JP2006249036A - Method for producing 2, 3, 5-trimethylhydroquinone - Google Patents

Method for producing 2, 3, 5-trimethylhydroquinone Download PDF

Info

Publication number
JP2006249036A
JP2006249036A JP2005070793A JP2005070793A JP2006249036A JP 2006249036 A JP2006249036 A JP 2006249036A JP 2005070793 A JP2005070793 A JP 2005070793A JP 2005070793 A JP2005070793 A JP 2005070793A JP 2006249036 A JP2006249036 A JP 2006249036A
Authority
JP
Japan
Prior art keywords
reaction
dimethyl
trimethylhydroquinone
producing
hydroquinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005070793A
Other languages
Japanese (ja)
Inventor
Satoshi Ogura
訓 小倉
Tadashi Hiramine
正 平嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Priority to JP2005070793A priority Critical patent/JP2006249036A/en
Publication of JP2006249036A publication Critical patent/JP2006249036A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing 2,3,5-trimethylhydroquinone of high purity, useful as a raw material for vitamin E, by using 2,6-dimethylphenol that can inexpensively and industrially be mass-produced by dialkylation of phenol with methanol. <P>SOLUTION: 2,6-Dimethylphenol is oxygen-oxidized to prepare 2,6-dimethyl-p-benzoquinone and the 2,6-dimethyl-p-benzoquinone is hydrogenated to prepare 2,6-dimethyl-hydroquinone. Then, the resultant 2,6-dimethyl-hydroquinone is aminomethylated to form Mannich salt and the Mannich salt is subjected to hydrogenolysis to produce 2,3,5-trimethylhydroquinone. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ビタミンEの原料として有用な2,3,5-トリメチルヒドロキノンを高収率、高純度で製造する方法に関する。   The present invention relates to a method for producing 2,3,5-trimethylhydroquinone useful as a raw material for vitamin E with high yield and high purity.

ビタミンEの原料として有用な2,3,5-トリメチルヒドロキノンは、一般には2,3,6-トリメチルフェノールから工業的に製造されている。しかしながらこの原料の2,3,6-トリメチルフェノールは、従来、工業的にはm-クレゾールを出発原料としているが、m-クレゾールはサイメン法(特許文献:(1)特公昭51-025011号公報、(2)米国特許第2728797号公報等)で得られたm/p-クレゾールをブチル化し、分離後、脱ブチル化する(特許文献:(3)米国特許第2297588号公報)方法等によって生産されている。m-クレゾールがビタミンE向けに需要が増加し、必然的に併産されるp-クレゾール又はその誘導体が過剰となり、そのバランスが問題になっている。
また、2,3,5-トリメチルヒドロキノンは、ヒドロキノンやメチルヒドロキノンを原料として製造する方法も知られている。すなわち、これらの原料化合物とホルムアルデヒドとのマンニッヒ塩を生成し、これを水素化分解して製造する方法(特許文献:(4)特開昭50-123632号公報、(5)特開昭51-0004973号公報、(6)ドイツ特許第2025579号公報、(7)ドイツ特許第2006525号公報)である。しかしながら、これらの方法では原料のヒドロキノン類が高価である上に工程が煩雑であることもあって工業的には実施されていない。
そこで、m-クレゾールを原料とせず、かつ、工業的に実施容易で、高効率なトリメチルヒドロキノンの製造方法が求められていた。
2,3,5-trimethylhydroquinone useful as a raw material for vitamin E is generally produced industrially from 2,3,6-trimethylphenol. However, this raw material 2,3,6-trimethylphenol has conventionally used m-cresol as a starting material industrially, but m-cresol is the Cymen method (patent document: (1) Japanese Patent Publication No. 51-025011). (2) U.S. Pat. No. 2728797, etc.) m / p-cresol obtained by butylation, separation and debutylation (Patent Document: (3) U.S. Pat. No. 2,297,588) Has been. The demand for m-cresol has increased for vitamin E, and the balance of p-cresol or its derivatives inevitably co-produced has become a problem.
In addition, a method for producing 2,3,5-trimethylhydroquinone from hydroquinone or methylhydroquinone as a raw material is also known. That is, a method of producing a Mannich salt of these raw material compounds and formaldehyde and hydrocracking it (Patent Documents: (4) JP-A-50-123632, (5) JP-A-51-51 No. 0004973, (6) German Patent No. 2025579, (7) German Patent No. 2006525). However, these methods are not industrially implemented because the raw hydroquinones are expensive and the process is complicated.
Therefore, there has been a demand for a highly efficient method for producing trimethylhydroquinone that does not use m-cresol as a raw material, is industrially easily implemented, and is highly effective.

特公昭51-025011号公報Japanese Patent Publication No.51-025011 米国特許第2728797号公報U.S. Pat.No. 2728797 米国特許第2297588号公報US Patent No. 2297588 特開昭50-123632号公報JP 50-123632 A 特開昭51-004973号公報JP 51-004973 A ドイツ特許第2025579号公報German Patent No. 2025579 ドイツ特許第2006525号公報German Patent No. 2006525

本発明は、2,3,5-トリメチルヒドロキノンの製造における上述した問題を解決するためになされたものであって、本発明の目的は、m-クレゾールを原料とせず、工業的に容易に入手し得る原料を用いると共に、工業的に実施容易な反応条件下に反応を行って、2,3,5-トリメチルヒドロキノンを高収率、高純度で製造する方法を提供することにある。   The present invention has been made to solve the above-mentioned problems in the production of 2,3,5-trimethylhydroquinone, and the object of the present invention is to obtain industrially easily without using m-cresol as a raw material. An object of the present invention is to provide a method for producing 2,3,5-trimethylhydroquinone with high yield and high purity by using a raw material that can be used and carrying out a reaction under industrially easy reaction conditions.

本発明によれば、2,6-ジメチルフェノールを酸素酸化して2,6-ジメチル-P−ベンゾキノンを得る工程(第1工程)、
得られた2,6-ジメチル-P-ベンゾキノンを水素化して2,6-ジメチル-ヒドロキノンを得る工程(第2工程)、
次いで、得られた2,6-ジメチル-ヒドロキノンをアミノメチル化してマンニッヒ塩を得る工程(第3工程)、
更に、得られたマンニッヒ塩を水素化分解して2,3,5-トリメチルヒドロキノンを得る工程(第4工程)を順次行うことを特徴とする下記化学式1の2,3,5-トリメチルヒドロキノンの製造方法が提供される。
According to the present invention, 2,6-dimethylphenol is oxidized with oxygen to obtain 2,6-dimethyl-P-benzoquinone (first step),
A step of hydrogenating the obtained 2,6-dimethyl-P-benzoquinone to obtain 2,6-dimethyl-hydroquinone (second step);
Next, a step of aminomethylating the obtained 2,6-dimethyl-hydroquinone to obtain a Mannich salt (third step),
Further, the step of hydrogenolysis of the obtained Mannich salt to obtain 2,3,5-trimethylhydroquinone (step 4) is sequentially performed. A manufacturing method is provided.


(化学式1)

(Chemical formula 1)

本発明の2,3,5-トリメチルヒドロキノンの製造方法によれば、出発原料として、2,6-ジメチルフェノールを用いる。本発明の原料である2,6-ジメチルフェノールは、フェノールをメタノールでジアルキル化することにより、容易に製造出来る為、耐熱性樹脂等の中間原料として、現在、工業的に多量に製造されている。本発明の2,3,5-トリメチルヒドロキノンの製造方法においては、このような2,6-ジメチルフェノールを出発原料とし、前記4つの工程を順次行うことにより、目的とする2,3,5-トリメチルヒドロキノンを収率よく、高純度で得ることが出来る。また、各工程において、その反応生成物は、精製することなく、粗製物のまま次工程の原料として用いることができるので、工業的に実施容易である。   According to the method for producing 2,3,5-trimethylhydroquinone of the present invention, 2,6-dimethylphenol is used as a starting material. 2,6-Dimethylphenol, which is a raw material of the present invention, can be easily produced by dialkylating phenol with methanol. Therefore, it is currently industrially produced in large quantities as an intermediate raw material for heat-resistant resins and the like. . In the method for producing 2,3,5-trimethylhydroquinone of the present invention, by using 2,6-dimethylphenol as a starting material and sequentially performing the above four steps, Trimethylhydroquinone can be obtained with high yield and high purity. Moreover, in each process, since the reaction product can be used as a raw material of a next process, without refine | purifying, it is industrially easy to implement.

本発明における、2,6-ジメチルフェノールを原料として4つの反応工程を経て2,3,5-トリメチルヒドロキノンを製造する方法を反応式で例示すると、下記反応式で表される。   A method for producing 2,3,5-trimethylhydroquinone from 2,6-dimethylphenol as a raw material through four reaction steps in the present invention is illustrated by the following reaction formula.

上記第1工程においては、2,6-ジメチルフェノールを酸素酸化して2,6-ジメチル-P-ベンゾキノンを得る。2,6-ジメチルフェノールの酸素酸化の方法としては、特に制限はなく、例えば、酸素を酸化剤とし、有機溶媒中、コバルト錯体を触媒とする方法(特公昭56-026647号公報)、ハロゲン化銅を触媒とする方法(特開昭49-36641号公報)、銅系触媒の存在下に、酸素又は空気等の酸素含有ガスで酸化する方法(特開昭48-000434号公報あるいは特開平03-081249号公報)などの、従来公知の方法を用いることが出来る。しかしながら、本発明の製造方法においては、第1工程の反応生成物から、2量体以上の高沸点副生物を除去した後、精製することなく、第2工程の反応の原料として用いる事が好ましく、そのため、例えば、特開平03-081249号公報記載のように、銅化合物及びヒドロキシルアミン類と無機酸の塩又はオキシム類と無機酸の塩の混合物よりなる触媒の存在下に、有機溶媒中で酸素酸化する方法が好ましく用いられる。   In the first step, 2,6-dimethylphenol is oxidized with oxygen to obtain 2,6-dimethyl-P-benzoquinone. The oxygen oxidation method of 2,6-dimethylphenol is not particularly limited. For example, a method using oxygen as an oxidizing agent and a cobalt complex as a catalyst in an organic solvent (Japanese Patent Publication No. 56-026647), halogenation A method using copper as a catalyst (JP-A-49-36641), a method of oxidizing with oxygen-containing gas such as oxygen or air in the presence of a copper-based catalyst (JP-A-48-000434 or JP-A-03) Conventionally known methods such as No. -081249) can be used. However, in the production method of the present invention, it is preferable to use as a raw material for the reaction in the second step without purification after removing the high-boiling by-products of the dimer or higher from the reaction product in the first step. Therefore, for example, as described in JP-A-03-081249, in the presence of a catalyst composed of a mixture of a copper compound and a hydroxylamine and an inorganic acid salt or an oxime and an inorganic acid salt in an organic solvent. A method of oxidizing oxygen is preferably used.

反応は、例えば、反応容器に、原料の2,6-ジメチルフェノール、トルエン及びイソプロピルアルコール等の有機溶媒を仕込み、塩化第一銅、塩化第二銅などの銅化合物及び硫酸ヒドロキシルアミンなどのヒドロキシルアミン類と無機酸の塩よりなる混合触媒を添加し、酸素含有ガス、例えば空気等の気相の酸素酸化剤を通気しながら、酸化反応を行う。酸化反応終了後、反応終了混合物にアルカリ水溶液を加えて中和した後、水相を分離し、触媒を濾別して粗製の反応終了混合液を得る。得られた粗製反応終了混合液には、目的物である2,6-ジメチル-P-ベンゾキノン、原料2,6-ジメチルフェノール、副生物、及び溶媒を含んでいる。この反応混合液を分留して、2,6-ジメチル-P-ベンゾキノンを含む留分(粗生成物)を得る。一方、これにより次工程以降の反応や製品純度に悪影響を及ぼすテトラメチルビフェノールなどの2量体を含む高沸点の副生物は、例えば、蒸留残渣として分離することができる。   In the reaction, for example, raw materials such as 2,6-dimethylphenol, toluene and isopropyl alcohol are charged into a reaction vessel, and a copper compound such as cuprous chloride and cupric chloride and hydroxylamine such as hydroxylamine sulfate. A mixed catalyst composed of a salt of an acid and an inorganic acid is added, and an oxidation reaction is performed while an oxygen-containing gas, for example, a gas-phase oxygen oxidant such as air is passed through. After completion of the oxidation reaction, the reaction mixture is neutralized by adding an aqueous alkali solution, the aqueous phase is separated, and the catalyst is filtered off to obtain a crude reaction mixture. The obtained crude reaction-terminated mixture contains 2,6-dimethyl-P-benzoquinone, the raw material 2,6-dimethylphenol, a by-product, and a solvent. This reaction mixture is subjected to fractional distillation to obtain a fraction (crude product) containing 2,6-dimethyl-P-benzoquinone. On the other hand, a high-boiling by-product containing a dimer such as tetramethylbiphenol that adversely affects the reaction and product purity after the next step can be separated as, for example, a distillation residue.

第1工程の反応に用いられる酸化触媒としては、具体的には、好ましくは、硫酸第一銅、硫酸第二銅、硝酸第一銅、塩化第一銅、塩化第二銅などの銅化合物で、特に好ましくは塩化第二銅である。また、それらの銅化合物と共にヒドロキシルアミン、N,N-ジメチルヒドロキシルアミンなどのヒドロキシルアミン類又はそれらの硫酸塩、塩酸塩などの無機酸塩を用いてもよい。銅化合物の使用量は、原料の2,6-ジメチルフェノール1モルに対し、好ましくは、0.01〜0.2モル倍である。また、銅化合物と共に用いられてもよいヒドロキシルアミン類又はそれらの無機酸塩は、銅化合物1モルに対し、0.2〜5モル倍である。
さらに、反応溶媒としては、反応に不活性な溶媒であれば、特に制限はないが、好ましくは、例えばt-ブタノール、i-ブタノール、イソプロパノール等の脂肪族アルコール又はこれらとトルエン等の芳香族炭化水素との混合溶剤が用いられる。反応温度は室温〜80℃の範囲が好ましく、酸化反応に用いられる酸素又は空気等の酸素含有ガスの反応圧力は、好ましくは常圧〜10kg/cm2程度である。
Specifically, the oxidation catalyst used for the reaction in the first step is preferably a copper compound such as cuprous sulfate, cupric sulfate, cuprous nitrate, cuprous chloride, and cupric chloride. Particularly preferred is cupric chloride. Further, together with these copper compounds, hydroxylamines such as hydroxylamine and N, N-dimethylhydroxylamine or inorganic acid salts such as sulfates and hydrochlorides thereof may be used. The amount of copper compound used is preferably 0.01 to 0.2 moles per mole of 2,6-dimethylphenol as a raw material. Moreover, hydroxylamines which may be used with a copper compound or those inorganic acid salts are 0.2-5 mol times with respect to 1 mol of copper compounds.
Furthermore, the reaction solvent is not particularly limited as long as it is inert to the reaction, but preferably, for example, aliphatic alcohols such as t-butanol, i-butanol and isopropanol, or aromatic carbonization such as toluene and the like. A mixed solvent with hydrogen is used. The reaction temperature is preferably in the range of room temperature to 80 ° C., and the reaction pressure of an oxygen-containing gas such as oxygen or air used for the oxidation reaction is preferably about normal pressure to about 10 kg / cm 2 .

本発明の製造方法における第2工程は、前記第1工程で得られた2,6-ジメチル-P-ベンゾキノンを水素化して2,6-ジメチル-ヒドロキノンを得る。
2,6-ジメチル-P-ベンゾキノンの水素還元反応の方法としては、特に制限はなく、例えば、特開昭48-049732号公報に記載のように、有機溶媒中、パラジウム、白金、ニッケル、ロジウムなどの水素化触媒の存在下に水素化反応を行うなどの、従来公知の方法を用いることが出来る。しかしながら、本発明の製造方法においては、第2工程の原料として、第1工程の反応において得られた粗製の2,6-ジメチル-P-ベンゾキノンを用いることが好ましく、また、第2工程の反応生成物は、反応生成混合物から、触媒を濾別し、溶媒等を留去した後、目的物である2,6-ジメチル-ヒドロキノン、出発原料の2,6-ジメチルフェノール及びその他第1工程由来の副生物を含む粗製の反応生成物であり、これを精製することなく、第3工程の反応の原料として用いることが設備簡略、操作簡易となり、経済的な点で好ましい。
In the second step of the production method of the present invention, 2,6-dimethyl-P-benzoquinone obtained in the first step is hydrogenated to obtain 2,6-dimethyl-hydroquinone.
The method for the hydrogen reduction reaction of 2,6-dimethyl-P-benzoquinone is not particularly limited. For example, as described in JP-A-48-049732, palladium, platinum, nickel, rhodium in an organic solvent. A conventionally known method such as performing a hydrogenation reaction in the presence of a hydrogenation catalyst such as can be used. However, in the production method of the present invention, it is preferable to use the crude 2,6-dimethyl-P-benzoquinone obtained in the reaction of the first step as the raw material of the second step. The product is derived from the reaction product mixture by filtering the catalyst and distilling off the solvent, etc., then 2,6-dimethyl-hydroquinone, the starting material, 2,6-dimethylphenol, and the other first step It is a crude reaction product containing the by-product of the above, and it is preferable from the economical viewpoint that the equipment is simplified and the operation is simplified without using the crude reaction product as a raw material for the reaction in the third step.

反応は、例えば、加圧反応容器に、原料の、第一工程で得られた粗製2,6-ジメチル-P-ベンゾキノン、酢酸ブチルなどの有機溶媒及びラネーニッケルなどの水素化触媒を仕込み、水素ガスを通気しながら、加温、加圧下に、水素化反応を行う。水素化反応終了後、触媒を濾別して反応終了混合液を得る。得られた反応終了混合液には、目的物である2,6-ジメチル-ヒドロキノン、出発原料2,6-ジメチルフェノール、副生物及び溶媒を含んでいる。この反応混合液を分留して、有機溶媒を回収し、必要に応じて2,6-ジメチルフェノールも回収すると共に、2,6-ジメチル-ヒドロキノンを含む残留液(粗生成物)を得る。   The reaction is performed, for example, by charging a raw material, a crude 2,6-dimethyl-P-benzoquinone obtained in the first step, an organic solvent such as butyl acetate, and a hydrogenation catalyst such as Raney nickel into hydrogen gas. The hydrogenation reaction is carried out under heating and pressure while aeration. After completion of the hydrogenation reaction, the catalyst is filtered off to obtain a reaction mixture. The obtained reaction-terminated mixed solution contains 2,6-dimethyl-hydroquinone as a target product, 2,6-dimethylphenol as a starting material, a by-product and a solvent. This reaction mixture is subjected to fractional distillation to recover the organic solvent, and 2,6-dimethylphenol is recovered as required, and a residual liquid (crude product) containing 2,6-dimethyl-hydroquinone is obtained.

第2工程の反応に用いられる、水素化触媒としては、ラネーニッケル等のニッケル触媒、パラジウム等の貴金属触媒が好ましく用いられ、これらの貴金属はカーボン等の担体に担持されていてもよい。これらの触媒は、原料の2,6-ジメチル-P-ベンゾキノンに対して、好ましくは、5〜15重量%の範囲で用いられる。
反応溶媒は反応を阻害しないものであれば特に制限はないが、2-プロパノール等のアルコール、酢酸ブチル等のアルキルエステル、ジエチルエーテル等のエーテルが好ましく用いられる。
反応温度は、好ましくは50〜150℃の範囲、また、水素ガスの圧力は、好ましくは1〜5kg/cm2程度である。
As the hydrogenation catalyst used in the reaction in the second step, a nickel catalyst such as Raney nickel or a noble metal catalyst such as palladium is preferably used, and these noble metals may be supported on a carrier such as carbon. These catalysts are preferably used in the range of 5 to 15% by weight with respect to the raw material 2,6-dimethyl-P-benzoquinone.
The reaction solvent is not particularly limited as long as it does not inhibit the reaction, but alcohols such as 2-propanol, alkyl esters such as butyl acetate, and ethers such as diethyl ether are preferably used.
The reaction temperature is preferably in the range of 50 to 150 ° C., and the pressure of hydrogen gas is preferably about 1 to 5 kg / cm 2 .

本発明の製造方法における第3工程及び第4工程は、前記第2工程で得られた2,6-ジメチル-ヒドロキノンをアミノメチル化してマンニッヒ塩を得(第3工程)、ついで、得られたマンニッヒ塩を水素化分解して本発明の目的物である2,3,5-トリメチルヒドロキノンを得る(第4工程)。
アミノメチル化反応及び水素化分解反応の方法は、特に制限はなく、例えば、ドイツ特許第2006525号公報、ドイツ特許第2025579号公報などに記載の従来公知の方法を用いることが出来る。
The third and fourth steps in the production method of the present invention were obtained by aminomethylating the 2,6-dimethyl-hydroquinone obtained in the second step to obtain a Mannich salt (third step), and then obtained. The Mannich salt is hydrocracked to obtain 2,3,5-trimethylhydroquinone which is the object of the present invention (fourth step).
The methods of aminomethylation reaction and hydrogenolysis reaction are not particularly limited, and conventionally known methods described in, for example, German Patent No. 2006525 and German Patent No. 2025579 can be used.

第3工程の反応は、例えば、反応容器に、第2工程で得られた粗製の2,6-ジメチル-ヒドロキノン、トルエン等の有機溶媒及びモルホリンなどの2級アミンを仕込み、これにホルマリンやパラホルムアルデヒドなどを添加、反応させてマンニッヒ塩を得る。マンニッヒ塩としては、例えば、モルホリンとホルムアルデヒドからは3-モルホリノメチル-2,6-ジメチル-ヒドロキノンを得る。得られた反応生成混合物は室温に冷却することにより3-モルホリノメチル-2,6-ジメチル-ヒドロキノンが析出してくるので、これを濾過することにより、粗製の3-モルホリノメチル-2,6-ジメチル-ヒドロキノンであるマンニッヒ塩を得ることができる。
第3工程の反応に用いられる原料の2,6-ジメチル-ヒドロキノンの純度は、高純度である必要はなく、例えば、原料の2,6-ジメチルフェノールや酸化工程由来の低沸点副生物が含まれていてもよく、40〜95%の範囲、好ましくは80〜95%の範囲でも用いることができる。また、アミノメチル化に用いられる2級アミンとしては、ジメチルアミン等のジアルキルアミン、メチルシクロヘキシルアミン等のシクロヘキシルアミン、ピペリジン、ピペコリン、モルホリン等の環状2級アミンが挙げられるが、これらのうち、環状2級アミンが好ましく、モルホリンが特に好ましい。また、ホルムアルデヒドとしては、ホルマリンやパラホルムアルデヒドなどがあげられる。
In the reaction in the third step, for example, the crude 2,6-dimethyl-hydroquinone obtained in the second step, an organic solvent such as toluene, and a secondary amine such as morpholine are charged in a reaction vessel, and formalin and paraffin are added thereto. Mannich salt is obtained by adding formaldehyde and reacting. As the Mannich salt, for example, 3-morpholinomethyl-2,6-dimethyl-hydroquinone is obtained from morpholine and formaldehyde. The resulting reaction product mixture is cooled to room temperature to precipitate 3-morpholinomethyl-2,6-dimethyl-hydroquinone. By filtering this, the crude 3-morpholinomethyl-2,6- Mannich salts that are dimethyl-hydroquinone can be obtained.
The purity of the raw material 2,6-dimethyl-hydroquinone used in the reaction in the third step does not need to be high, and includes, for example, the raw material 2,6-dimethylphenol and low-boiling by-products derived from the oxidation step. It may be used in the range of 40 to 95%, preferably 80 to 95%. Examples of secondary amines used for aminomethylation include dialkylamines such as dimethylamine, cyclohexylamines such as methylcyclohexylamine, and cyclic secondary amines such as piperidine, pipecoline, and morpholine. Secondary amines are preferred, and morpholine is particularly preferred. Examples of formaldehyde include formalin and paraformaldehyde.

原料の2,6-ジメチル-P-ヒドロキノン1モルに対する2級アミンの量は1.0〜2.0モルの範囲が好ましく、同様に、低級アルデヒドの量は、1.0〜2.0モルの範囲が好ましい。
反応に用いられる溶媒としては多量の原料(2,6-ジメチルフェノール)や、酸化工程由来の副生物を含んでいても反応終了後のこれらを溶解したままで、目的物が高純度、高収率で濾別によって容易に取得でき、さらに、反応中に目的のマンニッヒ塩が析出することにより、副生物であるジアミノメチル化物の生成を抑制することができるという点で、トルエン、ベンゼン、エチルベンゼン、キシレン等の芳香族炭化水素溶媒が好ましく、溶媒の量は、通常、原料の粗2,6-ジメチル-ヒドロキノンに対し2〜4倍量が好ましい。
The amount of secondary amine relative to 1 mol of 2,6-dimethyl-P-hydroquinone as a raw material is preferably in the range of 1.0 to 2.0 mol. Similarly, the amount of lower aldehyde is preferably in the range of 1.0 to 2.0 mol.
As a solvent used in the reaction, even if it contains a large amount of raw materials (2,6-dimethylphenol) and by-products derived from the oxidation process, these products remain dissolved after completion of the reaction, and the target product has high purity and high yield. In addition, toluene, benzene, ethylbenzene, and the like can be easily obtained by filtration, and the formation of the diaminomethylated product as a by-product can be suppressed by precipitation of the desired Mannich salt during the reaction. An aromatic hydrocarbon solvent such as xylene is preferred, and the amount of the solvent is usually preferably 2 to 4 times the amount of raw 2,6-dimethyl-hydroquinone.

反応温度は、65℃以上になると、アミノメチルの2モル付加体量が増加する理由で、40〜60℃の範囲が好ましい。また、反応中に生成し、析出したマンニッヒ塩を濾別するに際し、目的物であるアミノメチル1モル付加体(3-モルホリノメチル-2,6-ジメチルヒドロキノン)以外に、若干のアミノメチル2モル付加体(3,5-ジモルホリノメチル-2,6-ジメチルヒドロキノン)が生成するため、原料の2,6-ジメチル-ヒドロキノンに対し1〜5重量%程度のメタノール等の低級脂肪族アルコールを加えてこれらの2モル付加体を溶解した後に、目的のマンニッヒ塩を濾別することが好ましい。   The reaction temperature is preferably in the range of 40 to 60 ° C. because the amount of 2-methyl adduct of aminomethyl increases when the reaction temperature is 65 ° C. or higher. In addition, when the Mannich salt formed and precipitated during the reaction is separated by filtration, in addition to the target aminomethyl 1-mol adduct (3-morpholinomethyl-2,6-dimethylhydroquinone), some aminomethyl 2 mol Since adduct (3,5-dimorpholinomethyl-2,6-dimethylhydroquinone) is formed, 1-5% by weight of lower aliphatic alcohol such as methanol is added to the raw material 2,6-dimethyl-hydroquinone. It is preferable to dissolve the desired Mannich salt after dissolving these 2-mol adducts.

次いで、本発明の製造方法における第4工程では、前記第3工程で得られた粗製のマンニッヒ塩、例えば、3-モルホリノメチル-2,6-ジメチル-ヒドロキノンを原料とし、例えば、これを加圧反応容器に入れ、メタノールなどの有機溶媒及びカーボン担持パラジウム触媒などの貴金属触媒を添加し、水素ガスを通気しながら、加温、加圧下に、水素化分解を行う。水素化反応終了後、触媒を濾別して反応終了混合液を得る。得られた反応終了混合液から常法の後処理操作により、例えば、得られた反応終了混合液から、蒸留等により、有機溶媒及び分解生成物、例えばモルホリンを分離し、残留液にメチルイソブチルケトンなどの溶媒を加えて加温溶解し、ついで、これにトルエン等の晶析溶媒を加えて冷却、晶析、濾過、乾燥して、本発明の目的物である2,3,5-トリメチルヒドロキノンを高純度品として得ることができる。   Next, in the fourth step in the production method of the present invention, the crude Mannich salt obtained in the third step, for example, 3-morpholinomethyl-2,6-dimethyl-hydroquinone is used as a raw material. Into a reaction vessel, an organic solvent such as methanol and a noble metal catalyst such as a palladium catalyst on carbon are added, and hydrogenolysis is performed under heating and pressure while ventilating hydrogen gas. After completion of the hydrogenation reaction, the catalyst is filtered off to obtain a reaction mixture. An organic solvent and a decomposition product such as morpholine are separated from the obtained reaction end mixture by a conventional post-treatment operation, for example, distillation or the like from the obtained reaction end mixture, and methyl isobutyl ketone is added to the residual solution. The solvent such as toluene is added and dissolved by heating. Then, a crystallization solvent such as toluene is added thereto, followed by cooling, crystallization, filtration, and drying, and the 2,3,5-trimethylhydroquinone that is the object of the present invention. Can be obtained as a high-purity product.

第4工程の反応において、水素化分解反応触媒としては、パラジウム、ロジウム、プラチナ等の貴金属触媒が好ましく、これらはカーボン等の担体に担持されていてもよい。これらの内、パラジウムカーボン触媒が特に好ましい。反応に際し用いられる溶媒は、反応に不活性のものであれば特に制限はないが、メタノール、2-プロパノール等の低級脂肪族アルコール、酢酸ブチル等のアルキルエステル、テトラヒドロフラン、ジオキサン等のエーテルが好ましく用いられる。
反応温度は、50〜150℃の範囲が好ましく、また、水素ガスの圧力は、5〜15kg/cm2程度が好ましい。
In the reaction of the fourth step, the hydrocracking reaction catalyst is preferably a noble metal catalyst such as palladium, rhodium or platinum, and these may be supported on a carrier such as carbon. Of these, a palladium carbon catalyst is particularly preferred. The solvent used in the reaction is not particularly limited as long as it is inert to the reaction, but lower aliphatic alcohols such as methanol and 2-propanol, alkyl esters such as butyl acetate, and ethers such as tetrahydrofuran and dioxane are preferably used. It is done.
The reaction temperature is preferably in the range of 50 to 150 ° C., and the hydrogen gas pressure is preferably about 5 to 15 kg / cm 2 .

本発明の2,3,5-トリメチルヒドロキノンの製造方法によれば、2,6-ジメチルフェノールを出発原料とし、4つの反応工程を順次行うことにより目的とする2,3,5-トリメチルヒドロキノンを収率よく、高純度で得ることが出来る。また、各工程において、その反応生成物は、精製,単離することなく、粗製物のまま次工程の原料として用いることができるので、工業的に実施容易である。
2,6-ジメチルフェノールを出発原料として、上記4つの反応工程を順次行うことにより、高純度の2,3,5-トリメチルヒドロキノンを工業的に容易な反応操作で得るが、消費された出発原料の2,6-ジメチルフェノールに対する総合収率は25〜35%程度である。本発明の製造方法においては、各工程において、未反応の2,6-ジメチルフェノール、反応に際し用いた溶媒、2級アミン等は回収し循環使用することができるので、経済的にも有利である。
According to the method for producing 2,3,5-trimethylhydroquinone of the present invention, the desired 2,3,5-trimethylhydroquinone is obtained by sequentially performing four reaction steps using 2,6-dimethylphenol as a starting material. It can be obtained with high yield and high purity. Further, in each step, the reaction product can be used as a raw material for the next step as a crude product without being purified and isolated, so that it is easy to implement industrially.
By using 2,6-dimethylphenol as a starting material, the above four reaction steps are sequentially performed to obtain high-purity 2,3,5-trimethylhydroquinone through an industrially easy reaction operation. The overall yield of 2,6-dimethylphenol is about 25-35%. In the production method of the present invention, unreacted 2,6-dimethylphenol, the solvent used in the reaction, secondary amine, etc. can be recovered and reused in each step, which is economically advantageous. .

1)2,6-ジメチル-P-ベンゾキノン(DMBQ)の合成(第1工程)
還流冷却器及び撹拌機付きの1L容量の四つ口フラスコに、2,6-ジメチルフェノール61.1g(0.5mol)を仕込み、ついで322.5gのトルエン及び97.5gのイソプロピルアルコールを添加して、温度約20℃で撹拌溶解した。
これに硫酸ヒドロキシルアミン10.1g(62.5mmol)と塩化第二銅二水和物 10.6g(62.5mmol)を添加し、空気を約500cc/min.の流量で流しながら温度20℃で2時間、撹拌下に反応する。その後、空気を供給しながら、40℃に昇温して更に2時間、撹拌下に反応する。そのときの2,6-ジメチルフェノールの転化率(ガスクロマトグラフィー分析法による)は66.7%、DMBQの選択率は78.3%であった。
反応終了後、反応終了混合液に75%燐酸 0.3gと10%ソーダ灰水溶液 92.0gを加えることによりpH=6〜7に中和し、これを水洗、濾過して触媒及び無機塩を除去して、赤褐色透明の反応終了液を得た。
得られた反応終了液を蒸留して、トルエンとイソプロピルアルコールを回収し、その後更に0.5KPa(約4mmHg)の条件で100℃まで昇温し蒸留して、44.8gの留分を得た。
得られた留分の組成は、2,6-ジメチルフェノール 33.30%、DMBQ 61.50%、その他不純物5.20%(ガスクロマトグラフィー分析による)であり、ガスクロマトグラフィー検量線による定量値分析によると、2,6-ジメチルフェノールが41.07%、目的中間物の2,6-ジメチル-P-ベンゾキノン(DMBQ)が48.21%であった。2量体のテトラメチルビフェノールは含まれていなかった。
1) Synthesis of 2,6-dimethyl-P-benzoquinone (DMBQ) (first step)
Into a 1 L four-necked flask equipped with a reflux condenser and a stirrer is charged 61.1 g (0.5 mol) of 2,6-dimethylphenol, then 322.5 g of toluene and 97.5 g of isopropyl alcohol are added, and the temperature is about The mixture was dissolved with stirring at 20 ° C.
To this was added 10.1 g (62.5 mmol) of hydroxylamine sulfate and 10.6 g (62.5 mmol) of cupric chloride dihydrate, and the mixture was stirred at a temperature of 20 ° C. for 2 hours while flowing air at a flow rate of about 500 cc / min. Reacts down. Then, while supplying air, the temperature is raised to 40 ° C. and the reaction is continued for 2 hours with stirring. At that time, the conversion of 2,6-dimethylphenol (by gas chromatography analysis) was 66.7%, and the selectivity for DMBQ was 78.3%.
After completion of the reaction, the reaction mixture is neutralized to pH = 6-7 by adding 75% phosphoric acid 0.3g and 10% soda ash aqueous solution 92.0g, washed with water and filtered to remove catalyst and inorganic salts. Thus, a reddish brown transparent reaction completion liquid was obtained.
The obtained reaction completion liquid was distilled to recover toluene and isopropyl alcohol, and then further heated to 100 ° C. and distilled under the condition of 0.5 KPa (about 4 mmHg) to obtain 44.8 g of a fraction.
The composition of the obtained fraction was 2,6-dimethylphenol 33.30%, DMBQ 61.50%, other impurities 5.20% (according to gas chromatography analysis), and according to quantitative analysis by gas chromatography calibration curve, The content of 6-dimethylphenol was 41.07% and the target intermediate 2,6-dimethyl-P-benzoquinone (DMBQ) was 48.21%. Dimer tetramethylbiphenol was not included.

2)2,6-ジメチル-ヒドロキノン(DMHQ)の合成(第2工程)
500mL容量のSUS製オートクレーブに第1工程で得た留分を40.7g仕込み、酢酸ブチル122.1gを添加し、更にラネーニッケルを1.0g添加した。
添加終了後、温度 120℃に昇温し、水素圧 3.5〜5Kg/cm2で水素を供給し、撹拌下に4時間反応した。その後、反応終了混合液を室温まで冷却後、濾過してラネーニッケル触媒を除去し、反応終了液を160.5g得た。
得られた反応終了液を蒸留して、2,6-ジメチルフェノールと酢酸ブチルを留去し、残渣液22.3gを得た。残渣液の組成は2,6-ジメチル-ヒドロキノン(DMHQ)89.10%、2,6-ジメチルフェノール 2.94%、その他7.96%であった(ガスクロマトグラフィー)。
2) Synthesis of 2,6-dimethyl-hydroquinone (DMHQ) (second step)
A 500 mL SUS autoclave was charged with 40.7 g of the fraction obtained in the first step, 122.1 g of butyl acetate was added, and 1.0 g of Raney nickel was further added.
After completion of the addition, the temperature was raised to 120 ° C., hydrogen was supplied at a hydrogen pressure of 3.5 to 5 kg / cm 2 , and the reaction was carried out for 4 hours with stirring. Thereafter, the reaction mixture was cooled to room temperature and filtered to remove the Raney nickel catalyst to obtain 160.5 g of the reaction mixture.
The obtained reaction completion liquid was distilled to distill off 2,6-dimethylphenol and butyl acetate to obtain 22.3 g of a residual liquid. The composition of the residual liquid was 2,6-dimethyl-hydroquinone (DMHQ) 89.10%, 2,6-dimethylphenol 2.94%, and other 7.96% (gas chromatography).

3)3-モルホリノメチル-2,6-ジメチル-ヒドロキノンの合成(第3工程)
還流冷却器及び撹拌機付き500mL容量の四つ口フラスコに、窒素ガス雰囲気下で、第2工程で得られた残液 13.8gを仕込み、これにトルエン41.4g及びモルホリン 10.4g(0.12mol)を添加し、撹拌下に溶解する。得られた溶解液を30℃に保持し、これに35%ホルマリン溶液 10.2g(0.12mol)を30分程度で滴下する。滴下終了後、反応液を30℃に保ちながら18時間、撹拌下に反応する。反応中に3-モルホリノメチル-2,6-ジメチルヒドロキノンが析出してくる。その後、更に温度55〜60℃で6時間、撹拌下で反応した後、メタノール0.3gを加えてから反応混合液を室温まで冷却し、これを濾過することにより、純度98.8%(高速液体クロマトグラフ分析による)の3-モルホリノメチル-2,6-ジメチル-ヒドロキノンの粗結晶20.1gを得た。また、得られた結晶は、質量分析による分子量の確認及びプロトン核磁気共鳴分析により3-モルホリノメチル-2,6-ジメチル-ヒドロキノンであることを確認した。
3) Synthesis of 3-morpholinomethyl-2,6-dimethyl-hydroquinone (third step)
In a 500 mL four-necked flask equipped with a reflux condenser and a stirrer, 13.8 g of the residual liquid obtained in the second step was charged in a nitrogen gas atmosphere, and 41.4 g of toluene and 10.4 g (0.12 mol) of morpholine were added thereto. Add and dissolve under stirring. The obtained dissolved solution is kept at 30 ° C., and 10.2 g (0.12 mol) of 35% formalin solution is dropped into this over about 30 minutes. After completion of the dropwise addition, the reaction solution is reacted with stirring for 18 hours while maintaining the reaction solution at 30 ° C. During the reaction, 3-morpholinomethyl-2,6-dimethylhydroquinone is precipitated. Then, after further reacting with stirring at a temperature of 55-60 ° C. for 6 hours, 0.3 g of methanol was added, and then the reaction mixture was cooled to room temperature and filtered to obtain a purity of 98.8% (high performance liquid chromatograph). As a result, 20.1 g of crude crystals of 3-morpholinomethyl-2,6-dimethyl-hydroquinone were obtained. The obtained crystal was confirmed to be 3-morpholinomethyl-2,6-dimethyl-hydroquinone by molecular weight confirmation by mass spectrometry and proton nuclear magnetic resonance analysis.

4)2,3,5-トリメチルヒドロキノン(TMHQ)の合成(第4工程)
500mL容量のSUS製オートクレーブに第3工程で得られた結晶 17.8g(0.075mol)を仕込み、これにメタノール 109.8g及びカーボン担持パラジウム触媒をDry換算で0.91g添加する。
添加終了後、温度を 120〜130℃に昇温し、水素圧 9〜10Kg/cm2で水素を供給しながら、撹拌下に9時間反応した。反応終了後、反応終了混合液を室温まで冷却後、濾過してカーボン担持パラジウム触媒を除去し、反応終了液を119.1g得た。反応終了液のTMHQ濃度は98.20%(高速液体クロマトグラフィー分析による)であった。
この反応終了液を蒸留して、メタノールとモルホリンを留去し、蒸留残渣液を得た。これにメチルイソブチルケトン11.4g を加え、温度100℃程度に加熱して溶解する。その後、これにトルエン17.1gを添加して、冷却し、析出した結晶を、濾過、乾燥し、純度99.4%(高速液体クロマトグラフィーによる)2,3,5-トリメチルヒドロキノン(TMHQ)の白色結晶7.1g(メトラーによる融点171.5℃)を得た。また、得られた結晶は、質量分析による分子量の確認及びプロトン核磁気共鳴分析により2,3,5-トリメチルヒドロキノンであることを確認した。
4) Synthesis of 2,3,5-trimethylhydroquinone (TMHQ) (4th step)
Into a 500 mL SUS autoclave is charged 17.8 g (0.075 mol) of the crystals obtained in the third step, and 109.8 g of methanol and 0.91 g of a carbon-supported palladium catalyst are added in terms of Dry.
After completion of the addition, the temperature was raised to 120 to 130 ° C., and the reaction was conducted for 9 hours with stirring while supplying hydrogen at a hydrogen pressure of 9 to 10 kg / cm 2 . After completion of the reaction, the reaction mixture was cooled to room temperature and filtered to remove the carbon-supported palladium catalyst to obtain 119.1 g of a reaction mixture. The TMHQ concentration in the reaction finished solution was 98.20% (according to high performance liquid chromatography analysis).
This reaction-terminated liquid was distilled to distill off methanol and morpholine to obtain a distillation residue liquid. Add 11.4 g of methyl isobutyl ketone, and dissolve it by heating to a temperature of about 100 ° C. Thereafter, 17.1 g of toluene was added thereto, and the mixture was cooled. The precipitated crystals were filtered, dried, and white crystals of 2,3,5-trimethylhydroquinone (TMHQ) having a purity of 99.4% (according to high performance liquid chromatography) 7.1. g (Mettler melting point 171.5 ° C.) was obtained. Further, the obtained crystal was confirmed to be 2,3,5-trimethylhydroquinone by molecular weight confirmation by mass spectrometry and proton nuclear magnetic resonance analysis.

Claims (6)

2,6-ジメチルフェノールを酸素酸化して2,6-ジメチル-P-ベンゾキノンを得る工程(第1工程)、
得られた2,6-ジメチル-P-ベンゾキノンを水素化して2,6-ジメチル-ヒドロキノンを得る工程(第2工程)、
ついで、得られた2,6-ジメチル-ヒドロキノンをアミノメチル化してマンニッヒ塩を得る工程(第3工程)、
更に、得られたマンニッヒ塩を水素化分解して2,3,5-トリメチルヒドロキノンを得る工程(第4工程)を順次行うことを特徴とする下記化学式1に示す2,3,5-トリメチルヒドロキノンの製造方法。

(化学式1)
A step of oxidizing 2,6-dimethylphenol with oxygen to obtain 2,6-dimethyl-P-benzoquinone (first step);
A step of hydrogenating the obtained 2,6-dimethyl-P-benzoquinone to obtain 2,6-dimethyl-hydroquinone (second step);
Next, a step of aminomethylating the obtained 2,6-dimethyl-hydroquinone to obtain a Mannich salt (third step),
Further, the step of hydrocracking the obtained Mannich salt to obtain 2,3,5-trimethylhydroquinone (step 4) is performed sequentially, and 2,3,5-trimethylhydroquinone represented by the following chemical formula 1 is characterized. Manufacturing method.

(Chemical formula 1)
第1工程が、有機溶媒中、銅化合物触媒の存在下に酸素含有ガスで酸化することを特徴とする請求項1記載の2,3,5-トリメチルヒドロキノンの製造方法。   The method for producing 2,3,5-trimethylhydroquinone according to claim 1, wherein the first step is oxidation with an oxygen-containing gas in the presence of a copper compound catalyst in an organic solvent. 第2工程が、有機溶媒中、水素化触媒の存在下に加圧下に水素化反応することを特徴とする請求項1記載の2,3,5-トリメチルヒドロキノンの製造方法。   2. The method for producing 2,3,5-trimethylhydroquinone according to claim 1, wherein the second step is a hydrogenation reaction under pressure in an organic solvent in the presence of a hydrogenation catalyst. 第2工程で使用する2,6-ジメチル-P-ベンゾキノンが、酸化反応混合物から2量体を含む高沸点副生物が除去された粗生成物である請求項1又は3記載の2,3,5-トリメチルヒドロキノンの製造方法。   The 2,3-dimethyl-P-benzoquinone used in the second step is a crude product obtained by removing a high-boiling by-product containing a dimer from an oxidation reaction mixture. A method for producing 5-trimethylhydroquinone. 第3工程が、芳香族炭化水素溶媒中、環状2級アミンとホルムアルデヒドを反応させてマンニッヒ塩を得ることを特徴とする請求項1又は4記載の2,3,5-トリメチルヒドロキノンの製造方法。   5. The method for producing 2,3,5-trimethylhydroquinone according to claim 1 or 4, wherein the third step is a reaction of a cyclic secondary amine and formaldehyde in an aromatic hydrocarbon solvent to obtain a Mannich salt. 第4工程が、有機溶媒中、水素化触媒の存在下に加圧下に水素化分解反応することを特徴とする請求項1記載の2,3,5-トリメチルヒドロキノンの製造方法。
The method for producing 2,3,5-trimethylhydroquinone according to claim 1, wherein the fourth step is a hydrocracking reaction under pressure in an organic solvent in the presence of a hydrogenation catalyst.
JP2005070793A 2005-03-14 2005-03-14 Method for producing 2, 3, 5-trimethylhydroquinone Withdrawn JP2006249036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070793A JP2006249036A (en) 2005-03-14 2005-03-14 Method for producing 2, 3, 5-trimethylhydroquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070793A JP2006249036A (en) 2005-03-14 2005-03-14 Method for producing 2, 3, 5-trimethylhydroquinone

Publications (1)

Publication Number Publication Date
JP2006249036A true JP2006249036A (en) 2006-09-21

Family

ID=37089900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070793A Withdrawn JP2006249036A (en) 2005-03-14 2005-03-14 Method for producing 2, 3, 5-trimethylhydroquinone

Country Status (1)

Country Link
JP (1) JP2006249036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025587A1 (en) 2010-08-26 2012-03-01 Dsm Ip Assets B.V. Process for the manufacture of tmhq
WO2015169898A1 (en) * 2014-05-09 2015-11-12 Dsm Ip Assets B.V. Process for the production of 2,6-dimethylbenzoquinone
CN109529902A (en) * 2018-11-30 2019-03-29 西安凯立新材料股份有限公司 A kind of method that the palladium nickel Pd/carbon catalyst of high stable catalyzes and synthesizes vitamin E intermediate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025587A1 (en) 2010-08-26 2012-03-01 Dsm Ip Assets B.V. Process for the manufacture of tmhq
CN103080084A (en) * 2010-08-26 2013-05-01 帝斯曼知识产权资产管理有限公司 Process for the manufacture of TMHQ
JP2013539465A (en) * 2010-08-26 2013-10-24 ディーエスエム アイピー アセッツ ビー.ブイ. TMHQ manufacturing method
US8809591B2 (en) 2010-08-26 2014-08-19 Dsm Ip Assets B.V. Process for the manufacture of TMHQ
CN103080084B (en) * 2010-08-26 2017-07-07 帝斯曼知识产权资产管理有限公司 The preparation method of TMHQ
EA027287B1 (en) * 2010-08-26 2017-07-31 ДСМ АйПи АССЕТС Б.В. PROCESS FOR THE MANUFACTURE OF 2,3,5-TRIMETHYL-HYDRO-p-BENZOQUINONE (EMBODIMENTS), PROCESSES FOR THE MANUFACTURE OF INTERMEDIATES, PROCESS FOR THE MANUFACTURE OF VITAMIN E AND VITAMIN E ACETATE
KR101924237B1 (en) * 2010-08-26 2018-11-30 디에스엠 아이피 어셋츠 비.브이. Process for the manufacture of tmhq
WO2015169898A1 (en) * 2014-05-09 2015-11-12 Dsm Ip Assets B.V. Process for the production of 2,6-dimethylbenzoquinone
CN106458820A (en) * 2014-05-09 2017-02-22 帝斯曼知识产权资产管理有限公司 Process for the production of 2,6-dimethylbenzoquinone
EA035035B1 (en) * 2014-05-09 2020-04-20 ДСМ АйПи АССЕТС Б.В. Process for the production of 2,6-dimethylbenzoquinone
CN109529902A (en) * 2018-11-30 2019-03-29 西安凯立新材料股份有限公司 A kind of method that the palladium nickel Pd/carbon catalyst of high stable catalyzes and synthesizes vitamin E intermediate
CN109529902B (en) * 2018-11-30 2021-08-17 西安凯立新材料股份有限公司 Method for synthesizing vitamin E intermediate under catalysis of high-stability palladium-nickel-carbon catalyst

Similar Documents

Publication Publication Date Title
JP2006249036A (en) Method for producing 2, 3, 5-trimethylhydroquinone
JP2006160663A (en) Method for producing 1,1&#39;-bis(2-hydroxynaphthyl)
JPWO2013161594A1 (en) Method for producing hydroxyphenylcyclohexanol compound
US4215229A (en) Process for alkylating phenolic compounds to produce ortho- and para-monoalkylated phenols and 2,4- and 2,6-dialkylated phenols
US20020103401A1 (en) Process for the production of 1,5-naphthalenediamine
CN105198710A (en) Method for synthesizing 3-(tert-butyl)phenol
US20100004442A1 (en) Preparation of amorolfine
KR101761051B1 (en) Method for producing meta-xylylenediisocyanates
JP5196341B2 (en) Method for producing biphenyl derivative
JP5212692B6 (en) Method for producing 2,2&#39;-bis (trifluoromethyl) -4,4&#39;-diaminobiphenyl
JP4896536B2 (en) Process for producing polyortho-methylphenols
JPS6210046A (en) Nitration of phenol compound
JP4723943B2 (en) Method for producing 3,3&#39;-dialkyl-4,4&#39;-biphenol
EP1535898B1 (en) Method of producing aromatic amine compound having alkylthio group
JP4083842B2 (en) Process for producing N-cyclopropylanilines
US20060089515A1 (en) Process for continuously preparing alkylene glycol diethers
JPH0533215B2 (en)
JP5658508B2 (en) Method for producing tertiary amine
JP4496343B2 (en) Method for producing aromatic secondary amine
CN115677465A (en) Preparation method of beta-cyclocitral
CN107108490A (en) The manufacture method of nitrogenous five fluorine sulfenyl benzene compound
JPH0853383A (en) Production of 2,6-dialkylphenol
JP2021155348A (en) Method for producing benzonitrile derivative
CN112778108A (en) Synthesis method of 4-substituted cyclohexanone
CN117417232A (en) Synthesis method of alcohol compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603