JP2006246449A - Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit - Google Patents

Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit Download PDF

Info

Publication number
JP2006246449A
JP2006246449A JP2006026357A JP2006026357A JP2006246449A JP 2006246449 A JP2006246449 A JP 2006246449A JP 2006026357 A JP2006026357 A JP 2006026357A JP 2006026357 A JP2006026357 A JP 2006026357A JP 2006246449 A JP2006246449 A JP 2006246449A
Authority
JP
Japan
Prior art keywords
groove
vibrating arm
groove portion
piezoelectric vibrator
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006026357A
Other languages
Japanese (ja)
Other versions
JP4235207B2 (en
JP2006246449A5 (en
Inventor
Shingo Kawanishi
信吾 川西
Minoru Ishihara
実 石原
Kozo Ono
公三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2006026357A priority Critical patent/JP4235207B2/en
Publication of JP2006246449A publication Critical patent/JP2006246449A/en
Publication of JP2006246449A5 publication Critical patent/JP2006246449A5/ja
Application granted granted Critical
Publication of JP4235207B2 publication Critical patent/JP4235207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tuning fork type piezoelectric vibrator provided with vibrating arms which can improve shock resistance while suppressing a CI value to a small value. <P>SOLUTION: A first groove (base end side) and a second groove (tip side) extending along the longitudinal direction from the base end of the vibrating arm and divided into two in the longitudinal direction are formed on at least one of a front surface or a back surface of the vibrating arms. Then, a ratio L2/L1 which is the ratio of the length L2 of the first groove to the length L1 from the base end of the vibrating arm to the tip of the second groove, is set between 0.35 and 0.65, and a ratio d/L1 which is the ratio of a space d between the first groove and the second groove to the length L1 from the base end of the vibrating arm to the tip of the second groove, is set between 0.010 and 0.018. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は基部から振動腕部が2本伸びだして音叉型に形成されている圧電振動子に関する。   The present invention relates to a piezoelectric vibrator in which two vibrating arms extend from a base and are formed in a tuning fork shape.

この種の圧電振動子例えば音叉型の水晶振動子は一般に腕時計の歩度を刻む信号源として知られており、近年では携帯型の電子機器に同期信号源として採用されている。この水晶振動子は、電子機器の小型化に対応してさらに小型化が求められている。   This type of piezoelectric vibrator, for example, a tuning-fork type quartz vibrator, is generally known as a signal source for engraving the rate of a wristwatch, and has recently been adopted as a synchronization signal source in portable electronic devices. The quartz resonator is required to be further downsized in response to downsizing of electronic equipment.

音叉型水晶振動子の構成については例えば特許文献1に記載されている。その構成を図11に示すと、音叉型の水晶振動子は基部1に一対の振動腕部である音叉腕2a及び2bが設けられ、各音叉腕2a,2bにおける両主面には溝部3が設けられている。当該溝部3及び各音叉腕2a,2bの両側面には、各音叉腕2a,2bの屈曲振動に基づいた音叉振動を励起するための励振電極5が設けられている。音叉型振動子に電荷を与えた際に一方の音叉腕2aの側面及び他方の音叉腕2bの溝部3内が同電位となり、他方の音叉腕2bの側面及び一方の音叉腕2aの溝部3内が逆電位となるように励振電極5は結線されている。   The configuration of the tuning fork type crystal resonator is described in Patent Document 1, for example. As shown in FIG. 11, the tuning fork type quartz crystal resonator is provided with tuning fork arms 2a and 2b as a pair of vibrating arms on the base 1, and groove portions 3 are formed on both main surfaces of the tuning fork arms 2a and 2b. Is provided. Excitation electrodes 5 for exciting tuning fork vibrations based on bending vibrations of the tuning fork arms 2a and 2b are provided on both side surfaces of the groove 3 and the tuning fork arms 2a and 2b. When a charge is applied to the tuning fork vibrator, the side surface of one tuning fork arm 2a and the groove 3 of the other tuning fork arm 2b have the same potential, and the side surface of the other tuning fork arm 2b and the groove 3 of one tuning fork arm 2a The excitation electrode 5 is connected so that becomes a reverse potential.

このような音叉型水晶振動子によれば、溝部3を形成しない場合に比較して、X軸方向(音叉腕の幅方向)での電界強度が増す。このため各音叉腕2a,2bの両側面間で互いに逆方向に伸縮するY軸方向(音叉腕の長さ方向)での屈曲振動が強励振される。   According to such a tuning fork type crystal resonator, the electric field strength in the X-axis direction (tuning fork arm width direction) is increased as compared with the case where the groove 3 is not formed. Therefore, bending vibration in the Y-axis direction (tuning fork arm length direction) that expands and contracts in opposite directions between both side surfaces of the tuning fork arms 2a and 2b is strongly excited.

このように構成することにより音叉腕2a,2bの振動損失が低くなり、基本的にCI(クリスタルインピーダンス)値が良好な圧電振動子を得ることができる。   With this configuration, the vibration loss of the tuning fork arms 2a and 2b is reduced, and a piezoelectric vibrator having a basically good CI (crystal impedance) value can be obtained.

しかしながら当該水晶振動子を利用した電子部品における消費電力の省電力化の要請から更なるCI値の低下が求められている。また前記特許文献1記載の音叉型水晶振動子は既述のように音叉腕に溝部が設けられているため当該水晶振動子を小型化した場合に耐衝撃性が小さくなり、落下などの耐衝撃性が低く、電子部品などを製造する際に破損等の不具合が発生するおそれがあった。   However, there is a demand for further reduction of the CI value in response to a request for power saving in electronic components using the crystal resonator. Since the tuning fork type crystal resonator described in Patent Document 1 is provided with a groove on the tuning fork arm as described above, the impact resistance is reduced when the crystal resonator is miniaturized, and the impact resistance such as dropping is reduced. Therefore, there is a possibility that problems such as breakage may occur when manufacturing electronic parts.

特開2002−261575JP 2002-261575 A

本発明は、このような問題を解決するためになされたものであって、その目的とするところは、2本の振動腕部を備えた音叉型の圧電振動子について、CI値が小さい値でありながら耐衝撃性が大きい圧電振動子を提供することにある。また他の目的は、この圧電振動子を用いた圧電振動子パッケージ及び発振回路を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to provide a tuning fork type piezoelectric vibrator having two vibrating arms with a small CI value. An object is to provide a piezoelectric vibrator having high impact resistance. Another object is to provide a piezoelectric vibrator package and an oscillation circuit using this piezoelectric vibrator.

本発明の圧電振動子は、基部から振動腕部が2本伸びだして音叉型に形成されている圧電振動子において、
前記振動腕部の表面部及び裏面部の少なくとも一方に、当該振動腕部の基端部から長さ方向に沿って伸びると共に長さ方向に2つに分割されて形成された溝部と、前記振動腕部の側面及び溝部内に夫々設けられた、対をなす励振電極と、を備えたことを特徴とする。
The piezoelectric vibrator of the present invention is a piezoelectric vibrator formed in a tuning fork shape with two vibrating arm portions extending from a base portion.
A groove formed on at least one of a front surface portion and a back surface portion of the vibrating arm portion, extending along a length direction from a base end portion of the vibrating arm portion and divided into two in the length direction, and the vibration And a pair of excitation electrodes provided in the side surface of the arm portion and in the groove portion, respectively.

この発明において、長さ方向に2つに分割されて形成された溝部のうち基端側の溝部を第1の溝部、先端側の溝部を第2の溝部とすると、振動腕部の基端部から第2の溝部の先端までの距離L1に対する第1の溝部の長さL2の比L2/L1が0.35〜0.65であることが好ましい。また振動腕部の基端部から第2の溝部の先端までの距離L1に対する第1の溝部及び第2の溝部の間隔dの比d/L1が0.010〜0.016であることが好ましい。   In this invention, if the groove portion on the base end side is the first groove portion and the groove portion on the tip end side is the second groove portion among the groove portions divided into two in the length direction, the base end portion of the vibrating arm portion The ratio L2 / L1 of the length L2 of the first groove portion to the distance L1 from the tip of the second groove portion to the second groove portion is preferably 0.35 to 0.65. The ratio d / L1 of the distance d between the first groove and the second groove with respect to the distance L1 from the base end of the vibrating arm to the tip of the second groove is preferably 0.010 to 0.016. .

本発明の圧電振動子パッケージは、パッケージと、このパッケージの中に設けられた本発明の圧電振動子と、前記パッケージの外に設けられ、前記圧電振動子の引き出し電極に電気的に接続された電極と、を備えたことを特徴とする。更にまた本発明の発振器は、本発明の圧電振動子と、この圧電振動子の第3次高調波の周波数のパルスを発振出力とする発振回路と、を備えたことを特徴とする。   The piezoelectric vibrator package of the present invention is provided with a package, the piezoelectric vibrator of the present invention provided in the package, and provided outside the package and electrically connected to the lead electrode of the piezoelectric vibrator. And an electrode. Furthermore, an oscillator according to the present invention includes the piezoelectric vibrator according to the present invention and an oscillation circuit that outputs a pulse having a third harmonic frequency of the piezoelectric vibrator as an oscillation output.

本発明は、振動腕部における溝部を長さ方向に2つに分割しているため、後述の実験結果から明らかなように圧電振動子のクリスタルインピーダンス(CI値)を小さくしながら、大きな耐衝撃性が得られる。   In the present invention, since the groove portion in the vibrating arm portion is divided into two in the length direction, a large impact resistance is obtained while reducing the crystal impedance (CI value) of the piezoelectric vibrator as will be apparent from the experimental results described later. Sex is obtained.

(第1の実施の形態)
図1は、本発明に係る音叉型の水晶振動子の実施の形態を示す図である。この水晶振動子における水晶振動子本体(水晶片)は、両側部の上部側が矩形に切り欠かれた切り欠き部11を備えた概ね角型の基部1と、この基部1の上端側から各々互いに間隔をおいて平行に伸びだした2本の(一対の)振動腕部2(2a、2b)とを備えていて全体の形状が音叉型の水晶片として構成されている。更に振動腕部2(2a、2b)の表面部及び裏面部には、各々当該振動腕部2(2a、2b)の基端部から先端側に向けて、長さ方向に2分割されてなる第1の溝部3及び第2の溝部4が形成されている。
(First embodiment)
FIG. 1 is a diagram showing an embodiment of a tuning-fork type crystal resonator according to the present invention. A crystal resonator body (crystal piece) in this crystal resonator includes a substantially square base portion 1 having a notch portion 11 in which upper portions of both side portions are cut out in a rectangular shape, and an upper end side of the base portion 1. Two (a pair of) vibrating arm portions 2 (2a, 2b) extending in parallel with an interval are provided, and the entire shape is configured as a tuning fork type crystal piece. Further, the front surface portion and the back surface portion of the vibrating arm portion 2 (2a, 2b) are each divided into two in the length direction from the proximal end portion to the distal end side of the vibrating arm portion 2 (2a, 2b). A first groove 3 and a second groove 4 are formed.

第1の溝部3の基端のY方向位置は、音叉又部の最下部(振動腕部2の先端側を上方としている)20と同じ位置にあるが、この最下部20よりも低い位置(基部1側に寄った位置)にあってもよい。なお音叉又部は、一対の振動腕部2a、2bの間における基部1の部分を指しており、図面では平面形状を湾曲して描いているが、実際には折れ線形状になっている。     The position in the Y direction of the base end of the first groove 3 is the same as the lowermost part 20 of the tuning fork or the fork part (the tip side of the vibrating arm 2 is upward), but is lower than the lowermost part 20 ( It may be in a position close to the base 1 side. Note that the tuning fork or portion indicates the portion of the base 1 between the pair of vibrating arm portions 2a and 2b. In the drawing, the planar shape is curved and drawn, but it is actually a polygonal line shape.

ここで図2を参照しながら励振電極及び引き出し電極に関して述べると、この水晶振動子には、一対をなす一方の電極と他方の電極とが存在する。先ず振動腕部2aに着目すると、振動腕部2aの2つの溝部3、4の内面全体とこれら溝部3、4の間に一方の励振電極51が形成されている。即ち2つの溝部3、4の間のいわば橋部に形成された励振電極51により、振動腕部2aの溝部3内の励振電極51と振動腕部2aの溝部4内の励振電極51とが接続されている。そしてこの振動腕部2aの両側面21、21と、主面22、22(表面部及び裏面部)における先端側の第2の溝部4よりも上方部位には他方の励振電極61が形成されている。なお図2において励振電極51は、図面を見やすくするために斜線と黒の点在領域とを使い分けて表しており、図2の斜線は断面を示すものではない。   Here, the excitation electrode and the extraction electrode will be described with reference to FIG. 2. In this crystal resonator, there is a pair of one electrode and the other electrode. First, paying attention to the vibrating arm portion 2 a, one excitation electrode 51 is formed between the entire inner surfaces of the two groove portions 3 and 4 of the vibrating arm portion 2 a and the groove portions 3 and 4. That is, the excitation electrode 51 formed in the bridge portion between the two groove portions 3 and 4 is connected to the excitation electrode 51 in the groove portion 3 of the vibrating arm portion 2a and the excitation electrode 51 in the groove portion 4 of the vibrating arm portion 2a. Has been. And the other excitation electrode 61 is formed in the upper part rather than the 2nd groove part 4 of the front end side in both the side surfaces 21 and 21 and main surfaces 22 and 22 (surface part and back surface part) of this vibration arm part 2a. Yes. In FIG. 2, the excitation electrode 51 is represented by using a diagonal line and a black dotted area for easy understanding of the drawing, and the diagonal line in FIG. 2 does not indicate a cross section.

また振動腕部2bに着目すると、振動腕部2bの2つの溝部3、4の内面全体とこれら溝部3、4の間に他方の励振電極61が形成されている。そしてこの振動腕部2bの両側面21、21と、主面22、22(表面部及び裏面部)における先端側の第2の溝部4よりも上方部位には一方の励振電極51が形成されている。振動腕部2a、2bに設けられた電極の配置は、励振電極51、61が互いに逆の関係であることを除くと互いに同一である。そしてこれら一方の励振電極51同士が電気的に接続されるように基部1の表面に引き出し電極52からなるパターンが形成されていると共に、他方の励振電極61同士が電気的に接続されるように基部1の表面に引き出し電極62からなるパターンが形成されている。   When attention is paid to the vibrating arm portion 2 b, the other excitation electrode 61 is formed between the entire inner surfaces of the two groove portions 3 and 4 of the vibrating arm portion 2 b and the groove portions 3 and 4. Then, one excitation electrode 51 is formed at the upper side of the both side surfaces 21 and 21 and the main surfaces 22 and 22 (the front surface portion and the back surface portion) of the vibrating arm portion 2b above the second groove portion 4 on the front end side. Yes. The arrangement of the electrodes provided on the vibrating arm portions 2a and 2b is the same except that the excitation electrodes 51 and 61 are in an opposite relationship to each other. And the pattern which consists of the extraction electrode 52 is formed in the surface of the base 1 so that these one excitation electrodes 51 may be electrically connected, while the other excitation electrodes 61 are electrically connected A pattern made of extraction electrodes 62 is formed on the surface of the base 1.

この水晶振動子の各部位の寸法の一例を図3を参照しながら示すと、振動腕部2(2a、2b)の長さL0は例えば1650μmであり、第1の溝部3の基端部から第2の溝部4の先端部までの長さL1は847μmであり、第1の溝部3の長さL2は例えば418μmであり、第1の溝部3及び第2の溝部4の間隔dは10μmである。また基部1の底面から音叉又部の最下部20までの長さL3は例えば600μmである。更に振動腕部2(2a、2b)の幅W1は100μmであり、溝部3、4の各々の幅W2は65μmであり、基部1の底面の幅W3は500μmである。
ここでL1に対するL2の比L2/L1が0.35〜0.65であり、かつL1に対するdの比d/L1が0.010であれば、大きな耐衝撃性が得られる。また比d/L1が0.016であればCI値を小さな値にすることができる。
When an example of the dimensions of each part of the crystal resonator is shown with reference to FIG. 3, the length L0 of the vibrating arm portion 2 (2a, 2b) is, for example, 1650 μm. The length L1 to the tip of the second groove 4 is 847 μm, the length L2 of the first groove 3 is, for example, 418 μm, and the distance d between the first groove 3 and the second groove 4 is 10 μm. is there. The length L3 from the bottom surface of the base 1 to the lowermost portion 20 of the tuning fork or portion is, for example, 600 μm. Further, the width W1 of the vibrating arm 2 (2a, 2b) is 100 μm, the width W2 of each of the grooves 3 and 4 is 65 μm, and the width W3 of the bottom surface of the base 1 is 500 μm.
Here, if the ratio L2 / L1 of L2 to L1 is 0.35 to 0.65 and the ratio d / L1 of d to L1 is 0.010, a large impact resistance can be obtained. If the ratio d / L1 is 0.016, the CI value can be made small.

そして水晶振動子は、例えば図4に示すようにSMD構造(基板実装型構造)のパッケージ型デバイス(水晶振動子パッケージ)として利用される。図4において7は例えばアルミナなどのセラミックスあるいはガラスなどの絶縁体からなるパッケージである。このパッケージ7は、上面が開口しているケース体7aとこのケース体7aの上にシール材7cを介して設けられた蓋体7bとからなる。既述の音叉型の水晶振動子70は、このパッケージ7内の台座部分71に基部1の引き出し電極52、62が導電性接着剤7dにより固定されて横向きに配置され、振動腕部2が空間に伸びだしている。前記引き出し電極52、62は、台座部分71の表面に配線された導電路72、73(73は紙面奥側の導電路である)により、パッケージ7の外に設けられた電極74、75に接続されている。このパッケージ型デバイスは、発振回路の回路部品が搭載されている図示しない配線基板に搭載され、これにより水晶発振器が構成される。なお水晶振動子パッケージは、SMD構造に限られず、一端が絶縁材で封止された金属製のシリンダ内に水晶振動子を設け、前記絶縁材を貫通する一対の電極ピンの内端に夫々引き出し電極52、62が接続された構造であってもよい。
図5は、水晶発振器が発振回路に組み込まれた回路の一例を略解的に示し、101はCMOSインバータからなる増幅器、102は帰還抵抗、103はドレイン抵抗、104、105はコンデンサでであり、増幅器101の出力側から前記3次高調波の発振出力が取り出される。
For example, as shown in FIG. 4, the crystal resonator is used as a package device (crystal resonator package) having an SMD structure (substrate mounting structure). In FIG. 4, 7 is a package made of an insulator such as ceramics such as alumina or glass. The package 7 includes a case body 7a whose upper surface is open and a lid body 7b provided on the case body 7a via a sealing material 7c. In the tuning-fork type crystal resonator 70 described above, the lead electrodes 52 and 62 of the base 1 are fixed to the pedestal portion 71 in the package 7 by the conductive adhesive 7d and are arranged horizontally, and the vibrating arm portion 2 is a space. Is starting to grow. The lead electrodes 52 and 62 are connected to electrodes 74 and 75 provided outside the package 7 by conductive paths 72 and 73 (73 is a conductive path on the back side of the drawing) wired on the surface of the pedestal portion 71. Has been. This package type device is mounted on a wiring board (not shown) on which circuit components of an oscillation circuit are mounted, thereby forming a crystal oscillator. The crystal unit package is not limited to the SMD structure, and the crystal unit is provided in a metal cylinder sealed at one end with an insulating material, and drawn out to the inner ends of a pair of electrode pins that penetrate the insulating material. A structure in which the electrodes 52 and 62 are connected may be used.
FIG. 5 schematically shows an example of a circuit in which a crystal oscillator is incorporated in an oscillation circuit, where 101 is an amplifier composed of a CMOS inverter, 102 is a feedback resistor, 103 is a drain resistor, and 104 and 105 are capacitors. The oscillation output of the third harmonic is taken out from the output side of 101.

次に上述実施の形態の作用、効果について説明する。振動腕部2aの両側面21、21及び主面22、22と振動腕部2bの溝部3、4とは同電位E1となり、振動腕部2bの両側面21、21及び主面22、22と振動腕部2aの溝部3、4とは同電位E2となり、E1及びE2は互いに逆電位の関係にある。図4は、各振動腕部2a、2bに発生する電気力線を模式的に示した図であり、第1の溝部3及び第2の溝部4を形成することでX軸方向(振動腕部2の幅方向)での電界強度が増し、各振動腕部2a、2b間で逆方向に伸縮し、これによりY軸方向における屈曲振動が強められる。このため振動効率が高まり、CI値が低減することとなる。なお図6では、溝部3、4の断面形状は便宜上矩形として記載してあるが、実際には、加工時に行われる異方性エッチングの影響により底面に近い部位においては、底面に向かうほど溝幅が狭くなる形状となっている。   Next, the operation and effect of the above embodiment will be described. Both side surfaces 21 and 21 and main surfaces 22 and 22 of the vibrating arm portion 2a and the groove portions 3 and 4 of the vibrating arm portion 2b have the same potential E1, and both the side surfaces 21 and 21 and the main surfaces 22 and 22 of the vibrating arm portion 2b The groove portions 3 and 4 of the vibrating arm portion 2a have the same potential E2, and E1 and E2 are in a relationship of opposite potentials. FIG. 4 is a diagram schematically showing electric lines of force generated in the vibrating arm portions 2a and 2b. By forming the first groove portion 3 and the second groove portion 4, the X-axis direction (vibrating arm portion) is shown. 2 in the width direction) and expands and contracts in the opposite direction between the vibrating arm portions 2a and 2b, thereby strengthening the bending vibration in the Y-axis direction. For this reason, the vibration efficiency is increased and the CI value is reduced. In FIG. 6, the cross-sectional shape of the groove portions 3 and 4 is described as a rectangle for convenience. However, in actuality, in a portion close to the bottom surface due to the influence of anisotropic etching performed at the time of processing, the groove width increases toward the bottom surface. The shape becomes narrower.

このように各振動腕部2a、2bに溝部を設けているので、CI値が低減する。溝部を設けると強度が小さくなるが、この実施の形態では、1本の溝部を設けるのではなく、溝部を長さ方向に2つに分割しているので、言い換えれば第1の溝部3及び第2の溝部4を設けているので、強度不足を避けることができる。なお溝部を3つ以上に分割したのでは、後述の実験例からも分かるようにCI値が大きくなってしまうので製品に適用することが難しい。つまり本発明の構造は、各振動腕部2a、2bに溝部を設けるにあたり、強度とCI値とを考慮して、2分割が最適であるという結論に達したことに基づいている。   As described above, since the groove portions are provided in the respective vibrating arm portions 2a and 2b, the CI value is reduced. Although the strength is reduced when the groove portion is provided, in this embodiment, the groove portion is divided into two in the length direction instead of providing one groove portion. In other words, the first groove portion 3 and the first groove portion Since the two groove portions 4 are provided, an insufficient strength can be avoided. If the groove is divided into three or more, the CI value becomes large as can be seen from an experimental example described later, so that it is difficult to apply it to a product. That is, the structure of the present invention is based on the conclusion that the splitting is optimal in consideration of the strength and the CI value when providing the groove portions in the respective vibrating arm portions 2a and 2b.

(実験1)
既述の実施の形態に記載した音叉型の水晶振動子において、第1の溝部3の基端部から第2の溝部4の先端部までの長さL1に対する第1の溝部3の長さL2の比L2/L1を種々変えて、各水晶振動子の強度を調べた。L2/L1を%表示((L2/L1)×100)で表すことにすると、0%、12.5%、35%、50%及び65%の5通りに設定した。0%とは、溝を分割せずに1本の溝を形成したものである。
その他の条件については、振動腕部2(2a、2b)の長さL0が1650μm、第1の溝部3の基端部から第2の溝部4の先端部までの長さL1が847μmであり、第1の溝部3及び第2の溝部4の間隔dが10μm、基部1の底面から音叉又部の最下部20までの長さL3が600μm、振動腕部2(2a、2b)の幅W1が100μmであり、溝部3の幅W2が65μmであり、基部1の底面の幅W1が500μmである。
(Experiment 1)
In the tuning-fork type crystal resonator described in the above-described embodiment, the length L2 of the first groove 3 with respect to the length L1 from the base end of the first groove 3 to the tip of the second groove 4 is described. The ratio L2 / L1 was varied, and the strength of each crystal resonator was examined. Assuming that L2 / L1 is expressed in% ((L2 / L1) × 100), it was set in five ways: 0%, 12.5%, 35%, 50% and 65%. 0% means that one groove is formed without dividing the groove.
Regarding other conditions, the length L0 of the vibrating arm 2 (2a, 2b) is 1650 μm, the length L1 from the base end of the first groove 3 to the tip of the second groove 4 is 847 μm, The distance d between the first groove portion 3 and the second groove portion 4 is 10 μm, the length L3 from the bottom surface of the base portion 1 to the lowermost portion 20 of the tuning fork fork portion is 600 μm, and the width W1 of the vibrating arm portion 2 (2a, 2b) is 100 μm, the width W 2 of the groove 3 is 65 μm, and the width W 1 of the bottom surface of the base 1 is 500 μm.

強度試験は、図7に示すように水晶振動子10を台座7の上に垂直に立てて接着剤71により固定し、振動腕部2(2a、2b)の主面22に対して応力を加え、振動腕部2(2a、2b)が破壊するときの荷重の大きさを記録した。この試験を3つの水晶振動子に対して行い、破壊するときの荷重の大きさの平均を求め、この値で水晶振動子の強度を評価した。結果は表1及び図8に示す通りである。   In the strength test, as shown in FIG. 7, the crystal unit 10 is vertically set on the base 7 and fixed with an adhesive 71, and stress is applied to the main surface 22 of the vibrating arm 2 (2a, 2b). The magnitude of the load when the vibrating arm 2 (2a, 2b) breaks was recorded. This test was performed on three crystal resonators, and the average of the magnitudes of loads at the time of destruction was determined, and the strength of the crystal resonator was evaluated based on this value. The results are as shown in Table 1 and FIG.

Figure 2006246449
Figure 2006246449

L2/L1が12.5%のときの強度は8.0gであり、0%のときの7.4gと比較して強度が大きくなっている。1回目から3回目の試験における強度の値にばらつきはあるが、上記の傾向は明確に伺える。そしてL2/L1が35%〜65%までは、強度が9.5gとかなり大きくなっている。一方、各条件の水晶振動子について、CIメーターを用いて各サンプルのCI値を測定し、その平均値を求めたところ、いずれの水晶振動子についてもCI値は53kΩであった。即ち、この試験条件においては、CI値は1本の溝部の場合と変わらず、溝部を2本に分割したことによるCI値の上昇は見られなかった。以上の結果から溝部を2分割することにより強度が大きくなり、特にL2/L1を35%から65%(0.35〜0.65)にすることが好ましいといえる。
(実験2)
次ぎに第1の溝部3及び第2の溝部4の間隔dの適切な値を見つけるための実験を行った。この実験ではL2/L1を35%(0.35)に設定し、第2の溝部4の基端部側の位置を変更することにより、第1の溝部3及び第2の溝部4の間隔dを種々変更して、d/L1を0%、0.6%、1.0%。1.2%及び2.5%の5通りに設定した。その他の条件は、実験1と同じである。各水晶振動子の強度を実験1と同様にして調べた。結果は表2及び図9に示す通りである。なおd/L1が1.2%のときは、先の実験1におけるdが10μmのときに相当する。
The strength when L2 / L1 is 12.5% is 8.0 g, and the strength is larger than 7.4 g when L2 / L1 is 0%. Although the strength values in the first to third tests vary, the above tendency can be clearly seen. And when L2 / L1 is 35% to 65%, the strength is as large as 9.5 g. On the other hand, for each crystal resonator, the CI value of each sample was measured using a CI meter and the average value was obtained. As a result, the CI value was 53 kΩ for all crystal resonators. That is, under this test condition, the CI value was not different from that in the case of one groove portion, and no increase in the CI value was observed due to the division of the groove portion into two. From the above results, it can be said that the strength is increased by dividing the groove into two parts, and it is particularly preferable to set L2 / L1 from 35% to 65% (0.35 to 0.65).
(Experiment 2)
Next, an experiment for finding an appropriate value of the distance d between the first groove portion 3 and the second groove portion 4 was performed. In this experiment, L2 / L1 is set to 35% (0.35), and the distance d between the first groove portion 3 and the second groove portion 4 is changed by changing the position of the second groove portion 4 on the base end side. Variously, d / L1 is 0%, 0.6%, 1.0%. Five types of 1.2% and 2.5% were set. Other conditions are the same as those in Experiment 1. The strength of each crystal resonator was examined in the same manner as in Experiment 1. The results are as shown in Table 2 and FIG. Note that d / L1 of 1.2% corresponds to d in the previous experiment 1 of 10 μm.

Figure 2006246449
Figure 2006246449

この結果から、両溝部3、4の間隔dを大きくする程、つまりd/L1を大きくするほど水晶振動子の強度は大きくなっている。従って水晶振動子の強度からだけ言えば、間隔dはできるだけ大きい方がよいといえる。一方、各条件の水晶振動子について、CIメーターを用いて各サンプルのCI値を測定し、その平均値を求めたところ、表3及び図10に示す結果が得られた。
From this result, the strength of the crystal resonator increases as the distance d between the groove portions 3 and 4 increases, that is, as d / L1 increases. Accordingly, it can be said that the distance d should be as large as possible only from the strength of the crystal resonator. On the other hand, when the CI value of each sample was measured using a CI meter for the crystal resonator of each condition and the average value was obtained, the results shown in Table 3 and FIG. 10 were obtained.

Figure 2006246449
Figure 2006246449

この結果から、間隔dをあまり大きくするとCI値が大きくなって好ましくない。このため間隔dは、CI値が大きすぎない程度の大きさに設定することが必要であり、例えばd/L1が1%〜1.8%(0.010〜0.018)とすることが好ましい。
(実験3)
溝を2分割する代わりに3分割し、各溝の間隔dを10μmとした。この間隔dが小さすぎると加工が困難になることから、実際に製品を生産するときのことを考慮して、10μmの寸法を選択した。その他の条件は実験1と同じである。このように溝部を3分割した水晶振動子についてCI値を測定したところ、CI値は58kΩであった。従って3分割した水晶振動子は2分割した水晶振動子に比べてCI値が大きいことがわかる。
From this result, it is not preferable to increase the interval d too much because the CI value increases. For this reason, the interval d needs to be set to such a size that the CI value is not too large. For example, d / L1 is set to 1% to 1.8% (0.010 to 0.018). preferable.
(Experiment 3)
Instead of dividing the groove into two, the groove was divided into three, and the distance d between the grooves was set to 10 μm. If the distance d is too small, the processing becomes difficult. Therefore, the size of 10 μm is selected in consideration of the actual production. Other conditions are the same as those in Experiment 1. The CI value of the quartz resonator having the groove divided into three was measured, and the CI value was 58 kΩ. Therefore, it can be seen that the three-divided crystal resonator has a larger CI value than the two-divided crystal resonator.

本発明の実施の形態に係る音叉型水晶振動子を示す概略平面図である。1 is a schematic plan view showing a tuning fork type crystal resonator according to an embodiment of the present invention. 本発明の実施の形態に係る音叉型水晶振動子を示す斜視図である。1 is a perspective view showing a tuning fork type crystal resonator according to an embodiment of the present invention. 上記音叉型水晶振動子の寸法を示す説明図である。It is explanatory drawing which shows the dimension of the said tuning fork type crystal resonator. 本発明の水晶振動子をパッケージ内に装着した水晶振動子パッケージを示す断面図である。It is sectional drawing which shows the crystal oscillator package which mounted | wore the crystal oscillator of this invention in the package. 本発明の水晶振動子を用いた発振器の一例を示す図である。It is a figure which shows an example of the oscillator using the crystal oscillator of this invention. 図1のA−A´線に沿った断面図である。It is sectional drawing along the AA 'line of FIG. 音叉型水晶振動子の破壊試験を示す側面図である。It is a side view which shows the destructive test of a tuning fork type crystal resonator. 音叉型水晶振動子の破壊試験の結果を示す特性図である。It is a characteristic view which shows the result of the destructive test of a tuning fork type crystal resonator. 音叉型水晶振動子の破壊試験の結果を示す特性図である。It is a characteristic view which shows the result of the destructive test of a tuning fork type crystal resonator. 音叉型水晶振動子における溝部の間隔とCI値の測定値との関係を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between a groove interval and a measured CI value in a tuning fork type crystal resonator. 従来の音叉型水晶振動子を示す概略平面図である。It is a schematic plan view showing a conventional tuning fork type crystal resonator.

符号の説明Explanation of symbols

1 基部
11 切り欠き部
2 振動腕部
20 最下部
3 第1の溝部
4 第2の溝部
51 一方の励振電極
61 他方の励振電極
DESCRIPTION OF SYMBOLS 1 Base part 11 Notch part 2 Vibrating arm part 20 Bottom part 3 1st groove part 4 2nd groove part 51 One excitation electrode 61 The other excitation electrode

Claims (5)

基部から振動腕部が2本伸びだして音叉型に形成されている圧電振動子において、
前記振動腕部の表面部及び裏面部の少なくとも一方に、当該振動腕部の基端部から長さ方向に沿って伸びると共に長さ方向に2つに分割されて形成された溝部と、
前記振動腕部の側面及び溝部内に夫々設けられた、対をなす励振電極と、を備えたことを特徴とする圧電振動子。
In the piezoelectric vibrator formed in a tuning fork shape with two vibrating arms extending from the base,
A groove portion formed on at least one of the front surface portion and the back surface portion of the vibrating arm portion and extending in the length direction from the base end portion of the vibrating arm portion and divided into two in the length direction;
A piezoelectric vibrator comprising a pair of excitation electrodes provided in a side surface and a groove portion of the vibrating arm portion, respectively.
長さ方向に2つに分割されて形成された溝部のうち基端側の溝部を第1の溝部、先端側の溝部を第2の溝部とすると、振動腕部の基端部から第2の溝部の先端までの長さL1に対する第1の溝部の長さL2の比L2/L1が0.35〜0.65であることを特徴とする請求項1記載の圧電振動子。   Of the groove portions divided into two in the length direction, if the groove portion on the proximal end side is the first groove portion and the groove portion on the distal end side is the second groove portion, the second end portion from the proximal end portion of the vibrating arm portion 2. The piezoelectric vibrator according to claim 1, wherein a ratio L2 / L1 of the length L2 of the first groove to the length L1 to the tip of the groove is 0.35 to 0.65. 長さ方向に2つに分割されて形成された溝部のうち基端側の溝部を第1の溝部、先端側の溝部を第2の溝部とすると、振動腕部の基端部から第2の溝部の先端までの長さL1に対する第1の溝部及び第2の溝部の間隔dの比d/L1が0.010〜0.016であることを特徴とする請求項1または2記載の圧電振動子。   Of the groove portions divided into two in the length direction, if the groove portion on the proximal end side is the first groove portion and the groove portion on the distal end side is the second groove portion, the second end portion from the proximal end portion of the vibrating arm portion 3. The piezoelectric vibration according to claim 1, wherein a ratio d / L1 of a distance d between the first groove portion and the second groove portion with respect to a length L1 to the tip of the groove portion is 0.010 to 0.016. Child. パッケージと、このパッケージの中に設けられた請求項1に記載の水晶振動子と、前記パッケージの外に設けられ、前記水晶振動子の引き出し電極に電気的に接続された電極と、を備えたことを特徴とする請求項1ないし3のいずれか一つに圧電振動子パッケージ。   A crystal resonator according to claim 1, provided in the package, and an electrode provided outside the package and electrically connected to a lead electrode of the crystal resonator. The piezoelectric vibrator package according to any one of claims 1 to 3. 請求項1に記載の水晶振動子と、この水晶振動子の第3次高調波の周波数のパルスを発振出力とする発振回路と、を備えたことを特徴とする請求項1ないし3のいずれか一つに記載の発振器。
4. The crystal resonator according to claim 1, and an oscillation circuit that outputs a pulse having a third harmonic frequency of the crystal resonator as an oscillation output. The oscillator according to one.
JP2006026357A 2005-02-02 2006-02-02 Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit Active JP4235207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026357A JP4235207B2 (en) 2005-02-02 2006-02-02 Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005026099 2005-02-02
JP2006026357A JP4235207B2 (en) 2005-02-02 2006-02-02 Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit

Publications (3)

Publication Number Publication Date
JP2006246449A true JP2006246449A (en) 2006-09-14
JP2006246449A5 JP2006246449A5 (en) 2008-12-04
JP4235207B2 JP4235207B2 (en) 2009-03-11

Family

ID=37052318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026357A Active JP4235207B2 (en) 2005-02-02 2006-02-02 Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit

Country Status (1)

Country Link
JP (1) JP4235207B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085743A (en) * 2006-09-28 2008-04-10 Nippon Dempa Kogyo Co Ltd Crystal vibrator, and oscillating device
JP2008085957A (en) * 2006-09-29 2008-04-10 Nippon Dempa Kogyo Co Ltd Tuning fork type crystal vibrator element
JP2008113380A (en) * 2006-10-31 2008-05-15 Nippon Dempa Kogyo Co Ltd Method for manufacturing crystal vibrator, crystal vibrator, and electronic component
JP2008136095A (en) * 2006-11-29 2008-06-12 Nippon Dempa Kogyo Co Ltd Tuning-fork-type piezoelectric vibration reed and piezoelectric device
US7863803B2 (en) 2007-05-30 2011-01-04 Epson Toyocom Corporation Tuning fork resonator element and tuning fork resonator
US7975364B2 (en) 2006-10-06 2011-07-12 Nihon Dempa Kogyo Co., Ltd. Method for producing a tuning-fork type crystal vibrating piece
JP2012010253A (en) * 2010-06-28 2012-01-12 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085743A (en) * 2006-09-28 2008-04-10 Nippon Dempa Kogyo Co Ltd Crystal vibrator, and oscillating device
JP4618440B2 (en) * 2006-09-28 2011-01-26 日本電波工業株式会社 Crystal resonator element and vibration device
JP2008085957A (en) * 2006-09-29 2008-04-10 Nippon Dempa Kogyo Co Ltd Tuning fork type crystal vibrator element
JP4582718B2 (en) * 2006-09-29 2010-11-17 日本電波工業株式会社 Tuning fork type crystal resonator element
US7975364B2 (en) 2006-10-06 2011-07-12 Nihon Dempa Kogyo Co., Ltd. Method for producing a tuning-fork type crystal vibrating piece
JP2008113380A (en) * 2006-10-31 2008-05-15 Nippon Dempa Kogyo Co Ltd Method for manufacturing crystal vibrator, crystal vibrator, and electronic component
JP2008136095A (en) * 2006-11-29 2008-06-12 Nippon Dempa Kogyo Co Ltd Tuning-fork-type piezoelectric vibration reed and piezoelectric device
US7863803B2 (en) 2007-05-30 2011-01-04 Epson Toyocom Corporation Tuning fork resonator element and tuning fork resonator
US8182703B2 (en) 2007-05-30 2012-05-22 Seiko Epson Corporation Tuning fork resonator element and tuning fork resonator
JP2012010253A (en) * 2010-06-28 2012-01-12 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device

Also Published As

Publication number Publication date
JP4235207B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4319657B2 (en) Piezoelectric vibrator
US7352117B2 (en) Piezoelectric vibrator
JP4235207B2 (en) Piezoelectric vibrator, piezoelectric vibrator package, and oscillation circuit
TWI444792B (en) Piezoelectric resonator with optimised motional capacitances
JP2006270177A (en) Piezoelectric vibration reed and piezoelectric device
JP6552225B2 (en) Piezoelectric vibrating reed and piezoelectric vibrator
JP2004357178A (en) Piezoelectric vibrator
JP2007013910A (en) Piezoelectric resonator
JP2011166324A (en) Tuning fork type piezoelectric vibration piece and piezoelectric device
JP5353486B2 (en) Vibrating piece and vibrator
JP6456066B2 (en) Piezoelectric sensor device
JP5508046B2 (en) Piezoelectric vibration element
JP2013046127A (en) Piezoelectric vibration piece and piezoelectric device
JP4900489B2 (en) Tuning fork type piezoelectric vibrator
JP6927768B2 (en) Crystal device
JP6871112B2 (en) Tuning fork type crystal element and crystal device using the tuning fork type crystal element
JP2009207066A (en) Piezoelectric device
JP2006246448A (en) Crystal vibrator, crystal vibrator package, and crystal oscillator
JP4508204B2 (en) Tuning fork type piezoelectric vibrator
JP2015186196A (en) Piezoelectric vibration piece and piezoelectric device
JP2012119853A (en) Piezoelectric device
JP6904851B2 (en) Tuning fork type crystal element and crystal device using the tuning fork type crystal element
TW201131975A (en) Vibrating reed, vibrator, oscillator, and electronic device
JP2004349856A (en) Piezoelectric oscillating piece, piezoelectric device using the same, cellular telephone and electronic equipment using piezoelectric device
JP6901383B2 (en) Tuning fork type crystal element and crystal device using the tuning fork type crystal element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081022

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4235207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250