JP2006245436A - Silicon nitride wiring board and semiconductor module using it - Google Patents
Silicon nitride wiring board and semiconductor module using it Download PDFInfo
- Publication number
- JP2006245436A JP2006245436A JP2005061317A JP2005061317A JP2006245436A JP 2006245436 A JP2006245436 A JP 2006245436A JP 2005061317 A JP2005061317 A JP 2005061317A JP 2005061317 A JP2005061317 A JP 2005061317A JP 2006245436 A JP2006245436 A JP 2006245436A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- area
- metal
- substrate
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Structure Of Printed Boards (AREA)
Abstract
Description
本発明は、窒化珪素配線基板、特にパワー半導体モジュールに使用され、窒化珪素基板の一方の面に導電性回路板となる金属回路板を接合し、他方の面に放熱用金属板を接合した窒化珪素配線基板およびこれを用いた半導体モジュールに関するものである。 The present invention is used in a silicon nitride wiring board, particularly a power semiconductor module, in which a metal circuit board serving as a conductive circuit board is joined to one surface of a silicon nitride substrate and a heat radiating metal plate is joined to the other surface. The present invention relates to a silicon wiring board and a semiconductor module using the same.
近年、電動車両用インバータとして高電圧、大電流動作が可能なパワー半導体モジュール(IGBT、MOS FET等)が用いられている。パワー半導体モジュールに使用される基板としては、窒化アルミニウムや窒化珪素からなる絶縁性セラミックス基板の一方の面(上面)に回路となる導電性金属板を接合し、他方の面(下面)に放熱用の金属板を接合したセラミックス配線基板が広く用いられている。この金属板としては、銅板またはアルミニウム板等が使用されている。そして、回路となる導電性金属板の上面には、半導体素子等が搭載される。また、セラミックス基板と金属板との接合はろう材による活性金属法や銅板を直接接合する、いわゆる銅直接接合法が採用されている。 In recent years, power semiconductor modules (IGBT, MOS FET, etc.) capable of high voltage and large current operation are used as inverters for electric vehicles. As a substrate used for a power semiconductor module, a conductive metal plate to be a circuit is bonded to one surface (upper surface) of an insulating ceramic substrate made of aluminum nitride or silicon nitride, and the other surface (lower surface) is used for heat dissipation. Ceramic wiring boards to which these metal plates are bonded are widely used. As this metal plate, a copper plate or an aluminum plate is used. And a semiconductor element etc. are mounted on the upper surface of the conductive metal plate used as a circuit. For joining the ceramic substrate and the metal plate, an active metal method using a brazing material or a so-called copper direct joining method in which a copper plate is directly joined is employed.
しかしながら、金属回路板および金属放熱板をセラミックス基板に接合したセラミックス回路基板を用いたパワー半導体モジュールにおいては、大電流を流せるように金属回路板および金属放熱板の厚さを0.3〜0.5mmと比較的厚くしている場合が多く、特に金属回路板および金属放熱板に熱伝導率の高い銅を用いた場合、熱膨張率が大きく異なるセラミックスと金属を接合すると、接合後の冷却過程で熱応力が発生する。この応力はセラミックス基板の接合部付近で圧縮と引張りの残留応力として存在する。この残留応力は、セラミックス基板にクラックを生じさせたり、絶縁耐圧不良を起こしたり、あるいは金属回路板および金属板の剥離の発生原因となる。 However, in a power semiconductor module using a ceramic circuit board in which a metal circuit board and a metal heat sink are bonded to a ceramic board, the thickness of the metal circuit board and the metal heat sink is set to 0.3 to 0.00 mm so that a large current can flow. In many cases, it is relatively thick, 5 mm, especially when copper with high thermal conductivity is used for the metal circuit board and metal heat sink, if ceramics and metals with significantly different thermal expansion coefficients are joined, the cooling process after joining Thermal stress is generated. This stress is present as compressive and tensile residual stress in the vicinity of the joint portion of the ceramic substrate. This residual stress causes a crack in the ceramic substrate, causes a breakdown voltage failure, or causes the metal circuit board and the metal plate to peel off.
この点で窒化アルミニウム基板は、セラミック基板としては高い熱伝導性を有するが、機械的強度が低いため強度面での信頼性は低いことから、適用は困難である。それに対して、窒化珪素基板はセラミック基板として比較的高い熱伝導性と高い機械的強度を有することから、信頼性の高いセラミックス配線基板を実現できると考えられる。 In this respect, the aluminum nitride substrate has high thermal conductivity as a ceramic substrate, but its mechanical strength is low, and its reliability in terms of strength is low, making it difficult to apply. On the other hand, since the silicon nitride substrate has a relatively high thermal conductivity and high mechanical strength as a ceramic substrate, it is considered that a highly reliable ceramic wiring substrate can be realized.
しかしながら、高い機械的強度を有する窒化珪素基板をセラミックス基板に用いた場合でも、銅板を接合することによる熱応力や半導体モジュール稼動時の加熱冷却サイクルによる熱衝撃でクラックが発生する可能性があった。
このクラックは、金属回路板のパターンの外周部、特に角部に発生することが多く、セラミックス配線基板の絶縁耐圧および強度を劣化させ、搭載した半導体素子に電圧を印加した場合、セラミックス基板が絶縁破壊することもあった。従って、セラミックス配線基板に半導体素子を搭載した半導体モジュールの信頼性が十分ではなかった。
However, even when a silicon nitride substrate having a high mechanical strength is used as a ceramic substrate, cracks may occur due to thermal stress caused by joining copper plates or thermal shock caused by heating / cooling cycles during semiconductor module operation. .
This crack often occurs at the outer periphery of the metal circuit board pattern, especially at the corners, which degrades the dielectric strength and strength of the ceramic wiring board, and when a voltage is applied to the mounted semiconductor element, the ceramic board is insulated. There was also destruction. Therefore, the reliability of the semiconductor module in which the semiconductor element is mounted on the ceramic wiring board is not sufficient.
セラミックス基板のクラックを防止するために、特許文献1では金属回路板のパターンの角部における曲線において、曲線の中央部の曲率半径と直線部から角部に入る点の曲率半径とを変えて所定の関係が成立するような技術が提案されている。金属回路板の角部付近の応力を緩和することによって、セラミックス基板へのクラックを抑制している。
In order to prevent cracks in the ceramic substrate, in
また、特許文献2では金属回路板パターンの隣接した2つの角部の内、応力が大きい方あるいは集中する方の角部、あるいは応力緩和をはかる必要性がより高い方の角部の曲率半径を大きくすることによって、金属回路板角部付近にかかる応力を緩和してクラックの発生を防止している。
以上のように、熱応力によるセラミックス基板へのクラックの発生を防止する方法として、金属板の角部にRを設ける構造が以下の文献に提案されている。
Further, in
As described above, as a method for preventing the occurrence of cracks in the ceramic substrate due to thermal stress, a structure in which R is provided at the corner of a metal plate has been proposed in the following documents.
半導体モジュールに用いるセラミックス配線基板の回路パターンには半導体素子を搭載するための金属回路板パターン以外に半導体素子からワイヤボンディングによって繋がれた端子を引き出すための金属回路板パターンが設けられているため、複数の種類の金属回路板パターンが配置されていることが多い。前記端子を取り出すための金属回路板パターンは半導体素子を搭載しないため、比較的小さい面積にすることができ、また、複数個隣接して配置することによって、複数ある端子の引き出し箇所を一箇所に集約することができる。これにより半導体モジュールを組み込む装置の構造を簡素化できる。
このような半導体素子を搭載するための大面積の金属回路板パターンとそれ以外の小面積の金属回路板パターンがある場合でも、セラミックス基板へのクラックの発生を防止するために、金属回路板のパターンの角部への応力を緩和しなければならず、例えば、上記の文献のように金属回路板パターンの角部にRを設ける構造とする必要がある。
しかしながら、特許文献1では、金属回路板パターンの同一金属板パターンの同一角部について曲率半径の大きさが規定されているが、金属回路板パターンの面積によらず、比較的小さい面積の金属回路板パターンにもRを設けなければならないことにもなり、実装面積の低下につながってしまうといった問題点がある。
一方、特許文献2では金属回路板パターンの隣接する2つの角部のRの曲率半径を変えているが、この場合でも、比較的小さい面積の2つの金属回路板パターンが隣接している部分では、どちらかの金属回路板パターンに曲率半径の大きなRを形成しなければならず、実装面積の低下につながってしまうといった問題点がある。そのため、比較的小さい面積の金属回路板パターンにおいて、実装面積を確保しながら角部にRを設けるためには金属回路板パターンの面積を大きくしなければならず、これはセラミックス配線基板の大型化につながってしまう。
このように特許文献1および特許文献2と共に金属回路板および金属放熱板を接合することにより、発生する熱応力を緩和しセラミックス基板へのクラックを防止する構造となっているが、セラミックス配線基板として必要な実装面積を確保するといった点では問題があった。
In addition to the metal circuit board pattern for mounting the semiconductor element, the circuit pattern of the ceramic wiring board used for the semiconductor module is provided with a metal circuit board pattern for extracting the terminal connected by wire bonding from the semiconductor element. In many cases, a plurality of types of metal circuit board patterns are arranged. Since the metal circuit board pattern for taking out the terminal does not have a semiconductor element, the metal circuit board pattern can have a comparatively small area. Can be aggregated. As a result, the structure of the apparatus incorporating the semiconductor module can be simplified.
Even when there is a large area metal circuit board pattern for mounting such semiconductor elements and other small area metal circuit board patterns, in order to prevent cracks in the ceramic substrate, The stress on the corners of the pattern must be relaxed. For example, it is necessary to provide a structure in which R is provided at the corners of the metal circuit board pattern as in the above-mentioned document.
However, in
On the other hand, in
Thus, by joining a metal circuit board and a metal heat sink together with
そこで、本発明の目的は、金属回路板パターンの実装面積を十分に保ち、かつ窒化珪素配線基板の特に金属回路板角部に発生する熱応力によるクラックを防止できる構造の信頼性の高い窒化珪素配線基板並びに半導体モジュールを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a highly reliable silicon nitride having a structure capable of maintaining a sufficient mounting area of a metal circuit board pattern and preventing cracks due to thermal stress generated particularly at the corners of the metal circuit board. An object is to provide a wiring board and a semiconductor module.
本発明は、窒化珪素基板と、この窒化珪素基板の一方の面に接合された複数個の金属回路板と、前記窒化珪素基板の他方の面に接合された金属放熱板と、からなる窒化珪素配線基板において、前記窒化珪素基板の厚みが0.2mm以上、前記金属回路板および金属放熱板の厚みが0.4mm以上であり、前記窒化珪素基板の一方の面の面積をS、厚みTとした場合、10T2S1/2で表される値以上の面積をもつ金属回路板パターンの角部には曲率半径1.0mm以上2.5mm以下のRを形成するが、10T2S1/2以下の面積である金属回路板パターンのうちさらにその面積が13mm2以下の金属回路板パターンの角部にはRを形成しない(但し、不可避的に付く曲率半径0.5mm以下のRは除く)こととした窒化珪素配線基板である。
以上のように、所定の面積以下の金属回路板パターンの角部にはRを形成せず、かつ所定の面積以上の金属回路板パターンの角部にRを設けることによって、金属回路板パターンの実装面積を十分に確保でき、かつ窒化珪素基板のクラック発生の原因となる金属回路パターンの角部周辺の応力を緩和できる。尚、窒化珪素基板の厚みは実効的には、0.2mm以上、1.0mm以下の範囲にあり0.3〜0.6mmが望ましい。また、金属回路板および金属放熱板の厚みについても0.3mm以上、2.0mm以下の範囲にあり0.4〜1.0mmが望ましい。
The present invention relates to a silicon nitride substrate comprising a silicon nitride substrate, a plurality of metal circuit plates bonded to one surface of the silicon nitride substrate, and a metal heat dissipation plate bonded to the other surface of the silicon nitride substrate. In the wiring board, the thickness of the silicon nitride substrate is 0.2 mm or more, the thickness of the metal circuit board and the metal heat sink is 0.4 mm or more, and the area of one surface of the silicon nitride substrate is S, the thickness T If you, 10T in the corners of the metal circuit plate pattern having a value more than the area represented by the 2 S 1/2 will form the following R 2.5 mm or more radii of curvature 1.0mm, 10T 2 S 1 / excluding further the area in the corners of the 13 mm 2 or less of the metal circuit board pattern does not form R (provided that the radius of curvature 0.5mm following R which inevitably stick out of the metal circuit board pattern is the area of 2 or less ) Silicon nitride wiring It is a substrate.
As described above, R is not formed at the corners of the metal circuit board pattern having a predetermined area or less, and R is provided at the corners of the metal circuit board pattern having a predetermined area or more. A sufficient mounting area can be secured, and stress around the corners of the metal circuit pattern that can cause cracks in the silicon nitride substrate can be relieved. The thickness of the silicon nitride substrate is effectively in the range of 0.2 mm or more and 1.0 mm or less, and preferably 0.3 to 0.6 mm. The thickness of the metal circuit board and the metal heat sink is also in the range of 0.3 mm or more and 2.0 mm or less, and is preferably 0.4 to 1.0 mm.
本発明の窒化珪素配線基板では、前記窒化珪素基板の外縁部から金属回路板の外縁部までの沿面距離aと窒化珪素基板の外縁部から金属放熱板の外縁部までの沿面距離bとの比a/bが0.5以上2以下であり、かつa−bの値が−0.5mm以上0.5mm以下であることが望ましい。金属回路板からの沿面距離aと金属放熱板の沿面距離bの関係を上記の範囲外では、窒化珪素基板の金属回路板もしくは金属放熱板の外周部付近に大きな応力が発生し、クラックが生じる可能性があり好ましくない。 In the silicon nitride wiring board of the present invention, the ratio between the creeping distance a from the outer edge of the silicon nitride substrate to the outer edge of the metal circuit board and the creeping distance b from the outer edge of the silicon nitride substrate to the outer edge of the metal heat sink. It is desirable that a / b is 0.5 or more and 2 or less, and the value of a−b is −0.5 mm or more and 0.5 mm or less. When the relationship between the creeping distance a from the metal circuit board and the creeping distance b of the metal heat sink is outside the above range, a large stress is generated near the outer periphery of the metal circuit board or the metal heat sink of the silicon nitride substrate, and a crack is generated. There is a possibility that it is not preferable.
本発明の窒化珪素配線基板は前記金属放熱板において、面積が70T2S1/2以上の金属放熱板パターンの外周部に、金属放熱板パターン面積の0.02倍から0.09倍の面積、かつ金属放熱板パターン体積の0.01倍から0.09倍の容積を占める孔が形成されていることが望ましい。さらには金属放熱板パターン面積の0.05倍から0.09倍の面積、かつ金属放熱板パターン体積の0.05倍から0.09倍の容積を占める孔であることが望ましく、上記の範囲で金属放熱板に孔を設けることで、窒化珪素基板に発生する応力が分散され、クラックの発生を抑制することができる。 The silicon nitride wiring board of the present invention has an area of 0.02 to 0.09 times the metal heat sink pattern area on the outer periphery of the metal heat sink pattern having an area of 70T 2 S 1/2 or more. In addition, it is desirable that a hole occupying a volume 0.01 to 0.09 times the volume of the metal heat sink pattern is formed. Further, it is desirable that the hole occupies an area 0.05 to 0.09 times the metal heat sink pattern area and a volume 0.05 to 0.09 times the metal heat sink pattern volume. By providing a hole in the metal heat sink, the stress generated in the silicon nitride substrate is dispersed, and the generation of cracks can be suppressed.
そして、本発明は上記した何れかの窒化珪素配線基板に半導体素子を搭載した半導体モジュールである。
例えば、窒化珪素基板と、この窒化珪素基板の一方の面に接合された複数個の金属回路板と、前記窒化珪素基板の他方の面に接合された金属放熱板と、からなる窒化珪素配線基板と前記金属回路板パターン上に搭載された半導体素子とを有し、前記窒化珪素基板の厚みが0.2mm以上、金属回路板および金属放熱板の厚みが0.4mm以上であり、前記窒化珪素基板の一方の面の面積をS、厚みTとした場合、面積が10T2S1/2以上の金属回路板パターンの角部に曲率半径1.0mm以上2.5mm以下のRを形成し、かつ面積が10T2S1/2以下の金属回路板パターンのうち面積が13mm2以下の金属回路板パターンの角部にはRを形成していない半導体モジュールとしたものである。
The present invention is a semiconductor module in which a semiconductor element is mounted on any of the silicon nitride wiring substrates described above.
For example, a silicon nitride wiring board comprising a silicon nitride substrate, a plurality of metal circuit plates bonded to one surface of the silicon nitride substrate, and a metal heat dissipation plate bonded to the other surface of the silicon nitride substrate And a semiconductor element mounted on the metal circuit board pattern, wherein the silicon nitride substrate has a thickness of 0.2 mm or more, the metal circuit board and the metal heat sink have a thickness of 0.4 mm or more, and the silicon nitride When the area of one surface of the substrate is S and thickness T, R having a radius of curvature of 1.0 mm or more and 2.5 mm or less is formed at the corner of the metal circuit board pattern having an area of 10T 2 S 1/2 or more, In addition, among the metal circuit board patterns having an area of 10T 2 S 1/2 or less, a semiconductor module in which R is not formed at corners of the metal circuit board pattern having an area of 13 mm 2 or less is used.
本発明の窒化珪素配線基板によれば、窒化珪素基板の一方の面の面積をS、厚みTとした場合、10T2S1/2で表される値以上の面積をもつ金属回路板パターンの角部には曲率半径1.0mm以上2.5mm以下のRを形成するが、10T2S1/2以下の面積である金属回路板パターンのうちさらにその面積が13mm2以下の金属回路板パターンの角部にはRを形成していないことで、金属回路板パターンの実装面積を確保しながら、窒化珪素基板と金属回路板および金属放熱板の接合後の冷却時あるいは半導体モジュール稼動中に窒化珪素基板に発生する熱応力を緩和することができる。よって、実装面積を確保しながら、半導体モジュール稼動中の熱衝撃に強く、信頼性の高い窒化珪素配線基板並びに半導体モジュールを提供することができる。 According to the silicon nitride wiring board of the present invention, when the area of one surface of the silicon nitride substrate is S and the thickness T, the metal circuit board pattern having an area equal to or greater than the value represented by 10T 2 S 1/2 R having a radius of curvature of 1.0 mm or more and 2.5 mm or less is formed in the corner portion, but among the metal circuit board patterns having an area of 10T 2 S 1/2 or less, the area is further 13 mm 2 or less. R is not formed at the corners of the substrate, so that the mounting area of the metal circuit board pattern is secured, while nitriding is performed during cooling after joining the silicon nitride substrate, the metal circuit board, and the metal heat sink or during operation of the semiconductor module. Thermal stress generated in the silicon substrate can be relaxed. Therefore, it is possible to provide a silicon nitride wiring board and a semiconductor module that are resistant to thermal shock during operation of the semiconductor module and have high reliability while securing a mounting area.
以下、本発明の具体的な実施例を説明する。ただし、これらの実施例により本発明が限定されるものではない。
[実施例1]
図1は本発明の一実施例を示す窒化珪素配線基板1であり、図1(a)は上面図、図1(b)は底面図、また、図1(c)は側面図である。
窒化珪素基板11の一方の面(上面)には、半導体素子を搭載するための銅板からなる金属回路板12が接合されており、この金属回路板12は図1(a)に示すように所定の回路パターンの形状に加工されており、それぞれ面積の異なる回路パターンA(121)、回路パターンB(122)および回路パターンC(123)の3種類の回路パターンから構成されている。一方、窒化珪素基板11の他方の面(下面)には、これも銅板からなる金属放熱板13が接合されている。また、窒化珪素基板11の外縁部から金属回路板12の外縁部までの沿面距離aおよび、窒化珪素基板11の外縁部から金属放熱板12の外縁部までの沿面距離bは共に1.5mmである。
Hereinafter, specific examples of the present invention will be described. However, the present invention is not limited to these examples.
[Example 1]
FIG. 1 shows a silicon
A metal circuit board 12 made of a copper plate for mounting a semiconductor element is bonded to one surface (upper surface) of the silicon nitride substrate 11, and this metal circuit board 12 is predetermined as shown in FIG. The circuit pattern is formed of three types of circuit patterns, that is, a circuit pattern A (121), a circuit pattern B (122), and a circuit pattern C (123) having different areas. On the other hand, a metal heat radiating plate 13 made of a copper plate is bonded to the other surface (lower surface) of the silicon nitride substrate 11. The creepage distance a from the outer edge of the silicon nitride substrate 11 to the outer edge of the metal circuit board 12 and the creepage distance b from the outer edge of the silicon nitride substrate 11 to the outer edge of the metal heat sink 12 are both 1.5 mm. is there.
さて、窒化珪素配線基板1の製造方法としては、まず、窒化珪素基板11の両面に活性金属ろう材を印刷形成し、窒化珪素基板11とほぼ同じ長方形状の銅板を両面に750℃で加熱接合する。冷却後、金属回路板12および金属放熱板13が所定のパターンとなるように銅板をエッチングする。また、他の製造方法としてはプレス加工により回路パターンとなる部分を一部の連結部で繋いだ一体ものの銅板を製造する。このパターン成形板を上記と同様に活性金属ろう材を印刷形成した窒化珪素基板11に加熱接合し、最後に回路パターン間を繋ぐ連結部を切断して取り除き、窒化珪素配線基板1となすこともできる。
ここで、窒化珪素基板11の大きさは、幅24mm、長さ35.4mm、面積849.6mm2、厚さ0.3mmであり、前記窒化珪素基板11の面積をS、厚みTとした場合の10T2S1/2の値は26.2となった。銅回路板パターンの面積は回路パターンAの121が346.2mm2、回路パターンBの122が189.2mm2、回路パターンCの123がそれぞれ12.2mm2である。回路パターンA121、回路パターンB122および金属放熱板13の角部には曲率半径1.5mmのRを設けている。一方、回路パターンC123の角部には意図的にはRを形成していない。ただし、エッチングの際に不可避的に付く曲率半径0.2mm程度のRは付いている。
窒化珪素配線基板1は10個作製し、クラックの発生の有無を調べた後、−40℃〜125℃のヒートサイクル試験を1000サイクル行った。ヒートサイクル試験後に再びクラックの発生の有無を調べた。クラックの発生は蛍光探傷法により行った。
As a manufacturing method of the silicon
Here, the silicon nitride substrate 11 has a width of 24 mm, a length of 35.4 mm, an area of 849.6 mm 2 and a thickness of 0.3 mm, and the area of the silicon nitride substrate 11 is S and thickness T. The value of 10T 2 S 1/2 was 26.2. Area of copper circuit board pattern 121 is 346.2Mm 2 of the circuit pattern A, 122 of the circuit pattern B is 189.2mm 2, 123 of the circuit pattern C are each 12.2 mm 2. The corners of the circuit pattern A121, the circuit pattern B122, and the metal heat radiating plate 13 are provided with R having a curvature radius of 1.5 mm. On the other hand, no R is intentionally formed at the corners of the circuit pattern C123. However, a radius of curvature of about 0.2 mm is inevitably attached during etching.
Ten silicon
[比較例1]
図2に比較例1である窒化珪素配線基板2の上面図を示す。この例は実施例1と同様の構造で、窒化珪素基板21の一方の面(上面)には、半導体素子を搭載するための銅板からなる金属回路板22が接合されており、この金属回路板22は図2に示すように所定の回路パターンの形状に加工されており、それぞれ面積の異なる回路パターンA221、回路パターンB222および回路パターンC223の3種類の回路パターンから構成されている。一方、窒化珪素基板21の他方の面(下面)には、これも銅板からなる金属放熱板が接合されている。また、窒化珪素基板21の外縁部から金属回路板22の外縁部までの沿面距離aおよび、窒化珪素基板21の外縁部から金属放熱板の外縁部までの沿面距離bは共に1.5mmである。
銅回路板パターンのうち、回路パターンC223の面積はそれぞれ15.1mm2であるが、角部に曲率半径1.0mmのRを設けているため、実装に使うことができる、実質的な面積は12mm2程度で実施例1の回路パターンC123と同等の面積である。また、回路パターンC223を配置するために、回路パターンA221および回路パターンB222の面積も実施例1の回路パターンA121および回路パターンB122より大きくなっている。そのため、窒化珪素基板の面積は926.7mm2となり、実施例1と比較して大きくなっている。
[Comparative Example 1]
FIG. 2 shows a top view of a silicon
Among the copper circuit board patterns, the area of the circuit pattern C223 is 15.1 mm 2. However, since the corner portion is provided with an R having a curvature radius of 1.0 mm, the substantial area that can be used for mounting is as follows. The area is about 12 mm 2 and is equivalent to the circuit pattern C123 of the first embodiment. Further, in order to arrange the circuit pattern C223, the areas of the circuit pattern A221 and the circuit pattern B222 are also larger than the circuit pattern A121 and the circuit pattern B122 of the first embodiment. Therefore, the area of the silicon nitride substrate is 926.7 mm 2 , which is larger than that of Example 1.
[比較例2]
実施例1と同様の構造であるが、回路パターンA121、回路パターンB122および回路パターンC123ともに角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板1を作製した。尚、窒化珪素配線基板1の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Example 2]
Although the structure is the same as that of the first embodiment, the circuit pattern A121, the circuit pattern B122, and the circuit pattern C123 are not formed with R at the corners, and have a curvature radius of about 0.2 mm that is inevitably attached during etching. A silicon
[比較例3]
実施例1と同様の構造であるが、回路パターンA121の角部にのみ曲率半径1.5mmのRを設けている。回路パターンB122および回路パターンC123の角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板1を作製した。尚、窒化珪素配線基板1の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Example 3]
Although the structure is the same as that of the first embodiment, R having a radius of curvature of 1.5 mm is provided only at the corner of the circuit pattern A121. A silicon
[比較例4]
実施例1と同様の構造であるが、回路パターンB122の角部にのみ曲率半径1.5mmのRを設けている。回路パターンA121および回路パターンC123の角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板1を作製した。尚、窒化珪素配線基板1の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Example 4]
Although the structure is the same as that of the first embodiment, R having a radius of curvature of 1.5 mm is provided only at the corner of the circuit pattern B122. A silicon
表1に実施例1および比較例1〜4の窒化珪素配線基板の金属回路板の各回路パターンの角部へのRの形成の有無、基板面積およびクラックの発生した窒化珪素配線基板の割合を示す。尚、基板面積は窒化珪素基板の一面の面積を示す(以下同様)。 Table 1 shows whether or not R is formed at the corners of each circuit pattern of the metal circuit board of the silicon nitride wiring board of Example 1 and Comparative Examples 1 to 4, the substrate area, and the ratio of the silicon nitride wiring board where cracks occurred. Show. The substrate area indicates the area of one surface of the silicon nitride substrate (the same applies hereinafter).
実施例1および比較例1から、図1および図2のように構成された窒化珪素配線基板で金属回路板パターンのうち、窒化珪素基板の面積をS、厚みTとした場合の10T2S1/2の値より、大きい面積の回路パターンAおよびBの角部に曲率半径1.5mmのRを形成することによって、金属回路板パターン角部周辺の応力を緩和することができ、窒化珪素基板のクラックの発生を抑制できることができることがわかった。特に、実施例1では回路パターンCには曲率半径1.0mm以上のRを形成していないが、ヒートサイクル試験前後でクラックの発生はなかった。一方で、比較例1では面積の小さい回路パターンCにもRを設けているため、実施例1に比べて、基板面積が大きくなってしまった。また、比較例1では基板面積が大きくなることによって、金属回路板パターン間の距離も長くなるため、半導体モジュールを作製した場合のワイヤボンディングを長くしなければならず、寄生抵抗、容量、及びインダクタンスが大きくなるといった問題もある。
また、比較例2のように回路パターンA、BおよびCの角部にRを形成しなかった場合、ヒートサイクル試験前後で、回路パターンAの角部周辺の窒化珪素基板上にクラックの発生があった。比較例3では回路パターンAの角部に曲率半径1.5mmのRを設けているが回路パターンBの角部にRが形成されていないため、比較例2に比べて割合は小さいがヒートサイクル試験前後で回路パターンBの角部周辺の窒化珪素基板上にクラックの発生している窒化珪素配線基板があった。比較例4でも回路パターンBの角部に曲率半径1.5mmのRを設けているが回路パターンAの角部にRが形成されていないため、ヒートサイクル試験前後で回路パターンAの角部周辺の窒化珪素基板上にクラックの発生している窒化珪素配線基板があった。
From Example 1 and Comparative Example 1, 10T 2 S 1 when the area of the silicon nitride substrate is S and the thickness T is the metal circuit board pattern in the silicon nitride wiring substrate configured as shown in FIGS. By forming R with a radius of curvature of 1.5 mm at the corners of the circuit patterns A and B having a larger area than the value of / 2 , the stress around the corners of the metal circuit board pattern can be relieved, and the silicon nitride substrate It has been found that the occurrence of cracks can be suppressed. In particular, in Example 1, R having a radius of curvature of 1.0 mm or more was not formed in the circuit pattern C, but no crack was generated before and after the heat cycle test. On the other hand, in Comparative Example 1, since R is also provided in the circuit pattern C having a small area, the substrate area is larger than that in Example 1. Further, in Comparative Example 1, since the distance between the metal circuit board patterns is increased due to the increase in the substrate area, it is necessary to lengthen the wire bonding when the semiconductor module is manufactured, and parasitic resistance, capacitance, and inductance are increased. There is also a problem that becomes larger.
Further, when R is not formed at the corners of the circuit patterns A, B and C as in Comparative Example 2, cracks are generated on the silicon nitride substrate around the corners of the circuit pattern A before and after the heat cycle test. there were. In Comparative Example 3, R having a radius of curvature of 1.5 mm is provided at the corner of the circuit pattern A, but R is not formed at the corner of the circuit pattern B. There was a silicon nitride wiring board in which cracks occurred on the silicon nitride substrate around the corner of the circuit pattern B before and after the test. Even in Comparative Example 4, R having a radius of curvature of 1.5 mm is provided at the corner of the circuit pattern B, but R is not formed at the corner of the circuit pattern A, so the periphery of the corner of the circuit pattern A before and after the heat cycle test. There was a silicon nitride wiring substrate in which cracks occurred on the silicon nitride substrate.
[実施例2]
実施例1と同様の構造であるが、窒化珪素基板の面積が1043mm2である実施例1より面積の大きい窒化珪素配線基板を作製した。窒化珪素基板の厚さは0.3mmであり、前記窒化珪素基板の面積をS、厚みTとした場合の10T2S1/2の値は33.1となった。
金属回路板は実施例1と同様に回路パターンA、回路パターンB及び回路パターンCの3種類の回路パターンからなり、それぞれの面積は396mm2、98mm2および12.8mm2である。回路パターンA、回路パターンBおよび金属放熱板の角部には曲率半径1.5mmのRを設けている。一方、回路パターンCの角部には意図的にはRを形成していない。ただし、エッチングの際に不可避的に付く曲率半径0.2mm程度のRは付いている。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Example 2]
A silicon nitride wiring board having a structure similar to that of Example 1 but having a larger area than that of Example 1 in which the area of the silicon nitride substrate is 1043 mm 2 was produced. The thickness of the silicon nitride substrate was 0.3 mm, and the value of 10T 2 S 1/2 when the area of the silicon nitride substrate was S and the thickness T was 33.1.
The metal circuit board is composed of three types of circuit patterns, a circuit pattern A, a circuit pattern B, and a circuit pattern C, as in the first embodiment, and each area is 396 mm 2 , 98 mm 2, and 12.8 mm 2 . The corners of the circuit pattern A, the circuit pattern B, and the metal heat radiating plate are provided with R having a curvature radius of 1.5 mm. On the other hand, no R is intentionally formed at the corners of the circuit pattern C. However, a radius of curvature of about 0.2 mm is inevitably attached during etching. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
[比較例5]
実施例2と同様の構造であるが、回路パターンAの角部にのみ曲率半径1.5mmのRを設けている。回路パターンBおよび回路パターンCの角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板を作製した。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Example 5]
Although the structure is the same as that of the second embodiment, only a corner portion of the circuit pattern A is provided with R having a curvature radius of 1.5 mm. A silicon nitride wiring board with R having a radius of curvature of about 0.2 mm, which is inevitably attached during etching, was not formed at the corners of the circuit patterns B and C. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
[比較例6]
実施例2と同様の構造であるが、回路パターンA、回路パターンBおよび回路パターンCともに角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板を作製した。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Example 6]
Although the structure is the same as that of the second embodiment, the circuit pattern A, the circuit pattern B, and the circuit pattern C do not have R at the corners and have a radius of curvature of about 0.2 mm that is inevitably attached during etching. A silicon nitride wiring board with R was produced. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
[実施例3]
実施例2と同様の構造であるが、窒化珪素基板の厚さが0.6mmである窒化珪素配線基板を作製した。前記窒化珪素基板の面積をS、厚みTとした場合の10T2S1/2の値は128.2となった。回路パターンA、回路パターンBおよび金属放熱板の角部には曲率半径1.5mmのRを設けている。一方、回路パターンCの角部には意図的にはRを形成していない。ただし、エッチングの際に不可避的に付く曲率半径0.2mm程度のRは付いている。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Example 3]
A silicon nitride wiring board having a structure similar to that of Example 2 but having a silicon nitride substrate thickness of 0.6 mm was manufactured. The value of 10T 2 S 1/2 when the area of the silicon nitride substrate was S and the thickness T was 128.2. The corners of the circuit pattern A, the circuit pattern B, and the metal heat radiating plate are provided with R having a curvature radius of 1.5 mm. On the other hand, no R is intentionally formed at the corners of the circuit pattern C. However, a radius of curvature of about 0.2 mm is inevitably attached during etching. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
[実施例4]
実施例3と同様の構造であるが、回路パターンAの角部にのみ曲率半径1.5mmのRを設けている。回路パターンBおよび回路パターンCの角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板を作製した。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Example 4]
Although the structure is the same as that of the third embodiment, only a corner portion of the circuit pattern A is provided with an R having a curvature radius of 1.5 mm. A silicon nitride wiring board with R having a radius of curvature of about 0.2 mm, which is inevitably attached during etching, was not formed at the corners of the circuit patterns B and C. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
[比較例7]
実施例3と同様の構造であるが、回路パターンA、回路パターンBおよび回路パターンCともに角部にはRを形成しておらず、エッチングの際に不可避的に付く曲率半径0.2mm程度のRがある窒化珪素配線基板を作製した。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Example 7]
Although the structure is the same as that of the third embodiment, the circuit pattern A, the circuit pattern B, and the circuit pattern C do not have R at the corners, and have a radius of curvature of about 0.2 mm that is inevitably attached during etching. A silicon nitride wiring board with R was produced. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
表2に実施例2〜4および比較例5〜7の窒化珪素配線基板の金属回路板の各回路パターンの角部へのRの形成の有無、基板厚さおよびクラックの発生した窒化珪素配線基板の割合を示す。尚、基板厚さは窒化珪素基板の厚さを示す(以下同様)。 Table 2 shows whether or not R is formed at the corners of each circuit pattern of the metal circuit board of the silicon nitride wiring boards of Examples 2 to 4 and Comparative Examples 5 to 7, and the silicon nitride wiring board having cracks. Indicates the percentage. The substrate thickness indicates the thickness of the silicon nitride substrate (the same applies hereinafter).
実施例2〜4のように、金属回路板パターンのうち、窒化珪素基板の面積をS、厚みTとした場合の10T2S1/2の値より、大きい面積の回路パターンAおよびBの角部に曲率半径1.5mmのRを形成することによって、金属回路板パターン角部周辺の応力を緩和することができ、窒化珪素基板のクラックの発生を抑制できることができることがわかった。
特に、実施例4と比較例5を比較した場合、基板厚さが0.3mmの比較例5では前記10T2S1/2の値が33.1と小さく、Rを形成していない回路パターンBの角部周辺にクラックが発生する窒化珪素配線基板があった。一方、基板厚さが0.6mmの実施例4では前記10T2S1/2の値が128.2と大きく、回路パターンBにRを形成していないがヒートサイクル試験の前後でクラックの発生は見られなかった。
また、実施例4に対して実施例3では回路パターンBにも曲率半径1.5mmのRを形成しているが、回路パターンBの面積は十分に大きいため、Rを設けても実装面積は十分に確保されている。尚、Rの曲率半径は1.5mmとしたが、1.0mmでも同様の効果があることを確認している。また曲率半径1.5mm以上のRでも同様の効果があると考えるが、この場合、実装面積の減少だけでなく、窒化珪素基板上の金属回路板が接合されない部分の面積が大きくなってしまい、窒化珪素基板に発生する応力が大きくなってしまう恐れがあるため、このような支障をきたさない程度にする必要がある。これがR2.5mmまでであると考えている。
As in Examples 2 to 4, the corners of the circuit patterns A and B having a larger area than the value of 10T 2 S 1/2 when the area of the silicon nitride substrate is S and the thickness T is the metal circuit board pattern. It was found that by forming R with a radius of curvature of 1.5 mm in the portion, the stress around the corner of the metal circuit board pattern can be relieved and the occurrence of cracks in the silicon nitride substrate can be suppressed.
In particular, when Example 4 and Comparative Example 5 are compared, in Comparative Example 5 in which the substrate thickness is 0.3 mm, the circuit pattern in which the value of 10T 2 S 1/2 is as small as 33.1 and R is not formed. There was a silicon nitride wiring board in which cracks occurred around the corners of B. On the other hand, in Example 4 where the substrate thickness is 0.6 mm, the value of 10T 2 S 1/2 is as large as 128.2, and R is not formed on the circuit pattern B, but cracks occurred before and after the heat cycle test. Was not seen.
Further, in Example 3, R having a curvature radius of 1.5 mm is formed in the circuit pattern B in Example 3, but the area of the circuit pattern B is sufficiently large. Sufficiently secured. Although the radius of curvature of R is 1.5 mm, it has been confirmed that the same effect can be obtained even at 1.0 mm. In addition, although it is considered that the same effect is obtained even with R having a curvature radius of 1.5 mm or more, in this case, not only the mounting area is reduced, but also the area of the portion where the metal circuit board on the silicon nitride substrate is not joined is increased. Since there is a possibility that the stress generated in the silicon nitride substrate is increased, it is necessary to prevent the problem from occurring. This is considered to be up to R2.5 mm.
以上より、13mm2以下の面積の回路パターンの角部にはRを設けないことにより、十分に実装面積を確保しながら窒化珪素配線基板を小型にすることができ、また、窒化珪素基板の面積をS、厚みTとした場合の10T2S1/2の値より、大きい面積の回路パターンの角部にのみRを設けることによって、窒化珪素基板に発生する応力を緩和でき、窒化珪素基板上にクラックが発生することがないため、十分な実装面積を確保した小型で信頼性の高い窒化珪素基板を作製できることが分かった。これは、窒化珪素基板の金属回路板角部付近に発生する応力は金属回路板と窒化珪素基板の熱膨張差により窒化珪素基板の変形することに起因し、金属回路板パターンの面積が十分に小さい場合、この金属回路板と窒化珪素基板の熱膨張差も小さいため、窒化珪素基板の金属回路板角部付近に発生する応力も小さくなるためである。 From the above, by not providing R at the corners of the circuit pattern having an area of 13 mm 2 or less, the silicon nitride wiring board can be reduced in size while ensuring a sufficient mounting area. By providing R only at the corners of the circuit pattern having a larger area than the value of 10T 2 S 1/2 when S is the thickness T, the stress generated in the silicon nitride substrate can be reduced. Thus, it was found that a small and highly reliable silicon nitride substrate having a sufficient mounting area can be produced. This is because the stress generated near the corners of the metal circuit board of the silicon nitride substrate is due to the deformation of the silicon nitride substrate due to the difference in thermal expansion between the metal circuit board and the silicon nitride substrate, and the area of the metal circuit board pattern is sufficiently large. This is because, if it is small, the difference in thermal expansion between the metal circuit board and the silicon nitride substrate is also small, so that the stress generated near the corner of the metal circuit board of the silicon nitride substrate is also small.
[実施例4]
実施例1と同様の構造で、窒化珪素基板11の外縁部から金属回路板12の外縁部までの沿面距離、および窒化珪素基板11の外縁部から金属放熱板13の外縁部までの沿面距離を1.0mmとした窒化珪素配線基板1を作製した。金属回路板12および金属放熱板13の面積および形状は実施例1と同じであり、窒化珪素基板11の幅及び、長さを実施例1より1.0mm小さくした。尚、窒化珪素配線基板1の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Example 4]
The creeping distance from the outer edge portion of the silicon nitride substrate 11 to the outer edge portion of the metal circuit board 12 and the creeping distance from the outer edge portion of the silicon nitride substrate 11 to the outer edge portion of the metal heat radiating plate 13 are the same as in the first embodiment. A silicon
[実施例5]
実施例1と同様の構造で、窒化珪素基板11の外縁部から金属回路板12の外縁部までの沿面距離を1.0mm、窒化珪素基板11の外縁部から金属放熱板13の外縁部までの沿面距離を0.5mmとした窒化珪素配線基板1を作製した。金属回路板12の面積および形状は実施例1と同じであり、金属放熱板13の幅及び、長さを実施例1より1.0mm大きくし、窒化珪素基板11の幅及び、長さを実施例1より1.0mm小さくした。尚、窒化珪素配線基板1の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Example 5]
The creeping distance from the outer edge of the silicon nitride substrate 11 to the outer edge of the metal circuit board 12 is 1.0 mm with the same structure as in the first embodiment, and from the outer edge of the silicon nitride substrate 11 to the outer edge of the metal heat sink 13. A silicon
[比較例8〜10]
比較例3と同様の構造で、窒化珪素基板11の外縁部から金属回路板12の外縁部までの沿面距離a、および窒化珪素基板11の外縁部から金属放熱板13の外縁部までの沿面距離bの異なる、窒化珪素配線基板1を作製した。各比較例の沿面距離は表2に示す。
比較例8では、金属回路板12の面積および形状は比較例3と同じであり、金属放熱板13の幅及び、長さを比較例3より2.0mm小さくし、窒化珪素基板11の幅及び、長さを比較例3より1.0mm小さくした。
また、比較例9では、金属回路板12の面積および形状は比較例3と同じであり、金属放熱板13の幅及び、長さを比較例3より2.0mm小さくし、窒化珪素基板11の幅及び、長さを比較例3より2.0mm小さくした。
また、比較例10では、窒化珪素基板11と金属回路板12の面積および形状は比較例3と同じであり、金属放熱板13の幅及び、長さを比較例3より2.0mm大きくした。尚、窒化珪素配線基板1の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Examples 8 to 10]
The creeping distance a from the outer edge of the silicon nitride substrate 11 to the outer edge of the metal circuit board 12 and the creeping distance from the outer edge of the silicon nitride substrate 11 to the outer edge of the metal heat sink 13 with the same structure as in the comparative example 3. Silicon
In Comparative Example 8, the area and shape of the metal circuit board 12 are the same as in Comparative Example 3, the width and length of the metal heat dissipation plate 13 are made 2.0 mm smaller than those in Comparative Example 3, and the width of the silicon nitride substrate 11 and The length was made 1.0 mm smaller than Comparative Example 3.
Further, in Comparative Example 9, the area and shape of the metal circuit board 12 are the same as in Comparative Example 3, and the width and length of the metal heat radiating plate 13 are made 2.0 mm smaller than those in Comparative Example 3, so that the silicon nitride substrate 11 The width and length were 2.0 mm smaller than Comparative Example 3.
In Comparative Example 10, the area and shape of the silicon nitride substrate 11 and the metal circuit board 12 were the same as in Comparative Example 3, and the width and length of the metal heat radiating plate 13 were made 2.0 mm larger than in Comparative Example 3. In addition, the manufacturing method of the silicon
表3に実施例1、4および5と比較例3、8〜10の窒化珪素配線基板の窒化珪素基板の外縁部から金属回路板の外縁部までの沿面距離、および窒化珪素基板の外縁部から金属放熱板の外縁部までの沿面距離、およびヒートサイクル試験前後に金属回路板の外周部にクラックが発生した窒化珪素配線基板の割合を示す。 Table 3 shows the creepage distance from the outer edge of the silicon nitride substrate to the outer edge of the metal circuit board of Examples 1, 4 and 5 and Comparative Examples 3, 8 to 10, and the outer edge of the silicon nitride substrate. The creepage distance to the outer edge part of a metal heat sink, and the ratio of the silicon nitride wiring board in which the crack occurred in the outer peripheral part of the metal circuit board before and after the heat cycle test are shown.
実施例1、4および5の結果から、図1のように窒化珪素基板11の面積をS、厚みTとした場合の10T2S1/2の値より、大きい面積の回路パターンA121および回路パターンB122の角部にはRが形成され、13mm2より小さい面積の回路パターンC123の角部にはRが形成されていない金属回路板12から構成された窒化珪素配線基板1で、窒化珪素基板11の外縁部から金属回路板12の外縁部までの沿面距離a、および窒化珪素基板11の外縁部から金属放熱板13の外縁部までの沿面距離bとしたとき、a/bが0.5以上2以下であり、かつa−bの値が−0.5mm以上0.5mm以下とすることで窒化珪素基板11に発生する応力を緩和した構造とすることができ、ヒートサイクル試験の前後で共にクラックの発生のない窒化珪素配線基板とすることができることが分かった。
一方、比較例8〜10のように、沿面距離aと沿面距離bの関係がa/bが0.5以上2以下、もしくはa−bの値が−0.5mm以上0.5mm以下の範囲から外れる場合、金属回路板および金属放熱板の外周部、特には角部周辺により大きな応力が加わり、金属回路板の面積及び形状が同じである比較例3よりもヒートサイクル試験の前後で共にクラックが発生した窒化珪素配線基板が多くあった。
From the results of Examples 1, 4 and 5, the circuit pattern A121 and the circuit pattern having a larger area than the value of 10T 2 S 1/2 when the area of the silicon nitride substrate 11 is S and the thickness T as shown in FIG. The silicon
On the other hand, as in Comparative Examples 8 to 10, the relationship between the creepage distance a and the creepage distance b is such that a / b is 0.5 or more and 2 or less, or the value of ab is −0.5 mm or more and 0.5 mm or less. In the case where the metal circuit board and the heat radiating plate are separated from each other, a larger stress is applied to the outer peripheral portion of the metal circuit board and the metal heat radiation plate, particularly around the corner portion, and both the cracks before and after the heat cycle test than Comparative Example 3 where the area and shape of the metal circuit board are the same. There were many silicon nitride wiring boards on which this occurred.
[実施例6、7]
図3に実施例6である窒化珪素配線基板3の底面図を示す。窒化珪素基板31の底面に接合されている金属放熱板33の外周部にはφ1.0mmの孔34が2.0mmの間隔で形成されている。孔34は金属放熱板33を貫通して、窒化珪素基板31の面まで達している。また、実施例7でも実施例6と同様に金属放熱板33の外周部にはφ1.0mmの孔34が2.0mmの間隔で形成されているが、孔34は金属放熱板33を貫通しておらず、金属放熱板33の厚みの2/3の深さまで形成されている。実施例6および7共に金属放熱板33以外は実施例1と同様の構造である。尚、窒化珪素配線基板3の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Examples 6 and 7]
FIG. 3 shows a bottom view of the silicon
[比較例11、12]
比較例11は、比較例3と同様の構造であるが、金属放熱板の外周部にはφ1.0mmの孔が20mmの間隔で形成されている。孔は金属放熱板を貫通して、窒化珪素基板の面まで達している。また、比較例12では比較例11と同様に金属放熱板の外周部にはφ1.0mmの孔が20mmの間隔で形成されているが、金属放熱板を貫通しておらず、金属放熱板の厚みの2/3の深さまで形成されている。比較例11および12共に金属放熱板以外は比較例3と同様の構造である。尚、窒化珪素配線基板の作製方法は実施例1と同様とし、また同様にヒートサイクル試験の前後でクラックの有無を測定した。
[Comparative Examples 11 and 12]
Comparative Example 11 has the same structure as Comparative Example 3, but holes of φ1.0 mm are formed at intervals of 20 mm on the outer periphery of the metal heat sink. The hole penetrates the metal heat radiating plate and reaches the surface of the silicon nitride substrate. Further, in Comparative Example 12, as in Comparative Example 11, holes of φ1.0 mm are formed at intervals of 20 mm in the outer peripheral portion of the metal heat sink, but the metal heat sink is not penetrated, It is formed to a depth of 2/3 of the thickness. Both Comparative Examples 11 and 12 have the same structure as Comparative Example 3 except for the metal heat sink. The silicon nitride wiring substrate was manufactured in the same manner as in Example 1, and the presence or absence of cracks was measured before and after the heat cycle test.
表4に実施例1、6および7と比較例3、11および12の金属放熱板の外周部に形成された孔の面積及び容積の金属放熱板の面積及び体積に対する割合、およびヒートサイクル試験前後にクラックが発生した窒化珪素配線基板の割合を示す。 Table 4 shows the area of the holes and the ratio of the volume and the volume of the metal heat sink formed in the outer peripheral portion of the metal heat sinks of Examples 1, 6 and 7 and Comparative Examples 3, 11 and 12 to before and after the heat cycle test. Shows the ratio of the silicon nitride wiring board in which cracks occurred.
実施例6および7の結果から、図1のように窒化珪素基板11の面積をS、厚みTとした場合の10T2S1/2の値より、大きい面積の回路パターンA121および回路パターンB122の角部にはRが形成され、13mm2より小さい面積の回路パターンC123の角部にはRが形成されていない金属回路板12から構成された窒化珪素配線基板1で、図3のように金属放熱板34の外周部に、金属放熱板パターン面積の0.02倍から0.09倍の面積、かつ金属放熱板パターン体積の0.01倍から0.09倍の容積を占める孔34を形成することで窒化珪素基板31に発生する応力を緩和した構造とすることができ、ヒートサイクル試験の前後で共にクラックの発生のない窒化珪素配線基板とすることができることが分かった。
また、金属放熱板の外周部に形成した孔の効果を検証するために、孔を形成していない実施例1の窒化珪素配線基板と孔を形成した実施例6及び実施例7の窒化珪素配線基板のヒートサイクル試験をより過酷な−60℃〜180℃、1000サイクルの条件で行った。結果、実施例1の窒化珪素配線基板のみで、クラックの発生が見られた。金属放熱板の外周部に孔を形成することで、窒化珪素基板への応力をさらに緩和でき、より信頼性の高い窒化珪素配線基板とすることができることが分かった。
一方、比較例11および12のように、形成した孔の面積が金属放熱板パターン面積の0.02倍から0.09倍の範囲外であるか、もしくは形成した孔の容積が金属放熱板パターン体積の0.01倍から0.09倍の範囲外である場合、金属放熱板の外周部に孔を形成したとしても、窒化珪素基板に発生する応力を緩和する効果は小さく、ヒートサイクル試験の前後でクラックが発生する基板の割合は同様の窒化珪素基板の構造で孔を形成していない比較例3の窒化珪素配線基板と同等であった。
From the results of Examples 6 and 7, the circuit pattern A121 and the circuit pattern B122 having a larger area than the value of 10T 2 S 1/2 when the area of the silicon nitride substrate 11 is S and the thickness T as shown in FIG. The silicon
Further, in order to verify the effect of the hole formed in the outer peripheral portion of the metal heat sink, the silicon nitride wiring board of Example 1 in which no hole is formed and the silicon nitride wiring of Example 6 and Example 7 in which the hole is formed The heat cycle test of the substrate was performed under more severe conditions of −60 ° C. to 180 ° C. and 1000 cycles. As a result, generation of cracks was observed only in the silicon nitride wiring substrate of Example 1. It was found that by forming a hole in the outer peripheral portion of the metal heat radiating plate, the stress on the silicon nitride substrate can be further relaxed, and a more reliable silicon nitride wiring substrate can be obtained.
On the other hand, as in Comparative Examples 11 and 12, the area of the formed hole is outside the range of 0.02 to 0.09 times the metal heat sink pattern area, or the volume of the formed hole is a metal heat sink pattern. When the volume is outside the range of 0.01 times to 0.09 times, even if a hole is formed in the outer periphery of the metal heat sink, the effect of relieving the stress generated in the silicon nitride substrate is small. The ratio of the substrate where cracks occurred before and after was the same as that of the silicon nitride wiring substrate of Comparative Example 3 in which holes were not formed with the same structure of the silicon nitride substrate.
次に、窒化珪素配線基板として上記実施例1〜7と比較例1〜12の窒化珪素配線基板を用いて、半導体モジュールを作製した。半導体素子を金属回路板上に半田接合し、ワイヤボンディングを施し、半導体モジュールを得た。尚、窒化珪素配線基板は作製後、クラックの発生がないことを確認したもののみを用いた。各窒化珪素配線基板ごとに10個の半導体モジュールを作製し、−40℃〜125℃でヒートサイクル試験を1000サイクル行った。 Next, a semiconductor module was manufactured using the silicon nitride wiring substrates of Examples 1 to 7 and Comparative Examples 1 to 12 described above as the silicon nitride wiring substrate. The semiconductor element was soldered on a metal circuit board and wire-bonded to obtain a semiconductor module. In addition, only the silicon nitride wiring board which confirmed that there was no crack generation after production was used. Ten semiconductor modules were produced for each silicon nitride wiring board, and a heat cycle test was performed 1000 cycles at -40 ° C to 125 ° C.
表5に実施例1〜7及び比較例1〜12の窒化珪素配線基板を用いて作製した半導体モジュールうち、ヒートサイクル試験前後で窒化珪素基板にクラックが発生した半導体モジュールの割合を示す。
Table 5 shows the ratio of the semiconductor modules in which cracks occurred in the silicon nitride substrate before and after the heat cycle test among the semiconductor modules manufactured using the silicon nitride wiring substrates of Examples 1 to 7 and Comparative Examples 1 to 12.
実施例1〜7のように、1000サイクルのヒートサイクル試験後でもクラックの発生がなかった窒化珪素配線基板を用いて作製した半導体モジュールでは、ヒートサイクル試験前後で共にクラックの発生は見られなかった。一方、比較例1の窒化珪素配線基板を用いて作製した半導体モジュールでもクラックの発生は見られなかったが、実施例1〜7に比べて、窒化珪素配線基板のサイズが大きいため、半導体モジュールのサイズも大きくなった。
また、比較例1〜12の窒化珪素配線基板を用いて作製した半導体モジュールは、クラックの発生がなかった窒化珪素配線基板を用いて作製したにもかかわらず、半導体モジュールを作製した後、もしくはヒートサイクル試験後にクラックが発生するものが多くあった。
以上のように、本発明によれば例えば実施例1〜7のような応力を緩和した構造の窒化珪素配線基板を用いることで、熱衝撃に強く、信頼性の高く、小型の半導体モジュールを提供することができた。
As in Examples 1 to 7, in the semiconductor module manufactured using the silicon nitride wiring board in which no crack was generated even after 1000 cycles of the heat cycle test, no crack was observed before and after the heat cycle test. . On the other hand, the generation of cracks was not observed in the semiconductor module manufactured using the silicon nitride wiring board of Comparative Example 1, but the size of the silicon nitride wiring board was larger than those of Examples 1 to 7, and The size has also increased.
Moreover, although the semiconductor module produced using the silicon nitride wiring board of Comparative Examples 1-12 was produced using the silicon nitride wiring board which did not generate | occur | produce a crack, after producing a semiconductor module or heat Many cracks occurred after the cycle test.
As described above, according to the present invention, for example, by using a silicon nitride wiring board having a structure in which stress is relieved as in Examples 1 to 7, a small semiconductor module that is resistant to thermal shock, has high reliability, and is provided. We were able to.
1、2、3:窒化珪素配線基板
11、21、31:窒化珪素基板
12、22:金属回路板
121、122、123、221、222、223:回路パターン
13、33:金属放熱板
34:孔
1, 2, 3: Silicon
Claims (4)
A semiconductor module comprising the silicon nitride wiring board according to claim 1 and a semiconductor element mounted on the silicon nitride wiring board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005061317A JP2006245436A (en) | 2005-03-04 | 2005-03-04 | Silicon nitride wiring board and semiconductor module using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005061317A JP2006245436A (en) | 2005-03-04 | 2005-03-04 | Silicon nitride wiring board and semiconductor module using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006245436A true JP2006245436A (en) | 2006-09-14 |
Family
ID=37051496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005061317A Pending JP2006245436A (en) | 2005-03-04 | 2005-03-04 | Silicon nitride wiring board and semiconductor module using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006245436A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157584A1 (en) * | 2011-05-13 | 2012-11-22 | 富士電機株式会社 | Semiconductor device and manufacturing method thereof |
JP2017130633A (en) * | 2016-01-22 | 2017-07-27 | 豊田合成株式会社 | Light-emitting device |
JP2021048165A (en) * | 2019-09-17 | 2021-03-25 | 日立金属株式会社 | Method for manufacturing circuit board |
US11133271B2 (en) | 2018-03-01 | 2021-09-28 | Fuji Electric Co., Ltd. | Semiconductor device |
WO2021261179A1 (en) * | 2020-06-26 | 2021-12-30 | 住友ベークライト株式会社 | Circuit board |
CN115772643A (en) * | 2022-11-09 | 2023-03-10 | 中国船舶重工集团公司第七0三研究所 | Nitriding process for liner ring of combustion engine flame tube |
-
2005
- 2005-03-04 JP JP2005061317A patent/JP2006245436A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157584A1 (en) * | 2011-05-13 | 2012-11-22 | 富士電機株式会社 | Semiconductor device and manufacturing method thereof |
US8957508B2 (en) | 2011-05-13 | 2015-02-17 | Fuji Electric Co., Ltd. | Semiconductor device and method of manufacturing the same |
JP5729468B2 (en) * | 2011-05-13 | 2015-06-03 | 富士電機株式会社 | Semiconductor device |
EP2709149A4 (en) * | 2011-05-13 | 2015-08-05 | Fuji Electric Co Ltd | Semiconductor device and manufacturing method thereof |
JP2017130633A (en) * | 2016-01-22 | 2017-07-27 | 豊田合成株式会社 | Light-emitting device |
US11133271B2 (en) | 2018-03-01 | 2021-09-28 | Fuji Electric Co., Ltd. | Semiconductor device |
JP2021048165A (en) * | 2019-09-17 | 2021-03-25 | 日立金属株式会社 | Method for manufacturing circuit board |
JP7490934B2 (en) | 2019-09-17 | 2024-05-28 | 株式会社プロテリアル | Circuit board manufacturing method and circuit board |
WO2021261179A1 (en) * | 2020-06-26 | 2021-12-30 | 住友ベークライト株式会社 | Circuit board |
JP7052935B1 (en) * | 2020-06-26 | 2022-04-12 | 住友ベークライト株式会社 | Circuit board |
CN115772643A (en) * | 2022-11-09 | 2023-03-10 | 中国船舶重工集团公司第七0三研究所 | Nitriding process for liner ring of combustion engine flame tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5326278B2 (en) | Circuit board, semiconductor module using the same, and circuit board manufacturing method | |
US9125335B2 (en) | Ceramic circuit board and method of making the same | |
JP2003273289A (en) | Ceramic circuit board and power module | |
JP2008211159A (en) | Wiring board and electronic apparatus using the same | |
CN110313064B (en) | Ceramic-metal circuit board and semiconductor device using the same | |
JP2006245436A (en) | Silicon nitride wiring board and semiconductor module using it | |
JP2005260181A (en) | Resin-sealed semiconductor device and manufacturing method thereof | |
KR20180138466A (en) | Manufacturing method of power semiconductor module | |
JP2007053349A (en) | Insulating substrate and manufacturing method thereof as well as power module and substrate thereof | |
US9484294B2 (en) | Semiconductor device and method of manufacturing the same | |
JP4765110B2 (en) | Metal-ceramic bonding substrate and manufacturing method thereof | |
JPWO2019167942A1 (en) | Isolated circuit board | |
JP4124040B2 (en) | Semiconductor device | |
JP2007088272A (en) | Ceramic circuit board and module using the same | |
JP6884217B2 (en) | Semiconductor module with bottom plate with concave bend | |
JP2006286897A (en) | Metal-ceramic bonding substrate | |
JPH10247763A (en) | Circuit board and manufacture thereof | |
JP2004193405A (en) | Semiconductor power module | |
CN110945651B (en) | Power semiconductor module with recess in metallization layer under foot of terminal | |
JP2004087927A (en) | Ceramic substrate | |
JP6603098B2 (en) | Circuit board and electronic device | |
JP2006140402A (en) | Semiconductor integrated circuit device | |
JPH10200219A (en) | Circuit board | |
JP4992302B2 (en) | Power semiconductor module | |
US9711424B2 (en) | Low thermal stress package for large area semiconductor dies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091211 |