JP4450476B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP4450476B2
JP4450476B2 JP2000078625A JP2000078625A JP4450476B2 JP 4450476 B2 JP4450476 B2 JP 4450476B2 JP 2000078625 A JP2000078625 A JP 2000078625A JP 2000078625 A JP2000078625 A JP 2000078625A JP 4450476 B2 JP4450476 B2 JP 4450476B2
Authority
JP
Japan
Prior art keywords
paper
electrolytic
electrolytic capacitor
strength enhancer
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000078625A
Other languages
Japanese (ja)
Other versions
JP2001267182A (en
Inventor
浩昭 和田
順一 丑本
直樹 藤本
章祥 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kodoshi Corp
Original Assignee
Nippon Kodoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kodoshi Corp filed Critical Nippon Kodoshi Corp
Priority to JP2000078625A priority Critical patent/JP4450476B2/en
Publication of JP2001267182A publication Critical patent/JP2001267182A/en
Application granted granted Critical
Publication of JP4450476B2 publication Critical patent/JP4450476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は陽極箔と陰極箔との間に電解紙を介在させて構成した電解コンデンサにかかり、特に抄紙後の電解紙に紙力増強剤を含浸塗布したことにより、電解紙の引張強度を高めてインピーダンス特性、特に等価直列抵抗(以下ESRと略称する)に悪影響を与えることなくショート不良率を低減するとともに寿命特性を改善し、かつ、生産性を向上させることができる電解コンデンサに関するものである。
【0002】
【従来の技術】
一般に電解コンデンサ,特にアルミ電解コンデンサは、陽極アルミ箔と陰極アルミ箔との間に電解紙を介在させて巻付け形成することによりコンデンサ素子を作成し、このコンデンサ素子を液状の電解液中に浸漬して電解質を含浸させ、封口して製作している。電解液としては通常エチレングリコール(EG),ジメチルホルムアミド(DMF)又はγ−ブチロラクトン(GBL)等を溶媒とし、これらの溶媒に硼酸やアジピン酸アンモニウム,マレイン酸水素アンモニウム等の有機酸塩を溶解したものを用いてコンデンサ素子の両端から浸透させて製造している。
【0003】
これら従来のアルミ電解コンデンサは、電解紙中に電解液を含浸させているため、コンデンサとしてのESRが高くなりやすく、そのためESRを良くするために電解液の抵抗を下げたり、電解紙を薄くするか密度を低くする手段の外、電解紙の原料を通常の木材クラフトパルプからマニラ麻パルプ,エスパルトパルプ等に変更する手段が用いられている。しかしながら電解液の抵抗値を下げることはアルミ箔に対して腐蝕性を与える原因となる一方、電解紙を薄くしたり密度を低くすると必然的に引張強度が低下してショート不良率が増大したり、仮にショートしなかった場合でも製品化されて市場に出された後のショート不良率が高くなる難点がある。
【0004】
そこでショート不良率を下げるためには、電解紙の厚さを増大するか密度を高くする手段が考えられ、そのために電解紙の原料であるパルプの叩解の程度を示すJIS P 8121によるCSF(Canadian Standard Freeness)の数値を小さくする等の手段を選択すると、パルプの繊維がフィブリル化して細かくなり、得られる電解紙が緻密となって引張強度が増大し、ショート不良率が改善される。また、電解紙の厚さを増大するとESRに与える影響は一次式的に悪化し、電解紙の密度を高めると二次式的にESRが悪化することが判明している。即ちESRを改善するには、ショート不良率の改善とは逆に電解紙を薄く、その密度を低くする必要がある。
【0005】
そのため、ショート不良率の改善とESRの改善という相反する目的を達成するために、前記したように電解紙の原料を通常の木材クラフトパルプから針葉樹木材パルプ,マニラ麻パルプ,エスパルトパルプ等の繊維径のより小さなパルプへ変更することにより、薄くて低密度かつ緻密な電解紙を製造する試みや(特公昭61−45379号,特願昭62−126622号)、紙力増強剤を原料懸濁液に添加するか熱融着繊維を混抄して乾燥工程にて溶融させ、繊維相互の結合を増大させる試みとか、熱可塑性繊維を混抄して二次加工の熱処理で融着させ、引張強度を増大させる試みがなされ、近年になって低密度であるとともに大幅に改善された引張強度を有し、電解コンデンサのESRに悪影響を与えることなくショート不良率を改善し生産性の向上を可能に出来る方法が開発されている(特開平8−273984)。
【0006】
【発明が解決しようとする課題】
電解紙が低密度であるとともに改善された引張強度を有し、電解コンデンサのESRに悪影響を与えることなくショート不良率を改善して生産性の向上を可能に出来る従来技術(特開平8−273984)においては,エチレングリコール(EG)を主溶媒とした電解液、或いはそれ以外で水分を多く含む電解液中において紙力増強剤中のNa,K,Ca,Mg等のカチオン(陽イオン)が電解液中に抽出され、アルミ箔を腐食或いは変質させて漏れ電流の増大或いは静電容量の低下等を引き起こし、寿命特性を悪化させるという課題が存在する。
【0007】
更に従来は使用する電解液が主として紙力増強剤が不溶であるγ−ブチロラクトン(GBL)を主溶媒とする電解液であったが、最近になって親水性であるエチレングリコール(EG)を主溶媒とする電解液或いはそれ以外で水分を多く含む電解液が使用されるようになってきた。従って使用されている紙力増強剤の殆どが水溶性であるためにエチレングリコール(EG)を主溶媒とする電解液或いはそれ以外で水分を多く含んだ電解液では紙力増強剤中のカチオンが溶出されやすい状況になっており、その結果電解液中に溶出したカチオンがアルミニウム箔の表面に水和物を形成するなどして本来の特性が発揮できなくなるという問題がある。
【0008】
そこで本発明は抄紙後の電解紙に、Na,K,Ca,Mgのカチオンを低減した紙力増強剤を含浸塗布することによって、電解液の種類にかかわらず抽出されるカチオン量を低減し、低密度で引張強度が大幅に改善され、しかも電解コンデンサのESRに悪影響を与えることなくショート不良率を改善するとともに生産性の向上をはかり、寿命特性を向上させることができる電解コンデンサを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために、陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、抄紙後の電解紙にNa,K,Ca,Mgのカチオンを総量で100ppm以下に低減した紙力増強剤を含浸塗布した電解コンデンサを提供する。
【0010】
また、紙力増強剤のNa,K,Ca,Mgの個々の含有量が25ppm以下とする。紙力増強剤は澱粉,植物性ガム,半合成高分子,合成高分子から選択された1種又は複数種とする。紙力増強剤は電解紙に対して0.05重量%〜5.0重量%含浸塗布する。
【0011】
電解紙を構成する繊維はマニラ麻パルプ,エスパルトパルプ,サイザル麻パルプ,溶剤紡糸レーヨンから選択された1種又は複数種である。電解紙の密度は0.20g/cm〜0.85g/cmであり、厚さが20μm〜90μmとする。電解紙の引張強度は1.1kg/15mm以上とする。
【0012】
かかる本発明によれば、抄紙後の電解紙にNa,K,Ca,Mgのカチオンを総量で100ppm以下に低減した紙力増強剤を含浸塗布したことにより、低密度であるとともに大幅に改善された引張強度を有し、電解コンデンサのESRに悪影響を与えることなくショート不良率を改善するとともに生産性の向上をはかり、かつ、寿命特性を向上させることができる電解コンデンサを提供することができる。
【0013】
【発明の実施の形態】
以下本発明にかかる電解コンデンサの具体的な実施形態を説明する。本発明の基本手段は、陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて,抄紙後の電解紙にNa,K,Ca,Mgのカチオンを総量で100ppm以下に低減した紙力増強剤を含浸塗布してあり、また、各カチオン個々の含有量25ppm以下に低減した紙力増強剤を使用したことに特徴を有する。
【0014】
電解紙に塗布する紙力増強剤としては グァーガム,ローカストビーンガム,トラガカントガム等の植物性ガム類,コーンスターチ,ポテト澱粉,小麦澱粉,タピオカ澱粉等の澱粉類,ジアルデヒドデンプン,カチオンデンプン,メチルセルロース,カルボキシメチルセルロース等の半合成高分子,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂,尿素樹脂等の合成高分子が使用される。特に入手性,経済性,強度増強効果,作業性等の因子により、ジアルデヒドデンプン,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂を用いることが好ましい。尚、使用する紙力増強剤に塩素イオン等のアニオン(陰イオン)が過度に含有されている場合は、製造段階での低アニオン化もしくは水溶液でのイオン交換樹脂等によりアニオンを低減する必要がある。
【0015】
使用する紙力増強剤は、Na,K,Ca,Mgのカチオンが総量で100ppm以下でカチオン個々には25ppm以下まで低減したものであり、低減の方法は紙力増強剤の製造段階での低カチオン化と、水溶液でのイオン交換樹脂等によりカチオンを除去する方法とがある。尚、使用される紙力増強剤は、Na,K,Ca,Mgのカチオンが低減されていれば前記したものに限定されるものではなく、適宜のものを使用可能である。また、紙力増強剤は上記条件に適合する低カチオン品であれば良く、その低カチオン化の方法はイオン交換樹脂の他、電気透析法、限外濾過法、逆浸透法等のどのような方法であってもよい。
【0016】
また、電解紙に対して紙力増強剤を0.05重量%〜5.0重量%の範囲で含浸塗布することにより、目的とするインピーダンス特性に悪影響を与えることなくショート不良率を改善することができるとともにエチレングリコール(EG)を主溶媒とする電解液或いはそれ以外で水分を多く含む電解液中で寿命特性を向上させることができる。
【0017】
紙力増強剤を含浸塗布する被塗布紙としては、1つの円網バット部を有した円網抄紙機(円網一重紙)、2つ以上複数の円網バット部を有する円網多層コンビネーション抄紙機(円網二重紙,三重紙,多重紙)、或いは1つ以上の円網部と1つの長網部を有する長網円網コンビネーション抄紙機(長網円網多重紙)等の適宜の抄紙機にて抄造された乾紙状態の電解紙を使用する。
【0018】
この抄紙後の乾燥状態の電解紙に目標強度に応じて希釈した紙力増強剤を含浸塗布する。塗布方式としては ダイレクトロールコータ,ディップコータ,スプレーコータ,キッスロールコータ等の塗布方式で浸漬され、プレスロールにて脱液調整と厚さ調整を行った後、熱風乾燥やシリンダードライ方式等によって乾燥させて、所定の厚さ、密度の電解紙を製作する。この方式が二次加工であっても良いが、抄紙後にこれらの設備を設置したオンライン方式とすると生産性を阻害することなく量産することが可能となる。この方式によれば、例えば、原料懸濁液へのアニオン紙力増強剤の内部添加の如く、硫酸バンドやポリ塩化アルミ等の不純物の多い定着助剤を必要とせず、アニオン,ノニオン,カチオンの何れの紙力増強剤でも使用することができる。
【0019】
含浸塗布、プレス加重、乾燥の方法及びこれらの条件によっては、抄紙後の電解紙の厚さと密度を調整することも可能であり、従来から天然植物繊維では未叩解原料でも不可能とされていた超低密度電解紙を製作することが可能となる。更に引張強度の増大による工程での断紙を防止するとともに紙中の微細繊維をも強固に固着するため電解紙の表面強度が増大し、電解紙の裁断時やコンデンサ素子巻取り工程での繊維脱落による紙粉の発生を防止することができ、ラインの清掃頻度を減少させ工程の作業を円滑にすることも可能となる。
【0020】
得られる電解紙の密度は0.20g/cm〜0.85g/cm、厚さが20μm〜90μmである。また、引張強度は1.1kg/15mm以上とする。この様にして得られた電解紙をタブ付けした陽極、アルミ箔と陰極アルミ箔との間に介在させて巻きつけ形成した後、液状の電解質を含浸させ、封口して電解コンデンサを製作する。
【0021】
以下に本発明にかかる具体的な各種実施例と比較例及び従来例を説明する。尚、電解コンデンサはタブ付けした陽極箔と陰極箔の間に両極が接触しないように電解紙を介在させ、巻取りして電解コンデンサ素子を形成した後、所定の電解液を含浸させてケースに封入し、エージングを行って50WV,220μFのアルミ乾式コンデンサを得た。比較例1は実施例1,2と対応している。
【0022】
[実施例1]
エスパルトパルプ70重量%とマニラ麻パルプ30重量%の混合原料を使用してCSFで640ccに叩解して円網三重紙とした後、オンマシン方式のダイレクトロールコータにより、製造段階でアニオン性不純物を除去し、更にカチオンの総量を25ppm以下まで低減したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対して3.0重量%になる様に脱液調整後、シリンダードライヤーで乾燥して厚さ50.1μm,密度0.299g/cm,引張強度1.3kg/15mmの円網三重紙を得た。次に得られた電解紙で50WV,220μFの電解コンデンサを製作した。
【0023】
[実施例2]
エスパルトパルプ70重量%とマニラ麻パルプ30重量%の混合原料を使用してCSFで640ccに叩解して円網三重紙とした後、オフマシン方式のダイレクトロールコータを用いて製造段階でアニオン性不純物を除去し、イオン交換樹脂で精製したカチオンの総量を25ppm以下まで低減したポリアクリルアミド樹脂の希釈溶液に浸漬し、プレスロールでポリアクリルアミドが紙に対して3.0重量%になる様に脱液調整後、シリンダードライヤーで乾燥して厚さ50.0μm,密度0.301g/cm,引張強度1.2kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0024】
[実施例3]
エスパルトパルプ60重量%とマニラ麻パルプ40重量%の混合原料を使用してCSFで590ccに叩解して円網三重紙とした後、オンマシン方式のダイレクトロールコータで、製造段階でアニオン性不純物を除去し、更にイオン交換樹脂で精製しカチオンの総量を25ppm以下まで低減したポリエチレンイミン樹脂の希釈溶液を浸漬し、プレスロールでポリエチレンイミンが紙に対して3.0重量%になる様に脱液調整後、シリンダードライヤーで乾燥して厚さ40.2μm,密度0.369g/cm,引張強度2.1kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0025】
[実施例4]
マニラ麻パルプ70重量%とエスパルトパルプ30重量%の混合原料を使用してCSFで660ccに叩解して円網二重紙とした後、オンマシン方式のダイレクトロールコータで、イオン交換樹脂で精製しアニオン性不純物を除去し、更にカチオンの総量を100ppm以下まで低減したジアルデヒドデンプンの希釈溶液を浸漬し、プレスロールでジアルデヒドデンプンが紙に対して3.0重量%になる様に脱液調整後、シリンダードライヤーで乾燥して厚さ49.8μm,密度0.352g/cm,引張強度2.6kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0026】
[実施例5]
マニラ麻パルプ100重量%を使用してCSFで420ccに叩解して円網一重紙とした後、オンマシン方式のダイレクトロールコータで、イオン交換樹脂で精製してアニオン性不純物を除去し、更にカチオンの総量を25ppm以下まで低減したポリエチレンイミンの希釈溶液を浸漬し、プレスロールでポリエチレンイミンが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して厚さ29.8μm,密度0.612g/cm,引張強度5.6kg/15mmの円網一重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0027】
[実施例6]
有機溶剤紡糸レーヨン100重量%を使用してCSFで240ccに叩解して円網一重紙とした後、オンマシン方式のダイレクトロールコータで、製造段階でアニオン性不純物を除去してイオン交換樹脂で精製しカチオンの総量を25ppm以下まで低減したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して、厚さ68.0μm,密度0.235g/cm,引張強度1.4kg/15mmの円網一重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0029】
[比較例1]
エスパルトパルプ70重量%とマニラ麻パルプ30重量%の混合原料を使用してCSFで640ccに叩解して、厚さ49.1μm,密度0.320g/cm,引張強度0.6kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0030】
[従来例1]
エスパルトパルプ70重量%とマニラ麻パルプ30重量%の混合原料を使用してCSFで640ccに叩解して円網三重紙とした後、オンマシン方式のダイレクトロールコータで、製造段階でアニオン性不純物を除去したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して厚さ49.6μm,密度0.304g/cm,引張強度1.2kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0031】
[従来例2]
エスパルトパルプ60重量%とマニラ麻パルプ40重量%の混合原料を使用してCSFで590ccに叩解して円網三重紙とした後、オンマシン方式のダイレクトロールコータで、製造段階でアニオン性不純物を除去したポリエチレンイミン樹脂の希釈溶液を浸漬し、プレスロールでポリエチレンイミンが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して厚さ40.1μm,密度0.371g/cm,引張強度2.1kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0032】
[従来例3]
マニラ麻パルプ70重量%とエスパルトパルプ30重量%の混合原料を使用してCSFで660ccに叩解して円網二重紙とした後、オンマシン方式のダイレクトロールコータで、イオン交換樹脂で精製してアニオン性不純物を除去したジアルデヒドデンプンの希釈溶液を浸漬し、プレスロールでジアルデヒドデンプンが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して厚さ49.9μm,密度0.350g/cm,引張強度2.7kg/15mmの円網三重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0033】
[従来例4]
マニラ麻パルプ100重量%を使用してCSFで420ccに叩解して円網一重紙とした後、オンマシン方式のダイレクトロールコータで、イオン交換樹脂で精製してアニオン性不純物を除去したポリエチレンイミンの希釈溶液を浸漬し、プレスロールでポリエチレンイミンが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して厚さ30.7μm,密度0.593g/cm,引張強度5.5kg/15mmの円網一重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0034】
[従来例5]
有機溶剤紡糸レーヨン100重量%を使用してCSFで240ccに叩解して円網一重紙とした後、オンマシン方式のダイレクトロールコータで、製造段階でアニオン性不純物を除去したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対して3.0重量%になる様に脱液調整後シリンダードライヤーで乾燥して厚さ70.6μm,密度0.231g/cm,引張強度1.4kg/15mmの円網一重紙を得た。次にこの電解紙で50WV,220μFの電解コンデンサを製作した。
【0036】
電解紙の評価方法は以下の通りである。先ず電解紙の厚さ、密度、引張強度はJIS C2301(電解コンデンサ紙)に規定された方法で測定した。電解紙の気密度はJIS C2111(電気絶縁紙試験方法)に規定する“12.1気密度”の項に従い、B型試験器(ガーレーデンソメータ)によって測定した。但し穴の部分が6mmφであるアダプターを使用した。また、気密度1秒以下の電解紙については5枚重ねで測定して1枚に換算した。
【0037】
紙粉発生量は、巻出し巻取りを設けた試験器の中央にカッター刃を5cm間隔で2枚固定する。18mm幅でレコード巻に裁断した電解紙を巻出し側にセットし、0.5kgの張力で引出し、カッター刃上を擦らせながら10m/分の速度で1000m巻取り側に移動させ この間に脱落した紙粉の量を測定する。4回の平均値を表示した。カチオン分析方法は、紙力増強剤20g±0.1gを200ml,0.1mol/lの常温の塩酸水溶液で1時間抽出し、この抽出液を原子吸光分析にて分析した。
【0038】
電解コンデンサの評価方法は以下の通りである。先ずショート不良率は電解紙を陽極箔及び陰極箔とともに巻取りして電解コンデンサ素子を形成した後、電解液を含浸しないままで両極間のショートによる導通をテスターで確認した。ショート不良率は略1000個の素子について検査し、ショート素子の全素子数に対する割合をショート不良率とした。
【0039】
電解コンデンサのESR(等価直列抵抗)は20℃,1000HZの周波数でLCRメータによって測定した。静電容量は20℃,1000HZの周波数でLCRメータによって測定した。漏れ電流は定格直流電圧を1分間印加後に電解コンデンサに流れる電流(漏れ電流)を20℃で測定した。経時変化試験は85℃の恒温層で定格直流電圧を4000時間連続印加して、ESR,静電容量,漏れ電流を測定した。表1,2に上記項目に関する各実施例1〜,比較例1,従来例1〜の測定結果を示す。
【0040】
【表1】

Figure 0004450476
【0041】
【表2】
Figure 0004450476
【0042】
表1,2の結果に示した通りに製造段階あるいは水溶液でのイオン交換樹脂等によってカチオンを低減した紙力増強剤を含浸塗布した電解紙は、カチオンを除去していない紙力増強剤を含浸塗布した電解紙と同等の特性(引張強度,ショート不良率,ESR,紙紛発生量)になっている。例えば、実施例1はエスパルトパルプ70重量%とマニラ麻パルプ30重量%の混合原料を使用してオンマシン方式でカチオンを10ppmまで低減したポリアクリルアミド樹脂の希釈溶液を含浸塗布して製造した厚さ50.1μm,密度0.299g/cm,引張強度1.3kg/15mmの円網三重紙である。実施例2はエスパルトパルプ70重量%とマニラ麻パルプ30重量%の混合原料を使用してオフマシン方式でカチオンを10ppmまで低減したポリアクリルアミド樹脂の希釈溶液を含浸塗布して製造した厚さ50.0μm,密度0.301g/cm,引張強度1.2kg/15mmの円網三重紙である。従来例1は実施例1と同一原料,同一方式で製造段階でアニオン性不純物のみを除去したポリアクリルアミド樹脂の希釈溶液を含浸塗布して製造した略同一厚さ,同一密度,同一引張り強度の円網三重紙である。
【0043】
実施例1,2は従来例1と同等の特性(引張強度,ショート不良率,ESR,紙紛発生量)となっている。実施例3と従来例2,実施例4と従来例3,実施例5と従来例4,実施例6と従来例5ついてもほぼ同じ結果となっている。
【0044】
更に製造段階あるいは水溶液でのイオン交換樹脂等によってカチオンを低減した紙力増強剤を含浸塗布した電解紙は、カチオンを除去していない紙力増強剤を含浸塗布した電解紙と同様に、紙力増強剤を含浸塗布することによって従来の技術(特開平8−273984)と同等の効果が見られる。
【0045】
比較例1は実施例1,2及び従来例1と同一原料で紙力増強剤を含浸塗布していない円網三重紙である。実施例1,2は比較例1と比較して引張り強度の改善によってESRに悪影響を与えることなくショート不良率が格段に改善出来ていることが判明した。
【0046】
表3は各実施例,従来例,比較例の静電容量,ESR,漏れ電流について初期値と85℃負荷試験4000時間後の測定値をまとめた一覧表である。
【0047】
【表3】
Figure 0004450476
【0048】
表3に示した通り電解紙中のカチオンを低減することによって、経時変化試験後も初期特性とほぼ同等の特性を維持できている。例えば実施例1,2は紙力増強剤中のカチオンを10ppm以下まで低減した紙力増強剤を含浸塗布した電解紙を用いたものである。従来例1はアニオンだけを低減して約2000ppmのカチオンを含んだ紙力増強剤を含浸塗布した電解紙を用いたものである。比較例1は紙力増強剤を含浸塗布していない電解紙を用いたものである。
【0049】
実施例1,2は比較例1と同様に経次変化試験後も初期特性と大差なく良好な特性を維持している。一方、従来例1は漏れ電流が増大しているとともに静電容量が低下している。実施例3と従来例2,実施例5と従来例4及び実施例6と従来例5についても同じ結果となっている。
【0050】
実施例4は紙力増強剤中のカチオンを100ppm以下まで低減した紙力増強剤を含浸塗布した電解紙を用いたものである。従来例3はアニオンだけを低減し約3000ppmのカチオンを含んだ紙力増強剤を含浸塗布した電解紙を用いたものである。実施例1,2と従来例1も同様の結果となっている。
【0052】
表1,2,3の結果に示した通り、紙力増強剤のカチオン、特にNa,K,Ca,Mgを総量で100ppm以下に低減することによって紙力増強剤を電解紙に含浸塗布しても従来通りに引張り強度の改善に伴うESRへの悪影響がなくなり、ショート不良率も改良される。エチレングリコール(EG)を主溶媒とする電解液或はそれ以外で水分を多く含む電解液中での寿命特性が改善されることが明らかである。
【0053】
【発明の効果】
以上詳細に説明したように、本発明にかかる電解コンデンサは抄紙後の電解紙にNa,K,Ca,Mgのカチオンを総量で100ppm以下に低減した紙力増強剤を含浸塗布したことを特徴としており、具体的にはアルミ箔を腐食あるいは変質させないレベルまでカチオンを低減させた植物性ガム,澱粉,半合成高分子,合成高分子等の紙力増強剤の希釈溶液を電解紙に含浸塗布したことにより、以下に記す効果が得られる。
【0054】
即ち、従来手段によって得られた電解コンデンサは、電解液中に紙力増強剤中のNa,K,Ca,Mg等のカチオンが抽出されてアルミ箔を腐食したり変質させてしまい、漏れ電流の増大とか静電容量の低下等を引き起こす難点があるのに対して、本発明のように抄紙後の電解紙に前記カチオンを総量で100ppm以下に低減した紙力増強剤を含浸塗布したことにより、ESRに悪影響を与えることなくショート不良率を大幅に改善することができる。更に電解紙中のカチオンを紙力増強剤の含浸塗布後も増加させないために、エチレングリコールを主溶媒とする電解液であっても、カチオンが電解液中に余分に抽出されることがなくなり、寿命特性を大幅に改善することができる。
【0055】
更に従来使用している電解液は紙力増強剤が不溶であるGBLを主溶媒とする電解液であるため、電解液で紙力増強剤中のカチオンが溶出されやすく、溶出したカチオンがアルミニウム箔の表面に水和物を形成してコンデンサの特性に悪影響をもたらす問題があるのに対して、本発明は電解液の種類にかかわらず抽出されるカチオン量を低減して低密度で引張強度が改善され、しかも電解コンデンサのESRに悪影響を与えることなくショート不良率を改善して生産性を向上させ、しかも寿命特性を高めた電解コンデンサを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to an electrolytic capacitor configured by interposing electrolytic paper between an anode foil and a cathode foil. In particular, the tensile strength of the electrolytic paper is increased by impregnating and applying a paper strength enhancer to the electrolytic paper after paper making. In particular, the present invention relates to an electrolytic capacitor that can reduce the short-circuit defect rate without adversely affecting the impedance characteristics, particularly equivalent series resistance (hereinafter abbreviated as ESR), improve the life characteristics, and improve the productivity. .
[0002]
[Prior art]
In general, electrolytic capacitors, especially aluminum electrolytic capacitors, are formed by winding electrolytic paper between an anode aluminum foil and a cathode aluminum foil, and the capacitor element is immersed in a liquid electrolyte. Then, it is impregnated with electrolyte and sealed. As an electrolytic solution, ethylene glycol (EG), dimethylformamide (DMF), or γ-butyrolactone (GBL) is usually used as a solvent, and organic acid salts such as boric acid, ammonium adipate, and ammonium hydrogen maleate are dissolved in these solvents. It is manufactured by infiltrating from both ends of the capacitor element.
[0003]
Since these conventional aluminum electrolytic capacitors are impregnated with electrolytic solution in electrolytic paper, the ESR as a capacitor tends to be high, and therefore the resistance of the electrolytic solution is lowered or the electrolytic paper is thinned to improve the ESR. In addition to the means for reducing the density, means for changing the raw material of the electrolytic paper from ordinary wood kraft pulp to Manila hemp pulp, esparto pulp or the like is used. However, lowering the resistance value of the electrolyte causes corrosiveness to the aluminum foil. On the other hand, reducing the thickness of the electrolytic paper or reducing the density inevitably reduces the tensile strength and increases the short-circuit defect rate. Even if there is no short circuit, there is a drawback that the short defect rate after being commercialized and put on the market becomes high.
[0004]
In order to reduce the short-circuit defect rate, means for increasing the thickness of the electrolysis paper or increasing the density can be considered. For this purpose, CSF (Canadian) according to JIS P 8121 indicating the degree of beating of pulp which is the raw material of electrolysis paper. If a means such as reducing the value of (Standard Freeness) is selected, the fibers of the pulp become fibrillated and become finer, the resulting electrolytic paper becomes dense, the tensile strength increases, and the short-circuit defect rate is improved. Further, it has been found that when the thickness of the electrolytic paper is increased, the influence on the ESR is linearly deteriorated, and when the density of the electrolytic paper is increased, the ESR is secondarily deteriorated. That is, in order to improve ESR, it is necessary to make the electrolytic paper thin and reduce its density, contrary to the improvement of the short-circuit defect rate.
[0005]
Therefore, in order to achieve the contradictory purpose of improving the short defect rate and improving the ESR, as described above, the raw material of the electrolytic paper is changed from a normal wood kraft pulp to a fiber diameter of softwood wood pulp, manila hemp pulp, esparto pulp, etc. And by making the pulp smaller than the above, attempts to produce a thin, low-density and dense electrolytic paper (Japanese Patent Publication No. 61-45379, Japanese Patent Application No. 62-126622), a paper strength enhancer as a raw material suspension Add heat to the fiber or melt and fuse the melted fiber in the drying process to increase the bond between the fibers, or blend the thermoplastic fiber and melt it by secondary heat treatment to increase the tensile strength In recent years, low density and greatly improved tensile strength have been achieved in recent years, improving the short-circuit defect rate without adversely affecting the ESR of electrolytic capacitors. A method capable of improving productivity has been developed (JP-A-8-273984).
[0006]
[Problems to be solved by the invention]
A conventional technique in which electrolytic paper has a low density and an improved tensile strength, and can improve the productivity by improving the short-circuit defect rate without adversely affecting the ESR of the electrolytic capacitor (Japanese Patent Laid-Open No. 8-273984). ), Cations (cations) such as Na, K, Ca, Mg, etc. in the paper strength enhancer in an electrolytic solution containing ethylene glycol (EG) as a main solvent or in an electrolytic solution containing a lot of water other than that. There is a problem that it is extracted into the electrolytic solution and corrodes or alters the aluminum foil to cause an increase in leakage current or a decrease in capacitance, thereby deteriorating the life characteristics.
[0007]
Furthermore, in the past, the electrolyte used was an electrolyte mainly composed of γ-butyrolactone (GBL), in which the paper strength enhancer is insoluble, but recently, ethylene glycol (EG), which is hydrophilic, has been mainly used. An electrolytic solution that is a solvent or an electrolytic solution that contains a lot of moisture has been used. Accordingly, since most of the paper strength enhancing agents used are water-soluble, an electrolyte containing ethylene glycol (EG) as the main solvent or other electrolytes containing a large amount of water contains cations in the paper strength enhancing agent. As a result, there is a problem that the cation eluted in the electrolytic solution forms a hydrate on the surface of the aluminum foil so that the original characteristics cannot be exhibited.
[0008]
Therefore, the present invention reduces the amount of cation extracted regardless of the type of electrolytic solution by impregnating and applying the paper strength enhancer with reduced cation of Na, K, Ca, Mg to the electrolytic paper after paper making, To provide an electrolytic capacitor capable of improving the life characteristics by improving the short-circuit defect rate and improving the productivity without adversely affecting the ESR of the electrolytic capacitor, while the tensile strength is greatly improved at a low density. It is intended.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil, and the total amount of Na, K, Ca, Mg cations is applied to the electrolytic paper after paper making. 100 An electrolytic capacitor impregnated with a paper strength enhancer reduced to ppm or less is provided.
[0010]
Further, the individual contents of the paper strength enhancers Na, K, Ca, and Mg are set to 25 ppm or less. The paper strength enhancer is one or more selected from starch, vegetable gum, semi-synthetic polymer, and synthetic polymer. The paper strength enhancer is impregnated with 0.05% to 5.0% by weight of the electrolytic paper.
[0011]
The fibers constituting the electrolytic paper are one or more selected from Manila hemp pulp, esparto pulp, sisal pulp, and solvent-spun rayon. The density of the electrolytic paper is 0.20 g / cm 3 ~ 0.85g / cm 3 The thickness is 20 μm to 90 μm. The tensile strength of the electrolytic paper is 1.1 kg / 15 mm or more.
[0012]
According to the present invention, the total amount of Na, K, Ca, Mg cations is applied to the electrolytic paper after paper making. 100 By impregnating with a paper strength enhancer reduced to less than ppm, it has a low density and significantly improved tensile strength, improving the short defect rate without adversely affecting the ESR of electrolytic capacitors and producing It is possible to provide an electrolytic capacitor capable of improving the performance and improving the life characteristics.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the electrolytic capacitor according to the present invention will be described. The basic means of the present invention is that in an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil, Na, K, Ca, Mg cations are added to the electrolytic paper after paper making in a total amount. 100 Impregnated with a paper strength enhancer reduced to less than ppm, and the content of each cation individually The It is characterized in that a paper strength enhancer reduced to 25 ppm or less is used.
[0014]
Paper strength enhancers to be applied to electrolytic paper include vegetable gums such as guar gum, locust bean gum, tragacanth gum, starches such as corn starch, potato starch, wheat starch, tapioca starch, dialdehyde starch, cationic starch, methylcellulose, carboxy Semi-synthetic polymers such as methylcellulose, synthetic polymers such as polyacrylamide resin, polyethyleneimine resin, and urea resin are used. In particular, dialdehyde starch, polyacrylamide resin, and polyethyleneimine resin are preferably used depending on factors such as availability, economy, strength enhancement effect, and workability. If the paper strength enhancer used contains excessive anions (anions) such as chloride ions, it is necessary to reduce the anions by reducing the anion at the production stage or by using an ion exchange resin in an aqueous solution. is there.
[0015]
The paper strength enhancer used is a total of Na, K, Ca, Mg cations. 100 The cation is reduced to 25 ppm or less for each cation at ppm or less, and there are two methods for reducing the cation: a method of reducing the cation at the production stage of the paper strength enhancer and a method of removing the cation with an ion exchange resin in an aqueous solution . The paper strength enhancer to be used is not limited to the above as long as the cations of Na, K, Ca, and Mg are reduced, and an appropriate one can be used. In addition, the paper strength enhancer may be a low cation product that meets the above-mentioned conditions, and the method for reducing the cation is any ion exchange resin, electrodialysis method, ultrafiltration method, reverse osmosis method, etc. It may be a method.
[0016]
In addition, by impregnating and applying a paper strength enhancer in the range of 0.05% to 5.0% by weight to electrolytic paper, the short-circuit defect rate can be improved without adversely affecting the target impedance characteristics. In addition, the life characteristics can be improved in an electrolytic solution containing ethylene glycol (EG) as a main solvent or an electrolytic solution containing a lot of water other than that.
[0017]
The paper to be coated to be impregnated with the paper strength enhancer is a circular net paper machine (single net single paper) having one circular net bat part, and a circular multi-layer combination paper having two or more circular net bat parts. Machine (circular double paper, triple paper, multiple paper), or a long mesh network combination paper machine (long mesh circular multiple paper) having one or more circular mesh sections and one long mesh section. Use electrolytic paper in dry paper made by a paper machine.
[0018]
A paper strength enhancer diluted according to the target strength is impregnated and applied to the dried electrolytic paper after the paper making. As a coating method, it is immersed in a coating method such as a direct roll coater, dip coater, spray coater, kiss roll coater, etc., and after adjusting the liquid removal and thickness with a press roll, it is dried by hot air drying, cylinder drying method, etc. Thus, electrolytic paper having a predetermined thickness and density is manufactured. This method may be secondary processing, but if it is an on-line method in which these facilities are installed after paper making, mass production can be performed without impeding productivity. According to this method, for example, an anion, nonion, and cation of an anion, a nonion, and a cation are not required, such as an internal addition of an anionic strength enhancer to a raw material suspension. Any paper strength enhancer can be used.
[0019]
Depending on the impregnation application, press load, drying method and these conditions, it is also possible to adjust the thickness and density of the electrolyzed paper after paper making, and it has been conventionally impossible with natural plant fibers even with unbeaten raw materials It becomes possible to produce ultra-low density electrolytic paper. Furthermore, it prevents paper breaks in the process due to an increase in tensile strength and firmly adheres the fine fibers in the paper, so the surface strength of the electrolytic paper increases, and the fibers in the cutting process of the electrolytic paper and in the winding process of the capacitor element Generation of paper dust due to dropping off can be prevented, and the frequency of line cleaning can be reduced to facilitate the work of the process.
[0020]
The density of the resulting electrolytic paper is 0.20 g / cm 3 ~ 0.85g / cm 3 The thickness is 20 μm to 90 μm. The tensile strength is 1.1 kg / 15 mm or more. The electrolytic paper obtained as described above is wound and formed between a tabbed anode, aluminum foil and cathode aluminum foil, impregnated with a liquid electrolyte, and sealed to produce an electrolytic capacitor.
[0021]
Various specific examples, comparative examples, and conventional examples according to the present invention will be described below. The electrolytic capacitor is formed by interposing electrolytic paper so that both electrodes do not contact between the tabbed anode foil and the cathode foil, winding it to form an electrolytic capacitor element, and then impregnating the case with a predetermined electrolytic solution. Sealed and aged to obtain a 50 WV, 220 μF aluminum dry capacitor. Comparative Example 1 corresponds to Examples 1 and 2.
[0022]
[Example 1]
Using a mixed raw material of 70% by weight of esparto pulp and 30% by weight of Manila hemp pulp, it was beaten to 640cc with CSF to make a circular triplet paper, and then an anionic impurity was removed at the manufacturing stage by an on-machine direct roll coater. After removing, dilute a polyacrylamide resin dilute solution with the total amount of cations reduced to 25 ppm or less, adjust the drainage with a press roll so that the polyacrylamide is 3.0% by weight, and then use a cylinder dryer. Dry to thickness 50.1μm, density 0.299g / cm 3 , A circular net triple paper having a tensile strength of 1.3 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using the obtained electrolytic paper.
[0023]
[Example 2]
A mixed raw material of 70% by weight of esparto pulp and 30% by weight of Manila hemp pulp is beaten to 640cc with CSF to make a circular triplet paper, and then an anionic impurity at the production stage using an off-machine type direct roll coater And then immersed in a dilute solution of polyacrylamide resin in which the total amount of cations purified by ion exchange resin is reduced to 25 ppm or less, and the liquid is removed with a press roll so that the polyacrylamide is 3.0 wt% with respect to the paper. After adjustment, dry with a cylinder dryer, thickness 50.0μm, density 0.301g / cm 3 , A triple mesh paper having a tensile strength of 1.2 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0024]
[Example 3]
Using a mixed raw material of 60% by weight of esparto pulp and 40% by weight of Manila hemp pulp, it was beaten to 590cc with CSF to make a circular triplet paper, and then an anionic impurity was removed at the manufacturing stage with an on-machine direct roll coater. Removed, further purified with ion exchange resin and dipped in a diluted solution of polyethyleneimine resin with the total amount of cations reduced to 25 ppm or less, and drained with a press roll so that polyethyleneimine is 3.0% by weight with respect to the paper. After adjustment, dry with a cylinder dryer, thickness 40.2μm, density 0.369g / cm 3 , A triple mesh paper having a tensile strength of 2.1 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0025]
[Example 4]
Using a mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of esparto pulp, it was beaten to 660cc with CSF to make a circular double paper, and then refined with ion exchange resin with an on-machine direct roll coater. Remove the anionic impurities and immerse the dialdehyde starch diluted solution with the total amount of cations reduced to 100ppm or less, and adjust the liquid removal by press roll so that the dialdehyde starch is 3.0% by weight with respect to the paper. After drying with a cylinder dryer, thickness 49.8μm, density 0.352g / cm 3 , A triple mesh paper having a tensile strength of 2.6 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0026]
[Example 5]
Using 100% by weight of Manila hemp pulp, beaten to 420 cc with CSF to make a circular single-ply paper, and then purified with an ion-exchange resin with an on-machine direct roll coater to remove anionic impurities, Dilute a dilute solution of polyethyleneimine with the total amount reduced to 25 ppm or less, adjust the liquid removal so that the polyethyleneimine is 3.0% by weight with respect to the paper with a press roll, and then dry with a cylinder dryer to obtain a thickness of 29.8 μm , Density 0.612 g / cm 3 , A circular net single paper having a tensile strength of 5.6 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0027]
[Example 6]
Using 100% by weight of organic solvent spinning rayon, beat up to 240cc with CSF to make a single piece of circular mesh paper, then remove anionic impurities at the production stage with an on-machine direct roll coater and purify with ion exchange resin Then, a diluted solution of polyacrylamide resin with the total amount of cations reduced to 25 ppm or less is dipped, adjusted with a press roll so that the polyacrylamide is 3.0% by weight with respect to the paper, and then dried with a cylinder dryer, 68.0μm thick, 0.235g / cm density 3 , A single mesh paper with a tensile strength of 1.4 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0029]
[Comparative Example 1]
A mixed raw material of 70% by weight of esparto pulp and 30% by weight of Manila hemp pulp was beaten to 640 cc with CSF, and the thickness was 49.1 μm and the density was 0.320 g / cm. 3 , A triple mesh paper having a tensile strength of 0.6 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0030]
[Conventional example 1]
Using a mixed raw material of 70% by weight of esparto pulp and 30% by weight of Manila hemp pulp, it was beaten to 640cc with CSF to make a circular triplet paper, and then an anionic impurity was removed at the manufacturing stage with an on-machine direct roll coater. The dilute solution of the removed polyacrylamide resin is dipped, adjusted with a press roll so that the polyacrylamide becomes 3.0% by weight with respect to the paper, and then dried with a cylinder drier to have a thickness of 49.6 μm and a density of 0. 304 g / cm 3 , A triple mesh paper having a tensile strength of 1.2 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0031]
[Conventional example 2]
Using a mixed raw material of 60% by weight of esparto pulp and 40% by weight of Manila hemp pulp, it was beaten to 590cc with CSF to make a circular triplet paper, and then an anionic impurity was removed at the manufacturing stage with an on-machine direct roll coater. The removed dilute solution of polyethyleneimine resin is dipped and adjusted with a press roll so that the polyethyleneimine is 3.0% by weight with respect to the paper. 371 g / cm 3 , A triple mesh paper having a tensile strength of 2.1 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0032]
[Conventional Example 3]
Using a mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of esparto pulp, it is beaten to 660cc with CSF to make a circular double paper, and then refined with ion exchange resin with an on-machine direct roll coater. A dialdehyde starch diluted solution from which anionic impurities have been removed is dipped, adjusted with a press roll so that the dialdehyde starch is 3.0% by weight with respect to the paper, and then dried with a cylinder dryer to obtain a thickness of 49 .9 μm, density 0.350 g / cm 3 , A triple mesh paper having a tensile strength of 2.7 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0033]
[Conventional example 4]
Polyethyleneimine diluted with 100% by weight of Manila hemp pulp to 420cc with CSF to make a single piece of circular mesh paper, then purified with ion exchange resin to remove anionic impurities with an on-machine direct roll coater Immerse the solution, adjust the drainage so that the polyethyleneimine is 3.0% by weight with respect to the paper with a press roll, and then dry it with a cylinder dryer to obtain a thickness of 30.7 μm and a density of 0.593 g / cm. 3 , A single circular mesh paper with a tensile strength of 5.5 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0034]
[Conventional Example 5]
Diluted solution of polyacrylamide resin with 100% by weight of organic solvent spinning rayon, beaten to 240cc with CSF to make a single piece of circular mesh paper, and then removed anionic impurities at the production stage with an on-machine direct roll coater Was removed and adjusted with a press roll so that the polyacrylamide was 3.0% by weight with respect to the paper. After drying with a cylinder dryer, the thickness was 70.6 μm and the density was 0.231 g / cm. 3 , A single mesh paper with a tensile strength of 1.4 kg / 15 mm was obtained. Next, an electrolytic capacitor of 50 WV and 220 μF was manufactured using this electrolytic paper.
[0036]
The evaluation method of electrolytic paper is as follows. First, the thickness, density, and tensile strength of the electrolytic paper were measured by the methods defined in JIS C2301 (electrolytic capacitor paper). The air density of the electrolytic paper was measured with a B-type tester (Gurley densometer) in accordance with the section “12.1 Air density” defined in JIS C2111 (electrical insulating paper test method). However, an adapter having a hole portion of 6 mmφ was used. Moreover, about the electrolysis paper with a gas density of 1 second or less, it measured in five sheets and converted into one sheet.
[0037]
Regarding the amount of paper dust generated, two cutter blades are fixed at an interval of 5 cm in the center of a tester provided with unwinding and winding. Electrolytic paper cut into a record roll with a width of 18 mm was set on the unwinding side, pulled out with a tension of 0.5 kg, moved to the 1000 m winding side at a speed of 10 m / min while rubbing the cutter blade, and dropped during this time Measure the amount of paper dust. The average value of 4 times was displayed. In the cation analysis method, a paper strength enhancer 20 g ± 0.1 g was extracted with 200 ml of 0.1 mol / l aqueous hydrochloric acid at room temperature for 1 hour, and this extract was analyzed by atomic absorption spectrometry.
[0038]
The electrolytic capacitor evaluation method is as follows. First, the short circuit defect rate was obtained by winding an electrolytic paper together with an anode foil and a cathode foil to form an electrolytic capacitor element, and then confirming the continuity due to a short between both electrodes without impregnating the electrolytic solution with a tester. The short defect rate was inspected for about 1000 elements, and the ratio of the short elements to the total number of elements was defined as the short defect rate.
[0039]
The ESR (equivalent series resistance) of the electrolytic capacitor was measured by an LCR meter at 20 ° C. and a frequency of 1000 HZ. The capacitance was measured with an LCR meter at a frequency of 20 ° C. and 1000 HZ. For the leakage current, the current (leakage current) flowing through the electrolytic capacitor after applying the rated DC voltage for 1 minute was measured at 20 ° C. In the aging test, a rated DC voltage was continuously applied for 4000 hours in a constant temperature layer of 85 ° C., and ESR, capacitance, and leakage current were measured. In Tables 1 and 2, each of the Examples 1 6 , Comparative Example 1, Conventional Example 1 5 The measurement results are shown.
[0040]
[Table 1]
Figure 0004450476
[0041]
[Table 2]
Figure 0004450476
[0042]
As shown in the results of Tables 1 and 2, the electrolysis paper impregnated with a paper strength enhancer with reduced cations by an ion exchange resin in the production stage or in an aqueous solution is impregnated with a paper strength enhancer that does not remove cations. The characteristics (tensile strength, short-circuit defect rate, ESR, amount of paper dust) are the same as the applied electrolytic paper. For example, Example 1 is a thickness produced by impregnating and applying a diluted solution of polyacrylamide resin having a cation reduced to 10 ppm by an on-machine method using a mixed raw material of 70% by weight of esparto pulp and 30% by weight of Manila hemp pulp. 50.1 μm, density 0.299 g / cm 3 , A triple mesh paper with a tensile strength of 1.3 kg / 15 mm. Example 2 was prepared by impregnating and applying a diluted solution of polyacrylamide resin having a cation reduced to 10 ppm by an off-machine method using a mixed raw material of 70% by weight of esparto pulp and 30% by weight of Manila hemp pulp. 0 μm, density 0.301 g / cm 3 , A triple mesh paper having a tensile strength of 1.2 kg / 15 mm. Conventional Example 1 is a circle of substantially the same thickness, the same density, and the same tensile strength produced by impregnating and applying a diluted solution of polyacrylamide resin from which only anionic impurities are removed at the production stage by the same method as in Example 1. It is a net-triple paper.
[0043]
Examples 1 and 2 have the same characteristics (tensile strength, short-circuit defect rate, ESR, amount of paper dust) as conventional example 1. Example 3, Conventional Example 2, Example 4, Conventional Example 3, Example 5, Conventional Example 4, Example 6, and Conventional Example 5 In The results are almost the same.
[0044]
Electrolytic paper impregnated and coated with a paper strength enhancer with reduced cations by an ion exchange resin or the like in the production stage or aqueous solution is similar to the electrolytic paper impregnated and coated with a paper strength enhancer that does not remove cations. By impregnating and applying the enhancer, the same effect as in the prior art (Japanese Patent Laid-Open No. 8-273984) can be seen.
[0045]
Comparative Example 1 is a circular triple paper that is the same raw material as Examples 1 and 2 and Conventional Example 1 and is not impregnated with a paper strength enhancer. In Examples 1 and 2, it was found that the short-circuit defect rate was significantly improved without adversely affecting ESR by improving the tensile strength as compared with Comparative Example 1.
[0046]
Table 3 summarizes the initial values and measured values after 4000 hours of 85 ° C. load test for the capacitance, ESR, and leakage current of each example, conventional example, and comparative example.
[0047]
[Table 3]
Figure 0004450476
[0048]
As shown in Table 3, by reducing the cations in the electrolytic paper, the characteristics almost equal to the initial characteristics can be maintained after the aging test. For example, Examples 1 and 2 use electrolytic paper impregnated with a paper strength enhancer in which the cations in the paper strength enhancer are reduced to 10 ppm or less. Conventional Example 1 uses electrolytic paper impregnated and coated with a paper strength enhancer containing about 2000 ppm of cations with only anions reduced. Comparative Example 1 uses electrolytic paper that is not impregnated with a paper strength enhancer.
[0049]
As in Comparative Example 1, Examples 1 and 2 maintain good characteristics without much difference from the initial characteristics after the successive change test. On the other hand, in Conventional Example 1, the leakage current increases and the capacitance decreases. The same results were obtained for Example 3, Conventional Example 2, Example 5, Conventional Example 4, Example 6, and Conventional Example 5.
[0050]
Example 4 uses electrolytic paper impregnated with a paper strength enhancer in which the cations in the paper strength enhancer are reduced to 100 ppm or less. Conventional Example 3 uses electrolytic paper impregnated with a paper strength enhancer containing only about 3000 ppm of cations with only anions reduced. Examples 1 and 2 and conventional example 1 have similar results.
[0052]
As shown in the results of Tables 1, 2, and 3, the total amount of cations of the paper strength enhancer, particularly Na, K, Ca, and Mg 100 By reducing to ppm or less, even if the paper strength enhancer is impregnated and applied to the electrolytic paper, the conventional ESR is not adversely affected by the improvement of the tensile strength, and the short defect rate is improved. It is apparent that the life characteristics are improved in an electrolytic solution containing ethylene glycol (EG) as a main solvent or in an electrolytic solution containing a lot of water other than that.
[0053]
【The invention's effect】
As described above in detail, the electrolytic capacitor according to the present invention includes the total amount of Na, K, Ca, Mg cations on the electrolytic paper after paper making. 100 It is characterized by impregnating with a paper strength enhancer reduced to less than ppm. Specifically, vegetable gum, starch, semi-synthetic polymer, synthetic high in which cations are reduced to a level that does not corrode or alter aluminum foil. The following effects can be obtained by impregnating and applying electrolytic paper with a diluted solution of a paper strength enhancer such as a molecule.
[0054]
That is, in the electrolytic capacitor obtained by the conventional means, cations such as Na, K, Ca, and Mg in the paper strength enhancer are extracted into the electrolytic solution, and the aluminum foil is corroded or deteriorated. While there is a difficulty in causing an increase or a decrease in capacitance, the total amount of the cations is added to the electrolytic paper after paper making as in the present invention. 100 By impregnating the paper strength enhancer reduced to ppm or less, the short-circuit defect rate can be greatly improved without adversely affecting ESR. Furthermore, in order not to increase the cations in the electrolytic paper after the impregnation application of the paper strength enhancer, even in the electrolytic solution using ethylene glycol as the main solvent, cations are not extracted excessively in the electrolytic solution. The life characteristics can be greatly improved.
[0055]
Furthermore, since the electrolytic solution used in the past is an electrolytic solution mainly containing GBL in which the paper strength enhancer is insoluble, cations in the paper strength enhancer are easily eluted by the electrolytic solution, and the eluted cations are aluminum foil. However, the present invention reduces the amount of extracted cation regardless of the type of electrolyte and lowers the tensile strength at low density. It is possible to provide an electrolytic capacitor that is improved, improves the productivity by improving the short-circuit defect rate without adversely affecting the ESR of the electrolytic capacitor, and has improved life characteristics.

Claims (10)

陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、抄紙後の電解紙にNa,K,Ca,Mgのカチオンを総量で100ppm以下に低減した紙力増強剤を含浸塗布したことを特徴とする電解コンデンサ。In an electrolytic capacitor in which electrolytic paper is interposed between the anode foil and the cathode foil, the paper after the paper making is impregnated with a paper strength enhancer in which the total amount of Na, K, Ca and Mg cations is reduced to 100 ppm or less. An electrolytic capacitor characterized by being applied. 紙力増強剤のNa含有量が25ppm以下である請求項に記載の電解コンデンサ。The electrolytic capacitor according to claim 1 , wherein the Na content of the paper strength enhancer is 25 ppm or less. 紙力増強剤のK含有量が25ppm以下である請求項に記載の電解コンデンサ。The electrolytic capacitor according to claim 1 , wherein the K content of the paper strength enhancer is 25 ppm or less. 紙力増強剤のCa含有量が25ppm以下である請求項に記載の電解コンデンサ。The electrolytic capacitor according to claim 1 , wherein the Ca content of the paper strength enhancer is 25 ppm or less. 紙力増強剤のMg含有量が25ppm以下である請求項1に記載の電解コンデンサ。The electrolytic capacitor according to claim 1, wherein the content of Mg in the paper strength enhancer is 25 ppm or less. 紙力増強剤は澱粉,植物性ガム,半合成高分子,合成高分子から選択された1種又は複数種である請求項1,2,3,又はに記載の電解コンデンサ。The electrolytic capacitor according to claim 1, 2, 3, 4 or 5 , wherein the paper strength enhancer is one or more selected from starch, vegetable gum, semi-synthetic polymer, and synthetic polymer. 紙力増強剤を電解紙に対して0.05重量%〜5.0重量%含浸塗布した請求項1,2,3,4,又はに記載の電解コンデンサ。The electrolytic capacitor according to claim 1, 2, 3, 4, 5 or 6 , wherein a paper strength enhancer is impregnated and coated with 0.05% to 5.0% by weight of electrolytic paper. 電解紙を構成する繊維がマニラ麻パルプ,エスパルトパルプ,サイザル麻パルプ,溶剤紡糸レーヨンから選択された1種又は複数種である請求項1,2,3,4,5,又はに記載の電解コンデンサ。The fiber constituting the electrolytic paper is one or more selected from Manila hemp pulp, esparto pulp, sisal hemp pulp, and solvent-spun rayon, according to claim 1, 2, 3, 4, 5, 6 or 7 . Electrolytic capacitor. 電解紙の密度が0.20g/cm〜0.85g/cmであり、厚さが20μm〜90μmである請求項1,2,3,4,5,6,又はに記載の電解コンデンサ。The density of the electrolyte sheet is 0.20g / cm 3 ~0.85g / cm 3 , electrolyte according to claim 1,2,3,4,5,6, 7 or 8 thickness of 20μm~90μm Capacitor. 電解紙の引張強度が1.1kg/15mm以上である請求項1,2,3,4,5,6,7,又はに記載の電解コンデンサ。The electrolytic capacitor according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9 , wherein the electrolytic paper has a tensile strength of 1.1 kg / 15 mm or more.
JP2000078625A 2000-03-21 2000-03-21 Electrolytic capacitor Expired - Lifetime JP4450476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078625A JP4450476B2 (en) 2000-03-21 2000-03-21 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078625A JP4450476B2 (en) 2000-03-21 2000-03-21 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001267182A JP2001267182A (en) 2001-09-28
JP4450476B2 true JP4450476B2 (en) 2010-04-14

Family

ID=18596011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078625A Expired - Lifetime JP4450476B2 (en) 2000-03-21 2000-03-21 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4450476B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200657A (en) * 2002-12-06 2004-07-15 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP4533003B2 (en) * 2004-06-07 2010-08-25 ニッポン高度紙工業株式会社 Electrolytic capacitor
JP4869875B2 (en) * 2006-11-08 2012-02-08 旭化成せんい株式会社 Separator for condenser

Also Published As

Publication number Publication date
JP2001267182A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP3466206B2 (en) Electrolytic capacitor
JP6674956B2 (en) Electrochemical element separator and electrochemical element
JP4109697B2 (en) Electrolytic capacitor
JP6412805B2 (en) Separator and aluminum electrolytic capacitor
WO2014098180A1 (en) Separator for aluminium electrolytic capacitor, and aluminium electrolytic capacitor
JP6836509B2 (en) Separator for electrochemical element and electrochemical element
EP3358585A1 (en) Separator for electrochemical element and electrochemical element
JP2010239094A (en) Separator for electrolytic capacitor, and electrolytic capacitor
JP4450476B2 (en) Electrolytic capacitor
JPH08273984A (en) Electrolytic capacitor
JP4109696B2 (en) Electrolytic capacitor
JP7012425B2 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP3473965B2 (en) Electrolytic capacitor
JP2886233B2 (en) Electrolytic capacitor
JP4234151B2 (en) Electrolytic capacitor
JP4533003B2 (en) Electrolytic capacitor
JP2002043181A (en) Electrolytic capacitor
JP2004200395A (en) Electrolytic capacitor
JP2004228600A (en) Electrolytic capacitor
JPS6145372B2 (en)
JP2014103158A (en) Separator for electrolytic capacitor and aluminum electrolytic capacitor
JP6850921B1 (en) Separator for electrochemical element and electrochemical element
JP3473966B2 (en) Electrolytic capacitor
JP3264688B2 (en) Electrolytic capacitor
JPH03222315A (en) Electrolytic paper for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent or registration of utility model

Ref document number: 4450476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term