIS Z8803に従ってウベローデ粘度計(毛細管粘度計)によって25℃±0.5℃の温度で測定した値である。
[Cellulose resin]
In the present invention, the desired macroporous resin particles can be obtained by dissolving 0.5 to 5% by weight of the cellulose resin in 100 parts by weight of all the polymerizable monomers described above and suspension polymerization. I can do it. Among cellulose resins, ethyl cellulose is most suitable for obtaining desired particles. Ethyl cellulose is generally ethyl cellulose ether obtained by reacting ethyl chloride with alkali cellulose, and commercially available ethyl cellulose has an ethoxyl group content of 44% to 50%. As the ethyl cellulose that can be suitably used in the present invention, one having a viscosity (viscosity when 5% ethyl cellulose is dissolved in a mixed solution of toluene: ethanol = 80: 20 by weight) of 10 to 200 cP is preferably used. I can do it. More preferably, 20 to 100 cP is used. Use of a compound having a viscosity exceeding 200 cP is not preferable because the viscosity of the dissolved polymerizable monomer mixture becomes high, and stability during suspension polymerization and particle size control become difficult. In addition, the said viscosity in this invention is the value measured at the temperature of 25 degreeC +/- 0.5 degreeC with the Ubbelohde viscometer (capillary viscometer) according to JISZ8803.

セルロース樹脂の使用割合は、すべての重合性単量体100重量部に対して0.5〜5重量部であり、好ましくは1〜3重量部である。5重量部を超える量を用いた場合には、粘度の上昇によりセルロース樹脂を前記重合性単量体に溶解することが実質的に困難な場合があり、また、溶解した前記重合性単量体の混合物の粘度が高くなり、懸濁重合時の安定性や粒子径制御が困難になるため好ましくない。0.5重量%より少ない割合で用いた場合には、本発明の樹脂粒子が得られない。   The ratio of the cellulose resin used is 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight, based on 100 parts by weight of all polymerizable monomers. When an amount exceeding 5 parts by weight is used, it may be substantially difficult to dissolve the cellulose resin in the polymerizable monomer due to an increase in viscosity, and the dissolved polymerizable monomer This is not preferable because the viscosity of the mixture becomes high and stability during suspension polymerization and particle size control become difficult. When used in a proportion of less than 0.5% by weight, the resin particles of the present invention cannot be obtained.

[重合開始剤]
本発明で用いられる重合開始剤としては、通常懸濁重合に用いられる油溶性の過酸化物系あるいはアゾ系開始剤が利用でき、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系開始剤、2,2´−アゾビスイソブチロニトリル、2,2´−アゾビス(2,4−ジメチルバレロニトリル)、2,2´−アゾビス(2,3−ジメチルブチロニトリル)、2,2´−アゾビス(2−メチルブチロニトリル)、2,2´−アゾビス(2,3,3−トリメチルブチロニトリル)、2,2´−アゾビス(2−イソプロピルブチロニトリル)、1,1´−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2´−アゾビス(4−メチキシ−2,4−ジメチルバレロニトリル)、2−(カルバモイルアゾ)イソブチロニトリル、4,4´−アゾビス(4−シアノバレリン酸)、ジメチル−2,2´−アゾビスイソブチレート等がある。この中でも、2´−アゾビスイソブチロニトリル、2,2´−アゾビス(2,4−ジメチルバレロニトリル)が目的とする樹脂粒子が得られやすいという点から好ましい。
[Polymerization initiator]
As the polymerization initiator used in the present invention, oil-soluble peroxide-based or azo-based initiators usually used for suspension polymerization can be used, for example, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochloroperoxide. Peroxide initiators such as benzoyl oxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 2 , 2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,3-dimethylbutyronitrile), 2,2'-azobis (2-methylbutyronitrile) 2,2'-azobis (2,3,3-trimethylbutyronitrile), 2,2'-azobis (2-isopropylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2 , 2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), dimethyl-2,2'- And azobisisobutyrate. Among these, 2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile) are preferable from the viewpoint that desired resin particles can be easily obtained.

これらの重合開始剤の使用割合は、前記重合性単量体の全量に対し、0.01〜10重量%、特に、0.1〜5.0重量%がさらに好ましい。   The use ratio of these polymerization initiators is more preferably 0.01 to 10% by weight, particularly 0.1 to 5.0% by weight, based on the total amount of the polymerizable monomer.

[水系分散媒体]
本発明の方法では、水系懸濁重合の際に、懸濁粒子の安定化を図るために、重合性単量体にセルロース樹脂を溶解した油相100重量部に対して、通常100〜1000重量部程度の水を分散媒体として用いるとともに、水相に分散安定剤を添加することが好ましい。
[Aqueous dispersion medium]
In the method of the present invention, in order to stabilize suspended particles during aqueous suspension polymerization, the weight is usually 100 to 1000 weights with respect to 100 parts by weight of an oil phase in which a cellulose resin is dissolved in a polymerizable monomer. It is preferable to use about a part of water as a dispersion medium and add a dispersion stabilizer to the aqueous phase.

分散安定剤としては、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、コロイダルシリカ等の難水溶性無機化合物やポリビニルアルコール、メチルセルロース、ポリビニルピロリドン等の水溶性高分子等が挙げられる。これらの中でも、目的とする樹脂粒子を安定して得ることができるという点において、第三リン酸カルシウムやコロイダルシリカが特に好ましい。 Dispersion stabilizers include phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate and zinc phosphate, pyrophosphates such as calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate and zinc pyrophosphate, calcium carbonate, magnesium carbonate , Calcium hydroxide, magnesium hydroxide, aluminum hydroxide, calcium metasilicate, calcium sulfate, barium sulfate, colloidal silica, and other poorly water-soluble inorganic compounds such as polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone, and the like. . Among these, tricalcium phosphate and colloidal silica are particularly preferable in that the target resin particles can be stably obtained.

また、本発明の方法では、上記の分散安定剤に加えて、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤等の界面活性剤を併用することも可能である。   In the method of the present invention, in addition to the above dispersion stabilizer, a surfactant such as an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, and a nonionic surfactant may be used in combination. Is also possible.

アニオン性界面活性剤としては、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等がある。ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等がある。カチオン性界面活性剤としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等がある。両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイド等がある。 Examples of anionic surfactants include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfonates. , Alkane sulfonate, dialkyl sulfosuccinate, alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, polyoxyethylene alkylphenyl ether sulfate, polyoxyethylene alkyl sulfate, and the like. Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxyethylene- Examples include oxypropylene block polymers. Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride. Examples of the zwitterionic surfactant include lauryl dimethylamine oxide.

また、水相中での単量体の重合を抑制するために水系分散媒体中に0.01〜1重量%程度の水溶性重合禁止剤を用いてもよい。水溶性重合禁止剤としては特に限定されないが、例えば亜硝酸塩類、ハイドロキノン等を挙げることができる。 Moreover, in order to suppress the polymerization of the monomer in the aqueous phase, about 0.01 to 1% by weight of a water-soluble polymerization inhibitor may be used in the aqueous dispersion medium. Although it does not specifically limit as a water-soluble polymerization inhibitor, For example, nitrites, hydroquinone, etc. can be mentioned.

これら分散安定剤や界面活性剤は、得られる樹脂粒子の粒子径ならびに重合時の分散安定性などを考慮して、それらの選択や組み合わせ、使用量などを適宜調整して使用される。一例を挙げれば、前記分散安定剤の前記重合性単量体に対する添加量は
0.5〜15重量%で程度であり、前記界面活性剤の添加量は水に対し0.001〜0.1重量%程度である。
These dispersion stabilizers and surfactants are used by appropriately adjusting their selection, combination, amount of use and the like in consideration of the particle diameter of the resin particles to be obtained and dispersion stability during polymerization. As an example, the addition amount of the dispersion stabilizer with respect to the polymerizable monomer is about 0.5 to 15% by weight, and the addition amount of the surfactant is 0.001 to 0.1 with respect to water. It is about wt%.

以上のように調整された水系分散媒体に、セルロース樹脂を溶解した重合性単量体すなわち油相を分散するには、プロペラ翼等の撹拌力によってモノマー滴に分散する方法やローターとステーターから構成される、高剪断力を利用する分散機であるホモミキサー、超音波分散機等を用いて分散する方法によって分散する方法によって行うことができる。 In order to disperse the polymerizable monomer, that is, the oil phase, in which the cellulose resin is dissolved in the aqueous dispersion medium adjusted as described above, a method of dispersing the monomer droplets by a stirring force of a propeller blade or the like and a rotor and a stator are used. It can be carried out by a dispersing method using a homomixer that is a dispersing machine using high shearing force, an ultrasonic dispersing machine or the like.

樹脂粒子径は、単量体混合物と水との混合条件や、分散安定剤等の添加量および攪拌条件、分散条件などにより調整可能である。本発明の方法によれば、1〜500μm程度の粒子径の樹脂粒子が得られ、この最大径は用途に応じて適宜調整される。 The resin particle size can be adjusted by the mixing conditions of the monomer mixture and water, the addition amount of a dispersion stabilizer and the like, the stirring conditions, the dispersion conditions, and the like. According to the method of the present invention, resin particles having a particle diameter of about 1 to 500 μm are obtained, and the maximum diameter is appropriately adjusted according to the application.

なお、樹脂粒子の径を揃えるには、マイクロフルイダイザー、ナノマイザー等の液滴同士の衝突や機壁への衝突力を利用した高圧型分散機を用いればよい。 In order to make the diameters of the resin particles uniform, a high-pressure disperser using a collision between droplets such as a microfluidizer or a nanomizer or a collision force against the machine wall may be used.

本発明の方法では、上記のようにして、セルロース樹脂を溶解した重合性単量体を球状の液滴として分散された分散媒体を、加熱することにより重合が行われる。重合温度は、通常30〜100℃、好ましくは40〜80℃である。重合温度を保持しながら重合させる時間としては一般的に0.1〜10時間程度である。 In the method of the present invention, polymerization is performed by heating a dispersion medium in which a polymerizable monomer in which a cellulose resin is dissolved is dispersed as spherical droplets as described above. The polymerization temperature is usually 30 to 100 ° C, preferably 40 to 80 ° C. The polymerization time while maintaining the polymerization temperature is generally about 0.1 to 10 hours.

重合中は、単量体滴の浮上や重合後の樹脂粒子の沈降が防止される程度の緩い撹拌を行うのが好ましい。 During the polymerization, it is preferable to perform gentle stirring to such an extent that the monomer droplets are prevented from floating and the resin particles are prevented from being settled after the polymerization.

重合終了後、所望により、分散安定剤を塩酸等により溶解し、樹脂粒子を吸引濾過、遠心分離、遠心濾過等の操作により分散媒から分離し、さらにイオン交換水等で洗浄を行う。その後乾燥し必要に応じて解砕、分級することにより目的とする樹脂粒子を得ることができる。 After the completion of the polymerization, if desired, the dispersion stabilizer is dissolved with hydrochloric acid or the like, and the resin particles are separated from the dispersion medium by operations such as suction filtration, centrifugation, and centrifugal filtration, and further washed with ion exchange water or the like. Thereafter, the desired resin particles can be obtained by drying and crushing and classifying as necessary.

以下、実施例および比較例により本発明をさらに具体的に説明する。なお、以下において、特記しない限り、「部」および「%」は重量基準である。
尚、評価に用いた各種測定方法は以下の通りである。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, “part” and “%” are based on weight unless otherwise specified.
In addition, the various measuring methods used for evaluation are as follows.

(平均粒子径の測定)
孔径50〜280μmの細孔に電解質溶液を満たし、当該電解質溶液を粒子が通過する際の電界質溶液の導電率変化から体積を求め、体積平均粒子径を計算する。具体的には、ベックマンコールター社製のコールターマルチザイザー2によって測定した体積平均粒子径である。なお、測定に際してはCoulter Electronics Limited発行のREFERENCE MANUAL FOR THE
COULTER MULTISIZER(1987)に従って、測定する多孔質樹脂粒子の粒子径に適合したアパチャーを用いてキャリブレーションを行い測定した。
(Measurement of average particle size)
The electrolyte solution is filled in pores having a pore diameter of 50 to 280 μm, the volume is obtained from the change in conductivity of the electrolyte solution when the particles pass through the electrolyte solution, and the volume average particle diameter is calculated. Specifically, it is a volume average particle diameter measured by a Coulter Multisizer 2 manufactured by Beckman Coulter. For measurement, REFERENCE MANUAL FOR THE issued by Coulter Electronics Limited.
In accordance with COULTER MULTISIZER (1987), calibration was performed using an aperture suitable for the particle diameter of the porous resin particles to be measured.

具体的には、市販のガラス製の試験管に樹脂粒子0.1gと0.1%ノニオン系界面活性剤溶液10mlを投入し、ヤマト科学株式会社製タッチミキサー TOUCH
MIXER MT−31で2秒間混合した後試験管を市販の超音洗浄機(株)ヴェルヴォクリーア製 ULTRASONIC CLEANER VS−150を用いて10秒間予備分散させ、これを本体備え付けの、ISOTON2(ベックマンコールター社製:測定用電解液)を満たしたビーカー中に、緩く攪拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせた。次にマルチサイザー2本体にアパチャーサイズ、Current,Gain,PolarityをCoulter
Electronics Limited発行のREFERENCE MANUAL FOR THE COULTER MULTISIZER(1987)に従って入力し、manualで測定を行った。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、樹脂粒子を10万個測定した点で測定を終了した。
Specifically, 0.1 g of resin particles and 10 ml of a 0.1% nonionic surfactant solution are put into a commercially available glass test tube, and touch mixer TOUCH manufactured by Yamato Scientific Co., Ltd.
After mixing with MIXER MT-31 for 2 seconds, the test tube was pre-dispersed for 10 seconds using a commercially available ultrasonic cleaning machine, ULTRASONIC CLEANER VS-150, and ISOTON 2 (Beckman Coulter equipped with the main body). In a beaker filled with an electrolytic solution for measurement), the solution was dropped with a dropper while stirring gently, and the concentration meter reading on the main body screen was adjusted to around 10%. Next, set the aperture size, Current, Gain, Polarity to Multisizer 2
Input was performed according to REFERENCE MANUAL FOR THE COULTER MULTISIZER (1987) published by Electronics Limited, and measurement was performed manually. During the measurement, the beaker was stirred gently to the extent that no bubbles were introduced, and the measurement was completed when 100,000 resin particles were measured.

(細孔分布測定)
樹脂粒子の細孔径は、次の測定により特定した。すなわち、島津製作所 オートポア9520型を用いて測定した。本測定機は水銀圧入法を用いた装置であり、水銀の表面張力が大きいことを利用して粉体の細孔に水銀を浸入させるために圧力を加え、圧力と圧入された水銀量から細孔分布を求める方法である。具体的には5ccセルに試料0.1〜0.5gを採り、初期圧約6kPa(細孔直径約230μm相当)の条件で測定を行った。細孔を持つ微粒子粉体をこの方法で測定した場合、粒子の持つ細孔と同時に粒子同士の間隙も計測されてしまい、2つの細孔ピークが見られることがある。通常大きい方の細孔ピークは粒子間の間隙によるものであり、測定する粒子の平均粒子径の1/2〜1/4程度の細孔ピークが現れる。粒子が持つ細孔径を表すために、2つのピークの間の極小点より大きい細孔は無視して再計算することにより粒子の細孔分布を測定し、そのモード径を最多孔径とした。
(Measurement of pore distribution)
The pore diameter of the resin particles was specified by the following measurement. That is, it measured using Shimadzu Corporation autopore 9520 type. This measuring instrument is a device that uses the mercury intrusion method. Using the high surface tension of mercury, pressure is applied to inject mercury into the pores of the powder, and the pressure and the amount of mercury injected are subtracted. This is a method for obtaining the pore distribution. Specifically, 0.1 to 0.5 g of a sample was taken in a 5 cc cell, and measurement was performed under conditions of an initial pressure of about 6 kPa (corresponding to a pore diameter of about 230 μm). When a fine particle powder having pores is measured by this method, the gap between the particles is measured simultaneously with the pores of the particles, and two pore peaks may be seen. Usually, the larger pore peak is due to the gap between the particles, and a pore peak of about 1/2 to 1/4 of the average particle diameter of the particles to be measured appears. In order to express the pore diameter of the particles, the pore distribution of the particles was measured by ignoring the pores larger than the minimum point between the two peaks and recalculating, and the mode diameter was taken as the maximum pore diameter.

(粒子形状)
粒子の形状は走査型電子顕微鏡により観察した。また粒子内部の観察は2液タイプのエポキシ接着剤を用い樹脂粒子を固め、硬化後にカミソリ刃でスライスすることで樹脂粒子の断面を露出させた後電子顕微鏡で観察した。後述の図2及び図4がこれに相当する。用いた走査型電子顕微鏡は、日本電子(株)社製の商品名「JSM−820」である。
(Particle shape)
The shape of the particles was observed with a scanning electron microscope. The inside of the particles was observed with an electron microscope after the resin particles were hardened using a two-pack type epoxy adhesive, and the cross section of the resin particles was exposed by slicing with a razor blade after curing. FIG. 2 and FIG. 4 described later correspond to this. The scanning electron microscope used is a trade name “JSM-820” manufactured by JEOL Ltd.

表1に示す組成で実施例及び比較例に係る樹脂粒子を得た。詳細は後述の通りである。なお表中、エチルセルロースの粘度は、前記の通り、JIS Z8803に従ってウベローデ粘度計(毛細管粘度計)によって25℃±0.5℃の温度で測定した値である。   Resin particles according to Examples and Comparative Examples were obtained with the compositions shown in Table 1. Details are as described later. In the table, the viscosity of ethyl cellulose is a value measured at 25 ° C. ± 0.5 ° C. with an Ubbelohde viscometer (capillary viscometer) according to JIS Z8803 as described above.


[実施例1]
〔樹脂粒子の製造〕
水300gに対し、分散安定剤として市販の第三リン酸カルシウムスラリー300g(固形分10% 商品名:スーパータイト 日本化成社製)を1000mlのビーカーに加え、界面活性剤としてラウリル硫酸ナトリウム0.12gを溶解させた。これとは別に、メチルメタクリレート160g、エチレングリコールジメタクリレート40g、エチルセルロース樹脂(45cP 関東化学社製)4g、重合開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)0.5gを均一に混合溶解してなる重合性単量体組成物(油相)を上記分散媒に加えた。この混合物をホモミキサー(IKA社製 ULTRA TURRAX T−25)にて8000rpmで約10秒微分散した。1000mlのセパラブルフラスコに分散液を投入し、撹拌翼、温度計および還流冷却器を取り付け、窒素パージ後、60℃の水浴中に設置した、撹拌速度200rpmで10時間加熱を継続し、重合反応を行った。
[Example 1]
[Production of resin particles]
To 300 g of water, add 300 g of a commercially available tricalcium phosphate slurry as a dispersion stabilizer (10% solid content: Supertite Nippon Kasei Co., Ltd.) to a 1000 ml beaker and dissolve 0.12 g of sodium lauryl sulfate as a surfactant. I let you. Separately, 160 g of methyl methacrylate, 40 g of ethylene glycol dimethacrylate, 4 g of ethyl cellulose resin (45 cP manufactured by Kanto Chemical Co., Inc.), and 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator A polymerizable monomer composition (oil phase) obtained by mixing and dissolving was added to the dispersion medium. This mixture was finely dispersed for about 10 seconds at 8000 rpm with a homomixer (ULTRA TURRAX T-25 manufactured by IKA). Dispersion is put into a 1000 ml separable flask, a stirring blade, a thermometer and a reflux condenser are attached, and after purging with nitrogen, heating is continued for 10 hours at a stirring speed of 200 rpm installed in a water bath at 60 ° C. Went.

重合反応が終了したことを確認した後、反応液を冷却し、スラリーのpHが2程度になるまで塩酸を添加して分散剤を分解した。濾紙を用いたブフナー漏斗で一次粒子を吸引濾過し、5リットルのイオン交換水で洗浄し分散剤を除去し、60℃のオーブン中で24時間乾燥し目的の樹脂粒子を得た。   After confirming that the polymerization reaction was completed, the reaction solution was cooled, and hydrochloric acid was added until the pH of the slurry was about 2, to decompose the dispersant. The primary particles were suction filtered with a Buchner funnel using filter paper, washed with 5 liters of ion exchange water to remove the dispersant, and dried in an oven at 60 ° C. for 24 hours to obtain the desired resin particles.

得られた粒子を走査型電子顕微鏡で観察するとマクロ多孔を有する樹脂粒子であり、粒子内部にも細孔が確認できた。樹脂粒子の電子顕微鏡写真および断面の電子顕微鏡写真をそれぞれ図1及び図2に示した。この粒子は平均粒子径が10.2μmであり、最多孔径は0.85μmであった。   When the obtained particles were observed with a scanning electron microscope, they were resin particles having macropores, and pores could be confirmed inside the particles. An electron micrograph and a cross-sectional electron micrograph of the resin particles are shown in FIGS. 1 and 2, respectively. These particles had an average particle diameter of 10.2 μm and the most porous diameter of 0.85 μm.

[実施例2]
水400gに対し、分散安定剤として市販の第三リン酸カルシウムスラリー200g(固形分10% 商品名:スーパータイト 日本化成社製)を1000mlのビーカーに加え、界面活性剤としてラウリル硫酸ナトリウム0.06gを溶解させた。これとは別に、メチルメタクリレート160g、エチレングリコールジメタクリレート40g、エチルセルロース樹脂(45cP 関東化学社製)8g、重合開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)0.5gを均一に混合溶解してなるモノマー組成物を上記分散媒に加えた。この混合物をホモミキサー(IKA社製 ULTRA TURRAX T−25)にて3000rpmで約10秒微分散した。1000mlのセパラブルフラスコに分散液を投入し、撹拌翼、温度計および還流冷却器を取り付け、窒素パージ後、60℃の水浴中に設置した、撹拌速度200rpmで10時間加熱を継続し、重合反応を行った。重合後は実施例1と同様の操作で樹脂粒子を得た。
[Example 2]
To 400 g of water, 200 g of a commercially available tricalcium phosphate slurry as a dispersion stabilizer (solid content 10%, trade name: Super Tight Nippon Kasei Co., Ltd.) is added to a 1000 ml beaker, and 0.06 g of sodium lauryl sulfate is dissolved as a surfactant. I let you. Separately, 160 g of methyl methacrylate, 40 g of ethylene glycol dimethacrylate, 8 g of ethyl cellulose resin (45 cP manufactured by Kanto Chemical Co., Inc.), and 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator The monomer composition obtained by mixing and dissolving in was added to the dispersion medium. This mixture was finely dispersed for about 10 seconds at 3000 rpm with a homomixer (ULTRA TURRAX T-25 manufactured by IKA). Dispersion is put into a 1000 ml separable flask, a stirring blade, a thermometer and a reflux condenser are attached, and after purging with nitrogen, heating is continued for 10 hours at a stirring speed of 200 rpm installed in a water bath at 60 ° C. Went. After the polymerization, resin particles were obtained in the same manner as in Example 1.

得られた粒子を走査型電子顕微鏡で観察するとマクロ多孔を有する樹脂粒子であり、粒子内部にも細孔が確認できた。樹脂粒子の電子顕微鏡写真および断面の電子顕微鏡写真をそれぞれ図3及び図4に示した。この粒子は平均粒子径が55.6μmであり、最多孔径は0.72μmであった。   When the obtained particles were observed with a scanning electron microscope, they were resin particles having macropores, and pores could be confirmed inside the particles. The electron micrograph and the cross-sectional electron micrograph of the resin particles are shown in FIGS. 3 and 4, respectively. These particles had an average particle diameter of 55.6 μm and a most porous diameter of 0.72 μm.

[実施例3]
エチレングリコールジメタクリレートの替わりにジビニルベンゼンを使用したこと以外は、実施例1と同様の条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が12.5μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.92μmであった。樹脂粒子の電子顕微鏡写真を図5に示す。
[Example 3]
As a result of polymerizing the resin particles under the same conditions as in Example 1 except that divinylbenzene was used instead of ethylene glycol dimethacrylate, the resulting resin particles had an average particle diameter of 12.5 μm, and scanning electron When observed with a microscope, the particles were macroporous resin particles. The most porous diameter was 0.92 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例4]
メチルメタクリレートにかえてブチルメタクリレート133.4g、エチレングリコールジメタクリレートにかえてトリメチロールプロパントリメタクリレート66.6gにかえた以外は実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が7.5μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.52μmであった。樹脂粒子の電子顕微鏡写真を図6に示す。
[Example 4]
Resin particles obtained by polymerizing resin particles under the same conditions as in Example 1 except that 133.4 g of butyl methacrylate instead of methyl methacrylate and 66.6 g of trimethylolpropane trimethacrylate instead of ethylene glycol dimethacrylate were used. Had an average particle diameter of 7.5 μm, and when observed with a scanning electron microscope, they were resin particles having macropores. The most porous diameter was 0.52 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例5]
エチレングリコールジメタクリレートを200gに変え、単官能重合性単量体を使用しない以外は実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が12.1μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.45μmであった。樹脂粒子の電子顕微鏡写真を図7に示す。
[Example 5]
As a result of polymerizing resin particles under the same conditions as in Example 1 except that ethylene glycol dimethacrylate was changed to 200 g and no monofunctional polymerizable monomer was used, the resulting resin particles had an average particle size of 12.1 μm. When observed with a scanning electron microscope, the resin particles had macropores. The most porous diameter was 0.45 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例6]
エチレングリコールジメタクリレートを15gに変え、メチルメタクリレートを185gにかえた以外は、実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が9.9μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.96μmであった。樹脂粒子の電子顕微鏡写真を図8に示す。
[Example 6]
As a result of polymerizing resin particles under the same conditions as in Example 1 except that ethylene glycol dimethacrylate was changed to 15 g and methyl methacrylate was changed to 185 g, the obtained resin particles had an average particle diameter of 9.9 μm, and were scanned. When observed with a scanning electron microscope, the resin particles had macroporosity. The most porous diameter was 0.96 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例7]
エチレングリコールジメタクリレートを80gに変え、メチルメタクリレートを120gにかえ、エチルセルロースを1.0gにかえた以外は、実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が10.8μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.59μmであった。樹脂粒子の電子顕微鏡写真を図9に示す。
[Example 7]
As a result of polymerizing resin particles under the same conditions as in Example 1 except that ethylene glycol dimethacrylate was changed to 80 g, methyl methacrylate was changed to 120 g, and ethyl cellulose was changed to 1.0 g, the resulting resin particles had an average particle diameter. Was 10.8 μm, and when observed with a scanning electron microscope, it was a resin particle having macropores. The most porous diameter was 0.59 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例8]
メチルメタクリレートを80gにかえ、さらに単官能重合性単量体としてスチレンを80g加えた以外は、実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が11.3μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は1.24μmであった。樹脂粒子の電子顕微鏡写真を図10に示す。
[Example 8]
As a result of polymerizing resin particles under the same conditions as in Example 1 except that 80 g of methyl methacrylate was added and 80 g of styrene was added as a monofunctional polymerizable monomer, the resulting resin particles had an average particle size of 11. It was 3 μm, and when observed with a scanning electron microscope, it was resin particles having macropores. The most porous diameter was 1.24 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例9]
エチレングリコールジメタクリレートを80gに変え、メチルメタクリレートを120gにかえ、エチルセルロースを粘度10cPのものにかえた以外は、実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が10.2μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.49μmであった。樹脂粒子の電子顕微鏡写真を図11に示す。
[Example 9]
Resin particles were polymerized under the same conditions as in Example 1 except that ethylene glycol dimethacrylate was changed to 80 g, methyl methacrylate was changed to 120 g, and ethyl cellulose was changed to a viscosity of 10 cP. The diameter was 10.2 μm, and when observed with a scanning electron microscope, the particles were macroporous resin particles. The most porous diameter was 0.49 μm. An electron micrograph of the resin particles is shown in FIG.

[実施例10]
エチルセルロースを粘度100cPのものにかえた以外は、実施例9と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が13.2μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.68μmであった。
[Example 10]
As a result of polymerizing resin particles under the same conditions as in Example 9 except that ethyl cellulose was changed to one having a viscosity of 100 cP, the obtained resin particles had an average particle size of 13.2 μm, and when observed with a scanning electron microscope, The resin particles had macro porosity. The most porous diameter was 0.68 μm.

[実施例11]
水562gに対し、分散安定剤として市販のコロイダルシリカ38g(商品名:スノーテックスO−40 固形分40% 日産化学工業社製)を使用した以外は実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が12.8μmであり、走査型電子顕微鏡で観察すると、マクロ多孔を有する樹脂粒子であった。最多孔径は0.90μmであった。
[Example 11]
Resin particles were polymerized under the same conditions as in Example 1 except that 38 g of commercial colloidal silica (trade name: Snowtex O-40, solid content 40%, manufactured by Nissan Chemical Industries, Ltd.) was used as a dispersion stabilizer for 562 g of water. As a result, the obtained resin particles had an average particle diameter of 12.8 μm, and when observed with a scanning electron microscope, they were macroporous resin particles. The most porous diameter was 0.90 μm.

[比較例1]
メチルメタクリレートの使用量を200gにかえ、エチレングリコールジメタクリレートを配合しなかったこと以外は、実施例1と同様の条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が9.5μmであり、走査型電子顕微鏡で観察すると、細孔を有さない球状粒子であった。この樹脂粒子はエチレングリコールジメタクリレートを配合されていないため架橋されていない。樹脂粒子の電子顕微鏡写真を図12に示す。
[Comparative Example 1]
As a result of polymerizing resin particles under the same conditions as in Example 1 except that the amount of methyl methacrylate used was changed to 200 g and ethylene glycol dimethacrylate was not blended, the resulting resin particles had an average particle size of 9. When observed with a scanning electron microscope, it was a spherical particle having no pores. These resin particles are not crosslinked because they do not contain ethylene glycol dimethacrylate. An electron micrograph of the resin particles is shown in FIG.

[比較例2]
エチルセルロースの量を0.6gに変えた以外は、実施例7と同様の条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が7.2μmであり、走査型電子顕微鏡で観察すると、表面にわずかに凹凸があるものの細孔を有さない球状粒子であった。この樹脂粒子にはエチルセルロースが少ない。樹脂粒子の電子顕微鏡写真を図13に示す。
[Comparative Example 2]
The resin particles were polymerized under the same conditions as in Example 7 except that the amount of ethyl cellulose was changed to 0.6 g. As a result, the obtained resin particles had an average particle diameter of 7.2 μm and were observed with a scanning electron microscope. Then, although it was slightly uneven | corrugated on the surface, it was a spherical particle which does not have a pore. The resin particles are low in ethyl cellulose. An electron micrograph of the resin particles is shown in FIG.

[比較例3]
特開10−7704号公報(特許文献1)の実施例を参考に以下のように樹脂粒子を製造した。
水300gに対し、分散安定剤として市販の第三リン酸カルシウムスラリー300g(固形分10% 商品名:スーパータイト 日本化成社製)を1000mlのビーカーに加え、界面活性剤としてラウリル硫酸ナトリウム0.12gを溶解させた。これとは別に、ブチルメタクリレート133.4g、トリメチロールプロパントリメタクリレート66.6g、ハードレンB−4000 22.2g(固形分6.66g)、重合開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)0.5gを均一に混合溶解してなるモノマー組成物を上記分散媒に加えた。ここでハードレンB−4000は東洋化成工業(株)製の塩素化ポリオレフィン樹脂であり、トルエンで希釈された30%溶液である。この油相の配合比率は特開10−7704(特許文献1)の実施例3に従った。
この混合物をホモミキサー(IKA社製 ULTRA TURRAX T−25)にて6000rpmで約10秒微分散した。1000mlのセパラブルフラスコに分散液を投入し、撹拌翼、温度計および還流冷却器を取り付け、窒素パージ後、60℃の水浴中に設置した、撹拌速度200rpmで10時間加熱を継続し、重合反応を行った。重合後は実施例1と同様の操作で樹脂粒子を得た。
[Comparative Example 3]
Resin particles were produced as follows with reference to the examples of JP-A-10-7704 (Patent Document 1).
To 300 g of water, add 300 g of a commercially available tricalcium phosphate slurry as a dispersion stabilizer (10% solid content: Supertite Nippon Kasei Co., Ltd.) to a 1000 ml beaker and dissolve 0.12 g of sodium lauryl sulfate as a surfactant. I let you. Separately, 133.4 g of butyl methacrylate, 66.6 g of trimethylolpropane trimethacrylate, 22.2 g of hardene B-4000 (solid content 6.66 g), and 2,2′-azobis (2,4- A monomer composition obtained by uniformly mixing and dissolving 0.5 g of dimethylvaleronitrile) was added to the dispersion medium. Here, Hardren B-4000 is a chlorinated polyolefin resin manufactured by Toyo Kasei Kogyo Co., Ltd., and is a 30% solution diluted with toluene. The blending ratio of the oil phase was in accordance with Example 3 of JP-A-10-7704 (Patent Document 1).
This mixture was finely dispersed for about 10 seconds at 6000 rpm with a homomixer (ULTRA TURRAX T-25 manufactured by IKA). Dispersion is put into a 1000 ml separable flask, a stirring blade, a thermometer and a reflux condenser are attached, and after purging with nitrogen, heating is continued for 10 hours at a stirring speed of 200 rpm installed in a water bath at 60 ° C. Went. After the polymerization, resin particles were obtained in the same manner as in Example 1.

得られた粒子を走査型電子顕微鏡で観察すると微細な多孔を有する平均粒径10.5μmの樹脂粒子であった。樹脂粒子の電子顕微鏡写真を図14に示した。この微細な細孔を有する粒子からはトルエン320ppm検出された。   When the obtained particles were observed with a scanning electron microscope, they were resin particles having a fine porosity and an average particle diameter of 10.5 μm. An electron micrograph of the resin particles is shown in FIG. 320 ppm of toluene was detected from the particles having fine pores.

<残留トルエン測定法>
なお、前記樹脂粒子の残留トルエン量は、次の測定法により測定した。まず、樹脂粒子1gを精秤し、0.1vol%シクロペンタノールDMF(ジメチルホルムアミド)溶液(内部標準液)1mlを加えて、DMF(ジメチルホルムアミド)で25ml定容とし、測定試料液とした。これを23℃で72時間浸漬させた。これを測定装置:(株)島津製作所製 ガスクロマトグラフGC−14A(検出器:FID)、カラム:ジーエルサイエンス(株)社製 PEG−20MPT(25% Chromosorb WAW−DMCS Mesh60/80 3mmφ×2.5m)を用いて、残留トルエン量を内部標準法にて測定した。測定条件は、カラム温度:100℃、キャリアーガス:窒素、キャリアーガス流量:40ml/min、注入口温度:230℃、検出器温度:230℃、測定試料液注入量:1.8μlとした。
<Measurement method of residual toluene>
The residual toluene content of the resin particles was measured by the following measurement method. First, 1 g of resin particles were precisely weighed, 1 ml of 0.1 vol% cyclopentanol DMF (dimethylformamide) solution (internal standard solution) was added, and the volume was adjusted to 25 ml with DMF (dimethylformamide) to obtain a measurement sample solution. This was immersed at 23 ° C. for 72 hours. Measurement apparatus: Gas chromatograph GC-14A (detector: FID) manufactured by Shimadzu Corporation, column: PEG-20MPT (25% Chromosorb WAW-DMCS Mesh 60/80 3 mmφ × 2.5 m manufactured by GL Sciences) ) Was used to measure the amount of residual toluene by the internal standard method. The measurement conditions were column temperature: 100 ° C., carrier gas: nitrogen, carrier gas flow rate: 40 ml / min, inlet temperature: 230 ° C., detector temperature: 230 ° C., and measurement sample solution injection amount: 1.8 μl.

[比較例4]
ハードレンB−4000を70℃のオーブンで48時間乾燥し溶剤分を揮発させ塩素化ポリオレフィン樹脂(乾燥品)を得た。エチルセルロース樹脂の替わりにこの塩素化ポリオレフィン樹脂を用いた以外は実施例4と同様の条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が9.2μmであり、走査型電子顕微鏡で観察すると、表面は平滑であり多孔質樹脂粒子ではなかった。樹脂粒子の電子顕微鏡写真を図15に示す。
[Comparative Example 4]
Hardren B-4000 was dried in an oven at 70 ° C. for 48 hours to evaporate the solvent and obtain a chlorinated polyolefin resin (dried product). As a result of polymerizing the resin particles under the same conditions as in Example 4 except that this chlorinated polyolefin resin was used in place of the ethyl cellulose resin, the resulting resin particles had an average particle size of 9.2 μm, and a scanning electron microscope The surface was smooth and was not porous resin particles. An electron micrograph of the resin particles is shown in FIG.

[比較例5]
エチレングリコールジメタクリレートを5gに変え、メチルメタクリレートを195gにかえた以外は、実施例1と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が11.0μmであり、少し変形したほぼ球状の粒子であった。走査型電子顕微鏡で観察すると、架橋の割合が低いため、多孔を有しない樹脂粒子であった。樹脂粒子の電子顕微鏡写真を図16に示す。
[Comparative Example 5]
As a result of polymerizing resin particles under the same conditions as in Example 1 except that ethylene glycol dimethacrylate was changed to 5 g and methyl methacrylate was changed to 195 g, the resulting resin particles had an average particle diameter of 11.0 μm, Deformed almost spherical particles. When observed with a scanning electron microscope, it was a resin particle having no porosity due to a low crosslinking rate. An electron micrograph of the resin particles is shown in FIG.

[比較例6]
エチルセルロースを15gにかえた以外は実施例1と同条件で樹脂粒子を重合した結果、エチルセルロース量が多すぎるため、分散不良で粒子を得ることが出来なかった。
[Comparative Example 6]
As a result of polymerizing the resin particles under the same conditions as in Example 1 except that the amount of ethyl cellulose was changed to 15 g, the amount of ethyl cellulose was too large, and thus particles could not be obtained due to poor dispersion.

[比較例7]
メチルメタクリレートを60g、スチレンを100gに変えた以外は、実施例8と同条件で樹脂粒子を重合した結果、得られた樹脂粒子は平均粒子径が14.2μmであったが、走査型電子顕微鏡で観察すると、多孔を有さない変形粒子であった。この樹脂粒子はスチレン量が多すぎ、メタクリル系単量体の割合が低い。樹脂粒子の電子顕微鏡写真を図17に示す。
[Comparative Example 7]
As a result of polymerizing the resin particles under the same conditions as in Example 8 except that 60 g of methyl methacrylate and 100 g of styrene were changed, the obtained resin particles had an average particle diameter of 14.2 μm. When observed with, it was a deformed particle having no porosity. These resin particles have too much styrene and a low proportion of methacrylic monomers. An electron micrograph of the resin particles is shown in FIG.

本製造方法によって得られたマクロ多孔の樹脂粒子は、例えば塗料や化粧料に配合すると、その粘性特性、光散乱特性や触感を変化、調整するのに有利に用いることができる。   When the macroporous resin particles obtained by this production method are blended in, for example, paints and cosmetics, they can be advantageously used to change and adjust their viscosity characteristics, light scattering characteristics and touch.

実施例1に係る樹脂粒子を1000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。FIG. 3 is a drawing-substituting photograph of a scanning electron microscope in which resin particles according to Example 1 are photographed at a magnification of 1000 times. 同断面図である。3000倍の倍率で撮影した。FIG. Photographed at a magnification of 3000 times. 実施例2に係る樹脂粒子を300倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。FIG. 4 is a drawing-substituting photograph of a scanning electron microscope in which resin particles according to Example 2 are photographed at a magnification of 300 times. 同断面図である。1000倍の倍率で撮影した。FIG. Photographed at a magnification of 1000 times. 実施例3に係る樹脂粒子を5000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on Example 3 by 5000 time magnification. 実施例4に係る樹脂粒子を3000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。FIG. 6 is a drawing-substituting photograph of a scanning electron microscope in which resin particles according to Example 4 are photographed at a magnification of 3000 times. 実施例5に係る樹脂粒子を1000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on Example 5 by 1000 time magnification. 実施例6に係る樹脂粒子を2000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。FIG. 10 is a drawing-substituting photograph of a scanning electron microscope in which resin particles according to Example 6 are photographed at a magnification of 2000 times. 実施例7に係る樹脂粒子を1000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。FIG. 9 is a drawing-substituting photograph of a scanning electron microscope in which resin particles according to Example 7 are photographed at a magnification of 1000 times. 実施例8に係る樹脂粒子を1000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on Example 8 by 1000 time magnification. 実施例9に係る樹脂粒子を3000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on Example 9 by 3000 times the magnification. 比較例1に係る樹脂粒子を1000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on the comparative example 1 at 1000 time magnification. 比較例2に係る樹脂粒子を5000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on the comparative example 2 by 5000 time magnification. 比較例3に係る樹脂粒子を10000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on the comparative example 3 by the magnification of 10000 times. 比較例4に係る樹脂粒子を3000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on the comparative example 4 by the magnification of 3000 times. 比較例5に係る樹脂粒子を2000倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on the comparative example 5 by 2000 time magnification. 比較例7に係る樹脂粒子を1500倍の倍率で撮影した走査型電子顕微鏡の図面代用写真図である。It is a drawing substitute photograph figure of the scanning electron microscope which image | photographed the resin particle which concerns on the comparative example 7 by 1500 time magnification.

Claims (2)

多価アルコールの(メタ)アクリル酸エステルと芳香族ジビニル化合物の少なくとも1種の多官能重合性単量体5〜100重量%と単官能重合性単量体0〜95重量%からなる重合性単量体100重量部に対して、
セルロース樹脂0.5〜5重量部を溶解し、前記溶解液を水系分散媒体中に分散させて重合する多孔質樹脂粒子の製造方法であって、
前記単官能重合性単量体の50〜100重量%が(メタ)アクリル系単量体であり、前記多孔質樹脂粒子の最多孔径が0.1〜2.0μmの細孔径であることを特徴とする多孔質樹脂粒子の製造方法。
A polymerizable monomer comprising 5 to 100% by weight of at least one polyfunctional polymerizable monomer of (meth) acrylic acid ester of polyhydric alcohol and aromatic divinyl compound and 0 to 95% by weight of monofunctional polymerizable monomer. For 100 parts by weight of the mass,
A method for producing porous resin particles in which 0.5 to 5 parts by weight of a cellulose resin is dissolved, and the solution is dispersed in an aqueous dispersion medium and polymerized.
50 to 100% by weight of the monofunctional polymerizable monomer is a (meth) acrylic monomer, and the most porous diameter of the porous resin particles is a pore diameter of 0.1 to 2.0 μm. A method for producing porous resin particles.
前記水系分散媒体に分散安定剤として第三リン酸カルシウムまたはコロイダルシリカを使用することを特徴とする請求項1記載の多孔質樹脂粒子の製造方法。
The method for producing porous resin particles according to claim 1, wherein tribasic calcium phosphate or colloidal silica is used as a dispersion stabilizer in the aqueous dispersion medium.
JP2004097095A 2004-03-29 2004-03-29 Method for producing porous resin particles Expired - Fee Related JP4261403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097095A JP4261403B2 (en) 2004-03-29 2004-03-29 Method for producing porous resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097095A JP4261403B2 (en) 2004-03-29 2004-03-29 Method for producing porous resin particles

Publications (2)

Publication Number Publication Date
JP2005281470A true JP2005281470A (en) 2005-10-13
JP4261403B2 JP4261403B2 (en) 2009-04-30

Family

ID=35180220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097095A Expired - Fee Related JP4261403B2 (en) 2004-03-29 2004-03-29 Method for producing porous resin particles

Country Status (1)

Country Link
JP (1) JP4261403B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062173A1 (en) * 2009-11-18 2011-05-26 綜研化学株式会社 Resin particles and process for production thereof
WO2013114653A1 (en) * 2012-01-31 2013-08-08 積水化成品工業株式会社 Porous resin particle, method for producing same, dispersion liquid, and application thereof
JP2014198785A (en) * 2013-03-29 2014-10-23 積水化成品工業株式会社 Porous resin particle, its manufacturing method and use thereof
JP2017203134A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Method for producing porous polymer particles
JP2018514638A (en) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド filler
WO2019135384A1 (en) * 2018-01-05 2019-07-11 凸版印刷株式会社 Composite particles, production method for composite particles, dry powder, and resin composition for molding
WO2019208801A1 (en) * 2018-04-27 2019-10-31 凸版印刷株式会社 Sustained-release composite particles, method for producing sustained-release composite particles, dry powder, and wallpaper
JP2019188376A (en) * 2018-04-27 2019-10-31 凸版印刷株式会社 Adsorption agent, manufacturing method of adsorption agent and wallpaper
WO2020050286A1 (en) * 2018-09-03 2020-03-12 旭化成株式会社 Composite particles and resin composition
WO2020246510A1 (en) * 2019-06-06 2020-12-10 凸版印刷株式会社 Composite particle and method for producing same, personal care product, particles for personal care and method for producing same, personal care goods, and composition for personal care
JP7463676B2 (en) 2019-09-06 2024-04-09 Toppanホールディングス株式会社 Composite particles, methods for producing composite particles, and personal care products containing composite particles

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062173A1 (en) * 2009-11-18 2011-05-26 綜研化学株式会社 Resin particles and process for production thereof
CN102597012A (en) * 2009-11-18 2012-07-18 综研化学株式会社 Resin particles and process for production thereof
JPWO2011062173A1 (en) * 2009-11-18 2013-04-04 綜研化学株式会社 Resin particles and method for producing the same
WO2013114653A1 (en) * 2012-01-31 2013-08-08 積水化成品工業株式会社 Porous resin particle, method for producing same, dispersion liquid, and application thereof
CN104080814A (en) * 2012-01-31 2014-10-01 积水化成品工业株式会社 Porous resin particle, method for producing same, dispersion liquid, and application thereof
KR20140119108A (en) * 2012-01-31 2014-10-08 세키스이가세이힝코교가부시키가이샤 Porous resin particle, method for producing same, dispersion liquid, and application thereof
KR101689620B1 (en) * 2012-01-31 2016-12-26 세키스이가세이힝코교가부시키가이샤 Porous resin particle, method for producing same, dispersion liquid, and application thereof
US9532940B2 (en) 2012-01-31 2017-01-03 Sekisui Plastics Co., Ltd. Porous resin particles, method for manufacturing the same, dispersion liquid, and use thereof
JP2014198785A (en) * 2013-03-29 2014-10-23 積水化成品工業株式会社 Porous resin particle, its manufacturing method and use thereof
JP2018514638A (en) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド filler
JP2017203134A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Method for producing porous polymer particles
JP7294143B2 (en) 2018-01-05 2023-06-20 凸版印刷株式会社 Composite particles and dry powders
JPWO2019135384A1 (en) * 2018-01-05 2020-12-17 凸版印刷株式会社 Composite particles, methods for producing composite particles, dry powders, and resin compositions for molding.
WO2019135384A1 (en) * 2018-01-05 2019-07-11 凸版印刷株式会社 Composite particles, production method for composite particles, dry powder, and resin composition for molding
US11685799B2 (en) 2018-01-05 2023-06-27 Toppan Printing Co., Ltd. Composite particles, method of producing composite particles, dry powder, and molding resin composition
WO2019208801A1 (en) * 2018-04-27 2019-10-31 凸版印刷株式会社 Sustained-release composite particles, method for producing sustained-release composite particles, dry powder, and wallpaper
JP2019188376A (en) * 2018-04-27 2019-10-31 凸版印刷株式会社 Adsorption agent, manufacturing method of adsorption agent and wallpaper
JPWO2019208801A1 (en) * 2018-04-27 2021-05-27 凸版印刷株式会社 Sustained release composite particles, method for producing sustained release composite particles, dry powder and wallpaper
JP7409302B2 (en) 2018-04-27 2024-01-09 Toppanホールディングス株式会社 Sustained release composite particles, method for producing sustained release composite particles, dry powder and wallpaper
WO2020050286A1 (en) * 2018-09-03 2020-03-12 旭化成株式会社 Composite particles and resin composition
JPWO2020050286A1 (en) * 2018-09-03 2021-02-15 旭化成株式会社 Composite particles and resin composition
WO2020246510A1 (en) * 2019-06-06 2020-12-10 凸版印刷株式会社 Composite particle and method for producing same, personal care product, particles for personal care and method for producing same, personal care goods, and composition for personal care
JP7463676B2 (en) 2019-09-06 2024-04-09 Toppanホールディングス株式会社 Composite particles, methods for producing composite particles, and personal care products containing composite particles

Also Published As

Publication number Publication date
JP4261403B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP6428844B2 (en) Column packing material
JP4261403B2 (en) Method for producing porous resin particles
WO2006093179A1 (en) Porous monodispersed particles and method for production thereof, and use thereof
JP4794313B2 (en) Polymer particles and method for producing the same
JP5399809B2 (en) Method for producing core-shell particles and core-shell particles
JP5592735B2 (en) Method for producing hydrophilic polymer particles and hydrophilic polymer particles
JP5281938B2 (en) Method for producing monodisperse polymer particles
JP2017203134A (en) Method for producing porous polymer particles
JP5308779B2 (en) Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition
JP6728692B2 (en) Method for producing porous polymer particles
JP5586885B2 (en) Method for producing vinyl polymer fine particles and vinyl polymer fine particles obtained by this production method
JP4852327B2 (en) Method for producing polymer particles having pores inside and polymer particles having pores inside
JP4465294B2 (en) Method for producing resin particles
JP4977327B2 (en) Method for producing hollow particles
JP2011153217A (en) Crosslinked (meth)acrylate resin particle
JP2010202832A (en) Method of production of porous hollow polymer particle and porous hollow polymer particle
JP5281781B2 (en) Monodispersed polymer particles, method for producing the same, light diffusible molded article, and light diffusible coating
WO2007010828A1 (en) Toner and process for producing the same
JP7246849B2 (en) Organic fine particles and method for producing the same
JP2019065134A (en) Pore-forming material
JP5144982B2 (en) Method for producing monodisperse particles
JP2011063758A (en) Seed particle, polymer particle, and method for production the same
JP2008239637A (en) Method for producing polymer particle
JP6348312B2 (en) Method for producing core-shell particles
JP3960209B2 (en) Method for producing charge control resin and charge control resin produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees