JP2006245153A - Electrode connecting wire material for solar cell, and solar cell connected with wire material - Google Patents

Electrode connecting wire material for solar cell, and solar cell connected with wire material Download PDF

Info

Publication number
JP2006245153A
JP2006245153A JP2005056755A JP2005056755A JP2006245153A JP 2006245153 A JP2006245153 A JP 2006245153A JP 2005056755 A JP2005056755 A JP 2005056755A JP 2005056755 A JP2005056755 A JP 2005056755A JP 2006245153 A JP2006245153 A JP 2006245153A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
core material
separation band
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005056755A
Other languages
Japanese (ja)
Other versions
JP4683466B2 (en
Inventor
Kazuhiro Shiomi
和弘 塩見
Masaaki Ishio
雅昭 石尾
Shigeteru Nishikawa
茂輝 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Proterial Metals Ltd
Original Assignee
Sharp Corp
Neomax Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Neomax Materials Co Ltd filed Critical Sharp Corp
Priority to JP2005056755A priority Critical patent/JP4683466B2/en
Publication of JP2006245153A publication Critical patent/JP2006245153A/en
Application granted granted Critical
Publication of JP4683466B2 publication Critical patent/JP4683466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrode connection wire materials of which a solder is hard to stick on the rear surface of a solar cell element when connecting electrode terminals of different polarity provided to the end of the rear surface of solar cell elements adjoined each other, for discouraged damage on the elements due to thermal stress. <P>SOLUTION: An electrode connection wire material 1 connects the electrode terminals of different polarity together provided to the end of the rear surface of solar cell elements adjoined each other. It comprises a core material 2 formed from Fe base alloy of low thermal expansion, a separation band 3 stacked at the center of the surface of core material 2, and connecting solders 4 and 4 coated on the core material surfaces on both sides of the separation band 3. The separation band 3 comprises a passive coat on its surface, and the connecting solders are formed from molten solder plating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、隣接配置された太陽電池素子の極性の異なる電極同士を接続する電極接続線材及びこれによって接続された太陽電池に関する。   The present invention relates to an electrode connecting wire for connecting electrodes having different polarities of solar cell elements arranged adjacent to each other and a solar cell connected thereby.

太陽電池素子は、PN接合を有するシリコン半導体で形成された半導体基板を備え、その表面に線状に設けられた複数の表面電極(受光面電極)には電極接続線材がはんだ付けされている。太陽電池は、通常、所望の起電力を得るために複数の太陽電池素子が直列に接続された構造を有する。太陽電池素子は、一方の太陽電池素子の表面電極と隣接する他方の太陽電池素子の裏面電極とに前記電極接続線材をはんだ付けすることによって接続される。前記電極接続線材31は、図4に示すように、薄肉銅帯で形成された芯材32に溶融はんだめっきが施されたものであり、前記芯材32の外周面には、円弧状に膨らんだはんだ部34,35,36が形成される。   The solar cell element includes a semiconductor substrate formed of a silicon semiconductor having a PN junction, and electrode connection wires are soldered to a plurality of surface electrodes (light-receiving surface electrodes) provided linearly on the surface. A solar cell usually has a structure in which a plurality of solar cell elements are connected in series in order to obtain a desired electromotive force. A solar cell element is connected by soldering the said electrode connection wire to the back surface electrode of the other solar cell element adjacent to the surface electrode of one solar cell element. As shown in FIG. 4, the electrode connecting wire 31 is obtained by subjecting a core material 32 formed of a thin copper strip to molten solder plating, and expands in an arc shape on the outer peripheral surface of the core material 32. Solder portions 34, 35 and 36 are formed.

近年、半導体基板の薄肉化が図られており、半導体基板と電極接続線材との熱膨張率差によって、電極接続線材をはんだ付けする際に、半導体基板に大きな熱応力が生じ、これにより基板が割損するおそれがある。そこで、電極接続線材31の芯材32として、半導体材料との熱膨張率差の小さい材料が用いられるようになってきた。このような材料としては、例えば特開昭60−15937号公報(特許文献1)には、Fe、Niの合金であるインバー(代表的組成:Fe−36%Ni)で形成された中間層の両面に銅層を積層一体化したクラッド材が提案されている。
特開昭60−15937号公報
In recent years, the thickness of a semiconductor substrate has been reduced, and due to the difference in thermal expansion coefficient between the semiconductor substrate and the electrode connecting wire, a large thermal stress is generated in the semiconductor substrate when the electrode connecting wire is soldered. There is a risk of breakage. Therefore, a material having a small difference in thermal expansion coefficient from the semiconductor material has been used as the core material 32 of the electrode connecting wire 31. As such a material, for example, Japanese Patent Laid-Open No. 60-15937 (Patent Document 1) discloses an intermediate layer formed of Invar (typical composition: Fe-36% Ni) which is an alloy of Fe and Ni. A clad material in which copper layers are laminated and integrated on both sides has been proposed.
Japanese Unexamined Patent Publication No. 60-15937

従来のように、太陽電池素子の表面電極を電極接続線材により隣接する太陽電池の裏面電極に直列接続する場合、電極接続線材を太陽電池素子の上側から下側に移行して接続する必要があるため、はんだ付け作業が複雑となり、生産コスト高の要因になっている。また、前記接続方法では、太陽電池素子間に3〜4mm程度の間隔を設ける必要があり、太陽電池の全面積に占める太陽電池素子の面積割合が低下し、実装率の低下により発電効率の低下を招来している。   As in the prior art, when the front electrode of the solar cell element is connected in series to the back electrode of the adjacent solar cell by the electrode connecting wire, it is necessary to connect the electrode connecting wire by moving from the upper side to the lower side of the solar cell element. For this reason, the soldering work is complicated, resulting in high production costs. Further, in the connection method, it is necessary to provide an interval of about 3 to 4 mm between the solar cell elements, the area ratio of the solar cell element in the total area of the solar cell is reduced, and the power generation efficiency is reduced due to the reduction in the mounting rate. Has been invited.

このため、太陽電池素子の裏面の両端部にそれぞれ極性の異なる電極端子を設けるようにしたものが検討されている。この太陽電池素子の接続については、極性の異なる電極端子が対向するように前記太陽電池素子を隣接配置し、隣接配置した太陽電池素子の極性の異なる電極端子同士を、前記電極接続線材31と同様の構造を有する電極接続線材を用いてはんだ付けすることが試みられている。このタイプの太陽電池素子では、素子同士を1mm程度の間隔を置いて隣接配置することができるため、素子の実装率を上げることができ、また電極接続線材を表面側から裏面側に接続する必要がないので接続作業も容易になる。なお、太陽電池素子の裏面は裏面電極(アルミペースト電極)が形成されており、表面電極はこの裏面電極と絶縁された状態で素子の裏面の端部に電極端子が形成され、一方、裏面電極は素子の裏面の他端部にその電極端子が形成される。   For this reason, the thing which provided the electrode terminal from which each polarity differs in the both ends of the back surface of a solar cell element is examined. Regarding the connection of the solar cell elements, the solar cell elements are arranged adjacently so that the electrode terminals having different polarities face each other, and the electrode terminals having different polarities of the adjacent arranged solar cell elements are similar to the electrode connecting wire 31. Attempts have been made to solder using an electrode connecting wire having the following structure. In this type of solar cell element, the elements can be arranged adjacent to each other with an interval of about 1 mm, so that the mounting rate of the element can be increased and the electrode connecting wire must be connected from the front side to the back side. Since there is no, connection work becomes easy. A back electrode (aluminum paste electrode) is formed on the back surface of the solar cell element, and an electrode terminal is formed at the end of the back surface of the element while being insulated from the back electrode. The electrode terminal is formed at the other end of the back surface of the element.

しかしながら、図5に示すように、前記電極接続線材を用いて、隣接する太陽電池素子C1,C2の対向する電極端子B,A同士をはんだ付けすると、中央部が膨らんだはんだ部34が溶けて、溶融はんだが太陽電池素子C1,C2の裏面にも付着するという問題がある。太陽電池素子(半導体基板)C1,C2の裏面にはんだ34Aが付着すると、太陽電池素子が電気的に短絡してしまい、性能が劣化する。また、前記電極接続線材31は、半導体基板と熱膨張率の差が大きく、基板の板厚が200μm 程度に薄肉化されている現状では、はんだ付けの際に半導体基板が熱応力により割損するおそれがある。   However, as shown in FIG. 5, when the electrode terminals B and A of the adjacent solar cell elements C1 and C2 are soldered to each other using the electrode connecting wire, the solder portion 34 having a swelled central portion is melted. There is a problem that the molten solder adheres to the back surfaces of the solar cell elements C1 and C2. When the solder 34A adheres to the back surfaces of the solar cell elements (semiconductor substrates) C1 and C2, the solar cell element is electrically short-circuited, and the performance is deteriorated. Further, the electrode connecting wire 31 has a large difference in thermal expansion coefficient from that of the semiconductor substrate, and the thickness of the substrate is thinned to about 200 μm, so that the semiconductor substrate may be damaged by thermal stress during soldering. There is.

本発明はかかる問題に鑑みなされたもので、隣接配置した太陽電池素子の裏面の端部に設けられた極性の異なる電極端子同士を電気的に接続する際に、太陽電池素子の裏面にはんだが付着し難く、また素子に熱応力による損傷が生じ難い電極接続線材、およびその電極接続線材により接続された太陽電池を提供することを目的とする。   The present invention has been made in view of such problems, and when the electrode terminals having different polarities provided at the end portions of the back surface of the adjacent solar cell elements are electrically connected to each other, solder is applied to the back surface of the solar cell element. It is an object of the present invention to provide an electrode connecting wire which is difficult to adhere and damages due to thermal stress on the element, and a solar cell connected by the electrode connecting wire.

本発明の電極接続線材は、隣接配置した太陽電池素子の裏面の端部に設けられた極性の異なる電極端子同士を接続するものであって、低熱膨張材で形成された芯材と、前記芯材の表面の中央部に積層形成された分離帯部と、前記分離帯部の両側の芯材表面に被覆形成された接続用はんだ部とを有し、前記分離帯部はその表面に不働態皮膜を有し、前記接続用はんだ部は溶融はんだめっきにより形成されたものである。   The electrode connecting wire of the present invention connects electrode terminals having different polarities provided at the end of the back surface of the solar cell elements arranged adjacent to each other, and includes a core formed of a low thermal expansion material and the core A separation band formed in a central portion of the surface of the material, and a connecting solder portion coated on the surface of the core on both sides of the separation band, the separation band being in a passive state on the surface It has a film, and the connecting solder part is formed by hot-dip solder plating.

この電極接続線材によると、電極接続線材の芯材は低熱膨張材で形成されているので、電極接続線材を太陽電池素子の電極端子にはんだ付けする際、太陽電池素子の半導体基板に生じる熱応力を軽減することができ、半導体基板の割損を防止することができる。また、前記芯材の表面中央部の分離帯部には、はんだ部が形成されていないので、前記はんだ付けの際に、太陽電池素子の裏面に溶融はんだが付着するおそれがなく、はんだ付け作業性に優れる。また、前記分離帯部は、その表面に不働態皮膜を有するため、溶融はんだとの濡れ性が悪く、生産性の高い溶融はんだめっきによって、前記分離帯部の表面に溶融はんだめっき部を形成することなく、その両側に接続用はんだ部を簡単容易に形成することができ、生産性に優れる。   According to this electrode connection wire, since the core material of the electrode connection wire is formed of a low thermal expansion material, when the electrode connection wire is soldered to the electrode terminal of the solar cell element, the thermal stress generated in the semiconductor substrate of the solar cell element Can be reduced, and breakage of the semiconductor substrate can be prevented. Further, since no solder part is formed in the separation band part at the center part of the surface of the core material, there is no possibility that the molten solder adheres to the back surface of the solar cell element during the soldering, and the soldering work Excellent in properties. Further, since the separation band portion has a passive film on the surface thereof, the wettability with molten solder is poor, and the molten solder plating portion is formed on the surface of the separation band portion by high-productivity molten solder plating. Therefore, the connecting solder portions can be easily and easily formed on both sides, and the productivity is excellent.

前記芯材を形成する低熱膨張材としては、入手が容易で、半導体基板の熱膨張係数に近似した熱膨張係数1〜5 ppm/℃のFe基合金を用いることが好ましい。
また、前記低熱膨張材として、単層のものに限らず、純CuあるいはCuを主成分とするCu基合金で形成した中間層の両側に前記低熱膨張Fe基合金で形成した外層を積層形成した複層のものでもよい。かかる中間層を設けることにより、芯材の導電性を向上させることができ、太陽電池の発電損失を軽減することができる。
As the low thermal expansion material forming the core material, it is preferable to use an Fe-based alloy which is easily available and has a thermal expansion coefficient of 1 to 5 ppm / ° C. which is close to the thermal expansion coefficient of the semiconductor substrate.
In addition, the low thermal expansion material is not limited to a single layer, and an outer layer formed of the low thermal expansion Fe base alloy is laminated on both sides of an intermediate layer formed of pure Cu or a Cu base alloy containing Cu as a main component. Multiple layers may be used. By providing such an intermediate layer, the conductivity of the core material can be improved, and the power generation loss of the solar cell can be reduced.

前記分離帯部は、純AlあるいはAlを主成分としたAl基合金(これらを併せて「アルミニウム系金属」という。)、あるいはAl−Fe金属間化合物によって形成することができる。アルミニウム系金属は、入手が容易で、低コストであり、その表面に不働態皮膜(緻密な酸化膜)が容易に形成される。このため、芯材に分離帯部を形成した複合材を溶融はんだ浴に浸漬するだけで、分離帯部の表面を除いて、その周りにはんだ部(溶融はんだめっき部)を容易に形成することができる。また、Al−Fe金属間化合物は、アルミニウム系金属と同様、不働態皮膜が容易に形成され、また黒色であるため、黒色系の太陽電池素子の間隙を目立たないようにすることができる。   The separation band portion can be formed of pure Al or an Al-based alloy containing Al as a main component (collectively referred to as “aluminum-based metal”) or an Al—Fe intermetallic compound. Aluminum-based metals are easy to obtain and low in cost, and a passive film (dense oxide film) is easily formed on the surface thereof. For this reason, it is possible to easily form a solder part (molten solder plating part) around the surface of the separation band part by simply immersing the composite material in which the separation band part is formed in the core material in the molten solder bath. Can do. In addition, since the Al—Fe intermetallic compound has a passive film easily formed and is black like the aluminum metal, the gap between the black solar cell elements can be made inconspicuous.

また、はんだ部は、前記接続用はんだ部のほか、芯材の両側面及び裏面に被覆用はんだ部を被覆形成することができる。被覆用はんだ部を設けることで、芯材の耐食性を向上させることができ、また導電性を向上させることができる。これらの被覆はんだ部も溶融はんだめっきによって容易に一体的に形成することができる。   In addition to the connection solder portion, the solder portion can be formed by coating the solder portions for covering on both side surfaces and the back surface of the core material. By providing the solder part for coating, the corrosion resistance of the core material can be improved, and the conductivity can be improved. These coated solder portions can also be easily formed integrally by molten solder plating.

本発明の太陽電池は、裏面の両端部に極性の異なる電極端子が形成された太陽電池素子が、極性の異なる電極端子が対向するように隣接配置され、隣接配置された太陽電池素子の極性の異なる電極端子同士が上記電極接続線材で接続された太陽電池であって、前記電極接続線材の一方の接続用はんだ部が前記一方の太陽電池素子の電極端子にはんだ付けされ、前記電極接続線材の他方の接続用はんだ部が前記他方の太陽電池端子の電極にはんだ付けされたものである。
この太陽電池によると、電極接続線材によって隣接する太陽電池素子の相異なる電極端子同士をはんだ付けにより接続する際に、電極接続線材の表面中央部にははんだ部を有しない分離帯部が形成されているので、太陽電池素子の裏面にはんだが付着するおそれがなく、はんだ付け作業が容易であり、不良品が発生し難い。
In the solar cell of the present invention, solar cell elements in which electrode terminals having different polarities are formed at both ends of the back surface are arranged adjacent to each other so that electrode terminals having different polarities face each other, and the polarities of the solar cell elements arranged adjacent to each other are Different electrode terminals are solar cells connected by the electrode connecting wire, wherein one connecting solder portion of the electrode connecting wire is soldered to the electrode terminal of the one solar cell element, and the electrode connecting wire The other connecting solder portion is soldered to the electrode of the other solar cell terminal.
According to this solar cell, when different electrode terminals of adjacent solar cell elements are connected by soldering with the electrode connecting wire, a separation band portion having no solder portion is formed at the center of the surface of the electrode connecting wire. Therefore, there is no fear that the solder adheres to the back surface of the solar cell element, the soldering operation is easy, and defective products are hardly generated.

本発明の太陽電池用電極接続線材によれば、低熱膨張材によって形成された芯材の表面中央部に、溶融はんだとの濡れ性が悪い不働態皮膜を有する分離帯部が形成されているので、電極接続線材を隣接する太陽電池素子の電極端子同士にはんだ付けする際、太陽電池素子の半導体基板に生じる熱応力を軽減することができ、また太陽電池素子の裏面に溶融はんだが付着するおそれがなく、はんだ付け作業性に優れ、不良品が発生し難い。さらに、前記分離帯部は、その表面に不働態皮膜が形成されているので、生産性の高い溶融はんだめっきによって、前記分離帯部の表面に溶融はんだめっき部を形成することなく、その両側に接合用はんだ部を簡単容易に形成することができ、生産性に優れる。   According to the electrode connection wire for solar cell of the present invention, the separation band portion having the passive film having poor wettability with the molten solder is formed in the center portion of the surface of the core material formed of the low thermal expansion material. When soldering the electrode connecting wire to the electrode terminals of the adjacent solar cell elements, the thermal stress generated on the semiconductor substrate of the solar cell element can be reduced, and the molten solder may adhere to the back surface of the solar cell element Excellent soldering workability, and it is difficult for defective products to occur. Furthermore, since the passive band is formed on the surface of the separation band part, the molten solder plating with high productivity can be performed on both sides without forming the molten solder plating part on the surface of the separation band part. The solder part for joining can be formed easily and easily, and the productivity is excellent.

以下、図面を参照して本発明の電極接続線材について説明する。
図1は、本発明の第1実施形態に係る電極接続線材1を示しており、帯板状で、かつ単層の芯材2と、この芯材2の表面中央部に表面が面一になるように圧接接合された分離帯部3と、前記芯材2の表面で、前記分離帯部3の両側に被覆形成された円弧状に膨らんだ接合用はんだ部4,4を備えている。また、前記芯材2の側面、裏面には被覆用はんだ部5,6が被覆形成されている。
Hereinafter, the electrode connecting wire of the present invention will be described with reference to the drawings.
FIG. 1 shows an electrode connecting wire 1 according to a first embodiment of the present invention. The electrode connecting wire 1 is in the form of a strip and has a single-layer core 2 and the surface is flush with the center of the surface of the core 2. The separation band part 3 is press-bonded so as to be, and the soldering parts 4 and 4 are joined on the surface of the core member 2 and are swelled in an arc shape and coated on both sides of the separation band part 3. In addition, the soldering portions 5 and 6 for coating are formed on the side surfaces and the back surface of the core material 2.

図2は第2実施形態にかかる電極接続線材1Aを示しており、帯板状で、かつ複層の芯材2Aを有し、この芯材2Aは、導電性の良好な純CuあるいはCuを主成分として、好ましくは90mass%以上含有するCu基合金(両者を併せて「銅系金属」という場合がある。)で形成された中間層22の両側に外層21,23が積層形成されている。その他の構成は前記第1実施形態と同様であり、同符号が付されている。   FIG. 2 shows an electrode connecting wire 1A according to the second embodiment. The electrode connecting wire 1A has a strip-like and multi-layered core material 2A. The core material 2A is made of pure Cu or Cu having good conductivity. Outer layers 21 and 23 are laminated on both sides of an intermediate layer 22 formed of a Cu-based alloy containing 90 mass% or more as a main component (sometimes collectively referred to as “copper metal”). . Other configurations are the same as those of the first embodiment, and the same reference numerals are given.

前記単層の芯材2及び複層の芯材2Aの外層21,23は、熱膨張係数が1〜5 ppm/℃程度のFe基合金で形成されている。このようなFe基合金は、太陽電池素子の半導体基板の熱膨張係数(シリコン基板で3 ppm/℃程度)に近似しており、また容易に入手することができる。具体的には、36〜50wt%Ni,残部FeのFeNi合金や20〜30wt%Ni,1〜20wt%Co,残部FeのFeNiCo合金などが好適である。   The single-layer core material 2 and the outer layers 21 and 23 of the multilayer core material 2A are formed of an Fe-based alloy having a thermal expansion coefficient of about 1 to 5 ppm / ° C. Such an Fe-based alloy approximates the thermal expansion coefficient of a semiconductor substrate of a solar cell element (about 3 ppm / ° C. for a silicon substrate) and can be easily obtained. Specifically, an FeNi alloy of 36 to 50 wt% Ni and the remaining Fe, 20 to 30 wt% Ni, 1 to 20 wt% Co, and an FeNiCo alloy of the remaining Fe are suitable.

前記複層の芯材2Aの場合、中間層22が厚いほど、導電性はより向上するが、芯材2A全体としての熱膨張率は上がる。このため、芯材2Aの全厚に対する中間層22の厚さの割合は20〜40%程度、好ましくは25〜35%程度とすることが望ましい。勿論、中間層22の両側の外層21,23の厚さは、反りを生じないようにするために同等にすることが好ましい。なお、この芯材2Aは、中間層22の素材薄板の両側に、外層21,23の素材薄板を重ね合わせてロール圧接し、焼鈍することによって簡単に製作することができる。   In the case of the multilayer core material 2A, the thicker the intermediate layer 22, the more the conductivity is improved, but the thermal expansion coefficient of the core material 2A as a whole increases. For this reason, the ratio of the thickness of the intermediate layer 22 to the total thickness of the core material 2A is about 20 to 40%, preferably about 25 to 35%. Of course, it is preferable that the thicknesses of the outer layers 21 and 23 on both sides of the intermediate layer 22 be equal in order to prevent warping. The core material 2A can be easily manufactured by superposing the material thin plates of the outer layers 21 and 23 on both sides of the material thin plate of the intermediate layer 22 and performing roll pressure contact and annealing.

前記分離帯部は、不働態皮膜(緻密な酸化膜)を有し、不働態皮膜を形成する材料によって形成される。このような材料として、例えば純Al,Alを主成分として好ましくは90mass%以上含有するAl基合金、例えば、JIS 1050,1060,1085,1080,1070,1N99,1N90を用いることができる。前記アルミニウム系金属の他、純Ti,Tiを主成分とするTi基合金、その他ステンレス鋼など、その表面に自然に不働態皮膜が形成される金属を用いることができる。特に、アルミニウム系金属は、入手が容易で、低コストであるため好ましい。また、アルミニウム系金属は、単層芯材あるいは複層芯材の外層を低熱膨張Fe基合金で形成した場合、熱処理によりAlとFeとが容易に反応して黒色のAl−Fe金属間化合物を形成し、また表面をエッチングすることにより容易に白色にすることができ、さらにアルマイト処理により種々の色に着色することができる。また、前記分離帯部3は、芯材1,1Aの全幅に対して、通常、40〜70%程度の幅に設定される。   The separation band portion has a passive film (dense oxide film) and is formed of a material that forms the passive film. As such a material, for example, pure Al, an Al-based alloy containing Al as a main component, preferably 90 mass% or more, for example, JIS 1050, 1060, 1085, 1080, 1070, 1N99, 1N90 can be used. In addition to the aluminum-based metal, pure Ti, a Ti-based alloy containing Ti as a main component, and other metals such as stainless steel, on which the passive film is naturally formed, can be used. In particular, an aluminum-based metal is preferable because it is easily available and low in cost. In addition, when the outer layer of a single-layer core material or a multi-layer core material is formed of a low thermal expansion Fe-based alloy, the aluminum-based metal easily reacts with Al and Fe by heat treatment to form a black Al-Fe intermetallic compound. It can be easily formed white by etching and etching the surface, and can be colored in various colors by alumite treatment. Further, the separation band portion 3 is usually set to a width of about 40 to 70% with respect to the entire width of the core materials 1 and 1A.

前記接合用はんだ部4及び被覆用はんだ部5,6は、前記分離帯部3が形成された芯材2,2Aを溶融はんだめっきすることによって被覆形成したものである。適用するはんだ材としては、はんだ付けの際に太陽電池素子の半導体基板に生じる熱応力をできるだけ軽減するように融点が低いはんだ材が好ましい。前記はんだ材としては、融点が130〜300℃程度、好ましくは180〜240℃程度のSn−Pb合金、Sn−0.5〜5mass%Ag合金、Sn−0.5〜5mass%Ag−0.3〜1.0mass%Cu合金、Sn−0.3〜1.0mass%Cu合金、Sn−1.0〜5.0mass%Ag−5〜8mass%In合金、Sn−1.0〜5.0mass%Ag−40〜50mass%Bi合金、Sn−40〜50mass%Bi合金、Sn−1.0〜5.0mass%Ag−40〜50mass%Bi−5〜8mass%In合金などが好適である。Pbは人体に有害であり、自然環境を汚染するおそれがあるので、汚染防止の観点からはPbフリーのSn−Ag合金、Sn−Ag−Cu合金、Sn−Cu合金、Sn−Ag−In合金、Sn−Ag−Bi合金などのはんだ材が好ましい。また、前記各はんだ材において、溶融はんだの酸化防止のため、50〜200ppm程度のP、数〜数十ppmのGa、数〜数十ppmのGd、数〜数十ppmのGeの内から1種または2種以上を添加することができる。また、前記はんだ部としては、Sn、Ag、Cuなどの種々の純金属、あるいはこれらの合金を用いて多層構造としてもよい。この場合、溶融後に所期の合金成分となるように各層の厚さを調節する。多層構造は、所定の金属めっきを順次施すことによって簡単に形成することができる。   The joining solder portion 4 and the covering solder portions 5 and 6 are formed by coating the core materials 2 and 2A on which the separation band portion 3 is formed by hot-dip solder plating. The solder material to be applied is preferably a solder material having a low melting point so as to reduce as much as possible the thermal stress generated in the semiconductor substrate of the solar cell element during soldering. As said solder material, melting | fusing point is about 130-300 degreeC, Preferably it is about 180-240 degreeC Sn-Pb alloy, Sn-0.5-5 mass% Ag alloy, Sn-0.5-5 mass% Ag-0. 3-1.0 mass% Cu alloy, Sn-0.3-1.0 mass% Cu alloy, Sn-1.0-5.0 mass% Ag-5-8 mass% In alloy, Sn-1.0-5.0 mass % Ag-40 to 50 mass% Bi alloy, Sn-40 to 50 mass% Bi alloy, Sn-1.0 to 5.0 mass% Ag-40 to 50 mass% Bi-5 to 8 mass% In alloy, etc. are suitable. Since Pb is harmful to the human body and may contaminate the natural environment, Pb-free Sn—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy, Sn—Ag—In alloy are used from the viewpoint of pollution prevention. A solder material such as Sn—Ag—Bi alloy is preferable. Further, in each of the solder materials, in order to prevent the molten solder from being oxidized, one of the P of about 50 to 200 ppm, Ga of several to several tens of ppm, Gd of several to several tens of ppm, and Ge of several to several tens of ppm. Seeds or two or more can be added. Moreover, as said solder part, it is good also as a multilayer structure using various pure metals, such as Sn, Ag, Cu, or these alloys. In this case, the thickness of each layer is adjusted so that the desired alloy composition is obtained after melting. The multilayer structure can be easily formed by sequentially performing predetermined metal plating.

前記電極接続線材1,1Aの寸法は、接続する太陽電池素子のサイズにより適宜設定されるが、一辺が120mm程度の方形太陽電池素子では、芯材1,1Aは長さ120mm程度,幅5mm程度,板厚200〜250μm 程度とされ、分離帯部3の幅3mm程度,厚さ10〜15μm 程度とされ、接続用はんだ部4の平均高さ20〜30μm 程度とされる。   The dimensions of the electrode connecting wires 1 and 1A are appropriately set according to the size of the solar cell element to be connected. In the case of a rectangular solar cell element having a side of about 120 mm, the core material 1 and 1A has a length of about 120 mm and a width of about 5 mm. The plate thickness is about 200 to 250 μm, the width of the separation band portion 3 is about 3 mm, the thickness is about 10 to 15 μm, and the average height of the connecting solder portion 4 is about 20 to 30 μm.

ここで、前記電極接続線材の製造方法について簡単に説明する。
まず、芯材2,2Aの元になる素材帯板を準備し、その表面の中央部に分離帯部の素材となる素材帯板を重ね合わせて圧下率30〜60%でロール圧接し、得られたクラッド材をさらに仕上圧延して、分離帯部が表面中央部に埋入した芯材を得る。前記芯材2あるいは芯材2Aの外層21を低熱膨張Fe基合金で、前記分離帯部3をアルミニウム系金属で形成した場合、分離帯部3を黒色にするには、仕上圧延後、700〜800℃で1〜2分程度保持する焼鈍を施す。これによって、AlとFeとが反応して黒色のFe−Al金属間化合物が形成される。その後、分離帯部3が芯材2,2Aの中央部に配置されるように、必要に応じて幅方向端部をスリットして形を整える。次いで、分離帯部3を有する芯材2,2Aにフラックスを付けて、芯材表面の表面酸化膜を除去した後、溶融はんだ浴に浸漬し、芯材2,2Aの分離帯部3を除く外周表面にはんだ部4,5,6を被覆形成する。なお、分離帯部3の表面を白色化するには、はんだ部を被覆形成後、水酸化ナトリウム水溶液などのアルカリ溶液に浸漬して、分離帯部3の表面をエッチングすればよい。
Here, a method for manufacturing the electrode connecting wire will be briefly described.
First, a material strip that is the basis of the core materials 2 and 2A is prepared, and a material strip that is a material of the separation strip is overlapped on the center of the surface and roll-welded at a rolling reduction of 30 to 60%. The resulting clad material is further finish-rolled to obtain a core material in which the separation band portion is embedded in the center of the surface. When the outer layer 21 of the core material 2 or the core material 2A is made of a low thermal expansion Fe-based alloy and the separation band portion 3 is made of an aluminum-based metal, 700 to Annealing is performed at 800 ° C. for about 1 to 2 minutes. Thereby, Al and Fe react to form a black Fe—Al intermetallic compound. Then, the width direction edge part is slit as needed so that the isolation | separation belt | band | zone part 3 may be arrange | positioned in the center part of the core materials 2 and 2A, and shape is adjusted. Next, flux is applied to the core materials 2 and 2A having the separation band portion 3 to remove the surface oxide film on the surface of the core material, and then immersed in a molten solder bath to remove the separation band portion 3 of the core materials 2 and 2A. Solder portions 4, 5, and 6 are formed on the outer peripheral surface. In addition, in order to whiten the surface of the separation band part 3, it is only necessary to etch the surface of the separation band part 3 by immersing it in an alkaline solution such as an aqueous sodium hydroxide solution after the solder part is coated.

前記第1、第2実施態様の電極接続線材1,1Aでは、分離帯部3を除き、芯材の外周表面全体に円弧状に膨らんだはんだ部4,5,6を被覆形成したが、少なくとも芯材表面の分離帯部3の両側に接合はんだ部4が形成されておればよい。もっとも、このように分離帯部3を除き、芯材2,2Aの外周表面全体にはんだ部を被覆形成することにより、芯材2,2Aの外周表面の耐食性を向上させることができ、また電極接続線材1,1Aの導電性を向上させることができる。また、前記はんだ部4,5,6は、溶融はんだめっき部であり、芯材を溶融はんだ浴に浸漬することにより簡単容易に形成することができる。
また、前記電極接続線材1,1Aでは、分離帯部3は、その素材金属板を芯材2,2Aに圧接したため、芯材表面に埋入するように形成されているが、埋入状に形成する必要はなく、蒸着法やめっき法により、芯材の上に不働態皮膜を形成する金属層あるいは酸化物層を被覆形成してもよい。
また、前記電極接続線材1Aでは、中間層22を銅系金属で、外層21,23を低熱膨張Fe合金で形成したが、中間層22を低熱膨張Fe合金で、外層21,23を銅系金属で形成してもよい。この場合についても、低熱膨張Fe合金で形成される層の合計厚さが大きいほど、太陽電池素子に生じる熱応力を軽減することができるため、芯材の全厚に対する外層(銅系金属層)の合計厚さの割合は20〜40%程度とすることが好ましい。
In the electrode connection wires 1 and 1A of the first and second embodiments, the outer peripheral surface of the core material is coated with the solder portions 4, 5, and 6 that are swollen in an arc shape except for the separation band portion 3. The joining solder part 4 should just be formed in the both sides of the separation band part 3 of the core material surface. However, the corrosion resistance of the outer peripheral surfaces of the core materials 2 and 2A can be improved by covering the entire outer peripheral surfaces of the core materials 2 and 2A with the solder portion except for the separation band portion 3 as described above. The conductivity of the connecting wires 1 and 1A can be improved. The solder parts 4, 5, and 6 are molten solder plating parts, and can be easily and easily formed by immersing the core material in a molten solder bath.
Further, in the electrode connecting wires 1 and 1A, the separation band portion 3 is formed so as to be embedded in the surface of the core material because the material metal plate is pressed against the core materials 2 and 2A. There is no need to form it, and a metal layer or an oxide layer that forms a passive film on the core material may be formed on the core by vapor deposition or plating.
In the electrode connecting wire 1A, the intermediate layer 22 is made of a copper-based metal and the outer layers 21 and 23 are made of a low thermal expansion Fe alloy. However, the intermediate layer 22 is made of a low thermal expansion Fe alloy and the outer layers 21 and 23 are made of a copper-based metal. May be formed. Also in this case, the larger the total thickness of the layers formed of the low thermal expansion Fe alloy, the more the thermal stress generated in the solar cell element can be reduced. Therefore, the outer layer (copper metal layer) with respect to the total thickness of the core material The ratio of the total thickness is preferably about 20 to 40%.

次に、前記第1実施形態の電極接続線材1を用いて接続した太陽電池を図3を参照して説明する。
この太陽電池は、多数の太陽電池素子が前記電極接続線材1によって直列に接続されて構成されており、隣接する左右一対の太陽電池素子の接続部を図3に示す。太陽電池素子C1,C2の裏面の両端部には、極性の異なる電極端子A,Bが突設されており、図例では左側の太陽電池素子C1の右端部に電極端子Bが設けられ、右側の太陽電池素子C2の左端部に極性の異なる電極端子Aが設けられ、これらの電極端子A,Bが対向するように左右の太陽電池素子C1,C2が1mm程度の間隔を置いて配置されている。前記電極端子A、Bはそれぞれ電極接続線材1の分離帯部3の両側に形成された接続用はんだ部4,4にはんだ付けされて、直列に接続されている。はんだ付けは、接続用はんだ部4を形成するはんだ材の融点より20〜30℃高い温度で行われる。
Next, the solar cell connected using the electrode connection wire 1 of the first embodiment will be described with reference to FIG.
This solar cell is configured by connecting a large number of solar cell elements in series by the electrode connecting wire 1, and a connection portion between a pair of adjacent left and right solar cell elements is shown in FIG. 3. The electrode terminals A and B having different polarities protrude from both ends of the back surface of the solar cell elements C1 and C2, and in the illustrated example, the electrode terminal B is provided at the right end of the left solar cell element C1 and the right side. An electrode terminal A having a different polarity is provided at the left end of the solar cell element C2, and the left and right solar cell elements C1 and C2 are arranged with an interval of about 1 mm so that the electrode terminals A and B face each other. Yes. The electrode terminals A and B are respectively soldered to connecting solder portions 4 and 4 formed on both sides of the separation band portion 3 of the electrode connecting wire 1 and connected in series. Soldering is performed at a temperature 20 to 30 ° C. higher than the melting point of the solder material forming the connecting solder portion 4.

本発明の電極接続線材1によれば、幅方向の中央部に不働態皮膜を有する分離帯部3が形成され、この部分には溶融はんだめっき部が形成されていないので、はんだ付けの際に、当該はんだ部が溶けた溶融はんだが太陽電池素子の裏面に付着することなく、分離帯部3によって左右に隔てられて形成された接続用はんだ部4が一旦溶けて、凝固したはんだ部4Aにより電極端子A,Bをはんだ付けすることができる。また、電極接続線材1の芯材2は、低熱膨張合金で形成されているため、はんだ付けの際に、太陽電池素子C1,C2の半導体基板に生じる熱応力が軽減され、基板に割損が生じ難い。なお、図3は、第1実施形態に係る電極接続線材1を用いて太陽電池素子の異極性の電極端子同士を接続したものであるが、第2実施形態の電極接続線材1Aを用いた場合においても同様の効果を奏する。   According to the electrode connecting wire 1 of the present invention, the separation band portion 3 having a passive film is formed in the center portion in the width direction, and no molten solder plating portion is formed in this portion. The molten solder in which the solder portion is melted does not adhere to the back surface of the solar cell element, and the connecting solder portion 4 formed to be separated from the left and right by the separation band portion 3 is once melted and solidified by the solidified solder portion 4A. Electrode terminals A and B can be soldered. Further, since the core material 2 of the electrode connection wire 1 is formed of a low thermal expansion alloy, the thermal stress generated in the semiconductor substrates of the solar cell elements C1 and C2 during soldering is reduced, and the substrate is damaged. Not likely to occur. In addition, although FIG. 3 connects the electrode terminals of different polarities of the solar cell elements using the electrode connection wire 1 according to the first embodiment, the case where the electrode connection wire 1A of the second embodiment is used. The same effect can be obtained in.

本発明の第1実施形態にかかる電極接続線材の横断面図である。It is a cross-sectional view of the electrode connecting wire according to the first embodiment of the present invention. 本発明の第2実施形態にかかる電極接続線材の横断面図である。It is a cross-sectional view of the electrode connection wire material concerning 2nd Embodiment of this invention. 本発明の電極接続線材によって直列接続された太陽電池素子の接続部を示す太陽電池の要部断面図である。It is principal part sectional drawing of the solar cell which shows the connection part of the solar cell element connected in series by the electrode connection wire of this invention. 従来の電極接続線材の横断面図である。It is a cross-sectional view of the conventional electrode connection wire. 従来の電極接続線材によって直列接続された太陽電池素子の接続部を示す要部断面図である。It is principal part sectional drawing which shows the connection part of the solar cell element connected in series by the conventional electrode connection wire.

符号の説明Explanation of symbols

1,1A 電極接続線材
2,2A 芯材
3 分離帯部
4 接続用はんだ部
22 中間層
21,23 外層
C1,C2 太陽電池素子
DESCRIPTION OF SYMBOLS 1,1A Electrode connection wire 2,2A Core material 3 Separation zone part 4 Solder part for connection 22 Intermediate | middle layer 21,23 Outer layer C1, C2 Solar cell element

Claims (7)

隣接配置した太陽電池素子の裏面の端部に設けられた極性の異なる電極端子同士を接続する電極接続線材であって、
低熱膨張材で形成された芯材と、前記芯材の表面の中央部に積層形成された分離帯部と、前記分離帯部の両側の芯材表面に被覆形成された接続用はんだ部とを有し、前記分離帯部はその表面に不働態皮膜を有し、前記接続用はんだ部は溶融はんだめっきにより形成された、太陽電池用電極接続線材。
An electrode connecting wire for connecting electrode terminals with different polarities provided at the end of the back surface of the solar cell element disposed adjacent to each other,
A core material formed of a low thermal expansion material, a separation band portion formed by lamination at the center of the surface of the core material, and a connecting solder portion formed on the core material surfaces on both sides of the separation band portion. And the separation band portion has a passive film on the surface thereof, and the connection solder portion is formed by molten solder plating.
前記低熱膨張材は、熱膨張係数1〜5 ppm/℃のFe基合金で形成された請求項1に記載した太陽電池用電極接続線材。 The electrode connection wire for a solar cell according to claim 1, wherein the low thermal expansion material is formed of an Fe-based alloy having a thermal expansion coefficient of 1 to 5 ppm / ° C. 前記低熱膨張材は、中間層の両側に外層が積層形成され、前記外層は熱膨張係数1〜5 ppm/℃のFe基合金で形成され、前記中間層は純CuあるいはCuを主成分とするCu基合金で形成された請求項1に記載した太陽電池用電極接続線材。 In the low thermal expansion material, an outer layer is formed on both sides of an intermediate layer, the outer layer is formed of an Fe-based alloy having a thermal expansion coefficient of 1 to 5 ppm / ° C., and the intermediate layer is mainly composed of pure Cu or Cu. The electrode connection wire for solar cells according to claim 1, which is formed of a Cu-based alloy. 前記分離帯部は、純AlあるいはAlを主成分としたAl基合金で形成された請求項1から3のいずれか1項に記載した太陽電池用電極接続線材。 The solar cell electrode connecting wire according to any one of claims 1 to 3, wherein the separation band portion is formed of pure Al or an Al-based alloy containing Al as a main component. 前記分離帯部は、Al−Fe金属間化合物で形成された請求項1から3のいずれかに記載した太陽電池用電極接続線材。 The solar cell electrode connection wire according to any one of claims 1 to 3, wherein the separation band portion is formed of an Al-Fe intermetallic compound. 前記芯材の両側面及び裏面に被覆用はんだ部が被覆形成された請求項1から5のいずれか1項に記載した太陽電池用電極接続線材。 The electrode connection wire for solar cells according to any one of claims 1 to 5, wherein a coating solder portion is formed on both side surfaces and the back surface of the core material. 裏面の両端部に極性の異なる電極端子が形成された太陽電池素子が、極性の異なる電極端子が対向するように隣接配置され、隣接配置された太陽電池素子の極性の異なる電極端子同士が請求項1から6のいずれか1項に記載された電極接続線材で接続された太陽電池であって、
前記電極接続線材の一方の接続用はんだ部が前記一方の太陽電池素子の電極端子にはんだ付けされ、前記電極接続線材の他方の接続用はんだ部が前記他方の太陽電池端子の電極にはんだ付けされた、太陽電池。
The solar cell elements in which electrode terminals having different polarities are formed on both ends of the back surface are adjacently arranged so that the electrode terminals having different polarities face each other, and the electrode terminals having different polarities of the adjacent solar cell elements are claimed. A solar cell connected with the electrode connecting wire described in any one of 1 to 6,
One connecting solder portion of the electrode connecting wire is soldered to the electrode terminal of the one solar cell element, and the other connecting solder portion of the electrode connecting wire is soldered to the electrode of the other solar cell terminal. Solar cells.
JP2005056755A 2005-03-02 2005-03-02 Electrode connection wire for solar cell and solar cell connected by the wire Expired - Fee Related JP4683466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056755A JP4683466B2 (en) 2005-03-02 2005-03-02 Electrode connection wire for solar cell and solar cell connected by the wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056755A JP4683466B2 (en) 2005-03-02 2005-03-02 Electrode connection wire for solar cell and solar cell connected by the wire

Publications (2)

Publication Number Publication Date
JP2006245153A true JP2006245153A (en) 2006-09-14
JP4683466B2 JP4683466B2 (en) 2011-05-18

Family

ID=37051281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056755A Expired - Fee Related JP4683466B2 (en) 2005-03-02 2005-03-02 Electrode connection wire for solar cell and solar cell connected by the wire

Country Status (1)

Country Link
JP (1) JP4683466B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162052B2 (en) * 2011-06-28 2013-03-13 パナソニック株式会社 Solar cell module
JP2013175508A (en) * 2012-02-23 2013-09-05 Kyocera Corp Wiring board, electronic device, and manufacturing method of wiring board
KR20150086119A (en) * 2014-01-17 2015-07-27 엘지전자 주식회사 Solar cell module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015937A (en) * 1983-07-07 1985-01-26 Hitachi Cable Ltd Cladding material for semiconductor support electrode
JPH10341031A (en) * 1997-04-11 1998-12-22 Canon Inc Solar cell module, installation method thereof, building material, installation method thereof and power generator
JP2002083985A (en) * 2000-09-06 2002-03-22 Honda Motor Co Ltd Solar battery cell
JP2002094090A (en) * 2000-09-11 2002-03-29 Honda Motor Co Ltd Wiring material of solar battery module and its connection method
WO2004105141A1 (en) * 2003-05-22 2004-12-02 Neomax Materials Co., Ltd. Electrode wire material and solar battery having connection lead formed of the wire material
JP2004363293A (en) * 2003-06-04 2004-12-24 Sharp Corp Solar cell module and manufacturing method thereof
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015937A (en) * 1983-07-07 1985-01-26 Hitachi Cable Ltd Cladding material for semiconductor support electrode
JPH10341031A (en) * 1997-04-11 1998-12-22 Canon Inc Solar cell module, installation method thereof, building material, installation method thereof and power generator
JP2002083985A (en) * 2000-09-06 2002-03-22 Honda Motor Co Ltd Solar battery cell
JP2002094090A (en) * 2000-09-11 2002-03-29 Honda Motor Co Ltd Wiring material of solar battery module and its connection method
WO2004105141A1 (en) * 2003-05-22 2004-12-02 Neomax Materials Co., Ltd. Electrode wire material and solar battery having connection lead formed of the wire material
JP2004363293A (en) * 2003-06-04 2004-12-24 Sharp Corp Solar cell module and manufacturing method thereof
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162052B2 (en) * 2011-06-28 2013-03-13 パナソニック株式会社 Solar cell module
US9379267B2 (en) 2011-06-28 2016-06-28 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP2013175508A (en) * 2012-02-23 2013-09-05 Kyocera Corp Wiring board, electronic device, and manufacturing method of wiring board
KR20150086119A (en) * 2014-01-17 2015-07-27 엘지전자 주식회사 Solar cell module
KR102162718B1 (en) * 2014-01-17 2020-10-07 엘지전자 주식회사 Solar cell module

Also Published As

Publication number Publication date
JP4683466B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5160201B2 (en) Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP4986615B2 (en) Solar cell electrode wire
JP6022419B2 (en) Thermoelectric module
JP5161734B2 (en) Solar cell lead wire, manufacturing method thereof, and solar cell
JP2006054355A (en) Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell
JP6122736B2 (en) Thermoelectric generator module
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP2007141930A (en) Electrode wire for solar battery and its manufacturing method
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP6404983B2 (en) Thermoelectric module
JP4683466B2 (en) Electrode connection wire for solar cell and solar cell connected by the wire
JP2006049666A (en) Straight-angle conductor and lead wire for solar cell
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
TW201205613A (en) Electronic component
JP6127941B2 (en) Solder joint material and manufacturing method thereof
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP5418189B2 (en) Solar cell lead wire and solar cell using the same
JP5844033B2 (en) Zinc alloy and metallized plastic film capacitor end face electrode material
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP2008028295A (en) Power semiconductor module and production method therefor
JP2014042065A (en) Lead wire for solar battery, and solar battery
JP7274749B2 (en) Thermoelectric conversion module and thermoelectric conversion module manufacturing method
US20150239070A1 (en) Joining material
JPH0645141A (en) Electrode of oxide superconductor current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees