JP2006247779A - Coated cbn base sintered body cutting tool - Google Patents

Coated cbn base sintered body cutting tool Download PDF

Info

Publication number
JP2006247779A
JP2006247779A JP2005066662A JP2005066662A JP2006247779A JP 2006247779 A JP2006247779 A JP 2006247779A JP 2005066662 A JP2005066662 A JP 2005066662A JP 2005066662 A JP2005066662 A JP 2005066662A JP 2006247779 A JP2006247779 A JP 2006247779A
Authority
JP
Japan
Prior art keywords
cbn
sintered body
based sintered
titanium compound
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066662A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kawamura
芳行 河村
Toshiyuki Watanabe
敏行 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2005066662A priority Critical patent/JP2006247779A/en
Publication of JP2006247779A publication Critical patent/JP2006247779A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool, achieving a small finished surface roughness of a workpiece in cutting the workpiece made of iron material, especially hard hardness steel subjected to quenching treatment. <P>SOLUTION: In this coated cBN base sintered body cutting tool, the surface of cBN base sintered body base material containing 20 to 100 vol.% cBN is coated with a titanium compound film composed of at least one kind selected from carbide containing Ti, nitride and mutual solid solution thereof, the average film thickness of the titanium compound film is 0.1 to 10 μm, the mean particle diameter of the titanium compound film is 0.5 μm or less. This cutting tool achieves a small finished surface roughness of a workpiece. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は被覆cBN基焼結体切削工具に関し、その中でも特に高硬度鋼の切削加工に好適な被覆cBN基焼結体切削工具に関する。 The present invention relates to a coated cBN-based sintered body cutting tool, and particularly to a coated cBN-based sintered body cutting tool suitable for cutting high hardness steel.

被覆cBN基焼結体切削工具の従来技術として、高圧相型窒化硼素を体積で20%以上含む硬質焼結体の表面に1層または2層以上の周期律表第4a、5a族金属の炭化物、窒化物、酸化物、硼化物又はこれ等の複合化合物、又はAl23からなる被覆層を有する被覆硬質焼結体がある(例えば、特許文献1参照。)。 As a prior art of a coated cBN-based sintered body cutting tool, a carbide of one or two layers of periodic table 4a, 5a metal on the surface of a hard sintered body containing 20% or more of high-pressure phase type boron nitride by volume There is a coated hard sintered body having a coating layer made of nitride, oxide, boride or a composite compound thereof, or Al 2 O 3 (for example, see Patent Document 1).

また、cBN基焼結体母材に平均結晶粒径1μm以下のAl23を含有させ、所定の平均結晶粒径のAl23層を被覆して、耐摩耗性向上を図ったAl23被覆cBN基焼結体切削工具がある(例えば、特許文献2参照。)。 Further, Al 2 O 3 having an average crystal grain size of 1 μm or less is contained in the cBN-based sintered base material, and an Al 2 O 3 layer having a predetermined average crystal grain size is coated to improve wear resistance. There is a 2 O 3 coated cBN-based sintered body cutting tool (for example, see Patent Document 2).

特開昭59−8679号公報JP 59-8679 A 特開2000−44370号公報JP 2000-44370 A

近年、機械の長寿命化、省エネの必要性が増加していることから、機械部品には高い仕上げ面品位が要求されるようになってきた。従来の被覆cBN基焼結体切削工具では、こうした高い仕上げ面品位の要求には十分応えられなくなってきた。例えば、高圧相型窒化硼素を体積で20%以上含む硬質焼結体の表面にAl23膜を被覆すると、Al23膜の密着性が低いことから被膜の剥離が生じやすい。そのため、切削加工中に被膜の剥離で形成された微小な凹凸は加工物に転写されるため加工物の仕上げ面粗さが低下するという問題があった。また、Al23膜は膜厚の増加とともにAl23膜の粒径が大きくなりやすく表面粗さが大きくなるという問題があった。そこで本発明は、加工物の切削加工において、その中でも鉄系材料、その中でも特に焼き入れ処理された高硬度鋼からなる加工物の切削加工において、加工物の仕上げ面粗さが小さい切削工具を提供することを目的とする。 In recent years, the need for longer machine life and energy savings has increased, and machine parts have been required to have high finished surface quality. The conventional coated cBN-based sintered cutting tool has been unable to sufficiently meet the demand for such high finished surface quality. For example, if an Al 2 O 3 film is coated on the surface of a hard sintered body containing 20% or more of high-pressure phase type boron nitride by volume, the coating of the film tends to peel off due to the low adhesion of the Al 2 O 3 film. For this reason, there is a problem that the roughness of the finished surface of the workpiece decreases because the minute irregularities formed by peeling off the coating during the cutting process are transferred to the workpiece. In addition, the Al 2 O 3 film has a problem that the surface roughness tends to increase as the film thickness increases and the particle diameter of the Al 2 O 3 film tends to increase. Therefore, the present invention provides a cutting tool having a small finished surface roughness of a workpiece in cutting of a workpiece, particularly in cutting of a ferrous material, and particularly of a workpiece made of hardened steel that has been quenched. The purpose is to provide.

本発明者は、被覆cBN基焼結体切削工具の開発に取り組んできたところ、チタン化合物膜の結晶粒を微細にすると、チタン化合物膜の表面が平滑になり、切削加工時に境界部分の損傷が抑えられるとともに刃先が正常に摩耗し、加工物の仕上げ面粗さを小さくできるという知見を得て本発明を完成するに至った。 The present inventor has been working on the development of a coated cBN-based sintered body cutting tool. When the crystal grain of the titanium compound film is made fine, the surface of the titanium compound film becomes smooth, and the boundary portion is damaged during the cutting process. The present invention has been completed by obtaining the knowledge that the cutting edge can be suppressed and the blade edge can be worn normally and the finished surface roughness of the workpiece can be reduced.

本発明の被覆cBN基焼結体切削工具は、cBNを20〜100体積%含有するcBN基焼結体基材の表面に、Tiを含有する炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなるチタン化合物膜が被覆され、チタン化合物膜の平均膜厚は0.1〜10μmであり、チタン化合物膜の平均粒径は0.5μm以下である。 The coated cBN-based sintered cutting tool of the present invention is selected from carbides, nitrides containing Ti, and their mutual solid solutions on the surface of a cBN-based sintered base material containing 20 to 100% by volume of cBN. The titanium compound film made of at least one kind is coated, the titanium compound film has an average film thickness of 0.1 to 10 μm, and the titanium compound film has an average particle diameter of 0.5 μm or less.

本発明のcBN基焼結体基材は、cBNを20〜100体積%含有し、残部としてTi、Zr、Hf、Al、Si、V、Nb、Ta、Mo、W、Co、Mnの金属、炭化物、窒化物、酸化物、硼化物およびこれらの相互固溶体の中から選ばれる少なくとも1種の結合相を含有するcBN基焼結体基材である。ただし、本発明のcBN基焼結体基材に含有されるcBN量が100体積%であるとき、本発明のcBN基焼結体基材は結合相を含まない。cBN基焼結体基材に含まれるcBN量は20体積%未満になると、硬さが低下するため、高硬度鋼などの切削加工において摩耗が著しく増加する。そこで本発明のcBN基焼結体基材に含まれるcBN量を20〜100体積%と定めた。なお本発明においてcBNは立方晶窒化硼素を示す。 The cBN-based sintered base material of the present invention contains 20 to 100% by volume of cBN, and the balance is Ti, Zr, Hf, Al, Si, V, Nb, Ta, Mo, W, Co, Mn, It is a cBN-based sintered base material containing at least one binder phase selected from carbides, nitrides, oxides, borides and their mutual solid solutions. However, when the amount of cBN contained in the cBN-based sintered base material of the present invention is 100% by volume, the cBN-based sintered base material of the present invention does not include a binder phase. When the amount of cBN contained in the cBN-based sintered base material is less than 20% by volume, the hardness decreases, so that wear significantly increases in cutting work such as high hardness steel. Therefore, the amount of cBN contained in the cBN-based sintered base material of the present invention is set to 20 to 100% by volume. In the present invention, cBN represents cubic boron nitride.

本発明のcBN基焼結体基材に、チタン化合物膜を構成する元素と同じ元素を含有させると、チタン化合物膜とcBN基焼結体基材との密着性がさらに増加するため好ましい。例えば、TiAlN膜を被覆する場合、cBN基焼結体基材にTi、Al、Nを含有させると好ましい。このようにcBN基焼結体基材にチタン化合物膜を構成する元素と同じ元素を含有させると、チタン化合物膜の核発生が増加して密着性が向上すると考えられる。 When the cBN group sintered body substrate of the present invention contains the same element as the element constituting the titanium compound film, the adhesion between the titanium compound film and the cBN group sintered body substrate is further increased, which is preferable. For example, when a TiAlN film is coated, it is preferable to contain Ti, Al, and N in the cBN-based sintered base material. Thus, when the same element as the element which comprises a titanium compound film | membrane is contained in a cBN group sintered compact base material, the nucleus generation | occurrence | production of a titanium compound film | membrane increases and it is thought that adhesiveness improves.

本発明のチタン化合物膜は、Tiを含有する炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる。これは、Tiを含有する炭化物、窒化物およびこれらの相互固溶体はcBN基焼結体基材との密着性が高く耐摩耗性に優れているためである。その中でも、Tiの炭化物、窒化物およびこれらの相互固溶体、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの中の1種以上とTiとの複合炭化物、複合窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種であると好ましく、具体的には、TiN、TiCN、TiC、TiAlN、TiSiN、TiCrN、TiAlSiN、TiCrSiN、TiAlCrSiNなどを挙げることができる。その中でもTiN、TiCN、TiAlNの中から選ばれた少なくとも1種であるとさらに好ましく、その中でもTiNであるとさらに好ましい。 The titanium compound film of the present invention comprises at least one selected from Ti-containing carbides, nitrides, and mutual solid solutions thereof. This is because Ti-containing carbides, nitrides, and their mutual solid solutions have high adhesion to the cBN-based sintered base material and excellent wear resistance. Among them, Ti carbides, nitrides and their mutual solid solutions, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si composite carbides and composite nitrides of Ti And at least one selected from these mutual solid solutions, specifically, TiN, TiCN, TiC, TiAlN, TiSiN, TiCrN, TiAlSiN, TiCrSiN, TiAlCrSiN, and the like. Among these, at least one selected from TiN, TiCN, and TiAlN is more preferable, and among these, TiN is more preferable.

本発明のチタン化合物膜は、チタン化合物膜の平均粒径を0.5μm以下にすることにより、チタン化合物膜そのものの表面が平滑になりやすく、cBN基焼結体基材の凹凸を埋める効果があり切削工具の表面を平滑にする。加えて切削加工時には損傷単位が小さくなるため、境界部分の損傷が抑えられて刃先が正常に摩耗し、長時間に亘って加工物の仕上げ面粗さを小さくすることができる。その中でもチタン化合物膜の平均粒径を0.1μm以下とすると、より好ましい。なおチタン化合物膜の平均粒径を0.01μm未満にすることは難しいので、実用的には、チタン化合物膜の平均粒径は0.01〜0.5μmの範囲が好ましく、その中でも0.01〜0.1μmがよりいっそう好ましい。チタン化合物膜の平均粒径は基材と平行な方向におけるチタン化合物膜の平均粒径を示す。チタン化合物膜の平均粒径は、チタン化合物膜の断面をSEM観察またはTEM観察してチタン化合物膜の垂直方向のほぼ中央で写真を撮り、cBN基焼結体基材のすくい面に平行な直線に交差する結晶粒の数から求めることができる。このときチタン化合物膜の平均粒径を正確に求めるためには、直線の長さをチタン化合物膜の平均粒径の10倍以上にすることが好ましい。 The titanium compound film of the present invention has an effect of filling the unevenness of the cBN-based sintered base material by making the surface of the titanium compound film itself easy to be smooth by making the average particle diameter of the titanium compound film 0.5 μm or less. Yes Smoothes the surface of the cutting tool. In addition, since the damage unit is reduced at the time of cutting, damage to the boundary portion is suppressed, the cutting edge is normally worn, and the finished surface roughness of the workpiece can be reduced over a long period of time. Of these, the average particle diameter of the titanium compound film is more preferably 0.1 μm or less. In addition, since it is difficult to make the average particle diameter of a titanium compound film less than 0.01 micrometer, practically, the average particle diameter of a titanium compound film has the preferable range of 0.01-0.5 micrometer, Among these, 0.01 Even more preferable is -0.1 μm. The average particle diameter of the titanium compound film indicates the average particle diameter of the titanium compound film in the direction parallel to the substrate. The average particle diameter of the titanium compound film is a straight line parallel to the rake face of the cBN-based sintered base material by taking a cross section of the titanium compound film by SEM observation or TEM observation, taking a photograph at approximately the center in the vertical direction of the titanium compound film. It can be determined from the number of crystal grains intersecting with. At this time, in order to accurately obtain the average particle diameter of the titanium compound film, it is preferable that the length of the straight line is 10 times or more the average particle diameter of the titanium compound film.

チタン化合物膜の平均粒径はcBN基焼結体基材に含まれるcBNの平均粒径以下であると、チタン化合物膜とcBN基焼結体基材との密着性が向上し、基材表面に存在する凹凸を埋める効果が高いため、好ましい。 When the average particle size of the titanium compound film is equal to or less than the average particle size of cBN contained in the cBN group sintered body substrate, the adhesion between the titanium compound film and the cBN group sintered body substrate is improved, and the substrate surface This is preferable because it has a high effect of filling the unevenness existing in the surface.

本発明のチタン化合物膜の平均膜厚は、0.1μm未満になると耐摩耗性が低下し、10μmを超えるとチタン化合物膜の剥離や微少欠損を起こしやすくなり仕上げ面粗さが大きくなるため、平均膜厚を0.1〜10μmとした。その中でも1〜5μmがより好ましい。 When the average film thickness of the titanium compound film of the present invention is less than 0.1 μm, the wear resistance is reduced, and when it exceeds 10 μm, the titanium compound film is liable to be peeled off or slightly damaged, and the finished surface roughness is increased. The average film thickness was 0.1 to 10 μm. Among these, 1-5 micrometers is more preferable.

本発明の被覆cBN基焼結体切削工具の用途の一つとしては、鉄系材料の切削加工を挙げることができる。その中でも特に焼き入れ処理された高硬度鋼の切削加工に用いると効果が高く好ましい。 One of the uses of the coated cBN-based sintered body cutting tool of the present invention is to cut iron-based materials. Among them, the effect is particularly high when used for cutting hardened steel that has been quenched.

本発明のチタン化合物膜は、CVD法および/またはPVD法を用いて被覆することができる。その中でもCVD法よりも微細な結晶粒が得られるPVD法が好ましい。被覆の方法と条件を適切に選択する事により、チタン化合物膜の平均粒径は0.5μm以下にすることができる。 The titanium compound film of the present invention can be coated using a CVD method and / or a PVD method. Among these, the PVD method is preferable because finer crystal grains can be obtained than the CVD method. By appropriately selecting the coating method and conditions, the average particle size of the titanium compound film can be made 0.5 μm or less.

例えば、TiCl4−H2−N2系など原料ガスにTiCl4とH2を使用する熱CVD法においては、原料ガス中のTiCl4量とH2量を増やすことで核発生密度を増加させるとともに、被覆温度を下げることによってチタン化合物膜成長速度を低下させ、チタン化合物膜の平均粒径を小さくすることができる。またTi系蒸発源とN2ガスを使用するPVD法においては、cBN基焼結体基材の温度を下げるとともにN2流量を減らすことで、チタン化合物膜の平均粒径を小さくすることができる。このときチタン化合物膜成長速度は著しく低下するが、バイアス電圧を高めるとチタン化合物膜成長速度を増加させることができる。 For example, in a thermal CVD method using TiCl 4 and H 2 as a source gas such as a TiCl 4 —H 2 —N 2 system, the nucleus generation density is increased by increasing the amount of TiCl 4 and H 2 in the source gas. At the same time, by reducing the coating temperature, the growth rate of the titanium compound film can be reduced, and the average particle diameter of the titanium compound film can be reduced. In the PVD method using a Ti-based evaporation source and N 2 gas, the average particle size of the titanium compound film can be reduced by lowering the temperature of the cBN-based sintered base material and reducing the N 2 flow rate. . At this time, the growth rate of the titanium compound film is significantly reduced, but the growth rate of the titanium compound film can be increased by increasing the bias voltage.

本発明の被覆cBN基焼結体切削工具の表面に最外層としてTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる硬質膜を被覆すると耐摩耗性が向上するため、さらに好ましい。その中でも酸化アルミニウム膜からなる硬質層は耐酸化性を向上させるため、さらに好ましい。酸化アルミニウム膜の具体的な組成としてAl23を挙げることができる。 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si carbides, nitrides, oxides, and their mutual layers as outermost layers on the surface of the coated cBN-based sintered body cutting tool of the present invention It is more preferable to coat a hard film made of at least one selected from solid solutions because the wear resistance is improved. Among these, a hard layer made of an aluminum oxide film is more preferable because it improves oxidation resistance. A specific composition of the aluminum oxide film is Al 2 O 3 .

硬質膜の平均膜厚が0.1μm未満では硬質膜を被覆する効果が十分に得られず、硬質膜の平均膜厚が2μmを超えると耐欠損性が低下する傾向を示すため、硬質膜の平均膜厚は0.1〜2μmであるとさらに好ましい。本発明の硬質膜はCVD法および/またはPVD法を用いて被覆することができる。 If the average film thickness of the hard film is less than 0.1 μm, the effect of covering the hard film cannot be obtained sufficiently, and if the average film thickness of the hard film exceeds 2 μm, the chipping resistance tends to decrease. The average film thickness is more preferably 0.1 to 2 μm. The hard film of the present invention can be coated using a CVD method and / or a PVD method.

本発明の被覆cBN基焼結体切削工具を用いて切削加工すると、長時間に亘って加工物の仕上げ面粗さを小さく加工することができる。 When cutting is performed using the coated cBN-based sintered body cutting tool of the present invention, the finished surface roughness of the workpiece can be reduced over a long period of time.

平均粒径0.5μmのcBN:60体積%と、TiNとAlからなる結合相:残部とからなるcBN基焼結体基材を、厚み5mmの超硬合金台金と共に焼結した。焼結後、cBN基焼結体基材と超硬合金が強固に結合している事を確認した。これを加工し、JIS規格TNGA160408の工具形状を有するcBN基焼結体切削工具を得た。cBN基焼結体切削工具のすくい面と逃げ面がなす刃先稜線部にダイヤモンド砥石を用いてチャンファー幅T=0.15mm、チャンファー角θ=−25゜のチャンファーホーニングを施した。さらに逃げ面とチャンファー面が交差する部分に断面曲率半径R2=0.02mmの丸ホーニングを施した。 A cBN-based sintered base material composed of cBN having an average particle size of 0.5 μm: 60% by volume and a binder phase composed of TiN and Al: the balance was sintered together with a cemented carbide base metal having a thickness of 5 mm. After sintering, it was confirmed that the cBN-based sintered base material and the cemented carbide were firmly bonded. This was processed to obtain a cBN-based sintered body cutting tool having a tool shape of JIS standard TNGA160408. A chamfer honing with a chamfer width T = 0.15 mm and a chamfer angle θ = −25 ° was performed using a diamond grindstone at the edge of the cutting edge formed by the rake face and the flank face of the cBN-based sintered body cutting tool. Further, a round honing with a radius of curvature of section R2 = 0.02 mm was applied to the portion where the flank and chamfer surface intersect.

発明品1は上記ホーニングを施したcBN基焼結体切削工具の表面にCVD法で表1に示す条件により平均膜厚4.0μmのTiN膜を被覆した。比較品1は上記ホーニングを施したcBN基焼結体切削工具を被覆せず、未被覆品とした。比較品2として上記ホーニングを施したcBN基焼結体切削工具の表面にCVD法で表1に示す条件により平均膜厚4.0μmのTiN膜を被覆した。発明品2は上記ホーニングを施したcBN基焼結体切削工具の表面にPVD法で表2に示す条件により平均膜厚4.0μmのTiN膜を被覆した。発明品3は上記ホーニングを施したcBN基焼結体切削工具の表面にPVD法で表2に示す条件により平均膜厚4.0μmのTiN膜を被覆した。 Inventive product 1 was coated with a TiN film having an average film thickness of 4.0 μm on the surface of the cBN-based sintered body cutting tool subjected to the honing according to the conditions shown in Table 1 by the CVD method. Comparative product 1 was not coated with the honing-treated cBN-based sintered body cutting tool, and was an uncoated product. As a comparative product 2, the surface of a hoisted cBN-based sintered body was coated with a TiN film having an average film thickness of 4.0 μm by the CVD method under the conditions shown in Table 1. Inventive product 2 was coated with a TiN film having an average film thickness of 4.0 μm on the surface of the cBN-based sintered body cutting tool subjected to the honing according to the conditions shown in Table 2 by the PVD method. Inventive product 3 was obtained by coating the surface of the honing-treated cBN-based sintered body with a TiN film having an average film thickness of 4.0 μm by the PVD method under the conditions shown in Table 2.

Figure 2006247779
Figure 2006247779

Figure 2006247779
Figure 2006247779

発明品1、比較品2におけるTiN膜の平均粒径は、TiN膜の断面をSEM観察してTiN膜の垂直方向のほぼ中央で写真を撮り、cBN基焼結体基材のすくい面に平行な長さ10μmの直線に交差する結晶粒の数から求めた。発明品2、3におけるTiN膜の平均粒径は、TiN膜の断面をTEM観察してTiN膜の垂直方向のほぼ中央で写真を撮り、cBN基焼結体基材のすくい面に平行な長さ1.0μmの直線に交差する結晶粒の数から求めた。これらの測定結果は、それぞれ表1、表2に併記した。 The average grain size of the TiN film in Invention Product 1 and Comparative Product 2 is parallel to the rake face of the cBN-based sintered base material by observing the cross section of the TiN film by SEM and taking a photograph at approximately the center in the vertical direction of the TiN film. The number of crystal grains intersecting a straight line having a length of 10 μm was obtained. The average particle diameter of the TiN film in Inventions 2 and 3 is a length parallel to the rake face of the cBN-based sintered base material by TEM-observing the cross section of the TiN film and taking a photograph at approximately the center in the vertical direction of the TiN film. It was determined from the number of crystal grains intersecting a 1.0 μm straight line. These measurement results are shown in Table 1 and Table 2, respectively.

発明品1〜3、比較品1、2について切削試験1を行った。加工物の仕上げ面粗さの評価としては最大高さ粗さRzを用いた。Rzの測定方法はJIS規格B0601:2001に従った。 A cutting test 1 was performed on the inventive products 1 to 3 and the comparative products 1 and 2. As the evaluation of the finished surface roughness of the workpiece, the maximum height roughness Rz was used. The measuring method of Rz followed JIS standard B0601: 2001.

[切削試験1]
切削形態:外径100mmの外周連続旋削
加工物:円筒形状の焼き入れ処理した高硬度鋼(SCM415H)
加工物の硬さ:HRC58〜61
切削速度:150(m/min)
切り込み:0.15(mm)
送り:0.08(mm/rev)
切削液:使用せず
工具寿命判定基準:加工物の仕上げ面の最大高さ粗さRzが1.6μm以上になった切削時間を工具寿命とする。
[Cutting test 1]
Cutting form: Continuous peripheral turning with outer diameter of 100 mm: Cylindrical hardened high hardness steel (SCM415H)
Workpiece hardness: HRC58-61
Cutting speed: 150 (m / min)
Cutting depth: 0.15 (mm)
Feed: 0.08 (mm / rev)
Cutting fluid: Not used Criteria for tool life: Cutting time when the maximum height roughness Rz of the finished surface of the workpiece is 1.6 μm or more is defined as tool life.

比較品1、2、発明品1〜3の切削時間と加工物の最大高さ粗さRz(μm)の関係を表3および図1に示す。 Table 3 and FIG. 1 show the relationship between the cutting time of Comparative Products 1 and 2 and Invention Products 1 to 3 and the maximum height roughness Rz (μm) of the workpiece.

Figure 2006247779
Figure 2006247779

比較品1は、刃先の摩滅とともに加工物の仕上げ面粗さRzが増加した。比較品2はTiN膜の平均粒径がcBN基焼結体基材のcBN粒径よりも大きい。比較品2は境界損傷が発達したため、急激に加工物の仕上げ面粗さが増加した。比較品2はTiN膜を被覆しているが、境界損傷が発達したためTiN膜を被覆していない比較品1よりも加工物の仕上げ面粗さが大きくなり工具寿命が短い。 In comparative product 1, the finished surface roughness Rz of the workpiece increased with wear of the cutting edge. In Comparative Product 2, the average particle size of the TiN film is larger than the cBN particle size of the cBN-based sintered base material. Since the comparative product 2 developed boundary damage, the finished surface roughness of the workpiece suddenly increased. Although the comparative product 2 is coated with a TiN film, boundary damage has developed, so that the finished surface roughness of the workpiece is larger and the tool life is shorter than the comparative product 1 that is not coated with the TiN film.

発明品1〜3は、耐摩耗性と境界損傷のバランスが良いため、比較品1、2より仕上げ面粗さを小さく維持することができた。特に発明品2、3は、TiN膜の平均粒径が0.1μm以下であるため、切削初期から仕上げ面粗さが小さく、比較品1の2.5〜3倍の工具寿命を示した。その中でもTiN膜の平均粒径が最も小さい発明品3が、切削加工中においても加工物の仕上げ面粗さが小さく維持され、最も長寿命であった。 Inventive products 1 to 3 have a good balance between wear resistance and boundary damage, so that the finished surface roughness can be kept smaller than those of comparative products 1 and 2. Inventive products 2 and 3 in particular had a TiN film having an average particle size of 0.1 μm or less, so the finished surface roughness was small from the beginning of cutting, and the tool life was 2.5 to 3 times that of Comparative Product 1. Among them, Invention 3 having the smallest average particle size of the TiN film maintained the roughness of the finished surface of the work piece even during the cutting process and had the longest life.

平均粒径0.5μmのcBN:60体積%と、TiNとAlからなる結合相:残部とからなるcBN基焼結体基材を、厚み5mmの超硬合金台金と共に焼結した。焼結後、cBN基焼結体基材と超硬合金が強固に結合していることを確認した。これを加工し、JIS規格TNGN160408の工具形状を有するcBN基焼結体切削工具を得た。cBN基焼結体切削工具のすくい面と逃げ面がなす刃先稜線部にダイヤモンド砥石を用いてチャンファー幅T=0.15mm、チャンファー角θ=−25゜のチャンファーホーニングを施した。さらに、逃げ面とチャンファー面が交差する部分に断面曲率半径R2=0.02mmの丸ホーニングを施した。 A cBN-based sintered base material composed of cBN having an average particle size of 0.5 μm: 60% by volume and a binder phase composed of TiN and Al: the balance was sintered together with a cemented carbide base metal having a thickness of 5 mm. After sintering, it was confirmed that the cBN-based sintered base material and the cemented carbide were firmly bonded. This was processed to obtain a cBN-based sintered body cutting tool having a tool shape of JIS standard TNGN160408. A chamfer honing with a chamfer width T = 0.15 mm and a chamfer angle θ = −25 ° was performed using a diamond grindstone at the edge of the cutting edge formed by the rake face and the flank face of the cBN-based sintered body cutting tool. Further, a round honing with a radius of curvature of section R2 = 0.02 mm was applied to a portion where the flank surface and the chamfer surface intersect.

発明品4は上記ホーニングを施したcBN基焼結体切削工具の表面にCVD法で表4に示す条件により基材表面に平均膜厚4.0μmのTiN膜を被覆した。発明品5は上記ホーニングを施したcBN基焼結体切削工具の表面にCVD法で表5に示す条件により基材表面に平均膜厚2.0μmのTiN膜を被覆し、更にその表面に平均膜厚2.0μmのAl23膜を被覆した。比較品3は上記ホーニングを施したcBN基焼結体切削工具を被覆せず未被覆品とした。比較品4は上記ホーニングを施したcBN基焼結体切削工具の表面にCVD法で表4に示す条件により平均膜厚4.0μmのTiN膜を被覆した。比較品5は上記ホーニングを施したcBN基焼結体切削工具の表面にCVD法で表6に示す条件により平均膜厚4.0μmのAl23膜を被覆した。 Inventive product 4 was obtained by coating the surface of the cBN-based sintered body cutting tool subjected to the above honing with a TiN film having an average film thickness of 4.0 μm on the surface of the substrate by the CVD method under the conditions shown in Table 4. Inventive product 5 has a surface of the hobbed cBN-based sintered body cutting tool coated with a TiN film having an average film thickness of 2.0 μm on the surface of the substrate according to the conditions shown in Table 5 by the CVD method. An Al 2 O 3 film having a thickness of 2.0 μm was coated. Comparative product 3 was an uncoated product without coating the cBN-based sintered body cutting tool subjected to the honing. Comparative product 4 was obtained by coating a TiN film having an average film thickness of 4.0 μm on the surface of the cBN-based sintered body cutting tool subjected to honing under the conditions shown in Table 4 by the CVD method. In the comparative product 5, the surface of the hobbed cBN-based sintered body was coated with an Al 2 O 3 film having an average film thickness of 4.0 μm by the CVD method under the conditions shown in Table 6.

Figure 2006247779
Figure 2006247779

Figure 2006247779
Figure 2006247779

Figure 2006247779
Figure 2006247779

発明品4、5、比較品4、5におけるTiN膜、Al23膜の平均粒径は、TiN膜、Al23膜の断面をSEM観察してTiN膜、Al23膜の垂直方向のほぼ中央で写真を撮り、cBN基焼結体基材のすくい面に平行な長さ12μmの直線に交差する結晶粒の数から求めた。これらの測定結果は、それぞれ表4、5、6に併記した。 Inventions 4,5, TiN film in comparative product 4,5, average particle size of the Al 2 O 3 film, TiN film, an Al 2 O 3 film of the cross-section SEM observation to TiN film, the Al 2 O 3 film A photograph was taken at approximately the center in the vertical direction, and it was determined from the number of crystal grains intersecting a straight line having a length of 12 μm parallel to the rake face of the cBN-based sintered base material. These measurement results are shown in Tables 4, 5, and 6, respectively.

発明品4、5、比較品3〜5について切削試験1よりも切削速度が高い切削試験2を行った。この切削試験では刃先が高温になるため切削工具には高い耐酸化性が求められる。加工物の仕上げ面粗さの評価としては最大高さ粗さRzを用いた。Rzの測定方法はJIS規格B0601:2001に従った。 A cutting test 2 having a cutting speed higher than that of the cutting test 1 was performed on the inventive products 4 and 5 and the comparative products 3 to 5. In this cutting test, the cutting edge becomes high temperature, so the cutting tool is required to have high oxidation resistance. For the evaluation of the finished surface roughness of the workpiece, the maximum height roughness Rz was used. The measuring method of Rz followed JIS standard B0601: 2001.

[切削試験2]
切削形態:外径100mmの外周連続旋削
加工物:円筒形状の焼き入れ処理した高硬度鋼(SCM415H)
加工物の硬さ:HRC58〜61
切削速度:220(m/min)
切り込み:0.15(mm)
送り:0.08(mm/rev)
切削液:使用せず
工具寿命判定基準:加工物の仕上げ面の最大高さ粗さRzが1.6μm以上になった切削時間、もしくは欠損した切削時間を工具寿命とする。
[Cutting test 2]
Cutting form: Continuous peripheral turning with outer diameter of 100 mm: Cylindrical hardened high hardness steel (SCM415H)
Workpiece hardness: HRC58-61
Cutting speed: 220 (m / min)
Cutting depth: 0.15 (mm)
Feed: 0.08 (mm / rev)
Cutting fluid: Not used Tool life criteria: The cutting time when the maximum height roughness Rz of the finished surface of the workpiece is 1.6 μm or more or the missing cutting time is defined as the tool life.

比較品3〜5、発明品4、5の切削時間と加工物の仕上げ面の最大高さ粗さRz(μm)の関係を表7および図2に示す。 Table 7 and FIG. 2 show the relationship between the cutting time of Comparative Products 3 to 5 and Invention Products 4 and 5 and the maximum height roughness Rz (μm) of the finished surface of the workpiece.

Figure 2006247779
Figure 2006247779

切削試験2は切削試験1よりも高速切削のため、摩耗の進行速度は切削試験1のときよりも全体的に増加していた。比較品3は刃先の摩滅とともに加工物の仕上げ面粗さが増加した。比較品4はTiN膜を被覆しており逃げ面摩耗は比較品3よりも小さかったが、境界損傷が発達したため加工物の仕上げ面粗さは大きく、比較品3と同程度の寿命であった。比較品5はAl23膜を被覆しているが、切削初期から仕上げ面粗さが大きく、更に6分の段階で一段と仕上げ面粗さが大きくなった。6分切削後の刃先を観察したところ被膜の微少剥離が切削時の境界部分に見られた。このため加工物の仕上げ面粗さが急激に増加したと考えられる。 Since the cutting test 2 was performed at a higher speed than the cutting test 1, the wear progressing speed was generally increased as compared with the cutting test 1. In Comparative product 3, the finished surface roughness of the workpiece increased with wear of the cutting edge. Comparative product 4 was coated with a TiN film, and the flank wear was smaller than that of comparative product 3, but because of the development of boundary damage, the finished surface roughness of the workpiece was large and the life was comparable to that of comparative product 3. . The comparative product 5 was coated with an Al 2 O 3 film, but the finished surface roughness was large from the beginning of cutting, and the finished surface roughness was further increased in 6 minutes. When the cutting edge after cutting for 6 minutes was observed, a slight peeling of the film was observed at the boundary portion during cutting. For this reason, it is considered that the finished surface roughness of the workpiece increased rapidly.

発明品4、5は耐摩耗性と境界損傷のバランスが良く、比較品3〜5より仕上げ面粗さを小さく維持することができた。発明品4はTiN膜の平均粒径が0.2μmと比較的小さく切削初期から仕上げ面粗さを良好に維持できた。発明品4は結果的に10.3分の時点で欠損し寿命となった。損傷を観察したところクレーター摩耗が進行しており、刃先の部分まで窪みが達していた。このことから発明品4はクレーター摩耗により刃先が尖った状態になり、刃先の強度が低下して欠損に至ったものと考えられる。 Inventive products 4 and 5 have a good balance between wear resistance and boundary damage, and the finished surface roughness can be kept smaller than those of comparative products 3 to 5. Inventive product 4 has a relatively small average grain size of TiN film of 0.2 μm, and the finished surface roughness can be maintained well from the beginning of cutting. As a result, Invention 4 was lost at the time of 10.3 minutes and reached the end of its life. As a result of observing the damage, crater wear was progressing and the dent reached the edge of the blade. From this, it is considered that the invention 4 is in a state where the cutting edge is sharpened due to crater wear, and the strength of the cutting edge is lowered to lead to a defect.

TiN膜、Al23膜の多層膜を被覆した発明品5は、切削初期段階の仕上げ面粗さは比較品1と同程度であったが、時間経過による仕上げ面粗さの増加が小さく、結果として最も長寿命で、比較品3の2.8倍の時間切削可能であった。TiN膜は、cBN基焼結体との密着性が高いため剥離が生じにくい。Al23膜は、Al23粒子の粗粒化を抑えるため薄くしているが、耐酸化性を発揮するのに十分な膜厚を有している。このため発明品5は高速切削においても加工物の仕上げ面粗さを小さく保ったまま工具寿命を延長することが可能になる。 Invented product 5 coated with a multilayer film of TiN film and Al 2 O 3 film had a finished surface roughness at the initial stage of cutting similar to that of comparative product 1, but the increase in finished surface roughness over time was small. As a result, it had the longest life and was able to cut for 2.8 times the time of the comparative product 3. Since the TiN film has high adhesion to the cBN-based sintered body, it is difficult for peeling to occur. The Al 2 O 3 film is thin in order to suppress coarsening of Al 2 O 3 particles, but has a film thickness sufficient to exhibit oxidation resistance. Therefore, the inventive product 5 can extend the tool life while keeping the finished surface roughness of the workpiece small even in high-speed cutting.

切削試験1における発明品1〜3と比較品1,2の切削時間と加工物仕上げ面の最大高さ粗さRzの関係を示す。The relationship between the cutting time of invention products 1-3 and comparative products 1 and 2 in cutting test 1 and the maximum height roughness Rz of the workpiece finish surface is shown. 切削試験2における発明品4、5と比較品3〜5の切削時間と加工物仕上げ面の最大高さ粗さRzの関係を示す。The relationship between the cutting time of invention products 4 and 5 and comparative products 3 to 5 in cutting test 2 and the maximum height roughness Rz of the workpiece finish surface is shown.

Claims (6)

cBNを20〜100体積%含有するcBN基焼結体基材の表面に、Tiを含有する炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなるチタン化合物膜が被覆され、チタン化合物膜の平均膜厚は0.1〜10μmであり、チタン化合物膜の平均粒径は0.5μm以下である被覆cBN基焼結体切削工具。 The surface of a cBN-based sintered base material containing 20 to 100% by volume of cBN is coated with a titanium compound film composed of at least one selected from carbides, nitrides, and mutual solid solutions containing Ti. A coated cBN-based sintered body cutting tool, wherein the titanium compound film has an average film thickness of 0.1 to 10 μm, and the titanium compound film has an average particle diameter of 0.5 μm or less. チタン化合物膜の平均粒径は0.1μm以下である請求項1に記載の被覆cBN基焼結体切削工具。 The coated cBN-based sintered body cutting tool according to claim 1, wherein the titanium compound film has an average particle size of 0.1 μm or less. チタン化合物膜は、TiN、TiCN、TiAlNの中から選ばれた少なくとも1種からなるチタン化合物膜である請求項1または2に記載の被覆cBN基焼結体切削工具。 The coated cBN-based sintered body cutting tool according to claim 1 or 2, wherein the titanium compound film is a titanium compound film made of at least one selected from TiN, TiCN, and TiAlN. cBN基焼結体基材は、チタン化合物膜を構成する元素を含有する請求項1〜3のいずれか1項に記載の被覆cBN基焼結体切削工具。 The coated cBN-based sintered body cutting tool according to any one of claims 1 to 3, wherein the cBN-based sintered body base material contains an element constituting the titanium compound film. チタン化合物膜の平均粒径は、cBN基焼結体基材に含まれるcBNの平均粒径以下である請求項1〜4のいずれか1項に記載の被覆cBN基焼結体切削工具。 The coated cBN-based sintered body cutting tool according to any one of claims 1 to 4, wherein an average particle diameter of the titanium compound film is equal to or less than an average particle diameter of cBN contained in the cBN-based sintered body base material. 請求項1〜5のいずれか1項に記載の被覆cBN基焼結体切削工具の表面にTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる硬質膜を被覆した被覆cBN基焼結体切削工具。 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si carbide, nitride on the surface of the coated cBN-based sintered body cutting tool according to any one of claims 1 to 5. A coated cBN-based sintered cutting tool coated with a hard film made of at least one selected from oxides and their mutual solid solutions.
JP2005066662A 2005-03-10 2005-03-10 Coated cbn base sintered body cutting tool Pending JP2006247779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066662A JP2006247779A (en) 2005-03-10 2005-03-10 Coated cbn base sintered body cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066662A JP2006247779A (en) 2005-03-10 2005-03-10 Coated cbn base sintered body cutting tool

Publications (1)

Publication Number Publication Date
JP2006247779A true JP2006247779A (en) 2006-09-21

Family

ID=37088784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066662A Pending JP2006247779A (en) 2005-03-10 2005-03-10 Coated cbn base sintered body cutting tool

Country Status (1)

Country Link
JP (1) JP2006247779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119962A1 (en) * 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220608A (en) * 1993-01-28 1994-08-09 Sumitomo Electric Ind Ltd Surface-coated hard member and its production
JPH08119774A (en) * 1994-10-27 1996-05-14 Sumitomo Electric Ind Ltd Combined material having high hardness for tool
JPH11279745A (en) * 1998-03-30 1999-10-12 Ngk Spark Plug Co Ltd Surface-coated tool
JP2004114268A (en) * 2002-09-27 2004-04-15 Sumitomo Electric Ind Ltd Coated cutting tool
WO2005000508A1 (en) * 2003-06-27 2005-01-06 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220608A (en) * 1993-01-28 1994-08-09 Sumitomo Electric Ind Ltd Surface-coated hard member and its production
JPH08119774A (en) * 1994-10-27 1996-05-14 Sumitomo Electric Ind Ltd Combined material having high hardness for tool
JPH11279745A (en) * 1998-03-30 1999-10-12 Ngk Spark Plug Co Ltd Surface-coated tool
JP2004114268A (en) * 2002-09-27 2004-04-15 Sumitomo Electric Ind Ltd Coated cutting tool
WO2005000508A1 (en) * 2003-06-27 2005-01-06 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119962A1 (en) * 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact

Similar Documents

Publication Publication Date Title
JP4739235B2 (en) Surface coated cutting tool
JP4739236B2 (en) Surface coated cutting tool
JP5866650B2 (en) Surface coated cutting tool
CN100496824C (en) Surface-coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP5482596B2 (en) CBN insert with excellent finished surface roughness
JP2001001203A (en) Cutting insert, and its manufacture
JP2009519139A (en) Coated cutting tool insert
JP5879664B2 (en) Cutting tools
JPWO2018174139A1 (en) Diamond coated cemented carbide cutting tool
JP2007229821A (en) Surface-coated cutting tool
JP2004100004A (en) Coated cemented carbide and production method therefor
EP1253124B1 (en) Highly adhesive surface-coated cemented carbide and method for producing the same
JP4991244B2 (en) Surface coated cutting tool
JP2006281361A (en) Surface coated member and surface coated cutting tool
JP5839289B2 (en) Surface coated cutting tool
JP2012144766A (en) Coated member
JP5053561B2 (en) Cutting tool and manufacturing method thereof
JP2008018509A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed continuously cutting hard material hard to cut
JP2000212743A (en) Surface coated sintered alloy excellent in peeling resistance and its production
JP2018030206A (en) Surface coated cutting tool and method for manufacturing the same
JP2006247779A (en) Coated cbn base sintered body cutting tool
JP4845490B2 (en) Surface coated cutting tool
JP2009034766A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101