JP2004228600A - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP2004228600A
JP2004228600A JP2004127631A JP2004127631A JP2004228600A JP 2004228600 A JP2004228600 A JP 2004228600A JP 2004127631 A JP2004127631 A JP 2004127631A JP 2004127631 A JP2004127631 A JP 2004127631A JP 2004228600 A JP2004228600 A JP 2004228600A
Authority
JP
Japan
Prior art keywords
paper
electrolytic
fibers
electrolytic capacitor
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127631A
Other languages
Japanese (ja)
Inventor
Jiyunichi Ushimoto
順一 丑本
Hiroaki Wada
浩昭 和田
Taiji Mizobuchi
泰司 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kodoshi Corp
Original Assignee
Nippon Kodoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kodoshi Corp filed Critical Nippon Kodoshi Corp
Priority to JP2004127631A priority Critical patent/JP2004228600A/en
Publication of JP2004228600A publication Critical patent/JP2004228600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic capacitor which has improved short circuit failure rate without adversely affecting the impedance characteristics and improved productivity by using a novel electrolytic paper having a low density and highly improved tensile strength, of which space between fibers is never shielded. <P>SOLUTION: In the electrolytic capacitor which is constituted by interposing electrolytic paper between an anode foil and a cathode foil, the electrolyte paper is made from natural plant fibers having CSF value of 500 ml or more, which are used as a raw material, and then the coupling strength of the fibers is increased by impregnating and applying a paper strengthening agent into the electrolytic paper so that the refined solution of the paper strengthening agent permeates into the fibers with the space between the fibers being kept. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は陽極箔と陰極箔との間に電解紙を介在させて構成した電解コンデンサに係り、特には低密度であると共に大幅に向上した引張強度を有し、しかも繊維間空隙が遮蔽されることがない新規な電解紙を用いることによって、インピーダンス特性に悪影響を与えることなくショート不良率を改善するとともに、生産性を向上させるものである。   The present invention relates to an electrolytic capacitor having an electrolytic paper interposed between an anode foil and a cathode foil, and in particular, has a low density and a significantly improved tensile strength, and furthermore, a gap between fibers is shielded. By using a new electrolytic paper which does not cause any problem, the short-circuit defect rate is improved without adversely affecting the impedance characteristics, and the productivity is improved.

一般に電解コンデンサ,特にアルミ電解コンデンサは、陽極アルミ箔と陰極アルミ箔との間に電解紙を介在させて巻付け形成してコンデンサ素子を作成し、このコンデンサ素子を液状の電解液中に浸漬して電解質を含浸させ、封口して製作している。電解液としては通常エチレングリコール(EG),ジメチルホルムアミド(DMF)又はγ−ブチロラクトン(GBL)等を溶媒とし、これらの溶媒に硼酸やアジピン酸アンモニウム,マレイン酸水素アンモニウム等の有機酸塩を溶解したものを用いてコンデンサ素子の両端から浸透させて製作している。   Generally, an electrolytic capacitor, especially an aluminum electrolytic capacitor, is formed by winding an electrolytic paper between an anode aluminum foil and a cathode aluminum foil to form a capacitor element, and immersing the capacitor element in a liquid electrolyte. It is impregnated with electrolyte and sealed. As an electrolyte, ethylene glycol (EG), dimethylformamide (DMF), γ-butyrolactone (GBL) or the like is usually used as a solvent, and an organic acid salt such as boric acid, ammonium adipate, or ammonium hydrogen maleate is dissolved in these solvents. It is manufactured by permeating the capacitor element from both ends.

これら従来のアルミ電解コンデンサは電解紙中に電解液を含浸させているため、コンデンサとしてのインピーダンス特性、特に等価直列抵抗(以下ESRと略する)が高くなり易く、そのためインピーダンス特性を良くするために電解液の抵抗を下げたり、電解紙を薄くするか密度を低くする手段の外、電解紙の原料を通常の木材クラフトパルプから針葉樹木材パルプ,マニラ麻パルプ,エスパルトパルプ等に変更する手段が用いられている。しかしながら、電解液の抵抗値を下げると、アルミ箔に対して腐蝕性を与える原因となり、一方、電解紙を薄くしたり密度を低くすると必然的に引張強度が低下してショート不良率が増大し、仮にショートしなかった場合でも製品化されて市場に出された後のショート不良率が高くなる難点がある。   Since these conventional aluminum electrolytic capacitors impregnate the electrolytic solution into the electrolytic paper, the impedance characteristics of the capacitors, particularly the equivalent series resistance (hereinafter abbreviated as ESR), tend to be high. In addition to the means of lowering the resistance of the electrolyte, making the electrolytic paper thinner or lowering its density, other means are used to change the raw material of the electrolytic paper from ordinary wood kraft pulp to softwood pulp, manila hemp pulp, esparto pulp, etc. Have been. However, lowering the resistance value of the electrolytic solution causes corrosiveness to the aluminum foil. On the other hand, thinning or lowering the density of the electrolytic paper inevitably lowers the tensile strength and increases the short-circuit failure rate. However, even if the short circuit does not occur, there is a problem that the short-circuit defect rate after the product is put on the market and put on the market increases.

そこでショート不良率を下げるためには電解紙の厚さを厚くしたり、密度を高くしたり、同密度の場合にはその原料であるパルプの叩解の程度を示すJIS P 8121によるCSF(Canadian Standard Freeness)の数値を小さくすればパルプの繊維がフィブリル化して細かくなり、得られる電解紙が緻密となり、引張強度が増大してショート不良率が改善されることが知られている。また、これらの項目のESRに与える影響は電解紙を厚くすると一次式的にESRが悪化し、密度を高めると二次式的にESRが悪化することが判明している。即ちESRを改善するには、ショート不良率の改善とは逆に電解紙を薄く、その密度を低くする必要がある。   Therefore, in order to reduce the short-circuit defect rate, the thickness of the electrolytic paper is increased, the density is increased, and in the case of the same density, CSF (Canadian Standard) according to JIS P 8121 indicating the degree of beating of the pulp as a raw material is used. It is known that, when the value of (Freeness) is reduced, the fibers of the pulp become fibrillated and become finer, the resulting electrolytic paper becomes denser, the tensile strength increases, and the short-circuit failure rate is improved. In addition, it has been found that the influence of these items on the ESR deteriorates in a linear manner when the electrolytic paper is thickened, and deteriorates in a quadratic manner when the density is increased. That is, in order to improve the ESR, it is necessary to make the electrolytic paper thinner and lower its density, contrary to the improvement of the short-circuit defect rate.

そのため、ショート不良率の改善とESRの改善という双方の目的を達成するために、前記したように電解紙の原料を通常の木材クラフトパルプから針葉樹木材パルプ,マニラ麻パルプ,エスパルトパルプ等の繊維径のより小さなパルプへ変更することによって、薄く、かつ、低密度で緻密な電解紙を製造する試みがなされている。現在電解紙として最も多く採用されている混抄品は、マニラ麻パルプとエスパルトパルプの混抄品であって、繊維径が細く剛性の高いエスパルトパルプをマニラ麻パルプへ混合することによって、マニラ麻の外観の粗さを解消し密度が低くても緻密性を有する電解紙を得ることができる(特許文献1参照)。   Therefore, in order to achieve both the objectives of improving the short defect rate and improving the ESR, as described above, the raw material of the electrolytic paper is converted from ordinary wood kraft pulp to coniferous wood pulp, manila hemp pulp, fiber diameter of esparto pulp or the like. Attempts have been made to produce thin, low-density, dense electrolytic paper by changing to a smaller pulp. Currently, the most widely used blended paper for electrolytic paper is a blended paper of Manila hemp pulp and esparto pulp.By mixing highly rigid esparto pulp with thin fiber diameter into Manila hemp pulp, the appearance of Manila hemp is improved. Electrolytic paper having high density can be obtained even if roughness is eliminated and density is low (see Patent Document 1).

更に、電解紙の原料として原料を叩解してCSFの数値を小さくしても抄造された紙の密度が高くなり難いサイザルパルプを使用することにより、CSFの小さい原料で密度の低い電解紙を得ることが提供されている(特許文献2参照)。   Further, by using sisal pulp, in which the density of the paper produced is hardly increased even if the CSF is reduced by beating the raw material as a raw material of the electrolytic paper, an electrolytic paper having a low density is obtained from a raw material having a small CSF. Is provided (see Patent Document 2).

また、ショート不良率を改善するには電解紙の箔バリに対する耐性を向上させることであり、厚さ,密度,緻密性,ピンホールと共に引張強度を向上させることも重要な課題である。そのため、前記したようにCSFの数値を小さくする他、原料中にビニロンバインダー繊維,ポリエチレン繊維等低融点の熱融着繊維を混合し、乾燥工程での温度にて溶融させ、繊維間に接着強度を持たせ引張強度を増大させる手段や、ポリプロピレン繊維,ナイロン繊維等の熱可塑性繊維を混抄した紙を二次加工にて熱処理を施し融着させ引張強度を増大させる手段が知られている。これらの手段では前記した天然植物繊維の他にビスコースレーヨン繊維,ポリプロピレン繊維,ポリイミド繊維,アラミド繊維等の合成繊維の他、ガラス繊維,アルミナシリカ繊維等の無機繊維も配合し低密度、かつ、空隙率の高い紙で、実用レベルの引張強度を有する紙を得ることが可能である。   Further, in order to improve the short-circuit defect rate, it is necessary to improve the resistance of the electrolytic paper to the burrs, and it is also important to improve the tensile strength as well as the thickness, density, denseness and pinholes. Therefore, as described above, in addition to reducing the value of CSF, heat-fused fibers having a low melting point such as vinylon binder fibers and polyethylene fibers are mixed with the raw materials and melted at the temperature in the drying step, and the adhesive strength between the fibers is reduced. Means for increasing the tensile strength, and means for increasing the tensile strength by subjecting paper mixed with thermoplastic fibers such as polypropylene fibers and nylon fibers to heat treatment by secondary processing and fusing them. In these means, in addition to the above-mentioned natural plant fibers, synthetic fibers such as viscose rayon fibers, polypropylene fibers, polyimide fibers, and aramid fibers, as well as inorganic fibers such as glass fibers and alumina silica fibers are blended to obtain a low density and With high porosity, it is possible to obtain paper having a practical level of tensile strength.

また、紙の一般的な引張強度の増大として製造工程中の原料懸濁液に澱粉,植物性ガム,半合成高分子及び合成高分子等を添加し、繊維表層に定着させ繊維相互の結合強度を増大させる手段が知られている。
特公昭61−45379号公報 特開昭62−126622号公報
In addition, starch, vegetable gum, semi-synthetic polymer, synthetic polymer, etc. are added to the raw material suspension during the manufacturing process to increase the general tensile strength of paper, and it is fixed to the fiber surface layer and the bonding strength between fibers is increased. There are known means for increasing.
JP-B-61-45379 JP-A-62-126622

しかしながら、前記マニラ麻パルプとエスパルトパルプを混抄した特許文献1においては、エスパルトパルプが非常に剛性であるため、マニラ麻パルプとの相性が悪く、エスパルトパルプを混合することによって極度に引張強度が減少してしまう。そのためにマニラ麻パルプのCSFの数値を小さくし、フィブリルを無数に発生させて繊維間に働く水素結合を増大させて電解紙の強度を高めて引張強度を維持する必要がある。ところが、近時この引張強度を高めるためのマニラ麻パルプのフィブリルによって、繊維間隙は埋められてしまうため、剛直なエスパルトパルプの存在下では低密度の紙は作成できても、返ってESRに悪影響のあることが判明してきた。   However, in Patent Document 1 in which the manila hemp pulp and the esparto pulp are mixed, since the esparto pulp is very rigid, the compatibility with the manila hemp pulp is poor, and the tensile strength is extremely increased by mixing the esparto pulp. Will decrease. For this purpose, it is necessary to reduce the CSF value of the manila hemp pulp, generate countless fibrils, increase the hydrogen bonds acting between the fibers, increase the strength of the electrolytic paper, and maintain the tensile strength. However, recently, the fibrils of Manila hemp pulp to increase the tensile strength fill the fiber gap, so even if low density paper can be made in the presence of rigid esparto pulp, it will adversely affect ESR. Has been found.

一方、サイザルパルプを原料とする特許文献2によれば、サイザルパルプは繊維径がマニラ麻パルプと略同径で、かつ、マニラ麻パルプより剛性が高いため、薄い紙が抄き難いという問題点があり、しかも外観上の粗さがあるため、引張強度が低く、素子巻取り工程上での断紙やショート不良率が増加することが判明してきた。   On the other hand, according to Patent Literature 2 using sisal pulp as a raw material, since sisal pulp has a fiber diameter substantially the same as that of Manila hemp pulp, and has a higher rigidity than Manila hemp pulp, there is a problem that it is difficult to make thin paper. In addition, it has been found that, because of the appearance roughness, the tensile strength is low, and the rate of paper breakage and short-circuit failure in the element winding step increases.

また、CSFの数値を小さくすることなく引張強度を増大させることのできる熱融着繊維を混抄して乾燥工程にて溶融させ繊維相互の結合を増大させる手段、或は熱可塑性繊維を混抄し二次加工の熱処理で融着させ引張強度を増大させる手段では、バインダー繊維及び熱可塑性繊維が溶融し膜状(フィルム状)となり繊維間隙を遮蔽して電解液のイオン電導を阻害するため、低密度紙で引張強度が強くてもESRは悪化する結果となることが判明している。   Means for increasing the bonding between fibers by blending heat-fusible fibers capable of increasing the tensile strength without reducing the numerical value of CSF and melting them in a drying step, or blending thermoplastic fibers to form a composite fiber. In the means for increasing the tensile strength by fusing in the next processing heat treatment, the binder fiber and the thermoplastic fiber are melted to form a film (film), which blocks the fiber gap and inhibits the ionic conduction of the electrolytic solution. It has been found that high tensile strength of paper results in poor ESR.

更に、紙の一般的な引張強度の増大手段である製造工程中の原料懸濁液に澱粉,植物性ガム,半合成高分子及び合成高分子等を添加し、繊維表層に定着させ繊維相互の結合強度を増大させる手段によれば、CSFの数値を小さくしミクロフィブリルを発生させ繊維表面積を増大させることのできる高密度用原料に対しては、ある程度は有効ではある。しかしながら、近年特に電解紙に要求される低ESR化に対しては必ずしも有効ではない。即ち、電解紙の低ESR化に対してはより低密度に製造することが重要であり、そのために未叩解原料か僅かに叩解を施した程度の原料を前提として製造する必要がある。これは原料繊維の叩解処理を施しCSFの数値を小さくすれば必然的に密度が上昇するためである。従って、低ESR化を目的とする電解紙においては未叩解原料か僅かに叩解を施した程度の原料を使用するため繊維表面積は増大しない。そのため、製造工程中の原料懸濁液に前記紙力増強剤を内添したとしても定着歩留りが極めて悪く、大幅な引張強度の増大は期待できず、低ESR化を目的とする電解紙としては引張強度が充分でない。   Further, starch, vegetable gum, semi-synthetic polymer, synthetic polymer, etc. are added to the raw material suspension during the manufacturing process, which is a general means of increasing the tensile strength of paper, and the mixture is fixed to the fiber surface layer to allow the fibers to interact with each other. According to the means for increasing the bonding strength, it is effective to some extent for high-density raw materials capable of reducing the numerical value of CSF, generating microfibrils and increasing the fiber surface area. However, in recent years, it is not necessarily effective especially for reducing the ESR required for electrolytic paper. That is, it is important to manufacture the electrolytic paper at a lower density in order to reduce the ESR. Therefore, it is necessary to manufacture the raw material on the premise of an unbeaten raw material or a raw material that has been slightly beaten. This is because if the numerical value of CSF is reduced by subjecting the raw fiber to beating treatment, the density inevitably increases. Therefore, in the electrolytic paper for the purpose of reducing the ESR, the fiber surface area does not increase because the unbeaten raw material or the raw material which is slightly beaten is used. Therefore, even if the paper strength enhancer is internally added to the raw material suspension during the manufacturing process, the fixing yield is extremely poor, and a large increase in tensile strength cannot be expected. Insufficient tensile strength.

また、前記の各種天然植物繊維を100%使用する限り、電解紙の下限密度は0.27g/cmであり、これ以下に密度を低くすると、電解紙製造の巻取り段階で紙切れが発生し、仮に製作できたとしてもコンデンサの素子巻取り工程において紙切れが多発するため実用に致っていないのが現状である。 In addition, as long as the above-mentioned various natural plant fibers are used at 100%, the lower limit density of the electrolytic paper is 0.27 g / cm 3 , and if the density is lower than this, paper breakage occurs at the winding stage of electrolytic paper production. However, even if it can be manufactured, it is not suitable for practical use due to the frequent occurrence of paper breakage in the element winding process of the capacitor.

一方、コンデンサの製造過程においてはコンデンサ素子に巻取る際の電解紙切れの問題があり、特に近年の低ESR化による低密度紙への移行と共に電解紙切れの増大によって、その生産性を著しく阻害する要因ともなっており、その改善が求められている。   On the other hand, in the manufacturing process of capacitors, there is a problem of running out of electrolytic paper at the time of winding on a capacitor element. Therefore, the improvement is required.

そこで本発明は上記事情に鑑みてなされたものであって、低密度であると共に大幅に向上した引張強度を有し、しかも繊維間空隙が遮蔽されることがない新規な電解紙を用いることによって、インピーダンス特性に悪影響を与えることなくショート不良率を改善するとともに、コンデンサの素子巻取り工程での断紙を無くし生産性を向上させる電解コンデンサを提供することを目的とするものである。   Therefore, the present invention has been made in view of the above circumstances, has a low density and significantly improved tensile strength, and by using a new electrolytic paper that does not block the inter-fiber voids. It is an object of the present invention to provide an electrolytic capacitor that improves the short-circuit failure rate without adversely affecting impedance characteristics and eliminates paper breakage in a capacitor winding process to improve productivity.

本発明は上記の目的を達成するために、陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、CSFの値が500ml以上の天然植物繊維を原料として電解紙を抄紙するとともに、抄紙後の電解紙に紙力増強剤の精製溶液を含浸塗布した構成、CSFの値が500ml以上の天然植物繊維を原料として電解紙を抄紙するとともに、抄紙後の電解紙に紙力増強剤の精製溶液を紙層中の繊維相互の接触点に定着するように含浸塗布させた構成、CSFの値が500ml以上の天然植物繊維を原料として電解紙を抄紙するとともに、抄紙後の電解紙に紙力増強剤の精製溶液を含浸塗布することにより、該紙力増強剤の精製溶液を繊維内部に浸透させて、繊維間空隙を維持した状態で繊維間の結合強度を増大させた構成を提供する。   In order to achieve the above object, the present invention provides an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil. At the same time, the electrolytic paper after the papermaking is impregnated with a purified solution of a paper strength enhancer, and the electrolytic paper is made from a natural plant fiber having a CSF value of 500 ml or more as a raw material. The paper is made from natural vegetable fiber with a CSF value of 500 ml or more as a raw material, and the purified paper is made by impregnating and coating the purified solution of the agent at the contact points between the fibers in the paper layer. By impregnating and applying the purified solution of the paper strength enhancer to the inside of the fibers, the purified solution of the paper strength enhancer is permeated into the fibers to increase the bonding strength between the fibers while maintaining the space between the fibers. provide

また、紙力増強剤は澱粉,植物性ガム,半合成高分子又は合成高分子から選択された1種又は複数のものである構成、紙力増強剤を電解紙に対して0.05重量%〜5.0重量%又は0.1重量%〜3.0重量%含浸塗布した構成、電解紙の不純物を化成性で評価した場合300〜650V又は500〜650Vである構成、電解紙を構成する天然植物繊維がマニラ麻パルプ,サイザル麻パルプ,エスパルトパルプから選択された1種又は複数のものである構成、電解紙の密度が0.20〜0.70g/cmであり、厚さが20〜70μm又は密度が0.20〜0.35g/cmであり、厚さが40〜60μmである構成、電解紙の引張強度が1.1kg/15mm以上である構成を提供する。 The paper-strength enhancer is one or more selected from starch, vegetable gum, semi-synthetic polymer or synthetic polymer. To 5.0% by weight or 0.1% to 3.0% by weight impregnated and applied; 300 to 650V or 500 to 650V when impurities in the electrolytic paper are evaluated by chemical conversion; A configuration in which the natural plant fiber is one or more selected from manila hemp pulp, sisal pulp, and esparto pulp, the density of the electrolytic paper is 0.20 to 0.70 g / cm 3 , and the thickness is 20. Provided is a configuration in which the thickness is from 40 to 70 μm or a density is from 0.20 to 0.35 g / cm 3 and the thickness is from 40 to 60 μm, and the tensile strength of the electrolytic paper is 1.1 kg / 15 mm or more.

上記手段による本発明によれば、電解紙に紙力増強剤の精製溶液を含浸塗布することにより、天然植物繊維に僅かな叩解を施した程度の原料もしくは従来よりも叩解の程度を浅くしたCSFの値が500ml以上というCSFの数値の大きい原料を使用しても、紙層中の繊維相互の接触点に紙力増強剤が効果的に定着し、繊維間の結合強度が増大すると共に、繊維内部まで浸透するため、単繊維自体の強度をも増大させることができる。従って、電解紙は繊維間空隙を維持した状態で繊維の結合強度が高まるため、ESRに悪影響を及ぼすことなく引張強度を格段に改善でき、結果としてコンデンサ素子製作時の断紙をなくすることができる。即ち、本発明にかかる電解紙によれば、繊維の結合強度を高めても、従来のように叩解原料におけるミクロフィブリルや熱融着繊維等による薄膜形成による繊維間空隙の遮蔽がないのである。そのため、紙力増強剤の精製溶液を含浸塗布した電解紙を用いて製作した電解コンデンサは、薄く低密度であることにより低ESRを実現できると同時に、繊維の結合強度の増加による引張強度の向上によりショート不良率を著しく減少させることができ、更に生産性をも向上させることができる。また、紙力増強剤の不純物を精製低減しているため、アルミ箔を腐食又は変質させることがない。   According to the present invention by the above-mentioned means, by impregnating and coating an electrolytic paper with a purified solution of a paper strength enhancer, a raw material having a degree of beating the natural plant fiber slightly or a CSF having a smaller degree of beating than the conventional ones Even when a raw material having a large CSF value of 500 ml or more is used, the paper strength enhancer is effectively fixed to the contact points between the fibers in the paper layer, and the bonding strength between the fibers increases, and the fiber strength increases. Since it penetrates into the inside, the strength of the single fiber itself can also be increased. Therefore, in the electrolytic paper, since the bonding strength of the fibers is increased while maintaining the inter-fiber space, the tensile strength can be remarkably improved without adversely affecting the ESR. As a result, it is possible to eliminate the breakage during the production of the capacitor element. it can. That is, according to the electrolytic paper of the present invention, even if the bonding strength of the fibers is increased, there is no shielding of the inter-fiber gap due to the formation of a thin film using microfibrils, heat-fused fibers and the like in the beating raw material as in the related art. Therefore, electrolytic capacitors manufactured using electrolytic paper impregnated with a purified solution of a paper strength enhancer can achieve low ESR due to thinness and low density, and at the same time, improve tensile strength by increasing fiber bond strength. As a result, the short-circuit defect rate can be significantly reduced, and the productivity can be further improved. Further, since the impurities of the paper strength agent are purified and reduced, the aluminum foil is not corroded or deteriorated.

以下に本発明にかかる電解コンデンサの最良の実施形態を説明する。本発明は抄紙後の電解紙に紙力増強剤の精製溶液を含浸塗布したことに特徴を有する。電解紙に塗布する紙力増強剤としてはグァーガム,ローカストビーンガム,トラガカントガム等の植物性ガム類,コーンスターチ,ポテト澱粉,小麦澱粉,タピオカ澱粉等の澱粉類,ジアルデヒドデンプン,カチオンデンプン,メチルセルロース,カルボキシメチルセルロース等の半合成高分子,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂,尿素樹脂等の合成高分子が使用される。その中でも入手性,経済性,強度増強効果,作業性等からしてジアルデヒドデンプン,ポリアクリルアミド樹脂,ポリエチレンイミン樹脂が特に好ましい。   Hereinafter, a preferred embodiment of an electrolytic capacitor according to the present invention will be described. The present invention is characterized in that a purified solution of a paper strength agent is impregnated and applied to electrolytic paper after papermaking. Examples of the paper strength enhancer applied to the electrolytic paper include vegetable gums such as guar gum, locust bean gum, tragacanth gum, starches such as corn starch, potato starch, wheat starch, tapioca starch, dialdehyde starch, cationic starch, methyl cellulose, carboxylate. Semi-synthetic polymers such as methylcellulose, and synthetic polymers such as polyacrylamide resin, polyethyleneimine resin, and urea resin are used. Among them, dialdehyde starch, polyacrylamide resin, and polyethyleneimine resin are particularly preferable in view of availability, economy, strength enhancing effect, workability, and the like.

本発明では前記紙力増強剤の精製溶液を使用する。本発明で精製溶液とは希釈水溶液としてアルミ箔を腐食又は変質させないレベルまで不純物をイオン交換樹脂等により除去したものであり、電解紙の不純物を化成性で評価した場合に一般用途のものでは300V〜650Vの範囲にあるもので使用可能であり、更に高温度長寿命用等の対応のものとしては500V〜650Vの範囲とすることにより信頼性が増すこととなる。なお、紙力増強剤そのものは水溶液として精製されたものであれば前記したものに限定されるものではなく、適宜のものを使用可能である。また、紙力増強剤は上記条件に適合する精製溶液であればよく、その精製処理の方法はイオン交換樹脂の他、電気透析法,限外濾過法,逆浸透法等のどのような方法であってもよい。   In the present invention, a purified solution of the paper strength agent is used. In the present invention, the purified solution is a dilute aqueous solution in which impurities are removed by an ion exchange resin or the like to a level that does not corrode or alter the aluminum foil. It can be used in the range of 650 V to 650 V. Further, when the temperature is in the range of 500 V to 650 V for high temperature and long life use, the reliability is increased. The paper strength enhancer itself is not limited to the above-described one as long as it is purified as an aqueous solution, and an appropriate one can be used. Further, the paper strength agent may be a purified solution that meets the above conditions, and the method of the purification treatment may be any method such as an electrodialysis method, an ultrafiltration method, and a reverse osmosis method, in addition to the ion exchange resin. There may be.

紙力増強剤は電解紙に対して0.05重量%〜5.0重量%、好ましくは0.1重量%〜3.0重量%を含浸塗布する。この範囲において目的とする低密度であると共に大幅に向上した引張強度を有し、しかも繊維間空隙が遮蔽されることがない新規な電解紙を得ることができた。   The paper strength enhancer is impregnated and applied in an amount of 0.05% by weight to 5.0% by weight, preferably 0.1% by weight to 3.0% by weight, based on the electrolytic paper. In this range, it was possible to obtain a novel electrolytic paper having the desired low density and significantly improved tensile strength, and in which the inter-fiber voids were not shielded.

この含浸塗布された紙力増強剤の精製溶液によって、紙層中の繊維相互の接触点に紙力増強剤が効果的に定着し、繊維間の結合強度が増大すると共に、繊維内部まで浸透するため、単繊維自体の強度をも増大させることができる。従って、電解紙は繊維間空隙を維持した状態で繊維の結合強度が高まる。しかも、従来のように過度に叩解してミクロフィブリルを発生したり、熱融着繊維等の造膜による繊維間隙の遮蔽がなく、低密度で薄く、しかも大きな引張強度を有することができる。   By the impregnated and purified solution of the paper strength enhancer, the paper strength enhancer is effectively fixed at the points of contact between the fibers in the paper layer, and the bond strength between the fibers is increased, and the fibers penetrate into the interior of the fibers. Therefore, the strength of the single fiber itself can be increased. Therefore, in the electrolytic paper, the fiber bonding strength is increased while maintaining the inter-fiber voids. Moreover, unlike the conventional method, the fibers are not beaten excessively to generate microfibrils or the fiber gap is not blocked by the formation of a film made of a heat-fused fiber or the like.

紙力増強剤の精製溶液を含浸塗布する被塗布紙としては、1つの円網バット部を有した円網抄紙機(円網一重紙),あるいは2つ以上複数の円網バット部を有した円網多層コンビネーションマシン(円網多重紙)等の適宜の抄紙機にて抄造された乾紙状態の電解紙を使用する。   The paper to be coated impregnated with the purified solution of the paper strength enhancer was a circular paper machine having a single circular vat (circular single-layer paper), or had two or more circular vats. Electrolytic paper in a dry paper state produced by a suitable paper machine such as a circular mesh multilayer combination machine (circular mesh multiplex paper) is used.

この抄紙後の乾紙状態の電解紙に目標強度に応じて希釈した紙力増強剤の精製溶液を含浸塗布する。塗布方式としてはダイレクトロールコータ,ディップコータ,スプレーコータ,キッスロールコータ等の塗布方式で浸漬され、プレスロールにて脱液調整と厚さ調整を行った後、熱風乾燥やシリンダードライ方式等によって乾燥させて、所定の厚さ、密度の電解紙を製作する。この方式が二次加工であっても良いが、抄紙後にこれらの設備を設置したオンライン方式とすると生産性を阻害することなく量産することが可能となる。この方式によれば、例えば従来の原料懸濁液へのアニオン紙力増強剤の内部添加の如く、硫酸バンドやポリ塩化アルミ等の不純物の多い定着助剤を必要とせず、アニオン,ノニオン,カチオンの何れの紙力増強剤でも使用することができる。なお、紙力増強剤の精製溶液を含浸塗布する電解紙としては抄紙後の乾紙状態の電解紙が効率が良く適当である。湿紙状態の電解紙に噴霧塗布することも可能であるが、湿紙の水分率が高いため、吸引脱水やプレス脱水にて紙力増強剤が流出することとなり、効率が悪く、又抄紙フェルやドライヤーシリンダーを汚染するため、従来の電解紙の抄紙に支障を来すので、乾紙状態の電解紙に含浸塗布することが適当である。   After the paper making, the electrolytic paper in a dry paper state is impregnated with a purified solution of a paper strength enhancer diluted according to a target strength. As a coating method, it is immersed in a coating method such as a direct roll coater, dip coater, spray coater, kiss roll coater, etc., and after dewatering adjustment and thickness adjustment with a press roll, it is dried by hot air drying or cylinder dry method. Then, an electrolytic paper having a predetermined thickness and density is manufactured. This method may be secondary processing, but if it is an online method in which these facilities are installed after papermaking, mass production can be performed without impairing productivity. According to this method, for example, unlike the conventional internal addition of an anionic paper-strengthening agent to a raw material suspension, a fixing aid containing a large amount of impurities such as a sulfuric acid band or polyaluminum chloride is not required. Can be used. In addition, as the electrolytic paper to be impregnated with the purified solution of the paper strength agent, an electrolytic paper in a dry paper state after papermaking is suitable with high efficiency. Spray coating on electrolytic paper in the wet paper state is also possible, but due to the high moisture content of the wet paper, the paper strength enhancer flows out by suction dehydration or press dehydration, resulting in poor efficiency. In addition, it impairs the conventional paper making of electrolytic paper because it contaminates the dryer cylinder and the dryer cylinder. Therefore, it is appropriate to impregnate and apply the electrolytic paper in a dry paper state.

また、含浸塗布,プレス加重,乾燥の方法及びこれらの条件によっては抄紙後の電解紙の厚さ,密度を調整することも可能であり、従来、天然植物繊維では未叩解原料でも不可能とされていた超低密度電解紙を製作することが可能となる。更に引張強度の増大により素子巻取り工程での断紙を防止すると共に電解紙中の微細繊維をも強固に固着するため電解紙の表面強度が増大し、電解紙の裁断時やコンデンサ素子巻取り工程での繊維脱落による紙粉の発生をも防止することができ、ラインの清掃頻度を減少させ工程の作業を円滑にすることも可能となる。   Also, depending on the method of impregnation coating, press load, drying, and these conditions, it is possible to adjust the thickness and density of the electrolytic paper after papermaking. It becomes possible to manufacture the ultra-low density electrolytic paper that had been used. In addition, the increase in tensile strength prevents breakage in the element winding process and also firmly fixes the fine fibers in the electrolytic paper, increasing the surface strength of the electrolytic paper, cutting the electrolytic paper and winding the capacitor element. It is also possible to prevent the generation of paper dust due to the falling off of fibers in the process, and it is also possible to reduce the frequency of line cleaning and to facilitate the work in the process.

得られる電解紙の密度は0.20〜0.70g/cm,厚さ20〜70μm、好ましくは密度0.20〜0.35g/cm,厚さ40〜60μmとすることが適当である。また、電解紙の不純物を化成性で評価した場合300〜650V、好ましくは500〜650Vとし、引張強度1.1kg/15mm以上とすることが適当である。電解紙の高信頼性を維持するため、電解紙の不純物を化成性によって評価し、該化成性の評価基準を満たしていることが本発明の特徴の一つである。 The density of the obtained electrolytic paper is suitably 0.20 to 0.70 g / cm 3 and a thickness of 20 to 70 μm, preferably 0.20 to 0.35 g / cm 3 and a thickness of 40 to 60 μm. . When the impurities in the electrolytic paper are evaluated by chemical conversion, the voltage is 300 to 650 V, preferably 500 to 650 V, and the tensile strength is suitably 1.1 kg / 15 mm or more. One of the features of the present invention is that impurities in the electrolytic paper are evaluated by chemical conversion in order to maintain high reliability of the electrolytic paper, and the evaluation criteria for the chemical conversion are satisfied.

このようにして得られた電解紙を陽極アルミ箔と陰極アルミ箔との間に介在させて巻きつけ形成した後、液状の電解質を含浸させ、封口して電解コンデンサを製作する。   The electrolytic paper thus obtained is wound between an anode aluminum foil and a cathode aluminum foil to form a coil, then impregnated with a liquid electrolyte and sealed to produce an electrolytic capacitor.

以下に本発明にかかる具体的な各種実施例と比較例及び従来例を示す。なお、電解コンデンサは、タブ付けした陽極箔と陰極箔の間に両極が接触しないように電解紙を介在させ、巻取りして電解コンデンサ素子を形成した後、所定の電解液を含浸させてケースに封入し、エージングを行って、50WV,220μFのアルミ乾式コンデンサを得た。   Hereinafter, specific examples, comparative examples, and conventional examples according to the present invention will be described. The electrolytic capacitor is interposed between the anode and cathode foils with tabs so that the electrodes do not come into contact with each other, wound up to form an electrolytic capacitor element, and then impregnated with a predetermined electrolytic solution. And subjected to aging to obtain a 50 WV, 220 μF aluminum dry capacitor.

マニラ麻パルプ100重量%使用してCSF720mlに叩解し、厚さ49.9μm,密度0.275g/cm,引張強度0.6kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したジアルデヒドデンプンの希釈溶液を浸漬し、プレスロールでジアルデヒドデンプンが紙に対し2.8重量%になるよう脱液調整後熱風乾燥によって厚さ59.8μm,密度0.236g/cm,引張強度1.2kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using 100% by weight of Manila hemp pulp, beaten to 720 ml of CSF to make a circular mesh double paper having a thickness of 49.9 μm, a density of 0.275 g / cm 3 and a tensile strength of 0.6 kg / 15 mm, and then use a direct roll coater. A diluted solution of dialdehyde starch purified with an ion exchange resin is immersed in the solution, and the pressure of the dialdehyde starch is adjusted to 2.8% by weight of the paper with a press roll. An electrolytic paper having 236 g / cm 3 and a tensile strength of 1.2 kg / 15 mm was obtained. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

マニラ麻パルプ70重量%とサイザル麻パルプ30重量%の混合原料をCSF710mlに叩解し、厚さ47.6μm,密度0.286g/cm,引張強度0.6kg/15mmの円網二重紙で抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬しプレスロールでポリアクリルアミドが紙に対し1.2重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ50.0μm,密度0.275g/cm,引張強度1.4kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 A mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of sisal hemp pulp was beaten into 710 ml of CSF, and papermaking was performed using a circular double-sheet paper having a thickness of 47.6 μm, a density of 0.286 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm. Then, a dilute solution of polyacrylamide resin purified by ion exchange resin is immersed in a direct roll coater, dewatered by press roll so that the polyacrylamide becomes 1.2% by weight with respect to the paper, dried by a cylinder dryer, and dried. An electrolytic paper having a thickness of 50.0 μm, a density of 0.275 g / cm 3 and a tensile strength of 1.4 kg / 15 mm was obtained. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

エスパルトパルプ60重量%とマニラ麻40重量%の混合原料を使用しCSF650mlに叩解し、厚さ39.6μm,密度0.348g/cm,引張強度0.8kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対し0.8重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ40.2μm,密度0.346g/cm,引張強度1.8kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using a mixed raw material of 60% by weight of esparto pulp and 40% by weight of Manila hemp, beaten to 650 ml of CSF to obtain a circular mesh double paper having a thickness of 39.6 μm, a density of 0.348 g / cm 3 and a tensile strength of 0.8 kg / 15 mm. After making paper, dilute solution of polyacrylamide resin purified by ion exchange resin is immersed in direct roll coater, adjusted to remove 0.8% by weight of polyacrylamide based on paper by press roll, and dried by cylinder dryer An electrolytic paper having a thickness of 40.2 μm, a density of 0.346 g / cm 3 and a tensile strength of 1.8 kg / 15 mm was obtained. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

エスパルトパルプ50重量%とマニラ麻50重量%の混合原料を使用しCSF600mlに叩解し、厚さ41.9μm,密度0.482g/cm,引張強度3.0kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対し0.5重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ40.0μm,密度0.506g/cm,引張強度4.4kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using a mixed raw material of 50% by weight of esparto pulp and 50% by weight of manila hemp, beaten to 600 ml of CSF to obtain a circular mesh double paper having a thickness of 41.9 μm, a density of 0.482 g / cm 3 and a tensile strength of 3.0 kg / 15 mm. After making paper, dilute solution of polyacrylamide resin purified by ion exchange resin is immersed in direct roll coater, adjusted to remove polyacrylamide to 0.5% by weight of paper by press roll, and dried by cylinder dryer. An electrolytic paper having a thickness of 40.0 μm, a density of 0.506 g / cm 3 and a tensile strength of 4.4 kg / 15 mm was obtained. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

エスパルトパルプ40重量%とマニラ麻60重量%の混合原料を使用しCSF500mlに叩解し、厚さ30.6μm,密度0.592g/cm,引張強度3.3kg/15mmの円網一重紙を抄紙した後、ダイレクトロールコータにてイオン交換樹脂で精製したポリアクリルアミド樹脂の希釈溶液を浸漬し、プレスロールでポリアクリルアミドが紙に対し0.3重量%になるよう脱液調整後シリンダードライヤーで乾燥し厚さ30.3μm,密度0.603g/cm,引張強度4.7kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。 Using a raw material mixture of 40% by weight of esparto pulp and 60% by weight of manila hemp, beaten to 500 ml of CSF, and made a single-mesh net paper having a thickness of 30.6 μm, a density of 0.592 g / cm 3 and a tensile strength of 3.3 kg / 15 mm. After that, a dilute solution of polyacrylamide resin purified by ion exchange resin is immersed in a direct roll coater, and depressurization is adjusted to 0.3% by weight of polyacrylamide with respect to paper by a press roll, and then dried by a cylinder dryer. Electrolytic paper having a thickness of 30.3 μm, a density of 0.603 g / cm 3 , and a tensile strength of 4.7 kg / 15 mm was obtained. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔比較例1〕→実施例1に対応
マニラ麻パルプをCSF720mlに叩解した原料100重量%を使用して、厚さ50.2μm,密度0.277g/cm,引張強度0.6kg/15mmの円網二重紙を抄紙した後、ダイレクトロールコータにて市販のエポキシ樹脂(ポリアミドポリアミンエピクロルヒドリン樹脂)の希釈溶液を浸漬し、プレスロールでエポキシ樹脂が紙に対し2.5重量%になるよう脱液調整後熱風乾燥によって厚さ59.0μm,密度0.237g/cm,引張強度1.1kg/15mmの電解紙を得た。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Comparative Example 1] → Corresponding to Example 1 A circle having a thickness of 50.2 μm, a density of 0.277 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm was prepared by using 100% by weight of a raw material obtained by beating Manila hemp pulp into 720 ml of CSF. After making a double-sided paper, a dilute solution of a commercially available epoxy resin (polyamide polyamine epichlorohydrin resin) is immersed in a direct roll coater, and depressurized by a press roll so that the epoxy resin becomes 2.5% by weight of the paper. After the adjustment, hot-air drying was performed to obtain electrolytic paper having a thickness of 59.0 μm, a density of 0.237 g / cm 3 , and a tensile strength of 1.1 kg / 15 mm. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔従来例1〕→実施例1に対応
サイザル麻パルプをCSF450mlまで叩解した原料30重量%とチョップドガラス繊維50重量%及びビニロンバインダー繊維20重量%の混合原料を使用して、抄紙機のシリンダードライヤー上でビニロンバインダー繊維を熱融着させ、厚さ60.5μm,密度0.235,引張強度0.8kg/15mmの紙を抄造した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 1] → corresponding to Example 1 A cylinder dryer for a paper machine was prepared by using a mixed material of 30% by weight of raw material obtained by beating sisal pulp to 450 ml of CSF, 50% by weight of chopped glass fiber and 20% by weight of vinylon binder fiber. A vinylon binder fiber was heat-sealed on the above to produce paper having a thickness of 60.5 μm, a density of 0.235, and a tensile strength of 0.8 kg / 15 mm. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔従来例2〕→実施例1に対応
マニラ麻パルプをCSF350mlに叩解した原料70重量%とポリプロピレン繊維30重量%の混合原料を使用して、厚さ62.3μm,密度0.230g/cm,引張強度0.6kg/15mmの紙を抄造した後、ポリプロピレン繊維を熱融着させ厚さ60.1μm,密度0.238g/cm,引張強度1.0kg/15mmの紙を製造した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 2] → Corresponding to Example 1 Using a mixed material of 70% by weight of raw material obtained by beating Manila hemp pulp into 350 ml of CSF and 30% by weight of polypropylene fiber, a thickness of 62.3 μm, a density of 0.230 g / cm 3 , After paper having a tensile strength of 0.6 kg / 15 mm was formed, polypropylene fibers were thermally fused to produce paper having a thickness of 60.1 μm, a density of 0.238 g / cm 3 , and a tensile strength of 1.0 kg / 15 mm. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔従来例3〕→実施例2に対応
マニラ麻パルプ70重量%とサイザル麻パルプ30重量%の混合原料をCSF680mlに叩解し、厚さ50.2μm,密度0.278g/cm,引張強度0.7kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 3] → Corresponding to Example 2 A mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of sisal pulp was beaten into 680 ml of CSF, the thickness was 50.2 μm, the density was 0.278 g / cm 3 , and the tensile strength was 0. A 7 kg / 15 mm round mesh double paper was made. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔従来例4〕→実施例3に対応
エスパルトパルプ60重量%とマニラ麻40重量%の混合原料を使用しCSF610mlに叩解し、厚さ39.9μm,密度0.347g/cm,引張強度1.0kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 4] → Corresponding to Example 3 Using a mixed raw material of 60% by weight of esparto pulp and 40% by weight of manila hemp, beaten to 610 ml of CSF, thickness 39.9 μm, density 0.347 g / cm 3 , tensile strength 1 A round mesh double paper of 0.0 kg / 15 mm was made. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔従来例5〕→実施例4に対応
エスパルトパルプ50重量%とマニラ麻50重量%の混合原料を使用しCSF560mlに叩解し、厚さ40.0μm,密度0.503g/cm,引張強度3.2kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 5] → Corresponding to Example 4 A mixture of 50% by weight of esparto pulp and 50% by weight of manila hemp was beaten to 560 ml of CSF, and the thickness was 40.0 μm, the density was 0.503 g / cm 3 , and the tensile strength was 3 A round mesh double paper of 0.2 kg / 15 mm was made. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

〔従来例6〕→実施例5に対応
エスパルトパルプ40重量%とマニラ麻60重量%の混合原料を使用しCSF440mlに叩解し、厚さ30.4μm,密度0.596g/cm,引張強度3.8kg/15mmの円網二重紙を抄紙した。ついでこの電解紙で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 6] → Corresponding to Example 5 A mixture of 40% by weight of esparto pulp and 60% by weight of manila hemp was beaten to 440 ml of CSF, and the thickness was 30.4 μm, the density was 0.596 g / cm 3 , and the tensile strength was 3 A 0.8 kg / 15 mm round mesh double paper was made. Then, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

上記の実施例1〜5と比較例1及び従来例1〜6によって得られた電解紙及び電解コンデンサに関し、厚さ(μm)、密度(g/cm)、引張強度(kg/15mm)、気密度(秒/100cc)、化成性(V)、紙粉発生量(mg/1000m)、ショート不良率(%)、ESR(Ω/1kHz)を測定した。なお、測定方法及びその装置は次の通りである。 Regarding the electrolytic paper and electrolytic capacitors obtained in Examples 1 to 5, Comparative Example 1 and Conventional Examples 1 to 6, the thickness (μm), density (g / cm 3 ), tensile strength (kg / 15 mm), The air density (sec / 100 cc), chemical conversion (V), paper dust generation (mg / 1000 m), short-circuit defect rate (%), and ESR (Ω / 1 kHz) were measured. In addition, the measuring method and its apparatus are as follows.

(1)電解紙の厚さ、密度、引張強度
JIS C2301(電解コンデンサ紙)に規定された方法で測定した。
(1) Thickness, density and tensile strength of electrolytic paper Measured by the method specified in JIS C2301 (electrolytic capacitor paper).

(2)気密度
JIS C2111(電気絶縁紙試験方法)に規定する“12.1気密度”の項に従い、B型試験器(ガーレーデンソメータ)によって測定した。但し穴の部分が6mmψであるアダプターを使用した。また、気密度1秒以下の電解紙については5枚重ねで測定し1枚に換算した。
(2) Airtightness The airtightness was measured by a B-type tester (Gurley densometer) in accordance with the section “12.1 Airtightness” specified in JIS C2111 (Testing method for electrical insulating paper). However, an adapter having a hole portion of 6 mmψ was used. For the electrolytic paper having an air density of 1 second or less, the measurement was performed by stacking five sheets and converted to one sheet.

(3)化成性
電解紙50g±1gを1000mlのイオン交換水で1時間煮沸し、抽出液を100mlまで濃縮して冷却した後、0.35gのアジピン酸を溶解した試料液に、清浄な99.99%のプレーンアルミ箔を両電極として60mA定電流で10分後の電圧を測定し化成性とした。このときブランク試験としてはイオン交換水1000mlを濃縮し100mlとし0.35gのアジピン酸を溶解して前記操作で測定した10分後の値が600V〜650Vの範囲内であることを確認しておいた。
(3) Chemical conversion 50 g ± 1 g of electrolytic paper was boiled with 1000 ml of ion-exchanged water for 1 hour, and the extract was concentrated to 100 ml and cooled. Then, 0.35 g of adipic acid was dissolved in a sample solution containing pure 99%. Using a .99% plain aluminum foil as both electrodes, the voltage after 10 minutes at a constant current of 60 mA was measured to determine the chemical conversion. At this time, as a blank test, 1000 ml of ion-exchanged water was concentrated to 100 ml, 0.35 g of adipic acid was dissolved, and the value after 10 minutes measured by the above operation was confirmed to be within the range of 600 V to 650 V. Was.

(4)紙粉発生量
巻出しと巻取りを設けた試験器の中央にカッター刃を5cm間隔で2枚固定する。18mm幅でレコード巻に裁断した電解紙を巻出し側にセットし、0.5kgの張力で引出し、カッター刃上を擦らせながら10m/分の速度で1000m巻取り側に移動させこの間に脱落した紙粉の量を測定した。4回の平均値を表示した。
(4) Paper dust generation amount Two cutter blades are fixed at the center of the tester provided with unwinding and winding at intervals of 5 cm. The electrolytic paper cut into a record roll with a width of 18 mm was set on the unwinding side, pulled out with a tension of 0.5 kg, moved to the 1000 m winding side at a speed of 10 m / min while rubbing on the cutter blade, and dropped off during this. The amount of paper dust was measured. The average of four measurements was displayed.

(5)ショート不良率
電解紙を陽極箔及び陰極箔とともに巻取りして電解コンデンサ素子を形成した後、電解液を含浸しないままで両極間のショートによる導通をテスターで確認した。ショート不良率は略1000個の素子について検査し、ショート素子の全素子数に対する割合をショート不良率とした。
(5) Short-circuit defect rate After the electrolytic paper was wound together with the anode foil and the cathode foil to form an electrolytic capacitor element, continuity due to a short-circuit between both electrodes was confirmed with a tester without impregnating the electrolytic solution. The short-circuit failure rate was inspected for approximately 1000 devices, and the ratio of the short-circuiting device to the total number of devices was defined as the short-circuit failure ratio.

(6)ESR(等価直列抵抗)
電解コンデンサのESRは20℃ 1000HZの周波数でLCRメータによって測定した。
(6) ESR (equivalent series resistance)
The ESR of the electrolytic capacitor was measured by an LCR meter at a frequency of 20 ° C. and 1000 HZ.

以上のようにして得た実施例1〜5の電解紙及び電解コンデンサの評価結果を表1に、比較例1及び従来例1〜6の電解紙及び電解コンデンサの評価結果を表2に示す。   Table 1 shows the evaluation results of the electrolytic papers and electrolytic capacitors of Examples 1 to 5 obtained as described above, and Table 2 shows the evaluation results of the electrolytic paper and the electrolytic capacitors of Comparative Example 1 and Conventional Examples 1 to 6.

Figure 2004228600
Figure 2004228600

Figure 2004228600
Figure 2004228600

表1の結果に示した通り、紙力増強剤の精製溶液を含浸塗布してなる電解紙を使用した本発明は、化成性,ESRを悪化させることなくショート不良率が格段に改善されている。例えば実施例1はマニラ麻パルプ100重量%の原料を使用して抄造した厚さ49.9μm,密度0.275g/cm,引張強度0.6kg/15mmの円網二重紙にジアルデヒドデンプンの精製希釈溶液を含浸塗布し、湿紙の膨潤状態のまま熱風乾燥し厚さを増大させて更に低密度化した厚さ59.8μm,密度0.236g/cm,引張強度1.2kg/15mmとした電解紙を用いたものであり、比較例1は同一条件にて抄造した円網二重紙に精製されていない市販のエポキシ樹脂を含浸塗布して製作した略同一厚さ,同一密度の電解紙を用いたものである。ショート不良率,ESRは共に実施例1とほぼ同等の数値を示しているが、化成性が実施例1の625Vに対し、30Vと極端に低くなっている。これはエポキシ樹脂組成内に含有する塩素分によるものであり、電解紙としての実用レベルではないことを示している。そのため、本発明の課題を解決するためには使用する紙力増強剤が精製されたものであることが必要である。 As shown in the results of Table 1, in the present invention using the electrolytic paper obtained by impregnating and applying the purified solution of the paper strength agent, the short-circuit defect rate is remarkably improved without deteriorating the chemical conversion and ESR. . For example, in Example 1, dialdehyde starch was added to circular double-walled paper having a thickness of 49.9 μm, a density of 0.275 g / cm 3 , and a tensile strength of 0.6 kg / 15 mm, which was made using a raw material of 100% by weight of Manila hemp pulp. The purified dilute solution was impregnated and applied, and dried with hot air while the wet paper was in a swollen state to increase the thickness and further reduce the density to a thickness of 59.8 μm, a density of 0.236 g / cm 3 , and a tensile strength of 1.2 kg / 15 mm. Comparative Example 1 was manufactured by impregnating and coating an unpurified commercially available epoxy resin onto a mesh double-sheet paper formed under the same conditions, and was manufactured to have the same thickness and the same density. It uses electrolytic paper. Although both the short-circuit failure rate and the ESR are almost the same as those of the first embodiment, the chemical conversion is extremely low at 30 V, compared to 625 V of the first embodiment. This is due to the chlorine content contained in the epoxy resin composition, indicating that it is not at a practical level as electrolytic paper. Therefore, in order to solve the problem of the present invention, it is necessary that the paper strength agent used is purified.

また、従来例1はCSF450mlのサイザルパルプ30重量%とチョップドガラス繊維50重量%及びビニロンバインダー繊維20重量%の混合原料を用いたものであり、抄紙機のシリンダードライヤー上でバインダー繊維を熱融着させ、実施例1と略同一厚さ,同一密度に抄造したものである。略同一厚さ,同一密度であるにもかかわらず、ESRは従来例1が0.1175Ω/1kHzに対し実施例1では0.0919Ω/1kHzと改善されている。従来例1ではバインダー繊維が溶融し膜状(フィルム状)となり繊維間隙を遮蔽して電解液のイオン電導を阻害しているため、同一密度であってもESRが実施例1より悪化しているのである。これに対し、実施例1では紙力増強剤の精製溶液を含浸塗布しても繊維間空隙を維持しているため、ESRを改善することができるのである。また、引張強度も従来例1がCSF450mlと叩解の程度を進めたものであり、実施例1はCSF720mlであるにもかかわらず、引張強度は従来例1が0.8kg/15mmに対し、実施例1は1.2kg/15mmと大幅に上昇している。その結果ショート不良率は従来例1が17.5%に対して、実施例1は7.2%となっている。このことから精製した紙力増強剤を含浸塗布した低密度電解紙は、紙の引張強度を大幅に上昇させ箔バリに対する抵抗性を向上させるが、バインダー繊維のように造膜作用がないためESRも良好となっていることが判る。   Conventional example 1 uses a mixed material of CSF 450 ml sisal pulp 30% by weight, chopped glass fiber 50% by weight and vinylon binder fiber 20% by weight, and the binder fiber is heat-sealed on a cylinder dryer of a paper machine. Then, the paper was formed to have substantially the same thickness and the same density as in Example 1. Although the thickness and the density are substantially the same, the ESR is improved to 0.1919 Ω / 1 kHz in Conventional Example 1 to 0.0919 Ω / 1 kHz in Example 1. In the conventional example 1, since the binder fiber is melted to form a film (film shape), which blocks the fiber gap and inhibits the ionic conduction of the electrolytic solution, the ESR is worse than that in the example 1 even at the same density. It is. In contrast, in Example 1, the interfiber space was maintained even when the purified solution of the paper strength agent was impregnated and applied, so that the ESR could be improved. Also, the tensile strength of Conventional Example 1 is 450 ml of CSF and the degree of beating is advanced, and the tensile strength of Conventional Example 1 is 0.8 kg / 15 mm, even though CSF is 720 ml. 1 has risen significantly to 1.2 kg / 15 mm. As a result, the short-circuit defect rate is 17.5% in Conventional Example 1 and 7.2% in Example 1. From this, the low-density electrolytic paper impregnated with the refined paper strength enhancer significantly increases the tensile strength of the paper and improves the resistance to foil burrs, but has no ESR because it does not have a film-forming effect like binder fibers. It can be seen that the results are also good.

従来例2はCSF350mlまで叩解したマニラ麻パルプ70重量%とポリプロピレン繊維30重量%の混抄紙を後加工にて加熱処理を施しポリプロピレンを溶融し製造したものであるが、抄造段階で巻取り可能な強度を保持させる必要があるため、過度にマニラ麻パルプを叩解しており、マニラ麻パルプの紙玉等の地合不良が発生し、ショート不良率は15.2%と高く、溶融したポリプロピレンの造膜作用によりESRが悪化して0.1305Ω/1kHzとなっている。   In Conventional Example 2, a mixed paper made of 70% by weight of Manila hemp pulp and 30% by weight of polypropylene fiber beaten to 350 ml of CSF was subjected to a heat treatment in post-processing to melt the polypropylene, and was produced. The manila hemp pulp is beaten excessively, the formation of paper balls etc. of the manila hemp pulp occurs, the short defect rate is as high as 15.2%, and the film forming action of the molten polypropylene is required. As a result, the ESR deteriorates to 0.1305 Ω / 1 kHz.

実施例2はマニラ麻パルプ70重量%とサイザル麻パルプ30重量%の混合原料をCSF710mlとして抄造した円網二重紙に精製したポリアクリルアミドの希釈溶液を含浸塗布した電解紙で厚さ50.0μm,密度0.275g/cm,引張強度1.4kg/15mm,ショート不良率8.4%,ESR0.1059Ω/1kHzである。これに対し従来例3は実施例2と同一の混合原料をCSF680mlとして抄造した略同一厚さ同一密度の電解紙である。従来例3は0.278g/cmと低密度とすることによって、0.1092Ω/1kHzと低ESR化を実現しているが、引張強度は0.7kg/15mmとなり、ショート不良率30.4%と大幅に上昇している。これに対し実施例2では紙力増強剤の精製溶液を含浸塗布することにより引張強度1.4kg/15mmと増大し、ショート不良率8.4%と格段に低減すると共に、電解紙は繊維間空隙を維持した状態であるため、ESRも0.1059Ω/1kHzと良好な数値を示している。また、コンデンサの素子巻取り工程において従来例3では電解紙切れが頻繁に発生し、生産性を著しく阻害するが、実施例2では電解紙切れが発生することがない。 Example 2 is an electrolytic paper impregnated with a diluted solution of polyacrylamide impregnated and coated on a mesh double-sheet paper made from a mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of sisal pulp as CSF 710 ml, and has a thickness of 50.0 μm. The density is 0.275 g / cm 3 , the tensile strength is 1.4 kg / 15 mm, the short-circuit defect rate is 8.4%, and the ESR is 0.1059Ω / 1 kHz. On the other hand, Conventional Example 3 is electrolytic paper of approximately the same thickness and density formed by mixing the same raw material as in Example 2 with 680 ml of CSF. Conventional Example 3 achieves a low ESR of 0.1092 Ω / 1 kHz by reducing the density to 0.278 g / cm 3 , but has a tensile strength of 0.7 kg / 15 mm and a short defect rate of 30.4. % Has risen significantly. On the other hand, in Example 2, the tensile strength was increased to 1.4 kg / 15 mm by impregnating and applying a purified solution of a paper strength agent, and the short-circuit failure rate was significantly reduced to 8.4%. Since the air gap is maintained, the ESR also shows a good value of 0.1059Ω / 1 kHz. Further, in the capacitor element winding process, in the conventional example 3, the electrolytic paper is frequently broken and productivity is remarkably impaired, but in the second example, the electrolytic paper is not broken.

実施例4はエスパルトパルプ50重量%とマニラ麻パルプ50重量%の混合原料をCSF600mlとして抄造した円網二重紙に精製したポリアクリルアミドの希釈溶液を含浸塗布した電解紙で厚さ40.0μm,密度0.506g/cm,引張強度4.4kg/15mm,紙粉発生量16mg/1000m,ショート不良率0.6%,ESR0.1510Ω/1kHzである。これに対し従来例5は現在、低ESR用として最も多く使用されている電解紙であり、同一混合原料をCSF560mlまで叩解して略同一厚さ,同一密度に抄造した電解紙を用いたものであり、引張強度3.2kg/15mm,紙粉発生量68mg/1000m,ショート不良率2.5%,ESR0.1541Ω/1kHzであった。データから判るように叩解を過度に進めることなく、紙力増強剤の精製溶液を含浸塗布して引張強度を大幅に向上させた実施例4はESRを悪化させることなくショート不良率を著しく減少させている。また、素子巻取り工程では紙粉の発生が大幅に減少し、脱落紙粉による紙詰り,芯抜け不良,電解液の汚染等を減少させることもできる。 Example 4 is an electrolytic paper coated with a dilute solution of purified polyacrylamide impregnated and coated on a mesh double-sheet paper made from a mixed material of 50% by weight of esparto pulp and 50% by weight of manila hemp pulp with CSF of 600 ml. The density is 0.506 g / cm 3 , the tensile strength is 4.4 kg / 15 mm, the amount of generated paper dust is 16 mg / 1000 m, the short-circuit defect rate is 0.6%, and the ESR is 0.1510Ω / 1 kHz. On the other hand, Conventional Example 5 is the most widely used electrolytic paper for low ESR at present, and uses electrolytic paper obtained by beating the same mixed raw material to 560 ml of CSF and making it to have approximately the same thickness and the same density. The tensile strength was 3.2 kg / 15 mm, the amount of paper dust generated was 68 mg / 1000 m, the short-circuit defect rate was 2.5%, and the ESR was 0.1541 Ω / 1 kHz. As can be seen from the data, Example 4 in which the refining solution of the paper strength agent was impregnated and applied to improve the tensile strength significantly without excessive beating was used, and the short-circuit failure rate was significantly reduced without deteriorating the ESR. ing. Further, in the element winding step, the generation of paper dust is greatly reduced, and paper clogging, core pull-out failure, contamination of the electrolyte, and the like due to dropped paper dust can also be reduced.

以上詳細に説明した如く、本発明に係る電解コンデンサは、アルミ箔を腐食又は変色させないレベルまで不純物を低減させた植物性ガム,澱粉,半合成高分子,合成高分子等の紙力増強剤の精製溶液を電解紙に含浸塗布したことを特徴としており以下における作用効果が得られる。即ち、紙力増強剤の精製溶液の含浸塗布による引張強度の増大は天然植物繊維を過度に叩解を進めたり、熱融着繊維を使用したりして引張強度を向上させた電解紙と異なり、造膜作用がないため電解紙は繊維間空隙を維持した状態で繊維の結合強度が高まり、ESRを悪化させることなく、引張強度の大幅な増大によってショート不良率を著しく低減させることができる。また、天然植物繊維に僅かな叩解を施した程度の原料もしくは従来よりも叩解の程度を浅くしたCSFの大きい数値の原料を使用しても、紙層中の繊維相互の接触点に紙力増強剤が効果的に定着し、繊維間の結合強度が増大すると共に、繊維内部まで浸透するため、単繊維自体の強度をも増大させることができる。そのため、従来では実用上強度的に使用困難とされていた超低密度領域の電解紙の製作が可能となり、更に従来電解紙に比しては素子巻取り工程の断紙をなくし、脱落紙粉を大幅に減少させることによって紙粉トラブルを減少させ、電解コンデンサ製作過程での生産性をも格段に向上させることが可能となる。更に、CSFの数値の大きい天然植物繊維を原料として使用できるため、叩解動力を削減することができる。   As described in detail above, the electrolytic capacitor according to the present invention can be used as a paper-strength enhancer such as vegetable gum, starch, semi-synthetic polymer, synthetic polymer, etc., in which impurities are reduced to a level that does not corrode or discolor aluminum foil. It is characterized in that the purified solution is impregnated and applied to electrolytic paper, and the following operation and effect can be obtained. That is, the increase in tensile strength due to impregnation application of the purified solution of the paper strength enhancer promotes excessive beating of natural vegetable fibers, unlike electrolytic paper that has improved tensile strength by using heat-fused fibers, Since there is no film-forming action, the bonding strength of the fibers of the electrolytic paper is increased while maintaining the interfiber space, and the short-circuit failure rate can be significantly reduced by a large increase in the tensile strength without deteriorating the ESR. In addition, even if a raw material obtained by subjecting a natural plant fiber to slight beating or a material having a large CSF with a shallower beating degree is used, the paper strength is increased at the point of contact between the fibers in the paper layer. The agent is effectively fixed, the bonding strength between the fibers is increased, and the fibers penetrate into the interior of the fiber, so that the strength of the single fiber itself can be increased. This makes it possible to produce electrolytic paper in the ultra-low-density region, which was conventionally considered to be difficult to use in terms of strength in practical use. The paper powder trouble can be reduced by greatly reducing, and the productivity in the electrolytic capacitor manufacturing process can be remarkably improved. Furthermore, since natural plant fiber having a large CSF value can be used as a raw material, beating power can be reduced.

Claims (12)

陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、CSFの値が500ml以上の天然植物繊維を原料として電解紙を抄紙するとともに、抄紙後の電解紙に紙力増強剤の精製溶液を含浸塗布したことを特徴とする電解コンデンサ。   In an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil, an electrolytic paper is made from natural plant fiber having a CSF value of 500 ml or more as a raw material. An electrolytic capacitor characterized by being impregnated with a purified solution of the above. 陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、CSFの値が500ml以上の天然植物繊維を原料として電解紙を抄紙するとともに、抄紙後の電解紙に紙力増強剤の精製溶液を紙層中の繊維相互の接触点に定着するように含浸塗布させたことを特徴とする電解コンデンサ。   In an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil, an electrolytic paper is made from natural plant fiber having a CSF value of 500 ml or more as a raw material. An electrolytic capacitor characterized in that the purified solution is impregnated and applied so as to be fixed to the contact points between fibers in a paper layer. 陽極箔と陰極箔との間に電解紙を介在してなる電解コンデンサにおいて、CSFの値が500ml以上の天然植物繊維を原料として電解紙を抄紙するとともに、抄紙後の電解紙に紙力増強剤の精製溶液を含浸塗布することにより、該紙力増強剤の精製溶液を繊維内部に浸透させて、繊維間空隙を維持した状態で繊維間の結合強度を増大させたことを特徴とする電解コンデンサ。   In an electrolytic capacitor in which electrolytic paper is interposed between an anode foil and a cathode foil, an electrolytic paper is made from natural plant fiber having a CSF value of 500 ml or more as a raw material. An electrolytic capacitor characterized by increasing the bond strength between fibers while maintaining the voids between fibers by impregnating the purified solution of the paper strength enhancer into the fibers by impregnating and applying the purified solution of . 紙力増強剤は澱粉,植物性ガム,半合成高分子又は合成高分子から選択された1種又は複数のものである請求項1,2又は3記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, 2 or 3, wherein the paper strength enhancer is one or more selected from starch, vegetable gum, semi-synthetic polymer or synthetic polymer. 紙力増強剤を電解紙に対して0.05重量%〜5.0重量%含浸塗布した請求項1,2,3又は4記載の電解コンデンサ。   5. The electrolytic capacitor according to claim 1, wherein the paper strength enhancer is impregnated and applied to the electrolytic paper in an amount of 0.05% by weight to 5.0% by weight. 紙力増強剤を電解紙に対して0.1重量%〜3.0重量%含浸塗布した請求項1,2,3又は4記載の電解コンデンサ。   5. The electrolytic capacitor according to claim 1, wherein the paper strength enhancer is impregnated with 0.1% to 3.0% by weight of the electrolytic paper. 電解紙の不純物を化成性で評価した場合300〜650Vである請求項1,2,3,4,5又は6記載の電解コンデンサ。   7. The electrolytic capacitor according to claim 1, wherein the voltage of the electrolytic paper is from 300 to 650 V when evaluated by chemical conversion. 電解紙の不純物を化成性で評価した場合500〜650Vである請求項1,2,3,4,5又は6記載の電解コンデンサ。   7. The electrolytic capacitor according to claim 1, wherein the voltage of the electrolytic paper is from 500 to 650 V when evaluated by chemical conversion. 電解紙を構成する天然植物繊維がマニラ麻パルプ,サイザル麻パルプ,エスパルトパルプから選択された1種又は複数のものである請求項1,2,3,4,5,6,7又は8記載の電解コンデンサ。   The natural plant fiber constituting the electrolytic paper is one or more selected from manila hemp pulp, sisal pulp, and esparto pulp. The method according to claim 1, 2, 3, 4, 5, 6, 7, or 8. Electrolytic capacitor. 電解紙の密度が0.20〜0.70g/cmであり、厚さが20〜70μmである請求項1,2,3,4,5,6,7,8又は9記載の電解コンデンサ。 10. The electrolytic capacitor according to claim 1, wherein the density of the electrolytic paper is 0.20 to 0.70 g / cm 3 and the thickness is 20 to 70 μm. 電解紙の密度が0.20〜0.35g/cmであり、厚さが40〜60μmである請求項1,2,3,4,5,6,7,8又は9記載の電解コンデンサ。 10. The electrolytic capacitor according to claim 1, wherein the density of the electrolytic paper is 0.20 to 0.35 g / cm 3 and the thickness is 40 to 60 μm. 電解紙の引張強度が1.1kg/15mm以上である請求項1,2,3,4,5,6,7,8,9,10又は11記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the tensile strength of the electrolytic paper is 1.1 kg / 15 mm or more.
JP2004127631A 2004-04-23 2004-04-23 Electrolytic capacitor Pending JP2004228600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127631A JP2004228600A (en) 2004-04-23 2004-04-23 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127631A JP2004228600A (en) 2004-04-23 2004-04-23 Electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10008595A Division JPH08273984A (en) 1995-03-30 1995-03-30 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2004228600A true JP2004228600A (en) 2004-08-12

Family

ID=32906365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127631A Pending JP2004228600A (en) 2004-04-23 2004-04-23 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2004228600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344742A (en) * 2005-06-08 2006-12-21 Nippon Kodoshi Corp Electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344742A (en) * 2005-06-08 2006-12-21 Nippon Kodoshi Corp Electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4787473B2 (en) Separator paper for alkaline battery and alkaline battery
JP3466206B2 (en) Electrolytic capacitor
JP4287622B2 (en) COATING SEPARATOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC AND ELECTRONIC COMPONENT USING THE SAME
JP4109697B2 (en) Electrolytic capacitor
JP6412805B2 (en) Separator and aluminum electrolytic capacitor
WO2013069146A1 (en) Separator for electrolytic capacitor, and electrolytic capacitor
KR102583728B1 (en) Separator for electrochemical devices and electrochemical devices
JP2010239094A (en) Separator for electrolytic capacitor, and electrolytic capacitor
JP2018117093A (en) Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
JPH08273984A (en) Electrolytic capacitor
JP4109696B2 (en) Electrolytic capacitor
JP7012425B2 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2004228600A (en) Electrolytic capacitor
JP4234151B2 (en) Electrolytic capacitor
JP4450476B2 (en) Electrolytic capacitor
KR20230088375A (en) Cellulose fiber-based separator for electrochemical devices
JP4533003B2 (en) Electrolytic capacitor
JP2009087948A (en) Coating separator, its manufacturing method, and electric/electronic parts using it
JP5485739B2 (en) Electrolytic capacitor separator and electrolytic capacitor using the same
JP3098549B2 (en) Electrolytic capacitor
JPH03222314A (en) Electrolytic capacitor
JP2004200395A (en) Electrolytic capacitor
JPH03222315A (en) Electrolytic paper for electrolytic capacitor
JP6850921B1 (en) Separator for electrochemical element and electrochemical element
JP2013201406A (en) Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Written amendment

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070910