JP2001267182A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JP2001267182A
JP2001267182A JP2000078625A JP2000078625A JP2001267182A JP 2001267182 A JP2001267182 A JP 2001267182A JP 2000078625 A JP2000078625 A JP 2000078625A JP 2000078625 A JP2000078625 A JP 2000078625A JP 2001267182 A JP2001267182 A JP 2001267182A
Authority
JP
Japan
Prior art keywords
paper
electrolytic
electrolytic capacitor
ppm
strength enhancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000078625A
Other languages
Japanese (ja)
Other versions
JP4450476B2 (en
Inventor
Hiroaki Wada
浩昭 和田
Jiyunichi Ushimoto
順一 丑本
Naoki Fujimoto
直樹 藤本
Akiyoshi Takeuchi
章祥 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kodoshi Corp
Original Assignee
Nippon Kodoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kodoshi Corp filed Critical Nippon Kodoshi Corp
Priority to JP2000078625A priority Critical patent/JP4450476B2/en
Publication of JP2001267182A publication Critical patent/JP2001267182A/en
Application granted granted Critical
Publication of JP4450476B2 publication Critical patent/JP4450476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic capacitor for upgrading a short circuit defective ratio without giving an adverse influence to an equivalent series resistance by improving a tensile strength at a low density by reducing a cationic amount to be extracted irrespective of a type of an electrolyte and improving productivity and lifetime characteristics. SOLUTION: The electrolytic capacitor is formed by interposing electrolytic paper between an anode foil and a cathode foil. Thus, the paper after papermaking is impregnated and coated with a paper strength reinforcing agent in which a total amount of cations of Na, K, Ca and Mg is reduced to 500 ppm or less or preferably 100 ppm or less. In this case, individual contents of Na, K, and Ca and Mg of the agent are set to 25 ppm or less. As the agent, one or a plurality of types selected from a starch, vegitative gum, semi-synthetic polymer and a synthetic polymer are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は陽極箔と陰極箔との
間に電解紙を介在させて構成した電解コンデンサにかか
り、特に抄紙後の電解紙に紙力増強剤を含浸塗布したこ
とにより、電解紙の引張強度を高めてインピーダンス特
性、特に等価直列抵抗(以下ESRと略称する)に悪影
響を与えることなくショート不良率を低減するとともに
寿命特性を改善し、かつ、生産性を向上させることがで
きる電解コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic capacitor comprising an electrolytic paper interposed between an anode foil and a cathode foil. By increasing the tensile strength of the electrolytic paper, it is possible to reduce the short-circuit failure rate without adversely affecting impedance characteristics, particularly equivalent series resistance (hereinafter, abbreviated as ESR), to improve the life characteristics, and to improve productivity. The present invention relates to a possible electrolytic capacitor.

【0002】[0002]

【従来の技術】一般に電解コンデンサ,特にアルミ電解
コンデンサは、陽極アルミ箔と陰極アルミ箔との間に電
解紙を介在させて巻付け形成することによりコンデンサ
素子を作成し、このコンデンサ素子を液状の電解液中に
浸漬して電解質を含浸させ、封口して製作している。電
解液としては通常エチレングリコール(EG),ジメチ
ルホルムアミド(DMF)又はγ−ブチロラクトン(G
BL)等を溶媒とし、これらの溶媒に硼酸やアジピン酸
アンモニウム,マレイン酸水素アンモニウム等の有機酸
塩を溶解したものを用いてコンデンサ素子の両端から浸
透させて製造している。
2. Description of the Related Art Generally, an electrolytic capacitor, particularly an aluminum electrolytic capacitor, is formed by winding an electrolytic paper between an anode aluminum foil and a cathode aluminum foil to form a capacitor element. It is immersed in an electrolytic solution, impregnated with an electrolyte, and sealed. As the electrolyte, ethylene glycol (EG), dimethylformamide (DMF) or γ-butyrolactone (G
BL) or the like, and a solution obtained by dissolving an organic acid salt such as boric acid, ammonium adipate, or ammonium hydrogen maleate in these solvents, and penetrating from both ends of the capacitor element.

【0003】これら従来のアルミ電解コンデンサは、電
解紙中に電解液を含浸させているため、コンデンサとし
てのESRが高くなりやすく、そのためESRを良くす
るために電解液の抵抗を下げたり、電解紙を薄くするか
密度を低くする手段の外、電解紙の原料を通常の木材ク
ラフトパルプからマニラ麻パルプ,エスパルトパルプ等
に変更する手段が用いられている。しかしながら電解液
の抵抗値を下げることはアルミ箔に対して腐蝕性を与え
る原因となる一方、電解紙を薄くしたり密度を低くする
と必然的に引張強度が低下してショート不良率が増大し
たり、仮にショートしなかった場合でも製品化されて市
場に出された後のショート不良率が高くなる難点があ
る。
[0003] In these conventional aluminum electrolytic capacitors, since the electrolytic solution is impregnated in the electrolytic paper, the ESR of the capacitor is likely to be high. Therefore, in order to improve the ESR, the resistance of the electrolytic solution is reduced or the electrolytic paper is reduced. In addition to means for reducing the thickness or density, means for changing the raw material for electrolytic paper from ordinary wood kraft pulp to Manila hemp pulp, esparto pulp, and the like are used. However, while lowering the resistance of the electrolyte causes corrosion to the aluminum foil, thinning or lowering the density of the electrolytic paper inevitably lowers the tensile strength and increases the short-circuit failure rate. However, even if no short circuit occurs, there is a problem that the short-circuit failure rate after the product is put on the market and put on the market is high.

【0004】そこでショート不良率を下げるためには、
電解紙の厚さを増大するか密度を高くする手段が考えら
れ、そのために電解紙の原料であるパルプの叩解の程度
を示すJIS P 8121によるCSF(Canadian S
tandard Freeness)の数値を小さくする等の手段を選択
すると、パルプの繊維がフィブリル化して細かくなり、
得られる電解紙が緻密となって引張強度が増大し、ショ
ート不良率が改善される。また、電解紙の厚さを増大す
るとESRに与える影響は一次式的に悪化し、電解紙の
密度を高めると二次式的にESRが悪化することが判明
している。即ちESRを改善するには、ショート不良率
の改善とは逆に電解紙を薄く、その密度を低くする必要
がある。
In order to reduce the short-circuit defect rate,
Means for increasing the thickness or increasing the density of the electrolytic paper can be considered. For this purpose, CSF (Canadian S.P.S.) according to JIS P 8121 indicating the degree of beating of pulp as a raw material of electrolytic paper is considered.
tandard Freeness) and other measures, such as reducing the value of the pulp, fibrillates and becomes finer,
The obtained electrolytic paper becomes dense, the tensile strength increases, and the short-circuit defect rate is improved. Also, it has been found that when the thickness of the electrolytic paper increases, the effect on the ESR deteriorates in a linear manner, and when the density of the electrolytic paper increases, the ESR deteriorates in a quadratic manner. That is, in order to improve the ESR, it is necessary to make the electrolytic paper thinner and lower its density, contrary to the improvement of the short-circuit defect rate.

【0005】そのため、ショート不良率の改善とESR
の改善という相反する目的を達成するために、前記した
ように電解紙の原料を通常の木材クラフトパルプから針
葉樹木材パルプ,マニラ麻パルプ,エスパルトパルプ等
の繊維径のより小さなパルプへ変更することにより、薄
くて低密度かつ緻密な電解紙を製造する試みや(特公昭
61−45379号,特願昭62−126622号)、
紙力増強剤を原料懸濁液に添加するか熱融着繊維を混抄
して乾燥工程にて溶融させ、繊維相互の結合を増大させ
る試みとか、熱可塑性繊維を混抄して二次加工の熱処理
で融着させ、引張強度を増大させる試みがなされ、近年
になって低密度であるとともに大幅に改善された引張強
度を有し、電解コンデンサのESRに悪影響を与えるこ
となくショート不良率を改善し生産性の向上を可能に出
来る方法が開発されている(特開平8−27398
4)。
[0005] Therefore, the improvement of the short-circuit defect rate and the ESR
In order to achieve the contradictory objective of improving the above, by changing the raw material of electrolytic paper from ordinary wood kraft pulp to softwood pulp, Manila hemp pulp, esparto pulp and other smaller pulp as described above, Attempts to produce thin, low-density and dense electrolytic paper (Japanese Patent Publication No. 61-45379, Japanese Patent Application No. 62-126622),
Attempts to add a paper strength agent to the raw material suspension or mix the heat-fusible fibers and melt them in the drying process to increase the bonding between the fibers, or mix the thermoplastic fibers and heat-treat the secondary processing Attempts have been made to increase the tensile strength by fusing at a low density and having significantly improved tensile strength in recent years, improving the short-circuit failure rate without adversely affecting the ESR of electrolytic capacitors. A method capable of improving the productivity has been developed (JP-A-8-27398).
4).

【0006】[0006]

【発明が解決しようとする課題】電解紙が低密度である
とともに改善された引張強度を有し、電解コンデンサの
ESRに悪影響を与えることなくショート不良率を改善
して生産性の向上を可能に出来る従来技術(特開平8−
273984)においては,エチレングリコール(E
G)を主溶媒とした電解液、或いはそれ以外で水分を多
く含む電解液中において紙力増強剤中のNa,K,C
a,Mg等のカチオン(陽イオン)が電解液中に抽出さ
れ、アルミ箔を腐食或いは変質させて漏れ電流の増大或
いは静電容量の低下等を引き起こし、寿命特性を悪化さ
せるという課題が存在する。
SUMMARY OF THE INVENTION Electrolytic paper has a low density and improved tensile strength, thereby improving the short-circuit failure rate without adversely affecting the ESR of an electrolytic capacitor, thereby improving productivity. Possible conventional technology (Japanese Unexamined Patent Publication No.
273984), ethylene glycol (E
Na, K, C in the paper strength enhancer in an electrolytic solution containing G) as a main solvent or an electrolytic solution containing a large amount of water other than that.
There is a problem that cations (cations) such as a and Mg are extracted into the electrolytic solution, corroding or altering the aluminum foil to cause an increase in leakage current or a decrease in capacitance, thereby deteriorating the life characteristics. .

【0007】更に従来は使用する電解液が主として紙力
増強剤が不溶であるγ−ブチロラクトン(GBL)を主
溶媒とする電解液であったが、最近になって親水性であ
るエチレングリコール(EG)を主溶媒とする電解液或
いはそれ以外で水分を多く含む電解液が使用されるよう
になってきた。従って使用されている紙力増強剤の殆ど
が水溶性であるためにエチレングリコール(EG)を主
溶媒とする電解液或いはそれ以外で水分を多く含んだ電
解液では紙力増強剤中のカチオンが溶出されやすい状況
になっており、その結果電解液中に溶出したカチオンが
アルミニウム箔の表面に水和物を形成するなどして本来
の特性が発揮できなくなるという問題がある。
Further, in the past, the electrolyte used was mainly an electrolyte containing γ-butyrolactone (GBL) as a main solvent in which a paper strength enhancer was insoluble. )) Or an electrolyte containing a large amount of water besides the above. Therefore, since most of the used paper-strengthening agents are water-soluble, the cations in the paper-strengthening agent are poor in an electrolyte containing ethylene glycol (EG) as a main solvent or an electrolyte containing a large amount of water. As a result, the cations eluted into the electrolyte form hydrates on the surface of the aluminum foil, which causes a problem that the original characteristics cannot be exhibited.

【0008】そこで本発明は抄紙後の電解紙に、Na,
K,Ca,Mgのカチオンを低減した紙力増強剤を含浸
塗布することによって、電解液の種類にかかわらず抽出
されるカチオン量を低減し、低密度で引張強度が大幅に
改善され、しかも電解コンデンサのESRに悪影響を与
えることなくショート不良率を改善するとともに生産性
の向上をはかり、寿命特性を向上させることができる電
解コンデンサを提供することを目的とするものである。
Accordingly, the present invention provides a method for preparing Na,
By impregnating and applying a paper strength enhancer in which the cations of K, Ca, and Mg are reduced, the amount of cations extracted is reduced regardless of the type of the electrolyte, and the tensile strength is greatly improved at a low density. It is an object of the present invention to provide an electrolytic capacitor capable of improving the short-circuit failure rate without adversely affecting the ESR of the capacitor, improving the productivity, and improving the life characteristics.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、陽極箔と陰極箔との間に電解紙を介在して
なる電解コンデンサにおいて、抄紙後の電解紙にNa,
K,Ca,Mgのカチオンを総量で500ppm以下、
好ましくは100ppm以下に低減した紙力増強剤を含
浸塗布した電解コンデンサを提供する。
In order to achieve the above object, the present invention provides an electrolytic capacitor having an electrolytic paper interposed between an anode foil and a cathode foil.
500 ppm or less of cations of K, Ca, and Mg in total,
Provided is an electrolytic capacitor coated with a paper strength enhancer, preferably reduced to 100 ppm or less.

【0010】また、紙力増強剤のNa,K,Ca,Mg
の個々の含有量が25ppm以下とする。紙力増強剤は
澱粉,植物性ガム,半合成高分子,合成高分子から選択
された1種又は複数種とする。紙力増強剤は電解紙に対
して0.05重量%〜5.0重量%含浸塗布する。
Further, Na, K, Ca, Mg of the paper strength enhancer
Is 25 ppm or less. The paper strength enhancer is one or more selected from starch, vegetable gum, semi-synthetic polymer, and synthetic polymer. The paper strength enhancer is impregnated and applied to the electrolytic paper at 0.05% by weight to 5.0% by weight.

【0011】電解紙を構成する繊維はマニラ麻パルプ,
エスパルトパルプ,サイザル麻パルプ,溶剤紡糸レーヨ
ンから選択された1種又は複数種である。電解紙の密度
は0.20g/cm〜0.85g/cmであり、厚
さが20μm〜90μmとする。電解紙の引張強度は
1.1kg/15mm以上とする。
The fibers constituting the electrolytic paper are Manila hemp pulp,
One or more selected from esparto pulp, sisal pulp, and solvent-spun rayon. The density of the electrolyte sheet is 0.20g / cm 3 ~0.85g / cm 3 , a thickness of the 20Myuemu~90myuemu. The tensile strength of the electrolytic paper is 1.1 kg / 15 mm or more.

【0012】かかる本発明によれば、抄紙後の電解紙に
Na,K,Ca,Mgのカチオンを総量で500ppm
以下に低減した紙力増強剤を含浸塗布したことにより、
低密度であるとともに大幅に改善された引張強度を有
し、電解コンデンサのESRに悪影響を与えることなく
ショート不良率を改善するとともに生産性の向上をはか
り、かつ、寿命特性を向上させることができる電解コン
デンサを提供することができる。
According to the present invention, a total of 500 ppm of cations of Na, K, Ca and Mg is added to the electrolytic paper after papermaking.
By impregnating and applying the reduced paper strength agent below,
It has low density and significantly improved tensile strength. It can improve the short-circuit failure rate without adversely affecting the ESR of the electrolytic capacitor, improve the productivity, and improve the life characteristics. An electrolytic capacitor can be provided.

【0013】[0013]

【発明の実施の形態】以下本発明にかかる電解コンデン
サの具体的な実施形態を説明する。本発明の基本手段
は、陽極箔と陰極箔との間に電解紙を介在してなる電解
コンデンサにおいて,抄紙後の電解紙にNa,K,C
a,Mgのカチオンを総量で500ppm以下、好まし
くは100ppm以下に低減した紙力増強剤を含浸塗布
してあり、また、各カチオン個々の含有量が25ppm
以下に低減した紙力増強剤を使用したことに特徴を有す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the electrolytic capacitor according to the present invention will be described. The basic means of the present invention is to provide an electrolytic capacitor having an electrolytic paper interposed between an anode foil and a cathode foil, wherein Na, K, C
a, Mg cations are impregnated and coated with a paper strength enhancer in which the total amount of cations is reduced to 500 ppm or less, preferably 100 ppm or less, and the content of each cation is 25 ppm.
The present invention is characterized by using a reduced paper strength enhancer.

【0014】電解紙に塗布する紙力増強剤としては グ
ァーガム,ローカストビーンガム,トラガカントガム等
の植物性ガム類,コーンスターチ,ポテト澱粉,小麦澱
粉,タピオカ澱粉等の澱粉類,ジアルデヒドデンプン,
カチオンデンプン,メチルセルロース,カルボキシメチ
ルセルロース等の半合成高分子,ポリアクリルアミド樹
脂,ポリエチレンイミン樹脂,尿素樹脂等の合成高分子
が使用される。特に入手性,経済性,強度増強効果,作
業性等の因子により、ジアルデヒドデンプン,ポリアク
リルアミド樹脂,ポリエチレンイミン樹脂を用いること
が好ましい。尚、使用する紙力増強剤に塩素イオン等の
アニオン(陰イオン)が過度に含有されている場合は、
製造段階での低アニオン化もしくは水溶液でのイオン交
換樹脂等によりアニオンを低減する必要がある。
Examples of the paper strength enhancer applied to the electrolytic paper include plant gums such as guar gum, locust bean gum, tragacanth gum, starches such as corn starch, potato starch, wheat starch, tapioca starch, dialdehyde starch,
Semi-synthetic polymers such as cationic starch, methylcellulose and carboxymethylcellulose, and synthetic polymers such as polyacrylamide resin, polyethyleneimine resin and urea resin are used. In particular, dialdehyde starch, polyacrylamide resin, and polyethyleneimine resin are preferably used due to factors such as availability, economy, strength-enhancing effect, and workability. In addition, when the paper strength enhancer to be used contains an anion (anion) such as chloride ion excessively,
It is necessary to reduce anions by reducing anions in the production stage or by using an ion exchange resin in an aqueous solution.

【0015】使用する紙力増強剤は、Na,K,Ca,
Mgのカチオンが総量で500ppm以下、好ましくは
100ppm以下でカチオン個々には25ppm以下ま
で低減したものであり、低減の方法は紙力増強剤の製造
段階での低カチオン化と、水溶液でのイオン交換樹脂等
によりカチオンを除去する方法とがある。尚、使用され
る紙力増強剤は、Na,K,Ca,Mgのカチオンが低
減されていれば前記したものに限定されるものではな
く、適宜のものを使用可能である。また、紙力増強剤は
上記条件に適合する低カチオン品であれば良く、その低
カチオン化の方法はイオン交換樹脂の他、電気透析法、
限外濾過法、逆浸透法等のどのような方法であってもよ
い。
The paper-strengthening agents used are Na, K, Ca,
The total amount of Mg cations is 500 ppm or less, preferably 100 ppm or less, and the individual cations are reduced to 25 ppm or less. There is a method of removing cations with a resin or the like. The paper strength enhancer used is not limited to those described above as long as the cations of Na, K, Ca, and Mg are reduced, and an appropriate one can be used. Further, the paper strength enhancer may be any low-cation product that meets the above conditions, and the method of reducing the cation is ion-exchange resin, electrodialysis,
Any method such as an ultrafiltration method and a reverse osmosis method may be used.

【0016】また、電解紙に対して紙力増強剤を0.0
5重量%〜5.0重量%の範囲で含浸塗布することによ
り、目的とするインピーダンス特性に悪影響を与えるこ
となくショート不良率を改善することができるとともに
エチレングリコール(EG)を主溶媒とする電解液或い
はそれ以外で水分を多く含む電解液中で寿命特性を向上
させることができる。
Further, the paper strength enhancer is added to the electrolytic paper by 0.0
By impregnating and coating in the range of 5% by weight to 5.0% by weight, it is possible to improve the short-circuit defect rate without adversely affecting the desired impedance characteristics and to perform electrolysis using ethylene glycol (EG) as a main solvent. The life characteristics can be improved in a liquid or an electrolytic solution containing a large amount of water.

【0017】紙力増強剤を含浸塗布する被塗布紙として
は、1つの円網バット部を有した円網抄紙機(円網一重
紙)、2つ以上複数の円網バット部を有する円網多層コ
ンビネーション抄紙機(円網二重紙,三重紙,多重
紙)、或いは1つ以上の円網部と1つの長網部を有する
長網円網コンビネーション抄紙機(長網円網多重紙)等
の適宜の抄紙機にて抄造された乾紙状態の電解紙を使用
する。
As the coated paper to be impregnated and coated with the paper strength enhancer, a circular mesh paper machine having a single circular mesh bat portion (circular mesh single paper) and a circular mesh having two or more multiple circular mesh bat portions are used. Multi-layer combination paper machine (Circular double paper, triple paper, multiple paper), or Fourdrinier combination paper machine with one or more circular mesh portions and one long mesh portion (Fourd mesh circular multiple paper), etc. The electrolytic paper in a dry paper state produced by a suitable paper machine is used.

【0018】この抄紙後の乾燥状態の電解紙に目標強度
に応じて希釈した紙力増強剤を含浸塗布する。塗布方式
としては ダイレクトロールコータ,ディップコータ,
スプレーコータ,キッスロールコータ等の塗布方式で浸
漬され、プレスロールにて脱液調整と厚さ調整を行った
後、熱風乾燥やシリンダードライ方式等によって乾燥さ
せて、所定の厚さ、密度の電解紙を製作する。この方式
が二次加工であっても良いが、抄紙後にこれらの設備を
設置したオンライン方式とすると生産性を阻害すること
なく量産することが可能となる。この方式によれば、例
えば、原料懸濁液へのアニオン紙力増強剤の内部添加の
如く、硫酸バンドやポリ塩化アルミ等の不純物の多い定
着助剤を必要とせず、アニオン,ノニオン,カチオンの
何れの紙力増強剤でも使用することができる。
After the paper making, the dried electrolytic paper is impregnated with a paper strength enhancer diluted according to the target strength. Coating methods include direct roll coater, dip coater,
After being immersed in a coating method such as a spray coater or kiss roll coater, the liquid is adjusted and the thickness is adjusted with a press roll, and then dried by hot air drying, cylinder drying, etc., to obtain a predetermined thickness and density. Make paper. This method may be secondary processing, but if it is an online method in which these facilities are installed after papermaking, mass production can be performed without impairing productivity. According to this method, for example, a fixing aid containing a large amount of impurities such as a sulfuric acid band or polyaluminum chloride is not required as in the case of internally adding an anionic paper strength enhancer to a raw material suspension, and an anion, a nonion, and a cation can be eliminated. Any paper strength agent can be used.

【0019】含浸塗布、プレス加重、乾燥の方法及びこ
れらの条件によっては、抄紙後の電解紙の厚さと密度を
調整することも可能であり、従来から天然植物繊維では
未叩解原料でも不可能とされていた超低密度電解紙を製
作することが可能となる。更に引張強度の増大による工
程での断紙を防止するとともに紙中の微細繊維をも強固
に固着するため電解紙の表面強度が増大し、電解紙の裁
断時やコンデンサ素子巻取り工程での繊維脱落による紙
粉の発生を防止することができ、ラインの清掃頻度を減
少させ工程の作業を円滑にすることも可能となる。
Depending on the method of impregnation coating, press weighting, drying, and these conditions, it is possible to adjust the thickness and density of the electrolytic paper after paper making. It is possible to manufacture the ultra-low density electrolytic paper that has been used. In addition, it prevents paper breakage in the process due to the increase in tensile strength and firmly fixes the fine fibers in the paper, thus increasing the surface strength of the electrolytic paper. The generation of paper dust due to falling off can be prevented, the frequency of line cleaning can be reduced, and the work in the process can be smoothed.

【0020】得られる電解紙の密度は0.20g/cm
〜0.85g/cm、厚さが20μm〜90μmで
ある。また、引張強度は1.1kg/15mm以上とす
る。この様にして得られた電解紙をタブ付けした陽極、
アルミ箔と陰極アルミ箔との間に介在させて巻きつけ形
成した後、液状の電解質を含浸させ、封口して電解コン
デンサを製作する。
The density of the obtained electrolytic paper is 0.20 g / cm.
3 to 0.85 g / cm 3 and a thickness of 20 μm to 90 μm. The tensile strength is set to 1.1 kg / 15 mm or more. An anode obtained by tabulating the electrolytic paper thus obtained,
After being wound and formed between an aluminum foil and a cathode aluminum foil, a liquid electrolyte is impregnated and sealed to produce an electrolytic capacitor.

【0021】以下に本発明にかかる具体的な各種実施例
と比較例及び従来例を説明する。尚、電解コンデンサは
タブ付けした陽極箔と陰極箔の間に両極が接触しないよ
うに電解紙を介在させ、巻取りして電解コンデンサ素子
を形成した後、所定の電解液を含浸させてケースに封入
し、エージングを行って50WV,220μFのアルミ
乾式コンデンサを得た。比較例1は実施例1,2と対応
している。
Hereinafter, various examples, comparative examples, and conventional examples according to the present invention will be described. The electrolytic capacitor is interposed between the anode foil and the cathode foil with tabs so that the two electrodes do not come into contact with each other, wound up to form an electrolytic capacitor element, and then impregnated with a predetermined electrolyte to form a case. It was sealed and aged to obtain an aluminum dry capacitor of 50 WV, 220 μF. Comparative Example 1 corresponds to Examples 1 and 2.

【0022】[実施例1]エスパルトパルプ70重量%
とマニラ麻パルプ30重量%の混合原料を使用してCS
Fで640ccに叩解して円網三重紙とした後、オンマ
シン方式のダイレクトロールコータにより、製造段階で
アニオン性不純物を除去し、更にカチオンの総量を25
ppm以下まで低減したポリアクリルアミド樹脂の希釈
溶液を浸漬し、プレスロールでポリアクリルアミドが紙
に対して3.0重量%になる様に脱液調整後、シリンダ
ードライヤーで乾燥して厚さ50.1μm,密度0.2
99g/cm,引張強度1.3kg/15mmの円網
三重紙を得た。次に得られた電解紙で50WV,220
μFの電解コンデンサを製作した。
Example 1 70% by weight of esparto pulp
Using a mixed raw material of pulp and Manila hemp pulp 30% by weight
After beating to 640 cc with F, the anion impurities are removed at the production stage by an on-machine type direct roll coater, and the total amount of cations is reduced to 25%.
A diluted solution of polyacrylamide resin reduced to less than ppm is immersed, adjusted to remove polyacrylamide by 3.0% by weight with respect to paper by a press roll, and dried by a cylinder dryer to a thickness of 50.1 μm. , Density 0.2
Circular mesh triple paper having 99 g / cm 3 and a tensile strength of 1.3 kg / 15 mm was obtained. Next, 50 WV, 220
A μF electrolytic capacitor was manufactured.

【0023】[実施例2]エスパルトパルプ70重量%
とマニラ麻パルプ30重量%の混合原料を使用してCS
Fで640ccに叩解して円網三重紙とした後、オフマ
シン方式のダイレクトロールコータを用いて製造段階で
アニオン性不純物を除去し、イオン交換樹脂で精製した
カチオンの総量を25ppm以下まで低減したポリアク
リルアミド樹脂の希釈溶液に浸漬し、プレスロールでポ
リアクリルアミドが紙に対して3.0重量%になる様に
脱液調整後、シリンダードライヤーで乾燥して厚さ5
0.0μm,密度0.301g/cm,引張強度1.
2kg/15mmの円網三重紙を得た。次にこの電解紙
で50WV,220μFの電解コンデンサを製作した。
Example 2 70% by weight of esparto pulp
Using a mixed raw material of pulp and Manila hemp pulp 30% by weight
After being beaten to 640 cc with F to form a mesh triple paper, anionic impurities were removed at the manufacturing stage using an off-machine direct roll coater, and the total amount of cations purified with an ion exchange resin was reduced to 25 ppm or less. After being immersed in a dilute solution of polyacrylamide resin and adjusted to remove polyacrylamide to 3.0% by weight of paper with a press roll, the mixture was dried with a cylinder drier to a thickness of 5%.
0.0 μm, density 0.301 g / cm 3 , tensile strength 1.
A round mesh triple paper of 2 kg / 15 mm was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0024】[実施例3]エスパルトパルプ60重量%
とマニラ麻パルプ40重量%の混合原料を使用してCS
Fで590ccに叩解して円網三重紙とした後、オンマ
シン方式のダイレクトロールコータで、製造段階でアニ
オン性不純物を除去し、更にイオン交換樹脂で精製しカ
チオンの総量を25ppm以下まで低減したポリエチレ
ンイミン樹脂の希釈溶液を浸漬し、プレスロールでポリ
エチレンイミンが紙に対して3.0重量%になる様に脱
液調整後、シリンダードライヤーで乾燥して厚さ40.
2μm,密度0.369g/cm,引張強度2.1k
g/15mmの円網三重紙を得た。次にこの電解紙で5
0WV,220μFの電解コンデンサを製作した。
Example 3 60% by weight of esparto pulp
Using raw materials of 40% by weight of Manila hemp pulp
After being beaten to 590 cc with F to form a triple-mesh paper, anionic impurities were removed at the manufacturing stage by an on-machine type direct roll coater, and further purified by an ion exchange resin to reduce the total amount of cations to 25 ppm or less. A diluted solution of polyethyleneimine resin is immersed in the solution, adjusted by a press roll to remove polyethyleneimine to 3.0% by weight of the paper, and dried by a cylinder drier to obtain a thickness of 40.
2 μm, density 0.369 g / cm 3 , tensile strength 2.1 k
g / 15 mm round mesh triple paper was obtained. Then use this electrolytic paper for 5
A 0 WV, 220 μF electrolytic capacitor was manufactured.

【0025】[実施例4]マニラ麻パルプ70重量%と
エスパルトパルプ30重量%の混合原料を使用してCS
Fで660ccに叩解して円網二重紙とした後、オンマ
シン方式のダイレクトロールコータで、イオン交換樹脂
で精製しアニオン性不純物を除去し、更にカチオンの総
量を100ppm以下まで低減したジアルデヒドデンプ
ンの希釈溶液を浸漬し、プレスロールでジアルデヒドデ
ンプンが紙に対して3.0重量%になる様に脱液調整
後、シリンダードライヤーで乾燥して厚さ49.8μ
m,密度0.352g/cm,引張強度2.6kg/
15mmの円網三重紙を得た。次にこの電解紙で50W
V,220μFの電解コンデンサを製作した。
[Example 4] CS using a mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of esparto pulp
After being beaten to 660 cc with F to make a double-mesh double paper, the on-machine type direct roll coater was used to purify it with an ion exchange resin to remove anionic impurities and further reduce the total amount of cations to 100 ppm or less. A diluted solution of starch is immersed in the solution, and the pressure of the dialdehyde starch is adjusted to 3.0% by weight of the paper with a press roll.
m, density 0.352 g / cm 3 , tensile strength 2.6 kg /
A 15 mm circular mesh triple paper was obtained. Next, 50W with this electrolytic paper
V, 220 μF electrolytic capacitor was manufactured.

【0026】[実施例5]マニラ麻パルプ100重量%
を使用してCSFで420ccに叩解して円網一重紙と
した後、オンマシン方式のダイレクトロールコータで、
イオン交換樹脂で精製してアニオン性不純物を除去し、
更にカチオンの総量を25ppm以下まで低減したポリ
エチレンイミンの希釈溶液を浸漬し、プレスロールでポ
リエチレンイミンが紙に対して3.0重量%になる様に
脱液調整後シリンダードライヤーで乾燥して厚さ29.
8μm,密度0.612g/cm,引張強度5.6k
g/15mmの円網一重紙を得た。次にこの電解紙で5
0WV,220μFの電解コンデンサを製作した。
Example 5 Manila hemp pulp 100% by weight
After beaten to 420cc with CSF using CSF to make a single-mesh net paper, with an on-machine type direct roll coater,
Purification with ion exchange resin to remove anionic impurities,
Further, a dilute solution of polyethyleneimine in which the total amount of cations has been reduced to 25 ppm or less is immersed, and dewatering is adjusted with a press roll so that the polyethyleneimine becomes 3.0% by weight with respect to the paper. 29.
8 μm, density 0.612 g / cm 3 , tensile strength 5.6 k
g / 15 mm round mesh single paper was obtained. Then use this electrolytic paper for 5
A 0 WV, 220 μF electrolytic capacitor was manufactured.

【0027】[実施例6]有機溶剤紡糸レーヨン100
重量%を使用してCSFで240ccに叩解して円網一
重紙とした後、オンマシン方式のダイレクトロールコー
タで、製造段階でアニオン性不純物を除去してイオン交
換樹脂で精製しカチオンの総量を25ppm以下まで低
減したポリアクリルアミド樹脂の希釈溶液を浸漬し、プ
レスロールでポリアクリルアミドが紙に対して3.0重
量%になる様に脱液調整後シリンダードライヤーで乾燥
して、厚さ68.0μm,密度0.235g/cm
引張強度1.4kg/15mmの円網一重紙を得た。次
にこの電解紙で50WV,220μFの電解コンデンサ
を製作した。
Example 6 Organic Solvent Spun Rayon 100
CSF was used to beaten to 240 cc with CSF to obtain single-mesh net paper, then an on-machine direct roll coater was used to remove anionic impurities at the production stage and purified with an ion exchange resin to reduce the total amount of cations. A diluted solution of polyacrylamide resin reduced to 25 ppm or less is immersed, adjusted to remove polyacrylamide by 3.0% by weight with respect to paper by a press roll, and dried by a cylinder drier to obtain a thickness of 68.0 μm. , Density 0.235 g / cm 3 ,
Circular mesh single paper with a tensile strength of 1.4 kg / 15 mm was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0028】[実施例7]有機溶剤紡糸レーヨン100
重量%を使用してCSFで240ccに叩解して円網一
重紙とした後、オンマシン方式のダイレクトロールコー
タで、製造段階でアニオン性不純物を除去してイオン交
換樹脂で精製しカチオンの総量を500ppm以下まで
低減したポリアクリルアミド樹脂とジアルデヒドデンプ
ンの希釈溶液を浸漬し、プレスロールでポリアクリルア
ミド樹脂とジアルデヒドデンプンが合計で紙に対して
3.0重量%になる様に脱液調整後シリンダードライヤ
ーで乾燥して厚さ69.3μm,密度0.233g/c
,引張強度1.4kg/15mmの円網一重紙を得
た。次にこの電解紙で50WV,220μFの電解コン
デンサを製作した。
Example 7 Organic Solvent Spun Rayon 100
CSF was used to beaten to 240 cc with CSF to obtain single-mesh net paper, then an on-machine direct roll coater was used to remove anionic impurities at the production stage and purified with an ion exchange resin to reduce the total amount of cations. After diluting a diluted solution of polyacrylamide resin and dialdehyde starch reduced to 500 ppm or less, and adjusting the pressure with a press roll, the polyacrylamide resin and dialdehyde starch are adjusted to a total of 3.0% by weight of the paper. Dry with a drier, thickness 69.3μm, density 0.233g / c
A circular mesh single paper having m 3 and a tensile strength of 1.4 kg / 15 mm was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0029】[比較例1]エスパルトパルプ70重量%
とマニラ麻パルプ30重量%の混合原料を使用してCS
Fで640ccに叩解して、厚さ49.1μm,密度
0.320g/cm ,引張強度0.6kg/15mm
の円網三重紙を得た。次にこの電解紙で50WV,22
0μFの電解コンデンサを製作した。
Comparative Example 1 70% by weight of esparto pulp
Using a mixed raw material of pulp and Manila hemp pulp 30% by weight
Beat to 640cc with F, thickness 49.1μm, density
0.320 g / cm 3, Tensile strength 0.6kg / 15mm
Was obtained. Next, 50WV, 22
A 0 μF electrolytic capacitor was manufactured.

【0030】[従来例1]エスパルトパルプ70重量%
とマニラ麻パルプ30重量%の混合原料を使用してCS
Fで640ccに叩解して円網三重紙とした後、オンマ
シン方式のダイレクトロールコータで、製造段階でアニ
オン性不純物を除去したポリアクリルアミド樹脂の希釈
溶液を浸漬し、プレスロールでポリアクリルアミドが紙
に対して3.0重量%になる様に脱液調整後シリンダー
ドライヤーで乾燥して厚さ49.6μm,密度0.30
4g/cm,引張強度1.2kg/15mmの円網三
重紙を得た。次にこの電解紙で50WV,220μFの
電解コンデンサを製作した。
[Conventional example 1] Espart pulp 70% by weight
Using a mixed raw material of pulp and Manila hemp pulp 30% by weight
After beating to 640 cc with F, a dilute solution of polyacrylamide resin from which anionic impurities have been removed at the manufacturing stage is immersed in an on-machine type direct roll coater, and the polyacrylamide is converted to paper with a press roll. Liquid was adjusted so as to be 3.0% by weight, and then dried with a cylinder drier to obtain a thickness of 49.6 μm and a density of 0.30%.
Circular triple paper having 4 g / cm 3 and a tensile strength of 1.2 kg / 15 mm was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0031】[従来例2]エスパルトパルプ60重量%
とマニラ麻パルプ40重量%の混合原料を使用してCS
Fで590ccに叩解して円網三重紙とした後、オンマ
シン方式のダイレクトロールコータで、製造段階でアニ
オン性不純物を除去したポリエチレンイミン樹脂の希釈
溶液を浸漬し、プレスロールでポリエチレンイミンが紙
に対して3.0重量%になる様に脱液調整後シリンダー
ドライヤーで乾燥して厚さ40.1μm,密度0.37
1g/cm,引張強度2.1kg/15mmの円網三
重紙を得た。次にこの電解紙で50WV,220μFの
電解コンデンサを製作した。
[Conventional Example 2] Espart pulp 60% by weight
Using raw materials of 40% by weight of Manila hemp pulp
After beating to 590 cc with F, a dilute solution of polyethyleneimine resin from which anionic impurities have been removed at the manufacturing stage is immersed in an on-machine type direct roll coater, and the polyethyleneimine paper is pressed with a press roll. The liquid was adjusted so as to have a concentration of 3.0% by weight and dried with a cylinder drier to obtain a thickness of 40.1 μm and a density of 0.37%.
Circular mesh triple paper having 1 g / cm 3 and a tensile strength of 2.1 kg / 15 mm was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0032】[従来例3]マニラ麻パルプ70重量%と
エスパルトパルプ30重量%の混合原料を使用してCS
Fで660ccに叩解して円網二重紙とした後、オンマ
シン方式のダイレクトロールコータで、イオン交換樹脂
で精製してアニオン性不純物を除去したジアルデヒドデ
ンプンの希釈溶液を浸漬し、プレスロールでジアルデヒ
ドデンプンが紙に対して3.0重量%になる様に脱液調
整後シリンダードライヤーで乾燥して厚さ49.9μ
m,密度0.350g/cm,引張強度2.7kg/
15mmの円網三重紙を得た。次にこの電解紙で50W
V,220μFの電解コンデンサを製作した。
[Conventional Example 3] CS using a mixed raw material of 70% by weight of Manila hemp pulp and 30% by weight of esparto pulp
After beating to 660 cc with F, a dilute solution of dialdehyde starch purified by ion-exchange resin to remove anionic impurities was immersed in an on-machine type direct roll coater, and then press rolled. After adjusting the dewatering so that the dialdehyde starch becomes 3.0% by weight with respect to the paper, it was dried with a cylinder dryer and had a thickness of 49.9 μm.
m, density 0.350 g / cm 3 , tensile strength 2.7 kg /
A 15 mm circular mesh triple paper was obtained. Next, 50W with this electrolytic paper
V, 220 μF electrolytic capacitor was manufactured.

【0033】[従来例4]マニラ麻パルプ100重量%
を使用してCSFで420ccに叩解して円網一重紙と
した後、オンマシン方式のダイレクトロールコータで、
イオン交換樹脂で精製してアニオン性不純物を除去した
ポリエチレンイミンの希釈溶液を浸漬し、プレスロール
でポリエチレンイミンが紙に対して3.0重量%になる
様に脱液調整後シリンダードライヤーで乾燥して厚さ3
0.7μm,密度0.593g/cm,引張強度5.
5kg/15mmの円網一重紙を得た。次にこの電解紙
で50WV,220μFの電解コンデンサを製作した。
[Conventional Example 4] Manila hemp pulp 100% by weight
After beaten to 420cc with CSF using CSF to make a single-mesh net paper, with an on-machine type direct roll coater,
A dilute solution of polyethyleneimine purified from an ion exchange resin to remove anionic impurities is immersed in the solution, adjusted to remove polyethyleneimine by 3.0% by weight with respect to paper by a press roll, and dried by a cylinder dryer. And thickness 3
0.7 μm, density 0.593 g / cm 3 , tensile strength 5.
5 kg / 15 mm single-mesh net paper was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0034】[従来例5]有機溶剤紡糸レーヨン100
重量%を使用してCSFで240ccに叩解して円網一
重紙とした後、オンマシン方式のダイレクトロールコー
タで、製造段階でアニオン性不純物を除去したポリアク
リルアミド樹脂の希釈溶液を浸漬し、プレスロールでポ
リアクリルアミドが紙に対して3.0重量%になる様に
脱液調整後シリンダードライヤーで乾燥して厚さ70.
6μm,密度0.231g/cm,引張強度1.4k
g/15mmの円網一重紙を得た。次にこの電解紙で5
0WV,220μFの電解コンデンサを製作した。
[Conventional example 5] Organic solvent spun rayon 100
After being beaten to 240 cc with CSF using the weight percent to form a single-mesh net, a dilute solution of polyacrylamide resin from which anionic impurities have been removed at the manufacturing stage is immersed in an on-machine direct roll coater, and pressed. After adjusting the dewatering so that the polyacrylamide becomes 3.0% by weight with respect to the paper with a roll, it was dried with a cylinder dryer to a thickness of 70.
6 μm, density 0.231 g / cm 3 , tensile strength 1.4 k
g / 15 mm round mesh single paper was obtained. Then use this electrolytic paper for 5
A 0 WV, 220 μF electrolytic capacitor was manufactured.

【0035】[従来例6]有機溶剤紡糸レーヨン100
重量%を使用してCSFで240ccに叩解して円網一
重紙とした後、オンマシン方式のダイレクトロールコー
タで、製造段階でアニオン性不純物を除去したポリアク
リルアミド樹脂とジアルデヒドデンプンの希釈溶液を浸
漬し、プレスロールでポリアクリルアミド樹脂とジアル
デヒドデンプンが合計で紙に対して3.0重量%になる
様に脱液調整後シリンダードライヤーで乾燥し、厚さ6
9.8μm,密度0.230g/cm,引張強度1.
5kg/15mmの円網一重紙を得た。次にこの電解紙
で50WV,220μFの電解コンデンサを製作した。
[Conventional example 6] Organic solvent spun rayon 100
CSF was beaten to 240 cc with CSF to obtain single-mesh net paper, and then a dilute starch solution of polyacrylamide resin and dialdehyde starch from which anionic impurities had been removed at the production stage using an on-machine direct roll coater. After immersion, the polyacrylamide resin and dialdehyde starch were adjusted to a total weight of 3.0% by weight with respect to the paper with a press roll, followed by drying with a cylinder drier.
9.8 μm, density 0.230 g / cm 3 , tensile strength 1.
5 kg / 15 mm single-mesh net paper was obtained. Next, a 50 WV, 220 μF electrolytic capacitor was manufactured using this electrolytic paper.

【0036】電解紙の評価方法は以下の通りである。先
ず電解紙の厚さ、密度、引張強度はJIS C2301
(電解コンデンサ紙)に規定された方法で測定した。電
解紙の気密度はJIS C2111(電気絶縁紙試験方
法)に規定する“12.1気密度”の項に従い、B型試
験器(ガーレーデンソメータ)によって測定した。但し
穴の部分が6mmφであるアダプターを使用した。ま
た、気密度1秒以下の電解紙については5枚重ねで測定
して1枚に換算した。
The evaluation method of the electrolytic paper is as follows. First, the thickness, density and tensile strength of the electrolytic paper were measured according to JIS C2301.
(Electrolytic capacitor paper). The airtightness of the electrolytic paper was measured with a B-type tester (Gurley densometer) in accordance with the section of “12.1 Airtightness” specified in JIS C2111 (electrical insulating paper test method). However, an adapter having a hole portion of 6 mmφ was used. Electrolytic paper having an air density of 1 second or less was measured on five sheets and converted to one sheet.

【0037】紙粉発生量は、巻出し巻取りを設けた試験
器の中央にカッター刃を5cm間隔で2枚固定する。1
8mm幅でレコード巻に裁断した電解紙を巻出し側にセ
ットし、0.5kgの張力で引出し、カッター刃上を擦
らせながら10m/分の速度で1000m巻取り側に移
動させ この間に脱落した紙粉の量を測定する。4回の
平均値を表示した。カチオン分析方法は、紙力増強剤2
0g±0.1gを200ml,0.1mol/lの常温
の塩酸水溶液で1時間抽出し、この抽出液を原子吸光分
析にて分析した。
The amount of paper dust generated is determined by fixing two cutter blades at an interval of 5 cm at the center of a tester provided with unwinding and winding. 1
The electrolytic paper cut into a record roll with a width of 8 mm was set on the unwinding side, pulled out with a tension of 0.5 kg, moved to the winding side of 1000 m at a speed of 10 m / min while rubbing on the cutter blade, and dropped off during this. Measure the amount of paper dust. The average of four measurements was displayed. Cation analysis method is paper strength enhancer 2
0 g ± 0.1 g was extracted with 200 ml of 0.1 mol / l aqueous solution of hydrochloric acid at room temperature for 1 hour, and this extract was analyzed by atomic absorption spectrometry.

【0038】電解コンデンサの評価方法は以下の通りで
ある。先ずショート不良率は電解紙を陽極箔及び陰極箔
とともに巻取りして電解コンデンサ素子を形成した後、
電解液を含浸しないままで両極間のショートによる導通
をテスターで確認した。ショート不良率は略1000個
の素子について検査し、ショート素子の全素子数に対す
る割合をショート不良率とした。
The evaluation method of the electrolytic capacitor is as follows. First, the short-circuit failure rate is determined by winding the electrolytic paper together with the anode foil and the cathode foil to form an electrolytic capacitor element.
Conduction due to a short circuit between the two electrodes was confirmed with a tester without impregnating the electrolyte. The short-circuit defect rate was inspected for approximately 1000 elements, and the ratio of the short-circuit element to the total number of elements was defined as the short-circuit defect rate.

【0039】電解コンデンサのESR(等価直列抵抗)
は20℃,1000HZの周波数でLCRメータによっ
て測定した。静電容量は20℃,1000HZの周波数
でLCRメータによって測定した。漏れ電流は定格直流
電圧を1分間印加後に電解コンデンサに流れる電流(漏
れ電流)を20℃で測定した。経時変化試験は85℃の
恒温層で定格直流電圧を4000時間連続印加して、E
SR,静電容量,漏れ電流を測定した。表1,2に上記
項目に関する各実施例1〜7,比較例1,従来例1〜6
の測定結果を示す。
ESR (Equivalent Series Resistance) of Electrolytic Capacitor
Was measured by an LCR meter at 20 ° C. and a frequency of 1000 HZ. The capacitance was measured by an LCR meter at 20 ° C. and a frequency of 1000 HZ. The leakage current was measured at 20 ° C. by measuring the current (leakage current) flowing through the electrolytic capacitor after applying the rated DC voltage for 1 minute. The aging test was performed by continuously applying a rated DC voltage for 4,000 hours in a constant temperature layer at 85 ° C.
SR, capacitance, and leakage current were measured. Tables 1 and 2 show Examples 1 to 7, Comparative Example 1 and Conventional Examples 1 to 6 relating to the above items.
2 shows the measurement results.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表1,2の結果に示した通りに製造段階あ
るいは水溶液でのイオン交換樹脂等によってカチオンを
低減した紙力増強剤を含浸塗布した電解紙は、カチオン
を除去していない紙力増強剤を含浸塗布した電解紙と同
等の特性(引張強度,ショート不良率,ESR,紙紛発
生量)になっている。例えば、実施例1はエスパルトパ
ルプ70重量%とマニラ麻パルプ30重量%の混合原料
を使用してオンマシン方式でカチオンを10ppmまで
低減したポリアクリルアミド樹脂の希釈溶液を含浸塗布
して製造した厚さ50.1μm,密度0.299g/c
,引張強度1.3kg/15mmの円網三重紙であ
る。実施例2はエスパルトパルプ70重量%とマニラ麻
パルプ30重量%の混合原料を使用してオフマシン方式
でカチオンを10ppmまで低減したポリアクリルアミ
ド樹脂の希釈溶液を含浸塗布して製造した厚さ50.0
μm,密度0.301g/cm,引張強度1.2kg
/15mmの円網三重紙である。従来例1は実施例1と
同一原料,同一方式で製造段階でアニオン性不純物のみ
を除去したポリアクリルアミド樹脂の希釈溶液を含浸塗
布して製造した略同一厚さ,同一密度,同一引張り強度
の円網三重紙である。
As shown in the results of Tables 1 and 2, electrolytic paper impregnated and coated with a paper strength enhancer whose cation was reduced by an ion exchange resin or the like in an aqueous solution or in an aqueous solution did not remove the cation. It has the same characteristics (tensile strength, short-circuit defect rate, ESR, paper dust generation) as electrolytic paper impregnated with the agent. For example, in Example 1, a mixed material of 70% by weight of esparto pulp and 30% by weight of manila hemp pulp was impregnated and coated with a diluted solution of polyacrylamide resin in which cations were reduced to 10 ppm by an on-machine method. 50.1μm, density 0.299g / c
It is a circular mesh triple paper with m 3 and a tensile strength of 1.3 kg / 15 mm. In Example 2, a mixed material of 70% by weight of esparto pulp and 30% by weight of manila hemp pulp was impregnated with a diluted solution of a polyacrylamide resin in which cations were reduced to 10 ppm by an off-machine method to obtain a thickness of 50. 0
μm, density 0.301 g / cm 3 , tensile strength 1.2 kg
/ 15 mm circular mesh triple paper. Conventional Example 1 is a circle having substantially the same thickness, the same density, and the same tensile strength manufactured by impregnating and applying a diluted solution of polyacrylamide resin in which only anionic impurities have been removed at the manufacturing stage by the same raw material and the same method as in Example 1. It is net triple paper.

【0043】実施例1,2は従来例1と同等の特性(引
張強度,ショート不良率,ESR,紙紛発生量)となっ
ている。実施例3と従来例2,実施例4と従来例3,実
施例5と従来例4,実施例6と従来例5及び実施例7と
従来例6についてもほぼ同じ結果となっている。
The first and second embodiments have the same characteristics (tensile strength, short-circuit defect rate, ESR, and amount of paper dust) as those of the first embodiment. Almost the same results were obtained in Example 3, Conventional Example 2, Example 4, Conventional Example 3, Example 5, Conventional Example 4, Example 6, Conventional Example 5, and Example 7, and Conventional Example 6.

【0044】更に製造段階あるいは水溶液でのイオン交
換樹脂等によってカチオンを低減した紙力増強剤を含浸
塗布した電解紙は、カチオンを除去していない紙力増強
剤を含浸塗布した電解紙と同様に、紙力増強剤を含浸塗
布することによって従来の技術(特開平8−27398
4)と同等の効果が見られる。
Further, the electrolytic paper impregnated and coated with a paper strength enhancer whose cations have been reduced by the ion exchange resin or the like in the production stage or in an aqueous solution is similar to the electrolytic paper impregnated and coated with a paper strength enhancer from which cations have not been removed. The conventional technology (Japanese Patent Laid-Open No. 8-27398) is applied by impregnating and applying a paper strength enhancer.
The same effect as 4) is obtained.

【0045】比較例1は実施例1,2及び従来例1と同
一原料で紙力増強剤を含浸塗布していない円網三重紙で
ある。実施例1,2は比較例1と比較して引張り強度の
改善によってESRに悪影響を与えることなくショート
不良率が格段に改善出来ていることが判明した。
Comparative Example 1 is a triple-mesh paper made of the same raw materials as in Examples 1 and 2 and Conventional Example 1 but not coated with a paper strength enhancer. In Examples 1 and 2, it was found that the short-circuit defect rate was remarkably improved without affecting the ESR by improving the tensile strength as compared with Comparative Example 1.

【0046】表3は各実施例,従来例,比較例の静電容
量,ESR,漏れ電流について初期値と85℃負荷試験
4000時間後の測定値をまとめた一覧表である。
Table 3 is a list summarizing the initial values and the measured values after 4000 hours of the 85 ° C. load test for the capacitance, ESR, and leakage current of each embodiment, conventional example, and comparative example.

【0047】[0047]

【表3】 [Table 3]

【0048】表3に示した通り電解紙中のカチオンを低
減することによって、経時変化試験後も初期特性とほぼ
同等の特性を維持できている。例えば実施例1,2は紙
力増強剤中のカチオンを10ppm以下まで低減した紙
力増強剤を含浸塗布した電解紙を用いたものである。従
来例1はアニオンだけを低減して約2000ppmのカ
チオンを含んだ紙力増強剤を含浸塗布した電解紙を用い
たものである。比較例1は紙力増強剤を含浸塗布してい
ない電解紙を用いたものである。
As shown in Table 3, by reducing the amount of cations in the electrolytic paper, it was possible to maintain substantially the same characteristics as the initial characteristics even after the aging test. For example, Examples 1 and 2 use electrolytic paper impregnated with a paper strength enhancer in which cations in the paper strength enhancer have been reduced to 10 ppm or less. Conventional example 1 uses electrolytic paper impregnated with a paper strength enhancer containing only about 2000 ppm of a cation by reducing only anions. Comparative Example 1 uses electrolytic paper not impregnated with a paper strength enhancer.

【0049】実施例1,2は比較例1と同様に経次変化
試験後も初期特性と大差なく良好な特性を維持してい
る。一方、従来例1は漏れ電流が増大しているとともに
静電容量が低下している。実施例3と従来例2,実施例
5と従来例4及び実施例6と従来例5についても同じ結
果となっている。
In Examples 1 and 2, similar to Comparative Example 1, even after the successive change test, good characteristics were maintained without much difference from the initial characteristics. On the other hand, in Conventional Example 1, the leakage current increases and the capacitance decreases. The same results were obtained for the third embodiment, the second conventional example, the fifth embodiment, the fourth conventional example, and the sixth embodiment and the fifth conventional example.

【0050】実施例4は紙力増強剤中のカチオンを10
0ppm以下まで低減した紙力増強剤を含浸塗布した電
解紙を用いたものである。従来例3はアニオンだけを低
減し約3000ppmのカチオンを含んだ紙力増強剤を
含浸塗布した電解紙を用いたものである。実施例1,2
と従来例1も同様の結果となっている。
Example 4 shows that the cation in the paper strength agent was 10
It uses electrolytic paper impregnated with a paper strength enhancer reduced to 0 ppm or less. Conventional example 3 uses electrolytic paper impregnated with a paper strength enhancer containing only about 3000 ppm of cations by reducing only anions. Examples 1 and 2
And Conventional Example 1 have similar results.

【0051】更に実施例7は紙力増強剤中のカチオンを
500ppm以下まで低減した紙力増強剤を含浸塗布し
た電解紙を用いたものである。従来例6はアニオンだけ
を低減し約6000ppmのカチオンを含んだ紙力増強
剤を含浸塗布した電解紙を用いたものである。実施例7
で漏れ電流,容量に若干の悪化が見られるものの、従来
例6に比較して大幅な改善が見られる。
Further, Example 7 uses electrolytic paper impregnated with a paper strength enhancer in which the cations in the paper strength enhancer have been reduced to 500 ppm or less. Conventional example 6 uses electrolytic paper impregnated and coated with a paper strength enhancer containing only about 6000 ppm of cations by reducing only anions. Example 7
, The leakage current and the capacity are slightly deteriorated, but are significantly improved as compared with the conventional example 6.

【0052】表1,2,3の結果に示した通り、紙力増
強剤のカチオン、特にNa,K,Ca,Mgを総量で5
00ppm以下、好ましくは100ppm以下に低減す
ることによって紙力増強剤を電解紙に含浸塗布しても従
来通りに引張り強度の改善に伴うESRへの悪影響がな
くなり、ショート不良率も改良される。エチレングリコ
ール(EG)を主溶媒とする電解液或はそれ以外で水分
を多く含む電解液中での寿命特性が改善されることが明
らかである。
As shown in the results of Tables 1, 2, and 3, cations of the paper strength enhancer, in particular, Na, K, Ca, and Mg were added in a total amount of 5%.
By reducing the content to 00 ppm or less, preferably 100 ppm or less, even if the paper strength enhancer is impregnated and applied to the electrolytic paper, there is no adverse effect on the ESR due to the improvement in tensile strength as in the conventional case, and the short-circuit defect rate is also improved. It is apparent that the life characteristics in an electrolytic solution containing ethylene glycol (EG) as a main solvent or an electrolytic solution containing a large amount of water other than that are improved.

【0053】[0053]

【発明の効果】以上詳細に説明したように、本発明にか
かる電解コンデンサは抄紙後の電解紙にNa,K,C
a,Mgのカチオンを総量で500ppm以下に低減し
た紙力増強剤を含浸塗布したことを特徴としており、具
体的にはアルミ箔を腐食あるいは変質させないレベルま
でカチオンを低減させた植物性ガム,澱粉,半合成高分
子,合成高分子等の紙力増強剤の希釈溶液を電解紙に含
浸塗布したことにより、以下に記す効果が得られる。
As described in detail above, the electrolytic capacitor according to the present invention is capable of forming Na, K, C
a, Mg cation reduced to a total amount of 500 ppm or less, characterized in that it is impregnated and coated with a paper strength enhancer. Specifically, vegetable gums and starches whose cations are reduced to a level that does not corrode or alter aluminum foil The following effects can be obtained by impregnating and coating an electrolytic paper with a dilute solution of a paper strength enhancer such as a synthetic polymer, a semi-synthetic polymer, and a synthetic polymer.

【0054】即ち、従来手段によって得られた電解コン
デンサは、電解液中に紙力増強剤中のNa,K,Ca,
Mg等のカチオンが抽出されてアルミ箔を腐食したり変
質させてしまい、漏れ電流の増大とか静電容量の低下等
を引き起こす難点があるのに対して、本発明のように抄
紙後の電解紙に前記カチオンを総量で500ppm以下
に低減した紙力増強剤を含浸塗布したことにより、ES
Rに悪影響を与えることなくショート不良率を大幅に改
善することができる。更に電解紙中のカチオンを紙力増
強剤の含浸塗布後も増加させないために、エチレングリ
コールを主溶媒とする電解液であっても、カチオンが電
解液中に余分に抽出されることがなくなり、寿命特性を
大幅に改善することができる。
That is, the electrolytic capacitor obtained by the conventional means contains Na, K, Ca,
Although cations such as Mg are extracted and corrode or alter the aluminum foil, there is a problem that an increase in leakage current or a decrease in capacitance is caused. On the other hand, electrolytic paper after paper making as in the present invention. By impregnating and applying a paper strength enhancer in which the total amount of the cations was reduced to 500 ppm or less,
The short-circuit failure rate can be significantly improved without adversely affecting R. Further, in order not to increase the cations in the electrolytic paper even after the impregnation application of the paper strength enhancer, even in the case of the electrolytic solution containing ethylene glycol as the main solvent, the cations are not extraly extracted into the electrolytic solution, The life characteristics can be greatly improved.

【0055】更に従来使用している電解液は紙力増強剤
が不溶であるGBLを主溶媒とする電解液であるため、
電解液で紙力増強剤中のカチオンが溶出されやすく、溶
出したカチオンがアルミニウム箔の表面に水和物を形成
してコンデンサの特性に悪影響をもたらす問題があるの
に対して、本発明は電解液の種類にかかわらず抽出され
るカチオン量を低減して低密度で引張強度が改善され、
しかも電解コンデンサのESRに悪影響を与えることな
くショート不良率を改善して生産性を向上させ、しかも
寿命特性を高めた電解コンデンサを提供することができ
る。
Further, since the conventionally used electrolyte is an electrolyte containing GBL as a main solvent in which the paper strength enhancer is insoluble,
The cation in the paper strength agent is easily eluted by the electrolytic solution, and the eluted cation forms a hydrate on the surface of the aluminum foil to adversely affect the characteristics of the capacitor. Regardless of the type of liquid, the amount of cations extracted is reduced to improve the tensile strength at low density,
In addition, it is possible to provide an electrolytic capacitor which improves the productivity by improving the short-circuit defect rate without adversely affecting the ESR of the electrolytic capacitor, and has an improved life characteristic.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 直樹 高知県吾川郡春野町弘岡上648番地 ニッ ポン高度紙工業株式会社内 (72)発明者 竹内 章祥 高知県吾川郡春野町弘岡上648番地 ニッ ポン高度紙工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoki Fujimoto 648, Hirookakami, Haruno-cho, Agawa-gun, Kochi Japan Nippon Advanced Paper Industries Co., Ltd. Within Japan Advanced Paper Industry Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 陽極箔と陰極箔との間に電解紙を介在し
てなる電解コンデンサにおいて、抄紙後の電解紙にN
a,K,Ca,Mgのカチオンを総量で500ppm以
下に低減した紙力増強剤を含浸塗布したことを特徴とす
る電解コンデンサ。
1. An electrolytic capacitor having an electrolytic paper interposed between an anode foil and a cathode foil, wherein N
An electrolytic capacitor characterized by being coated by impregnation with a paper strength enhancer in which the total amount of cations of a, K, Ca, and Mg is reduced to 500 ppm or less.
【請求項2】 抄紙後の電解紙に、Na,K,Ca,M
gのカチオンを総量で100ppm以下に低減した紙力
増強剤を含浸塗布したことを特徴とする請求項1に記載
の電解コンデンサ。
2. Na, K, Ca, M is added to the electrolytic paper after paper making.
The electrolytic capacitor according to claim 1, wherein a paper strength enhancer in which the total amount of cations is reduced to 100 ppm or less is impregnated.
【請求項3】 紙力増強剤のNa含有量が25ppm以
下である請求項1又は2に記載の電解コンデンサ。
3. The electrolytic capacitor according to claim 1, wherein the Na content of the paper strength enhancer is 25 ppm or less.
【請求項4】 紙力増強剤のK含有量が25ppm以下
である請求項1又は2に記載の電解コンデンサ。
4. The electrolytic capacitor according to claim 1, wherein the K content of the paper strength enhancer is 25 ppm or less.
【請求項5】 紙力増強剤のCa含有量が25ppm以
下である請求項1又は2に記載の電解コンデンサ。
5. The electrolytic capacitor according to claim 1, wherein the Ca content of the paper strength enhancer is 25 ppm or less.
【請求項6】 紙力増強剤のMg含有量が25ppm以
下である請求項1又は2記載の電解コンデンサ。
6. The electrolytic capacitor according to claim 1, wherein the Mg content of the paper strength enhancer is 25 ppm or less.
【請求項7】 紙力増強剤は澱粉,植物性ガム,半合成
高分子,合成高分子から選択された1種又は複数種であ
る請求項1,2,3,4,5又は6に記載の電解コンデ
ンサ。
7. The paper strength enhancer according to claim 1, 2, 3, 4, 5 or 6, wherein the paper strength enhancer is one or more selected from starch, vegetable gum, semi-synthetic polymer, and synthetic polymer. Electrolytic capacitors.
【請求項8】 紙力増強剤を電解紙に対して0.05重
量%〜5.0重量%含浸塗布した請求項1,2,3,
4,5,6又は7に記載の電解コンデンサ。
8. The electrolytic paper according to claim 1, wherein the paper strength enhancer is impregnated with 0.05 to 5.0% by weight.
8. The electrolytic capacitor according to 4, 5, 6, or 7.
【請求項9】 電解紙を構成する繊維がマニラ麻パル
プ,エスパルトパルプ,サイザル麻パルプ,溶剤紡糸レ
ーヨンから選択された1種又は複数種である請求項1,
2,3,4,5,6,7又は8に記載の電解コンデン
サ。
9. The fiber constituting the electrolytic paper is one or more selected from the group consisting of manila hemp pulp, esparto pulp, sisal pulp, and solvent-spun rayon.
9. The electrolytic capacitor according to 2, 3, 4, 5, 6, 7, or 8.
【請求項10】 電解紙の密度が0.20g/cm
0.85g/cmであり、厚さが20μm〜90μm
である請求項1,2,3,4,5,6,7,8又は9に
記載の電解コンデンサ。
10. The density of the electrolytic paper is 0.20 g / cm 3 or more.
0.85 g / cm 3 and a thickness of 20 μm to 90 μm
The electrolytic capacitor according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9.
【請求項11】 電解紙の引張強度が1.1kg/15
mm以上である請求項1,2,3,4,5,6,7,
8,9又は10に記載の電解コンデンサ。
11. The tensile strength of electrolytic paper is 1.1 kg / 15.
1, 2, 3, 4, 5, 6, 7,
The electrolytic capacitor according to 8, 9, or 10.
JP2000078625A 2000-03-21 2000-03-21 Electrolytic capacitor Expired - Lifetime JP4450476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078625A JP4450476B2 (en) 2000-03-21 2000-03-21 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078625A JP4450476B2 (en) 2000-03-21 2000-03-21 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001267182A true JP2001267182A (en) 2001-09-28
JP4450476B2 JP4450476B2 (en) 2010-04-14

Family

ID=18596011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078625A Expired - Lifetime JP4450476B2 (en) 2000-03-21 2000-03-21 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4450476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200657A (en) * 2002-12-06 2004-07-15 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2005347669A (en) * 2004-06-07 2005-12-15 Nippon Kodoshi Corp Electrolytic capacitor
JP2008124064A (en) * 2006-11-08 2008-05-29 Asahi Kasei Fibers Corp Separator for capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200657A (en) * 2002-12-06 2004-07-15 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2005347669A (en) * 2004-06-07 2005-12-15 Nippon Kodoshi Corp Electrolytic capacitor
JP4533003B2 (en) * 2004-06-07 2010-08-25 ニッポン高度紙工業株式会社 Electrolytic capacitor
JP2008124064A (en) * 2006-11-08 2008-05-29 Asahi Kasei Fibers Corp Separator for capacitor

Also Published As

Publication number Publication date
JP4450476B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
EP3447779B1 (en) Separator for electrochemical element and electrochemical element
JPH06168848A (en) Electrolytic capacitor
JP3466206B2 (en) Electrolytic capacitor
JP4109697B2 (en) Electrolytic capacitor
EP3358585A1 (en) Separator for electrochemical element and electrochemical element
JP6836509B2 (en) Separator for electrochemical element and electrochemical element
JP2010239094A (en) Separator for electrolytic capacitor, and electrolytic capacitor
JP2001267182A (en) Electrolytic capacitor
JPH08273984A (en) Electrolytic capacitor
JP4109696B2 (en) Electrolytic capacitor
JP7012425B2 (en) Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP6850921B1 (en) Separator for electrochemical element and electrochemical element
JP4533003B2 (en) Electrolytic capacitor
JP2002043181A (en) Electrolytic capacitor
JP4234151B2 (en) Electrolytic capacitor
JP2886233B2 (en) Electrolytic capacitor
JPS6145372B2 (en)
JP2004228600A (en) Electrolytic capacitor
JP2004200395A (en) Electrolytic capacitor
JP2014103158A (en) Separator for electrolytic capacitor and aluminum electrolytic capacitor
JPH0381290B2 (en)
JP3473966B2 (en) Electrolytic capacitor
JPH03222315A (en) Electrolytic paper for electrolytic capacitor
JP3264688B2 (en) Electrolytic capacitor
JPS63226020A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent or registration of utility model

Ref document number: 4450476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term