JP2006245629A - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP2006245629A
JP2006245629A JP2006170925A JP2006170925A JP2006245629A JP 2006245629 A JP2006245629 A JP 2006245629A JP 2006170925 A JP2006170925 A JP 2006170925A JP 2006170925 A JP2006170925 A JP 2006170925A JP 2006245629 A JP2006245629 A JP 2006245629A
Authority
JP
Japan
Prior art keywords
paper
electrolytic
electrolytic capacitor
fiber
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006170925A
Other languages
Japanese (ja)
Other versions
JP4109696B2 (en
Inventor
Jiyunichi Ushimoto
順一 丑本
Hiroaki Wada
浩昭 和田
Taiji Mizobuchi
泰司 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kodoshi Corp
Original Assignee
Nippon Kodoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kodoshi Corp filed Critical Nippon Kodoshi Corp
Priority to JP2006170925A priority Critical patent/JP4109696B2/en
Publication of JP2006245629A publication Critical patent/JP2006245629A/en
Application granted granted Critical
Publication of JP4109696B2 publication Critical patent/JP4109696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic capacitor in which short circuit failure rate is improved without having an adverse effect on the impedance characteristics by employing a novel electrolytic sheet having low density and tensile strength enhanced sharply without covering the air gap between fibers, and productivity is enhanced. <P>SOLUTION: In the electrolytic capacitor where an electrolytic sheet is interposed between an anode foil and a cathode foil, the electrolytic sheet is made of unbeaten or slightly beaten natural vegetable fibers by a cylinder machine. It is then impregnated, under dry sheet state, with refining solution of paper force reinforcement agent from which impurities are removed thus obtaining an electrolytic capacitor having a density of 0.20-0.70 g/cm<SP>3</SP>, tensile strength of 1.1 kg/15 mm or above, and a thickness of 20-70 μm where the impurity of the electrolytic sheet is 500-650 V when it is evaluated by chemical treatment properties, and ESR is 0.2 Ω/1 kHz or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は陽極箔と陰極箔との間に電解紙を介在させて構成した電解コンデンサに係り、特には低密度であるとともに大幅に向上した引張強度を有し、しかも繊維間空隙が遮蔽されることがない新規な電解紙を用いることによって、インピーダンス特性に悪影響を与えることなくショート不良率を改善するとともに、生産性を向上させるものである。   The present invention relates to an electrolytic capacitor configured by interposing electrolytic paper between an anode foil and a cathode foil, and in particular, has a low density and a greatly improved tensile strength, and further, inter-fiber voids are shielded. By using a novel electrolytic paper that does not occur, the short defect rate is improved without adversely affecting the impedance characteristics, and the productivity is improved.

一般に電解コンデンサ,特にアルミ電解コンデンサは、陽極アルミ箔と陰極アルミ箔との間に電解紙を介在させて巻付け形成してコンデンサ素子を作成し、このコンデンサ素子を液状の電解液中に浸漬して電解質を含浸させ、封口して製作している。電解液としては通常エチレングリコール(EG),ジメチルホルムアミド(DMF)又はγ−ブチロラクトン(GBL)等を溶媒とし、これらの溶媒に硼酸やアジピン酸アンモニウム,マレイン酸水素アンモニウム等の有機酸塩を溶解したものを用いてコンデンサ素子の両端から浸透させて製作している。   In general, electrolytic capacitors, particularly aluminum electrolytic capacitors, are formed by winding electrolytic paper between an anode aluminum foil and a cathode aluminum foil to form a capacitor element, and this capacitor element is immersed in a liquid electrolyte. It is made by impregnating with electrolyte and sealing. As an electrolytic solution, ethylene glycol (EG), dimethylformamide (DMF), or γ-butyrolactone (GBL) is usually used as a solvent, and organic acid salts such as boric acid, ammonium adipate, and ammonium hydrogen maleate are dissolved in these solvents. It is manufactured by infiltrating from both ends of the capacitor element.

これら従来のアルミ電解コンデンサは電解紙中に電解液を含浸させているため、コンデンサとしてのインピーダンス特性、特に等価直列抵抗(以下ESRと略する)が高くなり易く、そのためインピーダンス特性を良くするために電解液の抵抗を下げたり、電解紙を薄くするか密度を低くする手段の外、電解紙の原料を通常の木材クラフトパルプから針葉樹木材パルプ,マニラ麻パルプ,エスパルトパルプ等に変更する手段が用いられている。しかしながら、電解液の抵抗値を下げると、アルミ箔に対して腐蝕性を与える原因となり、一方、電解紙を薄くしたり密度を低くすると必然的に引張強度が低下してショート不良率が増大し、仮にショートしなかった場合でも製品化されて市場に出された後のショート不良率が高くなる難点がある。   Since these conventional aluminum electrolytic capacitors are impregnated with electrolytic solution in electrolytic paper, the impedance characteristics as a capacitor, in particular, the equivalent series resistance (hereinafter abbreviated as ESR) is likely to be high, so that the impedance characteristics are improved. In addition to the means to lower the resistance of the electrolyte or to reduce the thickness or density of the electrolytic paper, the means to change the raw material of the electrolytic paper from ordinary wood craft pulp to conifer wood pulp, manila hemp pulp, esparto pulp, etc. It has been. However, lowering the resistance value of the electrolyte causes corrosiveness to the aluminum foil. On the other hand, thinning the electrolytic paper or lowering the density inevitably reduces the tensile strength and increases the short-circuit defect rate. Even if there is no short circuit, there is a drawback that the short defect rate after being commercialized and put on the market becomes high.

そこでショート不良率を下げるためには電解紙の厚さを厚くしたり、密度を高くしたり、同密度の場合にはその原料であるパルプの叩解の程度を示すJIS P 8121によるCSF(Canadian Standard Freeness)の数値を小さくすればパルプの繊維がフィブリル化して細かくなり、得られる電解紙が緻密となり、引張強度が増大してショート不良率が改善されることが知られている。また、これらの項目のESRに与える影響は電解紙を厚くすると一次式的にESRが悪化し、密度を高めると二次式的にESRが悪化することが判明している。即ちESRを改善するには、ショート不良率の改善とは逆に電解紙を薄く、その密度を低くする必要がある。   Therefore, in order to reduce the short-circuit defect rate, the thickness of the electrolytic paper is increased, the density is increased, and in the case of the same density, CSF (Canadian Standard) according to JIS P 8121 indicating the degree of beating of the raw material pulp. It is known that if the value of (Freeness) is reduced, the pulp fibers become fibrillated and become finer, the resulting electrolytic paper becomes dense, the tensile strength increases, and the short-circuit defect rate is improved. Further, it has been found that the effect of these items on ESR is that the ESR is linearly deteriorated when the electrolytic paper is thickened, and that the ESR is deteriorated quadratically when the density is increased. That is, in order to improve ESR, it is necessary to make the electrolytic paper thin and reduce its density, contrary to the improvement of the short-circuit defect rate.

そのため、ショート不良率の改善とESRの改善という双方の目的を達成するために、前記したように電解紙の原料を通常の木材クラフトパルプから針葉樹木材パルプ,マニラ麻パルプ,エスパルトパルプ等の繊維径のより小さなパルプへ変更することによって、薄く、かつ、低密度で緻密な電解紙を製造する試みがなされている。現在電解紙として最も多く採用されている混抄品は、マニラ麻パルプとエスパルトパルプの混抄品であって、繊維径が細く剛性の高いエスパルトパルプをマニラ麻パルプへ混合することによって、マニラ麻の外観の粗さを解消し密度が低くても緻密性を有する電解紙を得ることができる(特許文献1参照)。   Therefore, in order to achieve both the objectives of improving the short defect rate and improving the ESR, as described above, the raw material of the electrolytic paper is changed from a normal wood craft pulp to a softwood wood pulp, a Manila hemp pulp, an esparto pulp, or the like. Attempts have been made to produce a thin, low density and dense electrolytic paper by changing to a smaller pulp. The most commonly used blended paper as an electrolysis paper is a blend of Manila hemp pulp and esparto pulp. By mixing esparto pulp with a thin fiber diameter and high rigidity into Manila hemp pulp, the appearance of Manila hemp is improved. Even if the roughness is eliminated and the density is low, a dense electrolytic paper can be obtained (see Patent Document 1).

更に、電解紙の原料として原料を叩解してCSFの数値を小さくしても抄造された紙の密度が高くなり難いサイザルパルプを使用することにより、CSFの小さい原料で密度の低い電解紙を得ることが提供されている(特許文献2参照)。   Furthermore, by using a sisal pulp that does not easily increase the density of the paper that has been made by beating the raw material as the raw material for the electrolytic paper and reducing the numerical value of the CSF, an electrolytic paper having a low density with a raw material having a low CSF is obtained. (Refer to Patent Document 2).

また、ショート不良率を改善するには電解紙の箔バリに対する耐性を向上させることであり、厚さ,密度,緻密性,ピンホールとともに引張強度を向上させることも重要な課題である。そのため、前記したようにCSFの数値を小さくする他、原料中にビニロンバインダー繊維,ポリエチレン繊維等低融点の熱融着繊維を混合し、乾燥工程での温度にて溶融させ、繊維間に接着強度を持たせ引張強度を増大させる手段や、ポリプロピレン繊維,ナイロン繊維等の熱可塑性繊維を混抄した紙を二次加工にて熱処理を施し融着させ引張強度を増大させる手段が知られている。これらの手段では前記した天然植物繊維の他にビスコースレーヨン繊維,ポリプロピレン繊維,ポリイミド繊維,アラミド繊維等の合成繊維の他、ガラス繊維,アルミナシリカ繊維等の無機繊維も配合し低密度、かつ、空隙率の高い紙で、実用レベルの引張強度を有する紙を得ることが可能である。   Further, in order to improve the short-circuit defect rate, it is necessary to improve the resistance of the electrolytic paper to foil burrs. It is also important to improve the tensile strength along with the thickness, density, denseness, and pinholes. Therefore, as described above, in addition to reducing the value of CSF, low melting point heat fusion fibers such as vinylon binder fiber and polyethylene fiber are mixed in the raw material and melted at the temperature in the drying process, and the adhesive strength between the fibers There are known means for increasing the tensile strength by imparting a tensile strength, and means for increasing the tensile strength by subjecting paper mixed with thermoplastic fibers such as polypropylene fiber and nylon fiber to heat treatment by secondary processing and fusing. In these means, in addition to the above-mentioned natural plant fiber, in addition to synthetic fibers such as viscose rayon fiber, polypropylene fiber, polyimide fiber, and aramid fiber, inorganic fibers such as glass fiber and alumina silica fiber are also blended at low density, and It is possible to obtain a paper having a high level of tensile strength with a high porosity.

また、紙の一般的な引張強度の増大として製造工程中の原料懸濁液に澱粉,植物性ガム,半合成高分子及び合成高分子等を添加し、繊維表層に定着させ繊維相互の結合強度を増大させる手段が知られている。
特公昭61−45379号公報 特開昭62−126622号公報
In order to increase the general tensile strength of paper, starch, vegetable gum, semi-synthetic polymer, synthetic polymer, etc. are added to the raw material suspension during the manufacturing process, and fixed to the fiber surface layer to bond the fibers together. Means for increasing the value are known.
Japanese Examined Patent Publication No. 61-45379 Japanese Patent Laid-Open No. 62-126622

しかしながら、前記マニラ麻パルプとエスパルトパルプを混抄した特許文献1においては、エスパルトパルプが非常に剛性であるため、マニラ麻パルプとの相性が悪く、エスパルトパルプを混合することによって極度に引張強度が減少してしまう。そのためにマニラ麻パルプのCSFの数値を小さくし、フィブリルを無数に発生させて繊維間に働く水素結合を増大させて電解紙の強度を高めて引張強度を維持する必要がある。ところが、近時この引張強度を高めるためのマニラ麻パルプのフィブリルによって、繊維間隙は埋められてしまうため、剛直なエスパルトパルプの存在下では低密度の紙は作成できても、返ってESRに悪影響のあることが判明してきた。   However, in Patent Document 1 in which the Manila hemp pulp and the esparto pulp are mixed, since the esparto pulp is very rigid, the compatibility with the Manila hemp pulp is poor, and mixing the esparto pulp has extremely high tensile strength. It will decrease. Therefore, it is necessary to reduce the CSF value of the Manila hemp pulp, increase the hydrogen bond acting between the fibers by generating an infinite number of fibrils, increase the strength of the electrolytic paper, and maintain the tensile strength. However, recently, the fiber gaps are filled by the fibrils of Manila hemp pulp to increase this tensile strength, so even if low density paper can be made in the presence of rigid esparto pulp, it will adversely affect ESR. It has been found that there is.

一方、サイザルパルプを原料とする特許文献2によれば、サイザルパルプは繊維径がマニラ麻パルプと略同径で、かつ、マニラ麻パルプより剛性が高いため、薄い紙が抄き難いという問題点があり、しかも外観上の粗さがあるため、引張強度が低く、素子巻取り工程上での断紙やショート不良率が増加することが判明してきた。   On the other hand, according to Patent Document 2, which uses sisal pulp as a raw material, sisal pulp has a fiber diameter that is substantially the same as that of Manila hemp pulp and has higher rigidity than Manila hemp pulp. Moreover, it has been found that due to the appearance roughness, the tensile strength is low, and the paper breakage and short-circuit defect rate in the element winding process increases.

また、CSFの数値を小さくすることなく引張強度を増大させることのできる熱融着繊維を混抄して乾燥工程にて溶融させ繊維相互の結合を増大させる手段、或は熱可塑性繊維を混抄し二次加工の熱処理で融着させ引張強度を増大させる手段では、バインダー繊維及び熱可塑性繊維が溶融し膜状(フィルム状)となり繊維間隙を遮蔽して電解液のイオン電導を阻害するため、低密度紙で引張強度が強くてもESRは悪化する結果となることが判明している。   Also, means for mixing heat-bonded fibers that can increase the tensile strength without reducing the CSF value and melting them in a drying process to increase the bonding between the fibers, or mixing the thermoplastic fibers, In the means to increase the tensile strength by fusing by the heat treatment of the next processing, the binder fiber and thermoplastic fiber are melted to form a film (film shape), shielding the fiber gap and hindering the ionic conduction of the electrolyte solution, so low density It has been found that even if the tensile strength of paper is strong, the ESR results in deterioration.

更に、紙の一般的な引張強度の増大手段である製造工程中の原料懸濁液に澱粉,植物性ガム,半合成高分子及び合成高分子等を添加し、繊維表層に定着させ繊維相互の結合強度を増大させる手段によれば、CSFの数値を小さくしミクロフィブリルを発生させ繊維表面積を増大させることのできる高密度用原料に対しては、ある程度は有効ではある。しかしながら、近年特に電解紙に要求される低ESR化に対しては必ずしも有効ではない。即ち、電解紙の低ESR化に対してはより低密度に製造することが重要であり、そのために未叩解原料か僅かに叩解を施した程度の原料を前提として製造する必要がある。これは原料繊維の叩解処理を施しCSFの数値を小さくすれば必然的に密度が上昇するためである。従って、低ESR化を目的とする電解紙においては未叩解原料か僅かに叩解を施した程度の原料を使用するため繊維表面積は増大しない。そのため、製造工程中の原料懸濁液に前記紙力増強剤を内添したとしても定着歩留りが極めて悪く、大幅な引張強度の増大は期待できず、低ESR化を目的とする電解紙としては引張強度が充分でない。   Furthermore, starch, vegetable gums, semi-synthetic polymers, synthetic polymers, etc. are added to the raw material suspension during the manufacturing process, which is a general means for increasing the tensile strength of paper, and fixed on the fiber surface layer so that the mutual fiber The means for increasing the bond strength is effective to some extent for a high-density raw material that can reduce the CSF value to generate microfibrils and increase the fiber surface area. However, it is not always effective for the low ESR required especially for electrolytic paper in recent years. That is, it is important to produce electrolytic paper at a lower density in order to lower the ESR. For this reason, it is necessary to produce the raw material based on unbeaten raw materials or raw materials that have been slightly beaten. This is because the density increases inevitably if the raw fiber is beaten and the CSF value is reduced. Therefore, in the electrolysis paper aiming at low ESR, the surface area of the fiber does not increase because an unbeaten raw material or a raw material that has been slightly beaten is used. Therefore, even if the paper strength enhancer is internally added to the raw material suspension during the manufacturing process, the fixing yield is extremely poor, and a significant increase in tensile strength cannot be expected. As an electrolytic paper for the purpose of reducing ESR, The tensile strength is not sufficient.

また、前記の各種天然植物繊維を100%使用する限り、電解紙の下限密度は0.27g/cmであり、これ以下に密度を低くすると、電解紙製造の巻取り段階で紙切れが発生し、仮に製作できたとしてもコンデンサの素子巻取り工程において紙切れが多発するため実用に致っていないのが現状である。 In addition, as long as 100% of the above-mentioned various natural plant fibers are used, the lower limit density of the electrolytic paper is 0.27 g / cm 3 , and if the density is lowered below this, paper breakage occurs at the winding stage of electrolytic paper production. Even if it can be manufactured, the current situation is that it is not suitable for practical use because of frequent paper cutting in the capacitor element winding process.

一方、コンデンサの製造過程においてはコンデンサ素子に巻取る際の電解紙切れの問題があり、特に近年の低ESR化による低密度紙への移行とともに電解紙切れの増大によって、その生産性を著しく阻害する要因ともなっており、その改善が求められている。   On the other hand, in the process of manufacturing a capacitor, there is a problem of electrolytic paper breakage when winding it on the capacitor element, and in particular, the factor that significantly impedes the productivity due to the increase in electrolytic paper breakage with the shift to low density paper due to the recent low ESR. There is a need for improvement.

そこで本発明は上記事情に鑑みてなされたものであって、低密度であるとともに大幅に向上した引張強度を有し、しかも繊維間空隙が遮蔽されることがない新規な電解紙を用いることによって、インピーダンス特性に悪影響を与えることなくショート不良率を改善するとともに、コンデンサの素子巻取り工程での断紙を無くし生産性を向上させる電解コンデンサを提供することを目的とするものである。   Therefore, the present invention has been made in view of the above circumstances, and has a low density and a greatly improved tensile strength, and by using a novel electrolytic paper that does not shield inter-fiber voids. It is an object of the present invention to provide an electrolytic capacitor that improves the productivity by improving the short-circuit defect rate without adversely affecting the impedance characteristics and eliminating the paper breakage in the capacitor element winding process.

本発明は上記の目的を達成するために、陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、前記電解紙は、未叩解或いは僅かな叩解を施した天然植物繊維を原料として円網抄紙機により抄紙するとともに、抄紙後の乾紙状態において、不純物を除去した紙力増強剤の精製溶液を含浸塗布することにより、密度が0.20〜0.70g/cm,引張強度が1.1kg/15mm以上,厚さが20〜70μm,電解紙の不純物を化成性で評価した場合500〜650V,ESRが0.2Ω/1kHz以下とした電解コンデンサを提供する。そして、天然植物繊維の叩解の程度がCSFの値で500ml〜720mlである構成、不純物を除去した紙力増強剤の精製溶液を紙層中の繊維相互の接触点に定着するように含浸塗布した構成、不純物を除去した紙力増強剤の精製溶液を含浸塗布することにより、該紙力増強剤の精製溶液を繊維内部に浸透させて、繊維間空隙を維持した状態で繊維間の結合強度を増大させた構成を提供する。 In order to achieve the above object, the present invention provides an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil. The electrolytic paper is made of natural plant fibers that have been unbeaten or slightly beaten. In addition to making paper using a circular paper machine as a raw material, and impregnating and applying a purified solution of a paper strength enhancer from which impurities have been removed in a dry paper state after paper making, the density is 0.20 to 0.70 g / cm 3 , An electrolytic capacitor having a tensile strength of 1.1 kg / 15 mm or more, a thickness of 20 to 70 μm, 500 to 650 V when an impurity of electrolytic paper is evaluated by chemical conversion, and an ESR of 0.2 Ω / 1 kHz or less is provided. Then, a structure in which the degree of beating of natural plant fibers is 500 ml to 720 ml in terms of CSF, and a paper strength enhancer purified solution from which impurities are removed is impregnated and applied so as to be fixed at the contact points between the fibers in the paper layer. By impregnating and applying a refined solution of the paper strength enhancer from which the impurities are removed, the refined solution of the paper strength enhancer is infiltrated into the inside of the fiber, and the bond strength between the fibers is maintained while maintaining the inter-fiber gap. Provide increased configuration.

また、電解紙は、円網一重紙又は円網多重紙とし、紙力増強剤として、グァーガム,ローカストビーンガム,トラガカントガム,コーンスターチ,ポテト澱粉,小麦澱粉,タピオカ澱粉,ジアルデヒドデンプン,カチオンデンプン,メチルセルロース,カルボキシメチルセルロース,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂,尿素樹脂から選択された1種又は複数のものを使用する。そして、紙力増強剤を電解紙に対して0.05重量%〜5.0重量%含浸塗布し、電解紙を構成する繊維がマニラ麻パルプ,サイザル麻パルプ,エスパルトパルプから選択された1種又は複数のものとする。   Electrolytic paper is made of round net single paper or round net multiple paper, and as a paper strength enhancer, guar gum, locust bean gum, tragacanth gum, corn starch, potato starch, wheat starch, tapioca starch, dialdehyde starch, cationic starch, methylcellulose , Carboxymethylcellulose, polyacrylamide resin, polyethyleneimine resin, or urea resin is used. The paper strength enhancer is impregnated and applied to 0.05% by weight to 5.0% by weight of the electrolytic paper, and the fiber constituting the electrolytic paper is selected from Manila hemp pulp, sisal hemp pulp, and esparto pulp Or more than one.

上記手段による本発明によれば、電解紙に紙力増強剤の精製溶液を含浸塗布することにより、該紙力増強剤の精製溶液を繊維内部に浸透させて、繊維間空隙を維持した状態で繊維間の結合強度を増大させるとともに単繊維の強度を増大させることができるので、天然植物繊維に未叩解或いは僅かな叩解を施した程度の原料もしくは従来よりも叩解の程度を浅くしたCSF500ml〜720mlといったCSFの数値が大きい原料を使用しても、紙層中の繊維相互の接触点に紙力増強剤が効果的に定着し、繊維間の結合強度が増大するとともに、紙力増強剤の精製溶液が繊維内部まで浸透するため、単繊維自体の強度を大きく増大させることができる。従って、電解紙は繊維間空隙を維持した状態で繊維の結合強度が高まるため、ESRに悪影響を及ぼすことなく引張強度を格段に改善でき、結果としてコンデンサ素子製作時の断紙をなくすることができる。即ち、本発明にかかる電解紙によれば、繊維の結合強度を高めても、従来のように叩解原料におけるミクロフィブリルや熱融着繊維等による薄膜形成による繊維間空隙の遮蔽がないのである。そのため、紙力増強剤の精製溶液を含浸塗布した電解紙を用いて製作した電解コンデンサは、薄く低密度であることにより低ESRを実現できると同時に、繊維の結合強度の増加による引張強度の向上によりショート不良率を著しく減少させることができ、更に生産性をも向上させることができる。また、紙力増強剤の不純物を精製低減しているため、アルミ箔を腐食又は変質させることがない。   According to the present invention by the above means, by impregnating and applying the paper strength enhancer purified solution to the electrolytic paper, the paper strength enhancer purified solution is allowed to permeate the inside of the fiber, and the interfiber gap is maintained. Since the bond strength between fibers can be increased and the strength of single fibers can be increased, raw materials that have not been beaten or slightly beaten natural plant fibers, or CSF 500 ml to 720 ml that has a lower beating degree than before. Even if a raw material with a large CSF value is used, the paper strength enhancer is effectively fixed at the contact point between the fibers in the paper layer, the bond strength between the fibers is increased, and the paper strength enhancer is purified. Since the solution penetrates to the inside of the fiber, the strength of the single fiber itself can be greatly increased. Therefore, the electrolytic paper increases the fiber bond strength while maintaining the inter-fiber gap, so that the tensile strength can be remarkably improved without adversely affecting the ESR, and as a result, there is no paper break when the capacitor element is manufactured. it can. That is, according to the electrolytic paper according to the present invention, even if the bond strength of the fibers is increased, there is no shielding of the inter-fiber gaps due to the formation of a thin film by the microfibrils or heat-bonded fibers in the beating raw material as in the prior art. Therefore, electrolytic capacitors manufactured using electrolytic paper impregnated and coated with a refined solution of paper strength enhancer can achieve low ESR due to its thin and low density, and at the same time improve tensile strength by increasing fiber bond strength As a result, the short-circuit defect rate can be significantly reduced, and the productivity can be improved. Further, since the impurities of the paper strength enhancer are refined and reduced, the aluminum foil is not corroded or altered.

以下に本発明にかかる電解コンデンサの最良の実施形態を説明する。本発明は未叩解或いは僅かな叩解を施した天然植物繊維を原料として円網抄紙機により抄紙するとともに、抄紙後の乾紙状態において、不純物を除去した紙力増強剤の精製溶液を含浸塗布したことに特徴を有する。そして、天然植物繊維がマニラ麻パルプ,サイザル麻パルプ,エスパルトパルプから選択された1種又は複数のものを使用する。   The best embodiment of the electrolytic capacitor according to the present invention will be described below. In the present invention, natural vegetable fibers subjected to unbeaten or slight beating are used as raw materials to make paper with a circular paper machine, and in a dry paper state after paper making, impregnated and applied with a purified solution of a paper strength enhancer from which impurities have been removed. It has a special feature. Then, one or more natural plant fibers selected from Manila hemp pulp, sisal hemp pulp, and esparto pulp are used.

電解紙に塗布する紙力増強剤としてはグァーガム,ローカストビーンガム,トラガカントガム等の植物性ガム類,コーンスターチ,ポテト澱粉,小麦澱粉,タピオカ澱粉等の澱粉類,ジアルデヒドデンプン,カチオンデンプン,メチルセルロース,カルボキシメチルセルロース等の半合成高分子,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂,尿素樹脂等の合成高分子が使用される。その中でも入手性,経済性,強度増強効果,作業性等からしてジアルデヒドデンプン,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂が特に好ましい。   Paper strength enhancers to be applied to electrolytic paper include vegetable gums such as guar gum, locust bean gum, tragacanth gum, starches such as corn starch, potato starch, wheat starch, tapioca starch, dialdehyde starch, cationic starch, methylcellulose, carboxy Semi-synthetic polymers such as methylcellulose, synthetic polymers such as polyacrylamide resin, polyethyleneimine resin, urea resin are used. Among them, dialdehyde starch, polyacrylamide resin, and polyethyleneimine resin are particularly preferable in view of availability, economy, strength enhancement effect, workability, and the like.

本発明では前記紙力増強剤の精製溶液を使用する。本発明で精製溶液とは希釈水溶液としてアルミ箔を腐食又は変質させないレベルまで不純物をイオン交換樹脂等により除去したものであり、電解紙の不純物を化成性で評価した場合に一般用途のものでは300V〜650Vの範囲にあるもので使用可能であり、更に高温度長寿命用等の対応のものとしては500V〜650Vの範囲とすることにより信頼性が増すこととなる。なお、紙力増強剤そのものは水溶液として精製されたものであれば前記したものに限定されるものではなく、適宜のものを使用可能である。また、紙力増強剤は上記条件に適合する精製溶液であればよく、その精製処理の方法はイオン交換樹脂の他、電気透析法,限外濾過法,逆浸透法等のどのような方法であってもよい。   In the present invention, a purified solution of the paper strength enhancer is used. In the present invention, the purified solution is a diluted aqueous solution in which impurities are removed to a level that does not corrode or alter the aluminum foil, and when the impurities in the electrolytic paper are evaluated by chemical conversion, it is 300 V for general use. It can be used in the range of ˜650 V, and the reliability is increased by setting the range of 500 V to 650 V as the corresponding one for high temperature and long life. The paper strength enhancer itself is not limited to the above-described one as long as it is purified as an aqueous solution, and an appropriate one can be used. Further, the paper strength enhancer may be a purified solution that meets the above conditions, and the purification treatment method may be any method such as an electrodialysis method, an ultrafiltration method, a reverse osmosis method, in addition to an ion exchange resin. There may be.

紙力増強剤は電解紙に対して0.05重量%〜5.0重量%、好ましくは0.1重量%〜3.0重量%を含浸塗布する。この範囲において目的とする低密度であるとともに大幅に向上した引張強度を有し、しかも繊維間空隙が遮蔽されることがない新規な電解紙を得ることができた。   The paper strength enhancer is impregnated and applied in an amount of 0.05% to 5.0% by weight, preferably 0.1% to 3.0% by weight, based on the electrolytic paper. In this range, it was possible to obtain a novel electrolytic paper having a target low density and a significantly improved tensile strength and in which inter-fiber voids are not shielded.

この含浸塗布された紙力増強剤の精製溶液によって、紙層中の繊維相互の接触点に紙力増強剤が効果的に定着し、繊維間の結合強度が増大するとともに、繊維内部まで浸透するため、単繊維自体の強度をも増大させることができる。従って、電解紙は繊維間空隙を維持した状態で繊維の結合強度が高まる。しかも、従来のように過度に叩解してミクロフィブリルを発生したり、熱融着繊維等の造膜による繊維間隙の遮蔽がなく、低密度で薄く、しかも大きな引張強度を有することができる。   By this refined solution of the paper strength enhancing agent applied by impregnation, the paper strength enhancing agent is effectively fixed at the contact point between the fibers in the paper layer, the bond strength between the fibers is increased, and the fibers penetrate into the inside of the fibers. Therefore, the strength of the single fiber itself can be increased. Accordingly, the electrolytic paper increases the fiber bond strength while maintaining the interfiber gap. In addition, it is not excessively beaten as in the prior art to generate microfibrils, and there is no shielding of fiber gaps due to film formation of heat-fusible fibers or the like, and it can be thin with low density and high tensile strength.

紙力増強剤の精製溶液を含浸塗布する被塗布紙としては、1つの円網バット部を有した円網抄紙機(円網一重紙),あるいは2つ以上複数の円網バット部を有した円網多層コンビネーションマシン(円網多重紙)等の適宜の抄紙機にて抄造された乾紙状態の電解紙を使用する。   The coated paper to be impregnated and coated with the refined solution of the paper strength enhancer had a circular net paper machine (single net single paper) having one circular net bat part, or two or more circular net bat parts. Electrolytic paper in a dry paper state produced by an appropriate paper machine such as a circular net multilayer combination machine (circular multi-layer paper) is used.

この抄紙後の乾紙状態の電解紙に目標強度に応じて希釈した紙力増強剤の精製溶液を含浸塗布する。塗布方式としてはダイレクトロールコータ,ディップコータ,スプレーコータ,キッスロールコータ等の塗布方式で浸漬され、プレスロールにて脱液調整と厚さ調整を行った後、熱風乾燥やシリンダードライ方式等によって乾燥させて、所定の厚さ、密度の電解紙を製作する。この方式が二次加工であっても良いが、抄紙後にこれらの設備を設置したオンライン方式とすると生産性を阻害することなく量産することが可能となる。この方式によれば、例えば従来の原料懸濁液へのアニオン紙力増強剤の内部添加の如く、硫酸バンドやポリ塩化アルミ等の不純物の多い定着助剤を必要とせず、アニオン,ノニオン,カチオンの何れの紙力増強剤でも使用することができる。なお、紙力増強剤の精製溶液を含浸塗布する電解紙としては抄紙後の乾紙状態の電解紙が効率が良く適当である。湿紙状態の電解紙に噴霧塗布することも可能であるが、湿紙の水分率が高いため、吸引脱水やプレス脱水にて紙力増強剤が流出することとなり、効率が悪く、又抄紙フェルやドライヤーシリンダーを汚染するため、従来の電解紙の抄紙に支障を来すので、乾紙状態の電解紙に含浸塗布することが適当である。   After the paper making, the dried electrolyzed paper is impregnated with a purified solution of a paper strength enhancer diluted according to the target strength. As a coating method, it is immersed in a coating method such as a direct roll coater, dip coater, spray coater, kiss roll coater, etc., and after adjusting the liquid removal and thickness with a press roll, it is dried by hot air drying, cylinder drying method, etc. Thus, electrolytic paper having a predetermined thickness and density is manufactured. This method may be secondary processing, but if it is an on-line method in which these facilities are installed after paper making, mass production can be performed without impeding productivity. According to this method, for example, an anion, a nonion, a cation, and the like, which do not require a fixing agent having a large amount of impurities such as a sulfuric acid band and polyaluminum chloride, as in an internal addition of an anionic strength enhancer to a conventional raw material suspension, Any paper strength enhancer can be used. In addition, as the electrolytic paper for impregnating and applying the purified solution of the paper strength enhancer, the dry paper-type electrolytic paper after papermaking is efficient and suitable. Although it is possible to apply it by spraying onto electrolytic paper in the wet paper state, the moisture content of the wet paper is high, so that the paper strength enhancer flows out by suction dehydration or press dehydration, which is not efficient. Since it contaminates the dryer cylinder and the conventional paper making of electrolytic paper, it is appropriate to impregnate and apply to electrolytic paper in a dry paper state.

また、含浸塗布,プレス加重,乾燥の方法及びこれらの条件によっては抄紙後の電解紙の厚さ,密度を調整することも可能であり、従来、天然植物繊維では未叩解原料でも不可能とされていた超低密度電解紙を製作することが可能となる。更に引張強度の増大により素子巻取り工程での断紙を防止するとともに電解紙中の微細繊維をも強固に固着するため電解紙の表面強度が増大し、電解紙の裁断時やコンデンサ素子巻取り工程での繊維脱落による紙粉の発生をも防止することができ、ラインの清掃頻度を減少させ工程の作業を円滑にすることも可能となる。   In addition, depending on the impregnation application, press load, drying method and these conditions, it is possible to adjust the thickness and density of the electrolyzed paper after paper making. It becomes possible to produce the ultra-low density electrolytic paper that had been used. In addition, the tensile strength increases to prevent paper breaks in the element winding process, and the fine fibers in the electrolytic paper are firmly fixed to increase the surface strength of the electrolytic paper. Generation of paper dust due to fiber dropping in the process can also be prevented, and the frequency of line cleaning can be reduced to facilitate the work of the process.

得られる電解紙の密度は0.20〜0.70g/cm,厚さ20〜70μm、好ましくは密度0.20〜0.35g/cm,厚さ40〜60μmとすることが適当である。また、電解紙の不純物を化成性で評価した場合300〜650V、好ましくは500〜650Vとし、引張強度1.1kg/15mm以上とすることが適当である。電解紙の高信頼性を維持するため、電解紙の不純物を化成性によって評価し、該化成性の評価基準を満たしていることが本発明の特徴の一つである。 The density of the obtained electrolytic paper is 0.20 to 0.70 g / cm 3 and thickness is 20 to 70 μm, preferably 0.20 to 0.35 g / cm 3 and thickness is 40 to 60 μm. . In addition, when the impurities of the electrolytic paper are evaluated by chemical conversion properties, it is appropriate to use 300 to 650 V, preferably 500 to 650 V, and a tensile strength of 1.1 kg / 15 mm or more. In order to maintain the high reliability of the electrolytic paper, it is one of the features of the present invention that impurities in the electrolytic paper are evaluated by chemical conversion and satisfy the evaluation standard of chemical conversion.

このようにして得られた電解紙を陽極アルミ箔と陰極アルミ箔との間に介在させて巻きつけ形成した後、液状の電解質を含浸させ、封口して電解コンデンサを製作する。   The electrolytic paper obtained in this manner is wound between an anode aluminum foil and a cathode aluminum foil, and then impregnated with a liquid electrolyte and sealed to produce an electrolytic capacitor.

以下に本発明にかかる具体的な各種実施例と比較例及び従来例を示す。なお、電解コンデンサは、タブ付けした陽極箔と陰極箔の間に両極が接触しないように電解紙を介在させ、巻取りして電解コンデンサ素子を形成した後、所定の電解液を含浸させてケースに封入し、エージングを行って、50WV,220μFのアルミ乾式コンデンサを得た。   Various specific examples, comparative examples, and conventional examples according to the present invention are shown below. The electrolytic capacitor is a case in which electrolytic paper is interposed between the tabbed anode foil and the cathode foil so that both electrodes do not come in contact with each other and wound to form an electrolytic capacitor element, and then impregnated with a predetermined electrolytic solution. And was aged to obtain a 50 WV, 220 μF aluminum dry capacitor.

マニラ麻パルプ100重量%使用してCSF720mlに叩解し、厚さ49.9μm,密度0.275g/cm,引張強度0.6kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したジアルデヒドデンプンの希釈溶液を浸漬し、プレスロールでジアルデヒドデンプンが紙に対し2.8重量%になるよう脱液調整後熱風乾燥によって厚さ59.8μm,密度0.236g/cm,引張強度1.2kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using 100% by weight of Manila hemp pulp, beaten to 720 ml of CSF, and after making circular double paper with a thickness of 49.9 μm, a density of 0.275 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm, using a direct roll coater A diluted solution of dialdehyde starch purified with an ion exchange resin is dipped, adjusted to remove liquid so that the dialdehyde starch is 2.8% by weight with respect to the paper with a press roll, and then dried with hot air to have a thickness of 59.8 μm and a density of 0.8. An electrolytic paper having 236 g / cm 3 and a tensile strength of 1.2 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

マニラ麻パルプ70重量%とサイザル麻パルプ30重量%の混合原料をCSF710mlに叩解し、厚さ47.6μm,密度0.286g/cm,引張強度0.6kg/15mmの円網二重紙で抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬しプレスロールでポリアクリルアミドが紙に対し1.2重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ50.0μm,密度0.275g/cm,引張強度1.4kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 A mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of sisal hemp pulp is beaten into 710 ml of CSF, and papermaking is performed with circular double paper having a thickness of 47.6 μm, a density of 0.286 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm. Then, dilute the diluted solution of polyacrylamide resin purified with ion exchange resin with a direct roll coater, adjust the liquid removal to 1.2% by weight with respect to the paper with a press roll, and then dry with a cylinder dryer and dry. An electrolytic paper having a thickness of 50.0 μm, a density of 0.275 g / cm 3 , and a tensile strength of 1.4 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

エスパルトパルプ60重量%とマニラ麻40重量%の混合原料を使用しCSF650mlに叩解し、厚さ39.6μm,密度0.348g/cm,引張強度0.8kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対し0.8重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ40.2μm,密度0.346g/cm,引張強度1.8kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using a mixed raw material of 60% by weight of esparto pulp and 40% by weight of Manila hemp, beating into 650 ml of CSF, a double mesh paper having a thickness of 39.6 μm, a density of 0.348 g / cm 3 , and a tensile strength of 0.8 kg / 15 mm After making the paper, immerse the diluted solution of polyacrylamide resin purified with ion exchange resin with a direct roll coater, adjust the liquid removal with a press roll so that the polyacrylamide is 0.8% by weight with respect to the paper, and then dry with a cylinder dryer An electrolytic paper having a thickness of 40.2 μm, a density of 0.346 g / cm 3 , and a tensile strength of 1.8 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

エスパルトパルプ50重量%とマニラ麻50重量%の混合原料を使用しCSF600mlに叩解し、厚さ41.9μm,密度0.482g/cm,引張強度3.0kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対し0.5重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ40.0μm,密度0.506g/cm,引張強度4.4kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 A mixed raw material of 50% by weight of esparto pulp and 50% by weight of Manila hemp is beaten into 600 ml of CSF, and a circular double paper having a thickness of 41.9 μm, a density of 0.482 g / cm 3 and a tensile strength of 3.0 kg / 15 mm is obtained. After making the paper, immerse the diluted solution of polyacrylamide resin purified with ion exchange resin with a direct roll coater, adjust the liquid removal to 0.5% by weight with respect to the paper with a press roll, and then dry with a cylinder dryer An electrolytic paper having a thickness of 40.0 μm, a density of 0.506 g / cm 3 , and a tensile strength of 4.4 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

エスパルトパルプ40重量%とマニラ麻60重量%の混合原料を使用しCSF500mlに叩解し、厚さ30.6μm,密度0.592g/cm,引張強度3.3kg/15mmの円網一重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対し0.3重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ30.3μm,密度0.603g/cm,引張強度4.7kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using a mixed raw material of 40% by weight of esparto pulp and 60% by weight of Manila hemp, beating into 500 ml of CSF, and making a single piece of circular mesh paper having a thickness of 30.6 μm, a density of 0.592 g / cm 3 , and a tensile strength of 3.3 kg / 15 mm After that, immerse the diluted solution of polyacrylamide resin purified with ion exchange resin with a direct roll coater, adjust the liquid removal to 0.3% by weight with respect to the paper with a press roll, and dry with a cylinder dryer. An electrolytic paper having a thickness of 30.3 μm, a density of 0.603 g / cm 3 , and a tensile strength of 4.7 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔比較例1〕→実施例1に対応
マニラ麻パルプをCSF720mlに叩解した原料100重量%を使用して、厚さ50.2μm,密度0.277g/cm,引張強度0.6kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにて市販のエポキシ樹脂(ポリアミドポリアミンエピクロルヒドリン樹脂)の希釈溶液を浸漬し、プレスロールでエポキシ樹脂が紙に対し2.5重量%になるよう脱液調整後熱風乾燥によって厚さ59.0μm,密度0.237g/cm,引張強度1.1kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Comparative Example 1] → Corresponding to Example 1 Using 100% by weight of a raw material obtained by beating Manila hemp pulp into 720 ml of CSF, a circle having a thickness of 50.2 μm, a density of 0.277 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm After making the mesh double paper, immerse the diluted solution of commercially available epoxy resin (polyamide polyamine epichlorohydrin resin) with a direct roll coater, and remove with a press roll so that the epoxy resin is 2.5% by weight with respect to the paper. After the adjustment, electrolytic paper having a thickness of 59.0 μm, a density of 0.237 g / cm 3 , and a tensile strength of 1.1 kg / 15 mm was obtained by hot air drying. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔従来例1〕→実施例1に対応
サイザル麻パルプをCSF450mlまで叩解した原料30重量%とチョップドガラス繊維50重量%及びビニロンバインダー繊維20重量%の混合原料を使用して、抄紙機のシリンダードライヤー上でビニロンバインダー繊維を熱融着させ、厚さ60.5μm,密度0.235,引張強度0.8kg/15mmの紙を抄造した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 1] → Corresponding to Example 1 A cylinder dryer of a paper machine using a mixed raw material of 30% by weight of sisal pulp beaten to CSF 450ml, 50% by weight of chopped glass fiber and 20% by weight of vinylon binder fiber The vinylon binder fiber was heat-sealed to make a paper having a thickness of 60.5 μm, a density of 0.235, and a tensile strength of 0.8 kg / 15 mm. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔従来例2〕→実施例1に対応
マニラ麻パルプをCSF350mlに叩解した原料70重量%とポリプロピレン繊維30重量%の混合原料を使用して、厚さ62.3μm,密度0.230g/cm,引張強度0.6kg/15mmの紙を抄造した後、ポリプロピレン繊維を熱融着させ厚さ60.1μm,密度0.238g/cm,引張強度1.0kg/15mmの紙を製造した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 2] → Corresponding to Example 1 Using a mixed raw material of 70% by weight raw material of Manila hemp pulp in 350 ml of CSF and 30% by weight of polypropylene fibers, a thickness of 62.3 μm, a density of 0.230 g / cm 3 , After making a paper having a tensile strength of 0.6 kg / 15 mm, polypropylene fibers were heat-sealed to produce a paper having a thickness of 60.1 μm, a density of 0.238 g / cm 3 , and a tensile strength of 1.0 kg / 15 mm. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔従来例3〕→実施例2に対応
マニラ麻パルプ70重量%とサイザル麻パルプ30重量%の混合原料をCSF680mlに叩解し、厚さ50.2μm,密度0.278g/cm,引張強度0.7kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 3] → Corresponding to Example 2 A mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of sisal hemp pulp was beaten into 680 ml of CSF, thickness 50.2 μm, density 0.278 g / cm 3 , and tensile strength 0. A 7 kg / 15 mm circular mesh double paper was made. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔従来例4〕→実施例3に対応
エスパルトパルプ60重量%とマニラ麻40重量%の混合原料を使用しCSF610mlに叩解し、厚さ39.9μm,密度0.347g/cm,引張強度1.0kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 4] → Corresponding to Example 3 Using a mixed raw material of 60% by weight of esparto pulp and 40% by weight of Manila hemp, beaten to 610 ml of CSF, thickness 39.9 μm, density 0.347 g / cm 3 , tensile strength 1 A 0.0kg / 15mm circular double paper was made. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔従来例5〕→実施例4に対応
エスパルトパルプ50重量%とマニラ麻50重量%の混合原料を使用しCSF560mlに叩解し、厚さ40.0μm,密度0.503g/cm,引張強度3.2kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 5] → Corresponding to Example 4 Using a mixed raw material of 50% by weight of esparto pulp and 50% by weight of Manila hemp, beating into 560 ml of CSF, thickness 40.0 μm, density 0.503 g / cm 3 , tensile strength 3 A 2 kg / 15 mm circular mesh double paper was made. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

〔従来例6〕→実施例5に対応
エスパルトパルプ40重量%とマニラ麻60重量%の混合原料を使用しCSF440mlに叩解し、厚さ30.4μm,密度0.596g/cm,引張強度3.8kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 6] → Corresponding to Example 5 Using a mixed raw material of 40% by weight of esparto pulp and 60% by weight of Manila hemp, beating into 440 ml of CSF, thickness 30.4 μm, density 0.596 g / cm 3 , tensile strength 3 A circular mesh double paper of 8 kg / 15 mm was made. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.

上記の実施例1〜5と比較例1及び従来例1〜6によって得られた電解紙及び電解コンデンサに関し、厚さ(μm)、密度(g/cm)、引張強度(kg/15mm)、気密度(秒/100cc)、化成性(V)、紙粉発生量(mg/1000m)、ショート不良率(%)、ESR(Ω/1kHz)を測定した。なお、測定方法及びその装置は次の通りである。 Regarding the electrolytic papers and electrolytic capacitors obtained in Examples 1 to 5, Comparative Example 1 and Conventional Examples 1 to 6, the thickness (μm), density (g / cm 3 ), tensile strength (kg / 15 mm), The air density (seconds / 100 cc), chemical conversion (V), paper dust generation amount (mg / 1000 m), short-circuit defect rate (%), and ESR (Ω / 1 kHz) were measured. In addition, the measuring method and its apparatus are as follows.

(1)電解紙の厚さ、密度、引張強度
JIS C2301(電解コンデンサ紙)に規定された方法で測定した。
(1) Thickness, density, and tensile strength of electrolytic paper The electrolytic paper was measured by the method defined in JIS C2301 (electrolytic capacitor paper).

(2)気密度
JIS C2111(電気絶縁紙試験方法)に規定する“12.1気密度”の項に従い、B型試験器(ガーレーデンソメータ)によって測定した。但し穴の部分が6mmψであるアダプターを使用した。また、気密度1秒以下の電解紙については5枚重ねで測定し1枚に換算した。
(2) Air density The air density was measured with a B-type tester (Gurley densometer) in accordance with the section "12.1 Air density" defined in JIS C2111 (electrical insulating paper test method). However, an adapter having a hole portion of 6 mmφ was used. Moreover, about the electrolysis paper with a gas density of 1 second or less, it measured by superposing | stacking 5 sheets, and converted into 1 sheet.

(3)化成性
電解紙50g±1gを1000mlのイオン交換水で1時間煮沸し、抽出液を100mlまで濃縮して冷却した後、0.35gのアジピン酸を溶解した試料液に、清浄な99.99%のプレーンアルミ箔を両電極として60mA定電流で10分後の電圧を測定し化成性とした。このときブランク試験としてはイオン交換水1000mlを濃縮し100mlとし0.35gのアジピン酸を溶解して前記操作で測定した10分後の値が600V〜650Vの範囲内であることを確認しておいた。
(3) Chemical conversion 50 g ± 1 g of electrolytic paper was boiled in 1000 ml of ion-exchanged water for 1 hour, the extract was concentrated to 100 ml, cooled, and then added to a clean sample solution containing 0.35 g of adipic acid. Using 99% plain aluminum foil as both electrodes, the voltage after 10 minutes was measured at a constant current of 60 mA to obtain chemical conversion. At this time, as a blank test, it was confirmed that 1000 ml of ion-exchanged water was concentrated to 100 ml, 0.35 g of adipic acid was dissolved, and the value after 10 minutes measured by the above operation was within the range of 600V to 650V. It was.

(4)紙粉発生量
巻出しと巻取りを設けた試験器の中央にカッター刃を5cm間隔で2枚固定する。18mm幅でレコード巻に裁断した電解紙を巻出し側にセットし、0.5kgの張力で引出し、カッター刃上を擦らせながら10m/分の速度で1000m巻取り側に移動させこの間に脱落した紙粉の量を測定した。4回の平均値を表示した。
(4) Amount of paper dust generated Two cutter blades are fixed at an interval of 5 cm in the center of a tester provided with unwinding and winding. Electrolytic paper cut into a record roll with a width of 18 mm was set on the unwinding side, pulled out with a tension of 0.5 kg, moved to the 1000 m winding side at a speed of 10 m / min while rubbing the cutter blade, and dropped during this time. The amount of paper dust was measured. The average value of 4 times was displayed.

(5)ショート不良率
電解紙を陽極箔及び陰極箔とともに巻取りして電解コンデンサ素子を形成した後、電解液を含浸しないままで両極間のショートによる導通をテスターで確認した。ショート不良率は略1000個の素子について検査し、ショート素子の全素子数に対する割合をショート不良率とした。
(5) Short-circuit defect rate After the electrolytic paper was wound up with the anode foil and the cathode foil to form an electrolytic capacitor element, continuity due to a short between both electrodes was confirmed with a tester without impregnating the electrolytic solution. The short defect rate was inspected for about 1000 elements, and the ratio of the short elements to the total number of elements was defined as the short defect rate.

(6)ESR(等価直列抵抗)
電解コンデンサのESRは20℃ 1000HZの周波数でLCRメータによって測定した。
(6) ESR (Equivalent Series Resistance)
The ESR of the electrolytic capacitor was measured by an LCR meter at a frequency of 20 ° C. and 1000 HZ.

以上のようにして得た実施例1〜5の電解紙及び電解コンデンサの評価結果を表1に、比較例1及び従来例1〜6の電解紙及び電解コンデンサの評価結果を表2に示す。   The evaluation results of the electrolytic papers and electrolytic capacitors of Examples 1 to 5 obtained as described above are shown in Table 1, and the evaluation results of the electrolytic paper and electrolytic capacitors of Comparative Example 1 and Conventional Examples 1 to 6 are shown in Table 2.

Figure 2006245629
Figure 2006245629

Figure 2006245629
Figure 2006245629

表1の結果に示した通り、紙力増強剤の精製溶液を含浸塗布してなる電解紙を使用した本発明は、化成性,ESRを悪化させることなくショート不良率が格段に改善されている。例えば実施例1はマニラ麻パルプ100重量%の原料を使用して抄造した厚さ49.9μm,密度0.275g/cm,引張強度0.6kg/15mmの円網二重紙にジアルデヒドデンプンの精製希釈溶液を含浸塗布し、湿紙の膨潤状態のまま熱風乾燥し厚さを増大させて更に低密度化した厚さ59.8μm,密度0.236g/cm,引張強度1.2kg/15mmとした電解紙を用いたものであり、比較例1は同一条件にて抄造した円網二重紙に精製されていない市販のエポキシ樹脂を含浸塗布して製作した略同一厚さ,同一密度の電解紙を用いたものである。ショート不良率,ESRはともに実施例1とほぼ同等の数値を示しているが、化成性が実施例1の625Vに対し、30Vと極端に低くなっている。これはエポキシ樹脂組成内に含有する塩素分によるものであり、電解紙としての実用レベルではないことを示している。そのため、本発明の課題を解決するためには使用する紙力増強剤が精製されたものであることが必要である。 As shown in the results of Table 1, in the present invention using the electrolytic paper formed by impregnating and applying a purified solution of a paper strength enhancer, the short defect rate is remarkably improved without deteriorating the chemical conversion and ESR. . For example, in Example 1, dialdehyde starch was formed on a circular double paper having a thickness of 49.9 μm, a density of 0.275 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm. Impregnated and applied with the purified diluted solution, dried with hot air in the swollen state of the wet paper and increased in thickness to further reduce the thickness 59.8 μm, density 0.236 g / cm 3 , tensile strength 1.2 kg / 15 mm Comparative Example 1 was produced by impregnating and applying a commercially available epoxy resin that was not refined to a circular double paper made under the same conditions. Electrolytic paper is used. Both the short-circuit defect rate and the ESR are substantially the same values as in Example 1, but the chemical conversion is extremely low at 30 V compared to 625 V in Example 1. This is due to the chlorine content contained in the epoxy resin composition, indicating that it is not at a practical level as electrolytic paper. Therefore, in order to solve the problems of the present invention, it is necessary that the paper strength enhancer to be used is purified.

また、従来例1はCSF450mlのサイザルパルプ30重量%とチョップドガラス繊維50重量%及びビニロンバインダー繊維20重量%の混合原料を用いたものであり、抄紙機のシリンダードライヤー上でバインダー繊維を熱融着させ、実施例1と略同一厚さ,同一密度に抄造したものである。略同一厚さ,同一密度であるにもかかわらず、ESRは従来例1が0.1175Ω/1kHzに対し実施例1では0.0919Ω/1kHzと改善されている。従来例1ではバインダー繊維が溶融し膜状(フィルム状)となり繊維間隙を遮蔽して電解液のイオン電導を阻害しているため、同一密度であってもESRが実施例1より悪化しているのである。これに対し、実施例1では紙力増強剤の精製溶液を含浸塗布しても繊維間空隙を維持しているため、ESRを改善することができるのである。また、従来例1がCSF450mlと叩解の程度を進めたものであり、実施例1はCSF720mlであるにもかかわらず、引張強度は従来例1が0.8kg/15mmに対し、実施例1は1.2kg/15mmと大幅に上昇している。その結果ショート不良率は従来例1が17.5%に対して、実施例1は7.2%となっている。このことから精製した紙力増強剤を含浸塗布した低密度電解紙は、紙の引張強度を大幅に上昇させ箔バリに対する抵抗性を向上させるが、バインダー繊維のように造膜作用がないためESRも良好となっていることが判る。   Conventional example 1 uses a mixed raw material of CSF 450 ml of sisal pulp 30% by weight, chopped glass fiber 50% by weight and vinylon binder fiber 20% by weight. The binder fiber is heat-sealed on a paper machine cylinder dryer. The paper was made to have substantially the same thickness and the same density as in Example 1. In spite of substantially the same thickness and the same density, the ESR is improved to 0.0919 Ω / 1 kHz in the first example compared to 0.1175 Ω / 1 kHz in the conventional example 1. In Conventional Example 1, since the binder fiber is melted to form a film (film), the fiber gap is shielded and the ionic conduction of the electrolytic solution is obstructed, so the ESR is worse than that of Example 1 even at the same density. It is. On the other hand, in Example 1, the ESR can be improved because the inter-fiber voids are maintained even when impregnated with a refined solution of a paper strength enhancer. Moreover, although the conventional example 1 advanced the degree of beating with CSF450ml, although Example 1 is CSF720ml, the tensile strength is 0.8kg / 15mm in the prior art example 1 and 1 in the example 1. .2kg / 15mm and soaring. As a result, the short-circuit defect rate is 17.5% in Conventional Example 1 and 7.2% in Example 1. From this, the low density electrolytic paper impregnated with the refined paper strength enhancer significantly increases the tensile strength of the paper and improves the resistance to foil burrs. It turns out that it is also good.

従来例2はCSF350mlまで叩解したマニラ麻パルプ70重量%とポリプロピレン繊維30重量%の混抄紙を後加工にて加熱処理を施しポリプロピレンを溶融し製造したものであるが、抄造段階で巻取り可能な強度を保持させる必要があるため、過度にマニラ麻パルプを叩解しており、マニラ麻パルプの紙玉等の地合不良が発生し、ショート不良率は15.2%と高く、溶融したポリプロピレンの造膜作用によりESRが悪化して0.1305Ω/1kHzとなっている。   Conventional example 2 was manufactured by melting and melting polypropylene by heat-treating a mixed paper of 70% by weight of Manila hemp pulp and 30% by weight of polypropylene fiber beaten to CSF 350ml. Therefore, Manila hemp pulp is beaten excessively, resulting in poor formation of Manila hemp pulp paper balls, etc., and the short defect rate is high at 15.2%. As a result, the ESR deteriorates to 0.1305Ω / 1 kHz.

実施例2はマニラ麻パルプ70重量%とサイザル麻パルプ30重量%の混合原料をCSF710mlとして抄造した円網二重紙に精製したポリアクリルアミドの希釈溶液を含浸塗布した電解紙で厚さ50.0μm,密度0.275g/cm,引張強度1.4kg/15mm,ショート不良率8.4%,ESR0.1059Ω/1kHzである。これに対し従来例3は実施例2と同一の混合原料をCSF680mlとして抄造した略同一厚さ同一密度の電解紙である。従来例3は0.278g/cmと低密度とすることによって、0.1092Ω/1kHzと低ESR化を実現しているが、引張強度は0.7kg/15mmとなり、ショート不良率30.4%と大幅に上昇している。これに対し実施例2では紙力増強剤の精製溶液を含浸塗布することにより引張強度1.4kg/15mmと増大し、ショート不良率8.4%と格段に低減するとともに、電解紙は繊維間空隙を維持した状態であるため、ESRも0.1059Ω/1kHzと良好な数値を示している。また、コンデンサの素子巻取り工程において従来例3では電解紙切れが頻繁に発生し、生産性を著しく阻害するが、実施例2では電解紙切れが発生することがない。 Example 2 is an electrolytic paper impregnated with a dilute solution of purified polyacrylamide on a circular double-ply paper made from a mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of sisal pulp as CSF 710 ml, and having a thickness of 50.0 μm. The density is 0.275 g / cm 3 , the tensile strength is 1.4 kg / 15 mm, the short-circuit defect rate is 8.4%, and the ESR is 0.1059 Ω / 1 kHz. On the other hand, Conventional Example 3 is an electrolytic paper having substantially the same thickness and the same density produced by making the same mixed raw material as in Example 2 as CSF 680 ml. Conventional Example 3 achieves a low ESR of 0.1092 Ω / 1 kHz by making the density as low as 0.278 g / cm 3 , but the tensile strength is 0.7 kg / 15 mm, and the short-circuit defect rate is 30.4. % Has risen significantly. On the other hand, in Example 2, the tensile strength was increased to 1.4 kg / 15 mm by impregnating and applying the purified solution of the paper strength enhancer, and the short-circuit defect rate was significantly reduced to 8.4%. Since the air gap is maintained, the ESR shows a good numerical value of 0.1059Ω / 1 kHz. Also, in the capacitor element winding process, in the conventional example 3, the electrolytic paper breakage frequently occurs and the productivity is remarkably hindered, but in the second embodiment, the electrolytic paper breakage does not occur.

実施例4はエスパルトパルプ50重量%とマニラ麻パルプ50重量%の混合原料をCSF600mlとして抄造した円網二重紙に精製したポリアクリルアミドの希釈溶液を含浸塗布した電解紙で厚さ40.0μm,密度0.506g/cm,引張強度4.4kg/15mm,紙粉発生量16mg/1000m,ショート不良率0.6%,ESR0.1510Ω/1kHzである。これに対し従来例5は現在、低ESR用として最も多く使用されている電解紙であり、同一混合原料をCSF560mlまで叩解して略同一厚さ,同一密度に抄造した電解紙を用いたものであり、引張強度3.2kg/15mm,紙粉発生量68mg/1000m,ショート不良率2.5%,ESR0.1541Ω/1kHzであった。データから判るように叩解を過度に進めることなく、紙力増強剤の精製溶液を含浸塗布して引張強度を大幅に向上させた実施例4はESRを悪化させることなくショート不良率を著しく減少させている。また、素子巻取り工程では紙粉の発生が大幅に減少し、脱落紙粉による紙詰り,芯抜け不良,電解液の汚染等を減少させることもできる。 Example 4 is an electrolytic paper impregnated with a dilute solution of purified polyacrylamide on a circular double-ply paper made from a mixed raw material of 50% by weight of esparto pulp and 50% by weight of Manila hemp pulp as CSF 600 ml. The density is 0.506 g / cm 3 , the tensile strength is 4.4 kg / 15 mm, the amount of paper dust generated is 16 mg / 1000 m, the short-circuit defect rate is 0.6%, and the ESR is 0.1510 Ω / 1 kHz. On the other hand, Conventional Example 5 is currently the most commonly used electrolytic paper for low ESR, which uses electrolytic paper that is beaten to the same mixed raw material up to 560 ml and made into paper with approximately the same thickness and density. The tensile strength was 3.2 kg / 15 mm, the amount of paper dust was 68 mg / 1000 m, the short-circuit defect rate was 2.5%, and the ESR was 0.1541 Ω / 1 kHz. As can be seen from the data, Example 4 in which the tensile strength was greatly improved by impregnating and applying a refined solution of a paper strength enhancer without excessively refining significantly reduced the short-circuit defect rate without deteriorating ESR. ing. In addition, in the element winding process, the generation of paper dust is greatly reduced, and paper jamming due to falling paper powder, poor centering, and electrolyte contamination can be reduced.

以上詳細に説明した如く、本発明に係る電解コンデンサは、アルミ箔を腐食又は変色させないレベルまで不純物を低減させた植物性ガム,澱粉,半合成高分子,合成高分子等の紙力増強剤の精製溶液を電解紙に含浸塗布したことを特徴としており以下における作用効果が得られる。即ち、紙力増強剤の精製溶液の含浸塗布による引張強度の増大は天然植物繊維を過度に叩解を進めたり、熱融着繊維を使用したりして引張強度を向上させた電解紙と異なり、造膜作用がないため電解紙は繊維間空隙を維持した状態で繊維の結合強度が高まり、ESRを悪化させることなく、引張強度の大幅な増大によってショート不良率を著しく低減させることができる。また、天然植物繊維に僅かな叩解を施した程度の原料もしくは従来よりも叩解の程度を浅くしたCSFの大きい数値の原料を使用しても、紙層中の繊維相互の接触点に紙力増強剤が効果的に定着し、繊維間の結合強度が増大するとともに、繊維内部まで浸透するため、単繊維自体の強度をも増大させることができる。そのため、従来では実用上強度的に使用困難とされていた超低密度領域の電解紙の製作が可能となり、更に従来電解紙に比しては素子巻取り工程の断紙をなくし、脱落紙粉を大幅に減少させることによって紙粉トラブルを減少させ、電解コンデンサ製作過程での生産性をも格段に向上させることが可能となる。更に、CSFの数値の大きい天然植物繊維を原料として使用できるため、叩解動力を削減することができる。   As described in detail above, the electrolytic capacitor according to the present invention is a paper strength enhancer such as vegetable gum, starch, semi-synthetic polymer, synthetic polymer, etc., in which impurities are reduced to a level that does not corrode or discolor aluminum foil. It is characterized by impregnating and applying the purified solution to the electrolytic paper, and the following effects can be obtained. That is, the increase in tensile strength by impregnating and applying a refined solution of a paper strength enhancer is different from electrolytic paper in which natural plant fibers are excessively beaten or heat-bonded fibers are used to improve tensile strength, Since there is no film-forming action, the electrolytic paper increases the fiber bond strength while maintaining the inter-fiber voids, and can significantly reduce the short-circuit defect rate by greatly increasing the tensile strength without deteriorating the ESR. In addition, even if raw materials with a slight beating of natural plant fibers or raw materials with a large CSF value with a shallower beating degree than before are used, the paper strength is increased at the contact point between the fibers in the paper layer. Since the agent is effectively fixed, the bond strength between fibers is increased, and the fibers penetrate into the fibers, so that the strength of the single fiber itself can be increased. Therefore, it is possible to manufacture electrolytic papers in the ultra-low density region, which was conventionally difficult to use in practical use. It is possible to reduce paper dust troubles by greatly reducing the amount of electricity and to significantly improve the productivity in the electrolytic capacitor manufacturing process. Furthermore, since the natural plant fiber having a large CSF value can be used as a raw material, the beating power can be reduced.

Claims (8)

陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、
前記電解紙は、未叩解或いは僅かな叩解を施した天然植物繊維を原料として円網抄紙機により抄紙するとともに、抄紙後の乾紙状態において、不純物を除去した紙力増強剤の精製溶液を含浸塗布することにより、密度が0.20〜0.70g/cm,引張強度が1.1kg/15mm以上,厚さが20〜70μm,電解紙の不純物を化成性で評価した場合500〜650V,ESRが0.2Ω/1kHz以下としたことを特徴とする電解コンデンサ。
In an electrolytic capacitor in which electrolytic paper is interposed between the anode foil and the cathode foil,
The electrolytic paper is made with a circular net paper machine using natural beet fiber that has been unbeaten or slightly beaten as a raw material, and impregnated with a purified solution of a paper strength enhancer from which impurities have been removed in the dry paper state after paper making. When applied, the density is 0.20 to 0.70 g / cm 3 , the tensile strength is 1.1 kg / 15 mm or more, the thickness is 20 to 70 μm, and 500 to 650 V when impurities in the electrolytic paper are evaluated by chemical conversion, An electrolytic capacitor having an ESR of 0.2Ω / 1 kHz or less.
天然植物繊維の叩解の程度がCSFの値で500ml〜720mlである請求項1記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the degree of beating of the natural plant fiber is 500 ml to 720 ml in terms of CSF. 不純物を除去した紙力増強剤の精製溶液を紙層中の繊維相互の接触点に定着するように含浸塗布した請求項1又2記載の電解コンデンサ。   3. The electrolytic capacitor according to claim 1 or 2, wherein the purified solution of the paper strength enhancing agent from which impurities are removed is impregnated and applied so as to be fixed at a contact point between fibers in the paper layer. 不純物を除去した紙力増強剤の精製溶液を含浸塗布することにより、該紙力増強剤の精製溶液を繊維内部に浸透させて、繊維間空隙を維持した状態で繊維間の結合強度を増大させた請求項1,2又は3記載の電解コンデンサ。   Impregnating and applying the purified solution of the paper strength enhancer from which impurities have been removed allows the purified solution of the paper strength enhancer to penetrate into the interior of the fiber, increasing the bond strength between the fibers while maintaining the inter-fiber voids. The electrolytic capacitor according to claim 1, 2 or 3. 電解紙は、円網一重紙又は円網多重紙である請求項1,2,3又は4記載の電解コンデンサ。   5. The electrolytic capacitor according to claim 1, 2, 3 or 4, wherein the electrolytic paper is a circular net single paper or a circular net multiple paper. 紙力増強剤として、グァーガム,ローカストビーンガム,トラガカントガム,コーンスターチ,ポテト澱粉,小麦澱粉,タピオカ澱粉,ジアルデヒドデンプン,カチオンデンプン,メチルセルロース,カルボキシメチルセルロース,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂,尿素樹脂から選択された1種又は複数のものを使用する請求項1,2,3,4又は5記載の電解コンデンサ。   The paper strength enhancer is selected from guar gum, locust bean gum, tragacanth gum, corn starch, potato starch, wheat starch, tapioca starch, dialdehyde starch, cationic starch, methylcellulose, carboxymethylcellulose, polyacrylamide resin, polyethyleneimine resin, urea resin The electrolytic capacitor according to claim 1, 2, 3, 4 or 5, wherein one or more of them are used. 紙力増強剤を電解紙に対して0.05重量%〜5.0重量%含浸塗布した請求項1,2,3,4,5又は6記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, 2, 3, 4, 5 or 6, wherein a paper strength enhancer is impregnated with 0.05 to 5.0% by weight of electrolytic paper. 電解紙を構成する繊維がマニラ麻パルプ,サイザル麻パルプ,エスパルトパルプから選択された1種又は複数のものである請求項1,2,3,4,5,6又は7記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the fiber constituting the electrolytic paper is one or more selected from Manila hemp pulp, sisal hemp pulp, and esparto pulp.
JP2006170925A 2006-06-21 2006-06-21 Electrolytic capacitor Expired - Lifetime JP4109696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170925A JP4109696B2 (en) 2006-06-21 2006-06-21 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170925A JP4109696B2 (en) 2006-06-21 2006-06-21 Electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10008595A Division JPH08273984A (en) 1995-03-30 1995-03-30 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006245629A true JP2006245629A (en) 2006-09-14
JP4109696B2 JP4109696B2 (en) 2008-07-02

Family

ID=37051621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170925A Expired - Lifetime JP4109696B2 (en) 2006-06-21 2006-06-21 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4109696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185260A (en) * 2012-03-05 2013-09-19 Daio Paper Corp Kraft paper
CN114263069A (en) * 2021-12-31 2022-04-01 浙江凯恩新材料有限公司 Low-voltage low-loss electrolytic capacitor paper and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185260A (en) * 2012-03-05 2013-09-19 Daio Paper Corp Kraft paper
CN114263069A (en) * 2021-12-31 2022-04-01 浙江凯恩新材料有限公司 Low-voltage low-loss electrolytic capacitor paper and preparation method and application thereof
CN114263069B (en) * 2021-12-31 2023-01-17 浙江凯恩新材料有限公司 Low-voltage low-loss electrolytic capacitor paper and preparation method and application thereof

Also Published As

Publication number Publication date
JP4109696B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP6674956B2 (en) Electrochemical element separator and electrochemical element
JP4109697B2 (en) Electrolytic capacitor
JP3466206B2 (en) Electrolytic capacitor
JP6412805B2 (en) Separator and aluminum electrolytic capacitor
JP4287622B2 (en) COATING SEPARATOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC AND ELECTRONIC COMPONENT USING THE SAME
JP6836509B2 (en) Separator for electrochemical element and electrochemical element
JP2010239094A (en) Separator for electrolytic capacitor, and electrolytic capacitor
JP4109696B2 (en) Electrolytic capacitor
JPH08273984A (en) Electrolytic capacitor
JP4234151B2 (en) Electrolytic capacitor
JP4450476B2 (en) Electrolytic capacitor
JP7012425B2 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP6850921B1 (en) Separator for electrochemical element and electrochemical element
JP4533003B2 (en) Electrolytic capacitor
JP2004228600A (en) Electrolytic capacitor
JP2014103158A (en) Separator for electrolytic capacitor and aluminum electrolytic capacitor
JP2004200395A (en) Electrolytic capacitor
JP2009087948A (en) Coating separator, its manufacturing method, and electric/electronic parts using it
JPH03222314A (en) Electrolytic capacitor
JP2014222706A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2013201406A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2008166308A (en) Separator for solid electrolytic capacitor
JPH03222315A (en) Electrolytic paper for electrolytic capacitor
JP6338449B2 (en) Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
JP2013207250A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term