JP2006245001A - Electrolyte for lithium battery and lithium battery - Google Patents

Electrolyte for lithium battery and lithium battery Download PDF

Info

Publication number
JP2006245001A
JP2006245001A JP2006052835A JP2006052835A JP2006245001A JP 2006245001 A JP2006245001 A JP 2006245001A JP 2006052835 A JP2006052835 A JP 2006052835A JP 2006052835 A JP2006052835 A JP 2006052835A JP 2006245001 A JP2006245001 A JP 2006245001A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium battery
carbonate
group
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052835A
Other languages
Japanese (ja)
Other versions
JP4535390B2 (en
Inventor
Kyoung-Han Yew
京漢 柳
Gikan So
義煥 宋
Cheol-Soo Jung
チョルス ジョン
Yong-Beom Lee
鎔範 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2006245001A publication Critical patent/JP2006245001A/en
Application granted granted Critical
Publication of JP4535390B2 publication Critical patent/JP4535390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F5/00Show stands, hangers, or shelves characterised by their constructional features
    • A47F5/0043Show shelves
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B96/00Details of cabinets, racks or shelf units not covered by a single one of groups A47B43/00 - A47B95/00; General details of furniture
    • A47B96/02Shelves
    • A47B96/021Structural features of shelf bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for a lithium battery improved in safety of the battery, and also to provide the lithium battery containing the electrolyte. <P>SOLUTION: The electrolyte for the lithium battery contains a nonaqueous organic solvent, a lithium salt, a complex forming additive stable at 2.5-4.8 V and chelating with transition metals. The complex forming additive traps metal to prevent problems wherein the metal deposits on the surface of a negative electrode and generates drop in voltage and drop in safety by causing internal short circuit, and since safety in storage at high temperature is ensured, the electrolyte for the lithium battery and the lithium battery containing the electrolyte, safety of the battery such as overcharge characteristics is remarkably increased compared with existing nonaqueous electrolytes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,リチウム電池用電解質およびそれを含むリチウム電池に係り,より詳しくは,安全性に優れたリチウム電池用電解質およびそれを含むリチウム電池に関するものである。   The present invention relates to an electrolyte for a lithium battery and a lithium battery including the same, and more particularly to an electrolyte for a lithium battery excellent in safety and a lithium battery including the same.

最近,携帯用電子機器の小型化および軽量化に伴い,これら機器の電源として用いられる電池の高性能化および大容量化に対する必要性が高まっている。現在,商業化されて使用中のリチウム二次電池は,平均放電電位が3.7V,すなわち4V台の電池であって,3Cと呼ばれる携帯電話,ノートブックコンピュータ,カムコーダなどに急速に適用されているデジタル時代の心臓に相当する要素である。   Recently, with the reduction in size and weight of portable electronic devices, there is an increasing need for higher performance and larger capacity of batteries used as power sources for these devices. The lithium secondary batteries that are currently in commercial use are batteries with an average discharge potential of 3.7V, that is, 4V, and are rapidly applied to mobile phones called 3C, notebook computers, camcorders, etc. It is an element equivalent to the heart of the digital age.

電池の容量および性能特性を改善し且つ過充電特性のような安全性を向上させるための研究も活発に行われている。電池が過充電すると,充電状態によって,陽極ではリチウムが過剰析出され,陰極ではリチウムが過剰挿入することにより,陽極および陰極が熱的に不安定になって電解質の有機溶媒が分解するなど急激な発熱反応が起こったり,熱爆走現象が発生したりして電池の安全性の面で深刻な問題点が発生する。   There is also active research to improve battery capacity and performance characteristics and improve safety such as overcharge characteristics. When a battery is overcharged, lithium is excessively deposited at the anode and lithium is excessively inserted at the cathode depending on the state of charge, and the anode and cathode become thermally unstable and the organic solvent of the electrolyte decomposes rapidly. Exothermic reactions and thermal explosions occur, causing serious problems in terms of battery safety.

このような問題点を解決するために,電解質中にレドックスシャトル(redox shuttle)添加剤として芳香族化合物を添加する方法が使用されている。例えば,特許文献1は,2,4−ジフルオロアニソールのようなベンゼン化合物を添加して過充電電流およびこれによる熱爆走現象を防止することが可能な非水系リチウムイオン電池を開示している。特許文献2は,ビフェニル,3−クロロチオフェン,フランなどの芳香族化合物を少量添加して非正常的な過電圧状態で電気化学的に重合されて内部抵抗を増加させることにより,電池の安定性を向上させるための方法を開示している。これらレドックスシャトル添加剤は,酸化発熱反応から発生する熱によって電池の内部温度を早期に上昇させてセパレータの気孔を速く且つ均一に遮断(shut−down)させることにより,過充電反応を抑える作用をする。また,過充電の際,陽極表面で添加剤の重合反応が過充電電流を消費して電池を保護する機能もする。   In order to solve such a problem, a method of adding an aromatic compound as a redox shuttle additive in an electrolyte is used. For example, Patent Document 1 discloses a non-aqueous lithium ion battery in which a benzene compound such as 2,4-difluoroanisole is added to prevent an overcharge current and a thermal explosion phenomenon caused thereby. In Patent Document 2, the stability of the battery is improved by adding a small amount of an aromatic compound such as biphenyl, 3-chlorothiophene, furan, etc. and electrochemically polymerizing in an abnormal overvoltage state to increase the internal resistance. A method for improving is disclosed. These redox shuttle additives have the effect of suppressing the overcharge reaction by quickly raising the internal temperature of the battery by heat generated from the oxidation exothermic reaction and shutting down the pores of the separator quickly and uniformly. To do. In addition, during overcharge, the polymerization reaction of the additive on the anode surface also functions to protect the battery by consuming overcharge current.

ところが,電池が顧客のニーズに応えて次第にさらに高容量化するにつれて,このような過充電防止添加剤では高い水準の安全性要求条件を満足することが難しくなってきている(例えば,過充電添加剤である酢酸フェニルの添加の際に高温放置特性の低下など)。よって,電池の高容量化に対する要求の増加に伴い,これらの安全性を確保することが可能な新しい過充電添加剤およびこれを含む電解液システムに関する必要性が切実に要求されている。   However, as the capacity of batteries increases gradually in response to customer needs, it is becoming difficult for such overcharge additives to meet high levels of safety requirements (eg, overcharge additives). (Deterioration of high-temperature storage characteristics when adding phenyl acetate as an agent). Therefore, as the demand for higher capacity of batteries increases, there is an urgent need for a new overcharge additive capable of ensuring these safety and an electrolyte system including the same.

米国特許第5,709,968号明細書US Pat. No. 5,709,968 米国特許第5,879,834号明細書US Pat. No. 5,879,834

そこで,本発明はこのような問題点に鑑みてなされたもので,その目的とするところは,電池の安全性を改善させることが可能なリチウム電池用電解質を提供することにある。   Accordingly, the present invention has been made in view of such problems, and an object of the present invention is to provide an electrolyte for a lithium battery that can improve the safety of the battery.

本発明の他の目的は,上記電解質を含むリチウム電池を提供することにある。   Another object of the present invention is to provide a lithium battery including the electrolyte.

上記課題を解決するために,本発明は,非水性有機溶媒,リチウム塩,および2.5〜4.8Vで安定し,遷移金属とキレートする錯体形成添加剤を含むリチウム電池用電解質を提供する。   In order to solve the above problems, the present invention provides an electrolyte for a lithium battery comprising a non-aqueous organic solvent, a lithium salt, and a complex-forming additive that is stable at 2.5 to 4.8 V and chelates with a transition metal. .

本発明の電解質を含むリチウム電池は,過充電特性といった電池の安全性が既存の非水系電解質を使用する電池に比べて著しく優れる。上記錯体形成添加剤は,金属を捕集し,上記金属が陰極表面に析出されて内部の短絡による電圧降下が発生し且つ安全性が低下するといった問題を防止することができ,特に高温放置時の安全性の確保に優れた効果を示す。なお,2.5〜4.8Vは電池の一般的な放充電の範囲である。   The lithium battery containing the electrolyte of the present invention is significantly superior in battery safety, such as overcharge characteristics, as compared to a battery using an existing non-aqueous electrolyte. The complex-forming additive collects the metal and prevents the metal from being deposited on the cathode surface, causing a voltage drop due to an internal short circuit and reducing safety, especially when left at high temperatures. Excellent effect in securing safety. In addition, 2.5-4.8V is the range of the general discharge / charging of a battery.

前記錯体形成添加剤は,下記化学式1〜3で表わす化合物の少なくとも一つであることが好ましい。

Figure 2006245001
Figure 2006245001
Figure 2006245001
(前記化学式1〜前記化学式3中,R1,R2,R3,R4,R5およびR6は同一またはそれぞれ独立しており,R1〜R3の少なくとも一つおよびR4〜R6の少なくとも一つはAXR’(AはN,O,PまたはSであり,xは0または1であり,R’はCN,C1〜C15の直鎖状または分枝状アルキル基またはカルボキシル基であり,残りはH,ハロゲン,C1〜C15アルキルまたはC6〜C15のアリール基である。)であり,
nは0〜10の整数であり,
n1は0〜15の整数であり,n1が奇数のときにaは1を示し,n1が偶数のときにaは1/2または1を示す。) The complex-forming additive is preferably at least one of compounds represented by the following chemical formulas 1 to 3.
Figure 2006245001
Figure 2006245001
Figure 2006245001
(In the chemical formula 1 to the chemical formula 3, R1, R2, R3, R4, R5 and R6 are the same or independent, and at least one of R1 to R3 and at least one of R4 to R6 are AXR ′ (A Is N, O, P or S, x is 0 or 1, R ′ is CN, a C1-C15 linear or branched alkyl group or carboxyl group, and the rest are H, halogen, C1 ~ C15 alkyl or C6-C15 aryl group).
n is an integer from 0 to 10,
n1 is an integer of 0 to 15, and when n1 is an odd number, a indicates 1, and when n1 is an even number, a indicates 1/2 or 1. )

前記錯体形成添加剤は,下記化学式4〜26で表わす化合物の少なくとも一つであることが好ましい。

Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
(前記化学式4〜前記化学式26中,Meはメチル基であり,Phはフェニル基である。) The complex-forming additive is preferably at least one of compounds represented by the following chemical formulas 4 to 26.
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
(In the chemical formulas 4 to 26, Me is a methyl group and Ph is a phenyl group.)

前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対して0.1〜10重量%であることが好ましい。   The content of the complex-forming additive compound is preferably 0.1 to 10% by weight based on the total weight of the electrolyte.

上記錯体形成添加剤の添加量が0.1重量%未満であれば,添加効果が微々であり,上記錯体形成添加剤の添加量が10重量%超過であれば,充放電寿命問題があって好ましくない。   If the addition amount of the complex formation additive is less than 0.1% by weight, the effect of addition is insignificant. If the addition amount of the complex formation additive exceeds 10% by weight, there is a charge / discharge life problem. It is not preferable.

前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対して1〜5重量%であることがより好ましい。   The content of the complex-forming additive compound is more preferably 1 to 5% by weight with respect to the total weight of the electrolyte.

前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対して3〜5重量%であることがさらに好ましい。   The content of the complex-forming additive compound is more preferably 3 to 5% by weight with respect to the total weight of the electrolyte.

前記電解質は,陽極から遷移金属を溶出させる溶出添加剤をさらに含むことが好ましい。   The electrolyte preferably further includes an elution additive that elutes the transition metal from the anode.

本発明によれば,内部ショートによる過充電モードを完璧にシャットダウンモード(shut−dowon mode)に転換させて過充電安定性を確保することができる。   According to the present invention, the overcharge mode due to an internal short circuit can be completely switched to the shut-down mode to ensure overcharge stability.

前記溶出添加剤は,エステル系列化合物であることが好ましい。   The elution additive is preferably an ester series compound.

前記溶出添加剤は,酢酸フェニル,安息香酸ベンジル,酢酸エチル,1−酢酸ナフチル,2−クロマノン,およびプロピオン酸エチルよりなる群から選択するものであることが好ましい。   The elution additive is preferably selected from the group consisting of phenyl acetate, benzyl benzoate, ethyl acetate, 1-naphthyl acetate, 2-chromanone, and ethyl propionate.

前記溶出添加剤の添加量は,前記電解質全体100重量部に対し1〜10重量部であることが好ましい。   The amount of the eluting additive is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the whole electrolyte.

上記溶出添加剤の添加量が1重量未満であれば過充電抑制効果を得ることができず,上記溶出添加剤の添加量が10重量部超過であれば寿命特性を低下させるため好ましくない。   If the addition amount of the elution additive is less than 1 weight, the effect of suppressing overcharge cannot be obtained, and if the addition amount of the elution additive exceeds 10 parts by weight, the life characteristics are deteriorated.

前記溶出添加剤の添加量は,前記電解質全体100重量部に対し1〜7重量部であることがより好ましい。   The addition amount of the elution additive is more preferably 1 to 7 parts by weight with respect to 100 parts by weight of the whole electrolyte.

前記溶出添加剤の添加量は,前記電解質全体100重量部に対し3〜5重量部であることがさらに好ましい。   The addition amount of the elution additive is more preferably 3 to 5 parts by weight with respect to 100 parts by weight of the whole electrolyte.

前記リチウム塩は,LiPF,LiBF,LiSbF,LiAsF,LiClO,LiCFSO,Li(CFSON,LiCSO,LiAlO,LiAlCl,LiN(C2x+1SO)(C2y+1SO)(ここで,xおよびyは自然数である),LiCl,およびLiIよりなる群から選択する1種または2種以上であることが好ましい。 The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiAlO 4, LiAlCl 4, LiN ( C x F 2x + 1SO 2 ) (C y F 2y + 1SO 2 ) (where x and y are natural numbers), LiCl, and LiI are preferably one or more selected from the group consisting of LiI.

リチウム塩は,電池内でリチウムイオンの供給源として作用して基本的なリチウム電池の作動を可能にし,非水性有機溶媒は,電池の電気化学的反応に関与するイオンが移動することが可能な媒質の役割をする。   Lithium salts act as a source of lithium ions in the battery to enable basic lithium battery operation, and non-aqueous organic solvents allow ions involved in the battery's electrochemical reactions to move. Serves as a medium.

前記リチウム塩は0.6〜2.0Mの濃度で使用することが好ましい。   The lithium salt is preferably used at a concentration of 0.6 to 2.0M.

リチウム塩の濃度が0.6M未満であれば,電解質の電解度が低くなって電解質の性能が低下し,リチウム塩の濃度が2.0M超過であれば,電解質の粘度が増加してリチウムイオンの移動性が減少するという問題点がある。   If the concentration of the lithium salt is less than 0.6M, the electrolyte's degree of electrolysis decreases and the performance of the electrolyte deteriorates. If the concentration of the lithium salt exceeds 2.0M, the viscosity of the electrolyte increases and lithium ions increase. There is a problem that the mobility of the is reduced.

前記非水性有機溶媒は,カーボネート,エステル,エーテルおよびケトンよりなる群から選択する少なくとも一つの溶媒であることが好ましい。   The non-aqueous organic solvent is preferably at least one solvent selected from the group consisting of carbonates, esters, ethers and ketones.

前記カーボネートは,ジメチルカーボネート,ジエチルカーボネート,ジプロピルカーボネート,メチルプロピールカーボネート,エチルプロピルカーボネート,メチルエチルカーボネート,エチレンカーボネート,プロピレンカーボネート,およびブチレンカーボネートよりなる群から選択する少なくとも一つの溶媒であることが好ましい。   The carbonate may be at least one solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propylene carbonate, ethyl propyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and butylene carbonate. preferable.

前記非水性有機溶媒は,カーボネート系溶媒と芳香族炭化水素系有機溶媒との混合溶媒であることが好ましい。   The non-aqueous organic solvent is preferably a mixed solvent of a carbonate solvent and an aromatic hydrocarbon organic solvent.

前記芳香族炭化水素系有機溶媒は,下記化学式27の芳香族化合物であることが好ましい。   The aromatic hydrocarbon organic solvent is preferably an aromatic compound represented by the following chemical formula 27.

Figure 2006245001
Figure 2006245001

前記化学式27中,R10はハロゲンまたは炭素数1〜10のアルキル基であり,qは0〜6の整数である。   In the chemical formula 27, R10 is a halogen or an alkyl group having 1 to 10 carbon atoms, and q is an integer of 0 to 6.

前記芳香族炭化水素系有機溶媒は,ベンゼン,フルオロベンゼン,トルエン,フルオロトルエン,トリフルオロトルエン,クロロトルエンおよびキシレンよりなる群から選択する少なくとも一つの溶媒であることが好ましい。   The aromatic hydrocarbon organic solvent is preferably at least one solvent selected from the group consisting of benzene, fluorobenzene, toluene, fluorotoluene, trifluorotoluene, chlorotoluene and xylene.

前記電解質は,ハロゲン,シアノ基(Cn)およびニトロ基(NO)よりなる群から選択する置換基を有するカーボネート,炭酸ビニレン,ジビニルスルホンおよび亜硫酸エチレンよりなる群から選択する添加剤をさらに含むことが好ましい。 The electrolyte further includes an additive selected from the group consisting of carbonate, vinylene carbonate, divinylsulfone and ethylene sulfite having a substituent selected from the group consisting of halogen, cyano group (Cn) and nitro group (NO 2 ). Is preferred.

このような第3添加剤をさらに含むと,高温スウェリング特性と容量,寿命,低温特性などの電気化学的特性に優れた電池を提供することができる。   When such a third additive is further included, a battery having excellent high-temperature swelling characteristics and electrochemical characteristics such as capacity, life, and low-temperature characteristics can be provided.

前記電解液は,ハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する置換気を有するカーボネート添加剤をさらに含むことが好ましい。 The electrolytic solution preferably further includes a carbonate additive having a substituent selected from the group consisting of halogen, cyano group (CN), and nitro group (NO 2 ).

前記カーボネート添加剤は,下記化学式28のカーボネートであることが好ましい。   The carbonate additive is preferably a carbonate of the following chemical formula 28.

Figure 2006245001
Figure 2006245001

前記化学式28中,X1はハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する。 In the chemical formula 28, X1 is selected from the group consisting of halogen, cyano group (CN) and nitro group (NO 2 ).

前記カーボネート添加剤は,フルオロエチレンカーボネートであることが好ましい。   The carbonate additive is preferably fluoroethylene carbonate.

また,本発明は,上記電解質リチウムをインターカレーションおよびデインターカレーションすることが可能な陽極活物質を含む陽極と,リチウムをインターカレーションおよびデインターカレーションすることが可能な物質,リチウム金属,リチウム含有合金,およびリチウムと可逆的に反応してリチウム含有化合物を形成することが可能な物質よりなる群から選択する陰極活物質を含む陰極とを備えるリチウム電池を提供する。   The present invention also provides an anode including an anode active material capable of intercalating and deintercalating the electrolyte lithium, a material capable of intercalating and deintercalating lithium, lithium metal And a cathode comprising a cathode active material selected from the group consisting of a lithium-containing alloy and a material capable of reversibly reacting with lithium to form a lithium-containing compound.

本発明のリチウム電池は,過充電特性といった電池の安全性が既存の非水系電解質を使用する電池に比べて著しく優れる。   The lithium battery of the present invention is remarkably superior in battery safety, such as overcharge characteristics, as compared to a battery using an existing non-aqueous electrolyte.

前記陰極活物質は,リチウムイオンを吸蔵及び放出することが可能な炭素系列物質であることが好ましい。   The cathode active material is preferably a carbon series material capable of inserting and extracting lithium ions.

本発明の電解質を含むリチウム電池は,過充電特性といった電池の安全性が既存の非水系電解質を使用する電池に比べて著しく優れる。   The lithium battery containing the electrolyte of the present invention is significantly superior in battery safety, such as overcharge characteristics, as compared to a battery using an existing non-aqueous electrolyte.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

本実施形態は非水系リチウム電池の電解質に関するものである。一般的な非水系リチウム二次電池1の構造は,図1に示されている通りである。   This embodiment relates to an electrolyte for a non-aqueous lithium battery. The structure of a general non-aqueous lithium secondary battery 1 is as shown in FIG.

上記電池は,リチウムをインターカレーションおよびデインターカレーションすることが可能な活物質を含む陽極2および陰極4として使用し,陽極2と陰極4との間にセパレータ6を挿入し,これを巻き取って電極アセンブリ8を形成した後,ケース10に入れることにより製造する。上記電池の上部は,キャッププレート12とガスケット14で密封する。上記キャッププレート12には,電池の過圧形成を防止する安全弁(safety vent)(図示せず)を設置してもよく,さらにキャッププレート12との間に絶縁プレート26を介して配置されるリードプレート24を設置する。上記電極アセンブリ8の陽極2は,陽極タブ18によって陽極端子の役割をするケース10に電気的に連結され,陰極4は,陰極タブ20によって陰極端子22に電気的に連結される。電池を密封する前に,電解質を注入する。注入された電解質は陽極2,陰極4及びセパレータ6に含浸される。上記セパレータとしてはポリエチレン,ポリプロピレン,またはこれらポリエチレン/ポリプロピレンの多重膜が使用できる。   The above battery is used as an anode 2 and a cathode 4 containing an active material capable of intercalating and deintercalating lithium. A separator 6 is inserted between the anode 2 and the cathode 4 and wound. After the electrode assembly 8 is formed, it is manufactured by placing it in the case 10. The upper part of the battery is sealed with a cap plate 12 and a gasket 14. The cap plate 12 may be provided with a safety valve (not shown) for preventing over-pressure formation of the battery, and a lead disposed between the cap plate 12 and the cap plate 12 via an insulating plate 26. The plate 24 is installed. The anode 2 of the electrode assembly 8 is electrically connected to a case 10 serving as an anode terminal by an anode tab 18, and the cathode 4 is electrically connected to a cathode terminal 22 by a cathode tab 20. Inject electrolyte before sealing the battery. The injected electrolyte is impregnated in the anode 2, the cathode 4 and the separator 6. As the separator, polyethylene, polypropylene, or a multilayer film of these polyethylene / polypropylene can be used.

リチウム電池は,誤用や充電器の故障などによって過充電および電池自体の設計上の欠陥による短絡などで電池の温度が急激に上昇する熱爆走現象が起こるおそれがある。特に,過充電する間,過量のリチウムが陽極から抜け出て陰極の表面に析出することにより,両電極が熱的に非常に不安定な状態となり,電解質の熱分解,電解質とリチウムとの反応,陽極での電解質酸化反応,陽極活物質の熱分解によって発生する酸素と電解質との反応などによって発熱反応が急激に行われて電池の温度が急上昇する,いわゆる熱爆走現象が発生し,電池の最高許容温度を超過して電池の発火および発煙に繋がることになる。   Lithium batteries may experience a thermal explosion phenomenon in which the temperature of the battery rapidly rises due to overcharging or short-circuiting due to a design defect of the battery itself due to misuse or failure of the charger. In particular, during overcharging, excessive amounts of lithium escape from the anode and deposit on the surface of the cathode, making both electrodes thermally unstable, resulting in thermal decomposition of the electrolyte, reaction between the electrolyte and lithium, The so-called thermal explosive phenomenon, in which an exothermic reaction takes place rapidly due to the electrolyte oxidation reaction at the anode and the reaction between oxygen and the electrolyte generated by the thermal decomposition of the anode active material, causing the battery temperature to rise, Exceeding the allowable temperature will lead to ignition and smoke of the battery.

このような問題点を解決するために,各種添加剤,たとえば過充電添加剤や高温放置特性向上添加剤などを電解質に添加する研究が試みられてきたが,このような添加剤を使用する場合,目的する効果は得られるものの,予想できない欠点が発生するという問題点があった(例えば,過充電添加剤である酢酸フェニルの添加の際に高温放置特性の低下など)。また,電池製造工程上,濾過しない金属異物などによって電圧降下が発生するなどという問題点もあった。   In order to solve these problems, various attempts have been made to add various additives such as overcharge additives and additives that improve high-temperature storage properties to the electrolyte. However, although the intended effect was obtained, there was a problem that an unforeseen defect occurred (for example, deterioration of the high temperature storage property when phenyl acetate as an overcharge additive was added). In addition, there has been a problem that a voltage drop occurs due to metal foreign matter that is not filtered in the battery manufacturing process.

本実施形態では,このような問題点を解決するために,特に過充電の際または高温放置の際に陽極から溶出する金属または金属異物を捕集(trapping)することが可能な添加剤を電解液に使用した。本実施形態のリチウム電池用電解液に使用する添加剤は,2.5〜4.8Vで安定し,金属とキレートして錯体を形成することが可能な錯体形成添加剤である。このような錯体形成添加剤は,金属を捕集し,上記金属が陰極表面に析出されて内部の短絡による電圧降下が発生し且つ安全性が低下するといった問題を防止することができ,特に高温放置時の安全性の確保に優れた効果を示す。   In the present embodiment, in order to solve such a problem, an additive capable of trapping metal or metal foreign matter eluted from the anode particularly during overcharge or when left at high temperature is electrolyzed. Used for liquid. The additive used for the lithium battery electrolyte of this embodiment is a complex-forming additive that is stable at 2.5 to 4.8 V and can form a complex by chelating with a metal. Such a complex-forming additive collects the metal and can prevent the problem that the metal is deposited on the cathode surface, causing a voltage drop due to an internal short circuit and lowering the safety. Excellent effect in ensuring safety when left unattended.

上記錯体形成添加剤としては,下記化学式1〜3で表わす化合物の少なくとも一つが好ましい。   As the complex forming additive, at least one of compounds represented by the following chemical formulas 1 to 3 is preferable.

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

(上記化学式1〜上記化学式3中,R1,R2,R3,R4,R5およびR6は同一またはそれぞれ独立しており,R1〜R3の少なくとも一つおよびR4〜R6の少なくとも一つはAXR’(AはN,O,PまたはSであり,xは0または1であり,R’はCN,C1〜C15の直鎖状または分枝状アルキル基またはカルボキシル基であり,残りはH,ハロゲン,C1〜C15アルキルまたはC6〜C15のアリール基である。)であり,nは0〜10の整数であり,n1は0〜15の整数であり,n1が奇数のときにaは1を示し,n1が偶数のときにaは1/2または1を示す。)   (In the above chemical formulas 1 to 3, R1, R2, R3, R4, R5 and R6 are the same or independent, and at least one of R1 to R3 and at least one of R4 to R6 are AXR ′ (A Is N, O, P or S, x is 0 or 1, R ′ is CN, a C1-C15 linear or branched alkyl group or carboxyl group, and the rest are H, halogen, C1 N is an integer from 0 to 10, n1 is an integer from 0 to 15, and when n1 is an odd number, a represents 1 and n1 A is 1 or 2 when is an even number.)

さらに好ましい錯体形成添加剤としては,下記化学式4〜26で表わす化合物の少なくとも一つを使用することができる。   As a more preferable complex-forming additive, at least one of compounds represented by the following chemical formulas 4 to 26 can be used.

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001

Figure 2006245001
Figure 2006245001

(上記化学式4〜上記化学式26中,Meはメチル基であり,Phはフェニル基である。)   (In the above chemical formulas 4 to 26, Me is a methyl group and Ph is a phenyl group.)

本実施形態の電解質において,上記錯体形成添加剤化合物の含量は,上記電解質全体重量に対して0.1〜10重量%が好ましく,1〜5重量%がさらに好ましく,3〜5重量%が最も好ましい。上記錯体形成添加剤の添加量が0.1重量%未満であれば,添加効果が微々であり,上記錯体形成添加剤の添加量が10重量%超過であれば,充放電寿命問題があって好ましくない。   In the electrolyte of this embodiment, the content of the complex-forming additive compound is preferably 0.1 to 10% by weight, more preferably 1 to 5% by weight, most preferably 3 to 5% by weight based on the total weight of the electrolyte. preferable. If the addition amount of the complex formation additive is less than 0.1% by weight, the effect of addition is insignificant. If the addition amount of the complex formation additive exceeds 10% by weight, there is a charge / discharge life problem. It is not preferable.

本実施形態のリチウム電池用電解質は,第2添加剤として,陽極から遷移金属を溶出させる溶出添加剤をさらに含んで,すなわち上記錯体形成添加剤と上記溶出添加剤を共に使用すると,内部ショートによる過充電モードを完璧にシャットダウンモード(shut−dowon mode)に転換させて過充電安定性を確保することができるため好ましい。   The lithium battery electrolyte of the present embodiment further includes an elution additive that elutes the transition metal from the anode as the second additive, that is, when both the complexing additive and the elution additive are used, an internal short-circuit occurs. It is preferable because the overcharge stability can be ensured by completely switching the overcharge mode to the shut-down mode.

上記溶出添加剤は,エステル系列化合物が好ましく,酢酸フェニル,安息香酸ベンジル,酢酸エチル,1−酢酸ナフチル,2−クロマノンおよびプロピオン酸エチルよりなる群から選択することが最も好ましい。   The elution additive is preferably an ester series compound, most preferably selected from the group consisting of phenyl acetate, benzyl benzoate, ethyl acetate, 1-naphthyl acetate, 2-chromanone and ethyl propionate.

上記溶出添加剤の添加量は,上記電解質の全体100重量部に対して1〜10重量部が好ましくは,1〜7の重量部がさらに好ましく,3〜5重量部が最も好ましい。上記溶出添加剤の添加量が1重量未満であれば過充電抑制効果を得ることができず,上記溶出添加剤の添加量が10重量部超過であれば寿命特性を低下させるため好ましくない。   The addition amount of the elution additive is preferably 1 to 10 parts by weight, more preferably 1 to 7 parts by weight, and most preferably 3 to 5 parts by weight with respect to 100 parts by weight of the whole electrolyte. If the addition amount of the elution additive is less than 1 weight, the effect of suppressing overcharge cannot be obtained, and if the addition amount of the elution additive exceeds 10 parts by weight, the life characteristics are deteriorated.

本実施形態の電解質は,リチウム塩と非水性有機溶媒を含む。リチウム塩は,電池内でリチウムイオンの供給源として作用して基本的なリチウム電池の作動を可能にし,非水性有機溶媒は,電池の電気化学的反応に関与するイオンが移動することが可能な媒質の役割をする。   The electrolyte of this embodiment contains a lithium salt and a non-aqueous organic solvent. Lithium salts act as a source of lithium ions in the battery to enable basic lithium battery operation, and non-aqueous organic solvents allow ions involved in the battery's electrochemical reactions to move. Serves as a medium.

上記リチウム塩としては,LiPF,LiBF,LiSbF,LiAsF,LiClO,LiCFSO,Li(CFSON,LiCSO,LiAlO,LiAlCl,LiN(C2x+1SO)(C2y+1SO)(ここで,xおよびyは自然数である),LiCl,およびLiIよりなる群から選択する1種または2種以上を混合して使用可能である。 As the lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1SO 2 ) (C y F 2y + 1SO 2) ( wherein, x and y are natural numbers), LiCl, and mixed to use one or more selected from the group consisting of LiI Is possible.

リチウム塩の濃度は,0.6〜2.0Mの範囲内とすることが好ましく,0.7〜1.6Mの範囲内とすることがさらに好ましい。リチウム塩の濃度が0.6M未満であれば,電解質の電解度が低くなって電解質の性能が低下し,リチウム塩の濃度が2.0M超過であれば,電解質の粘度が増加してリチウムイオンの移動性が減少するという問題点がある。   The concentration of the lithium salt is preferably in the range of 0.6 to 2.0M, and more preferably in the range of 0.7 to 1.6M. If the concentration of the lithium salt is less than 0.6M, the electrolyte's degree of electrolysis decreases and the performance of the electrolyte deteriorates. If the concentration of the lithium salt exceeds 2.0M, the viscosity of the electrolyte increases and lithium ions increase. There is a problem that the mobility of the is reduced.

非水性有機溶媒としては,カーボネート,エステルまたはケトンを使用することができる。上記カーボネートとしては,ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),ジプロピルカーボネート(DPC),メチルプロピールカーボネート(MPC),エチルプロピルカーボネート(EPC),メチルエチルカーボネート(MEC),エチレンカーボネート(EC),プロピレンカーボネート(PC),ブチレンカーボネート(BC)などが使用でき,上記エステルとしては,n−酢酸メチル,n−酢酸エチル,n−酢酸プロピルなどが使用できる。   As the non-aqueous organic solvent, carbonate, ester or ketone can be used. Examples of the carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propylene carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate (EC ), Propylene carbonate (PC), butylene carbonate (BC) and the like, and as the ester, n-methyl acetate, n-ethyl acetate, n-propyl acetate and the like can be used.

上記非水性有機溶媒のうち,カーボネート系溶媒の場合は,環状(cyclic)カーボネートと鎖状(chain)カーボネートとを混合して使用することが好ましい。この場合,環状カーボネートと鎖状カーボネートは1:1〜1:9の体積比で混合して使用することが好ましい。上記体積比で混合すると,電解質の性能が好ましく現れる。   Among the non-aqueous organic solvents, in the case of a carbonate-based solvent, it is preferable to use a mixture of cyclic carbonate and chain carbonate. In this case, the cyclic carbonate and the chain carbonate are preferably mixed and used at a volume ratio of 1: 1 to 1: 9. When mixed in the above volume ratio, the performance of the electrolyte appears favorably.

また,本実施形態の電解質は,上記カーボネート系溶媒に芳香族炭化水素系有機溶媒をさらに含むこともできる。芳香族炭化水素系有機溶媒としては,下記化学式27の芳香族炭化水素系化合物が使用できる。   Moreover, the electrolyte of this embodiment can further contain an aromatic hydrocarbon-based organic solvent in the carbonate-based solvent. As the aromatic hydrocarbon organic solvent, an aromatic hydrocarbon compound represented by the following chemical formula 27 can be used.

Figure 2006245001
Figure 2006245001

(上記化学式27中,R10はハロゲンまたは炭素数1〜10のアルキル基であり,qは0〜6の整数である。)   (In the above chemical formula 27, R10 is a halogen or an alkyl group having 1 to 10 carbon atoms, and q is an integer of 0 to 6)

上記芳香族炭化水素系有機溶媒としては,ベンゼン,フルオロベンゼン,トルエン,フルオロトルエン,トリフルオロトルエン,クロロトルエンおよびキシレンよりなる群から選択する少なくとも一つの溶媒を使用することができる。   As the aromatic hydrocarbon organic solvent, at least one solvent selected from the group consisting of benzene, fluorobenzene, toluene, fluorotoluene, trifluorotoluene, chlorotoluene and xylene can be used.

また,本実施形態の電解質は,第3添加剤として,ハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する置換基を有するカーボネート,ビニレンカーボネート,ジビニルスルホンおよび亜硫酸エチレンよりなる群から選択する添加剤をさらに含むことができる。このような第3添加剤をさらに含むと,高温スウェリング特性と容量,寿命,低温特性などの電気化学的特性に優れた電池を提供することができる。上記添加剤の中でも,カーボネート添加剤が好ましいが,カーボネート添加剤としては,下記化学式28のエチレンカーボネート誘導体が好ましく,フルオロエチレンカーボネートが最も好ましい。 The electrolyte of the present embodiment includes, as a third additive, carbonate, vinylene carbonate, divinyl sulfone, and ethylene sulfite having a substituent selected from the group consisting of halogen, cyano group (CN), and nitro group (NO 2 ). An additive selected from the group consisting of: When such a third additive is further included, a battery having excellent high-temperature swelling characteristics and electrochemical characteristics such as capacity, life, and low-temperature characteristics can be provided. Among the above additives, a carbonate additive is preferable. As the carbonate additive, an ethylene carbonate derivative represented by the following chemical formula 28 is preferable, and fluoroethylene carbonate is most preferable.

Figure 2006245001
Figure 2006245001

(上記化学式28中,X1はハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する。) (In the above chemical formula 28, X1 is selected from the group consisting of halogen, cyano group (CN) and nitro group (NO 2 ).)

本実施形態の電解質は,非水性有機溶媒にリチウム塩と上記添加剤を添加して製造する。上記添加剤を,リチウム塩が溶解されている有機溶媒に添加することが一般的であるが,リチウム塩と電解質添加剤の添加順序は重要でない。   The electrolyte of the present embodiment is produced by adding a lithium salt and the above additives to a non-aqueous organic solvent. The additive is generally added to the organic solvent in which the lithium salt is dissolved, but the order of addition of the lithium salt and the electrolyte additive is not important.

本実施形態は,上記電解質を含むリチウム電池を提供する。リチウム電池の陽極活物質としては,リチウムの可逆的なインターカレーション/デインターカレーションが可能な化合物(Liインターカレーション化合物)などが使用できる。陰極活物質としては,リチウムイオンをインターカレーション/でインターカレーションすることが可能な炭素系列物質,リチウム金属,リチウム含有合金またはリチウムと可逆的に反応してリチウム含有化合物を形成することが可能な物質が使用できる。   The present embodiment provides a lithium battery including the electrolyte. As the anode active material of the lithium battery, a compound capable of reversible lithium intercalation / deintercalation (Li intercalation compound) can be used. As a cathode active material, it is possible to form a lithium-containing compound by reversibly reacting with a carbon series material capable of intercalating / intercalating lithium ions, lithium metal, a lithium-containing alloy or lithium. Can be used.

本実施形態のリチウム電池は,リチウム一次電池およびリチウム二次電池が全て可能である。   The lithium battery of this embodiment can be a lithium primary battery or a lithium secondary battery.

本実施形態の電解質を含むリチウム電池は,過充電特性が既存の非水系電解質を使用する電池に比べて著しく優れる。   The lithium battery including the electrolyte according to the present embodiment has remarkably superior overcharge characteristics as compared with a battery using an existing non-aqueous electrolyte.

以下,本発明の好適な実施例および比較例を説明する。下記実施例は本発明の好適な一実施例に過ぎないもので,本発明を限定するものではない。   Hereinafter, preferred examples and comparative examples of the present invention will be described. The following embodiment is only a preferred embodiment of the present invention, and does not limit the present invention.

(比較例1)
LiCoO2陽極活物質94g,スーパー−P導電材3gおよびポリフッ化ビニリデン(PVDF)バインダー3gをN−メチル−2−ピロリドンに溶解して陽極活物質スラリーを製造した。上記陽極活物質スラリーを幅4.9cm,厚さ147μmのAl箔に塗布し,これを乾燥および圧延した後,所定の寸法に切断して陽極を製造した。
(Comparative Example 1)
94 g of LiCoO 2 anode active material, 3 g of super-P conductive material and 3 g of polyvinylidene fluoride (PVDF) binder were dissolved in N-methyl-2-pyrrolidone to produce an anode active material slurry. The anode active material slurry was applied to an Al foil having a width of 4.9 cm and a thickness of 147 μm, dried and rolled, and then cut into predetermined dimensions to produce an anode.

メゾカーボンファイバ(MCF:Petoca社)陰極活物質90gおよびポリフッ化ビニリデンバインダー10gをN−メチル−2−ピロリドンに溶解して陰極活物質スラリーを製造した。この陰極活物質スラリーを幅5.1cm,厚さ178μmの銅箔上に塗布した後,これを乾燥および圧延し,所定の寸法に切断して陰極を製造した。   90 g of mesocarbon fiber (MCF: Petoca) cathode active material and 10 g of polyvinylidene fluoride binder were dissolved in N-methyl-2-pyrrolidone to produce a cathode active material slurry. The cathode active material slurry was applied onto a copper foil having a width of 5.1 cm and a thickness of 178 μm, and then dried and rolled, and cut into predetermined dimensions to produce a cathode.

製造された陽極と陰極との間に,ポリエチレンフィルムで製造されたセパレータを配置し,これをワインディングして電極アセンブリを作った。この電極アセンブリを電池ケース内に挿入した後,液体電解質を減圧して注入することにより,電池を完成した。この際,電解質としてはエチレンカーボネート,エチルメチルカーボネート,ジメチルカーボネートおよびフルオロベンゼンの混合溶媒(3:5:1:1の体積比)に1MのLiPFを溶解した電解質を使用した。また,クロロトルエンを上記電解質全体100重量部に対して10重量部添加し,酢酸フェニルを7重量部添加した。 A separator made of polyethylene film was placed between the manufactured anode and cathode, and this was wound to make an electrode assembly. After inserting this electrode assembly into the battery case, the liquid electrolyte was decompressed and injected to complete the battery. At this time, an electrolyte in which 1M LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and fluorobenzene (volume ratio of 3: 5: 1: 1) was used as the electrolyte. Further, 10 parts by weight of chlorotoluene was added to 100 parts by weight of the whole electrolyte, and 7 parts by weight of phenyl acetate was added.

上記比較例1に係る電池を3つ製造してそれぞれNo.1〜No.3と命名した後,標準充電後のOCV,IRおよび電池の厚さと,85℃で4時間放置した後のOCV,IRおよび電池の厚さとを測定し,その結果を表1に示した。   Three batteries according to the above Comparative Example 1 were manufactured. 1-No. 3 was measured, and the OCV, IR and battery thickness after standard charging and the OCV, IR and battery thickness after standing at 85 ° C. for 4 hours were measured. The results are shown in Table 1.

Figure 2006245001
Figure 2006245001

表1に示すように,酢酸フェニルのみを使用した比較例1の場合,高温放置の際にOCVが著しく低下し,電池の厚さが大幅増加することからみて,電池の内部からのガス発生,すなわちスウェリング現象が激しいことが分かる。   As shown in Table 1, in the case of Comparative Example 1 using only phenyl acetate, the OCV significantly decreased when left at high temperature, and the thickness of the battery greatly increased. That is, it can be seen that the swelling phenomenon is intense.

(比較例2)
酢酸フェニルを使用しない以外は,上記比較例1と同様に行ってリチウム二次電池を完成した。
(Comparative Example 2)
A lithium secondary battery was completed in the same manner as in Comparative Example 1 except that phenyl acetate was not used.

(実験例1)
サクシノニトリルのサイクリックボルタンメトリーを,作用電極(working electrode)としてガラス状カーボンを,基準電極および対極として金属リチウムをそれぞれ使用して0.5mV/秒の速度で3回測定し,その結果を図2に示した。図2に示すように,サクシノニトリルは2.5〜4.8Vの間で特定の酸化還元ピークを示さないことからみて,この範囲内で安定した化合物であることが分かる。
(Experimental example 1)
The cyclic voltammetry of succinonitrile was measured three times at a rate of 0.5 mV / sec using glassy carbon as the working electrode and metallic lithium as the reference electrode and the counter electrode. It was shown in 2. As can be seen from FIG. 2, succinonitrile does not show a specific redox peak between 2.5 and 4.8 V, indicating that it is a stable compound within this range.

(実験例2)
上記比較例1で製造された陽極を標準充電した後,電解液に浸し,酢酸フェニルと下記表3に示した錯体形成添加剤を共に添加した後,85℃で4時間放置して,電解液の色を観察した結果を表2に示した。
(Experimental example 2)
The anode manufactured in the above Comparative Example 1 was charged as a standard, then immersed in an electrolytic solution, added together with phenyl acetate and the complexing additive shown in Table 3 below, and allowed to stand at 85 ° C. for 4 hours to prepare an electrolytic solution. The results of observation of the colors are shown in Table 2.

Figure 2006245001
Figure 2006245001

表2に示した結果から,コバルトが溶出した後,錯体を形成して色相変化が起こるものと判断する。上記表2において,アミン系は電解液と反応して濃い茶色に変色するものと推定する。   From the results shown in Table 2, it is judged that after cobalt is eluted, a complex is formed and a hue change occurs. In Table 2 above, it is presumed that the amine system reacts with the electrolytic solution and turns dark brown.

(実施例1)
サクシノニトリルを1MのLiPFの溶解されたエチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート:フルオロベンゼンの混合溶媒(3:5:5:1の体積比)に添加して製造された電解質を使用した以外は,比較例1と同様の方法によってリチウム二次電池を完成した。この際,上記サクシノニトリル添加剤の添加量は,全体電解質の重量に対して5重量%とした。
Example 1
An electrolyte prepared by adding succinonitrile to a 1M LiPF 6 dissolved ethylene carbonate: ethyl methyl carbonate: dimethyl carbonate: fluorobenzene mixed solvent (3: 5: 5: 1 volume ratio) was used. A lithium secondary battery was completed by the same method as in Comparative Example 1 except for the above. At this time, the addition amount of the succinonitrile additive was 5% by weight with respect to the weight of the whole electrolyte.

(実施例2)
サクシノニトリルと酢酸フェニルを1MのLiPFの溶解されたエチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート:フルオロベンゼンの混合溶媒(3:5:5:1の体積比)にさらに添加して製造された電解質を使用した以外は,実施例1と同様の方法によってリチウム二次電池を完成した。この際,上記サクシノニトリル添加剤の添加量は,全体電解質の重量に対し5重量%とし,上記酢酸フェニルの添加量は全体電解質100重量部に対し3重量部とした。
(Example 2)
It was prepared by further adding succinonitrile and phenyl acetate to a mixed solvent of ethylene carbonate: ethyl methyl carbonate: dimethyl carbonate: fluorobenzene (3: 5: 5: 1 volume ratio) in which 1M LiPF 6 was dissolved. A lithium secondary battery was completed in the same manner as in Example 1 except that the electrolyte was used. At this time, the addition amount of the succinonitrile additive was 5% by weight with respect to the weight of the whole electrolyte, and the addition amount of the phenyl acetate was 3 parts by weight with respect to 100 parts by weight of the whole electrolyte.

(実施例3)
サクシノニトリルの代わりに3−エトキシ−プロピオニトリル(EPN:3−Ethoxy−propionitrile)を全体電解液の重量に対し5重量%の量で使用した以外は,実施例1と同様に行った。
(Example 3)
The same procedure as in Example 1 was carried out except that 3-ethoxy-propionitrile (EPN) was used instead of succinonitrile in an amount of 5% by weight based on the weight of the total electrolyte.

(実施例4)
サクシノニトリルの代わりにエチレングリコールジアクリレート(EGDA)を全体電解液重量に対し5重量%の量で使用した以外は,実施例1と同様に行った。
Example 4
The same procedure as in Example 1 was performed except that ethylene glycol diacrylate (EGDA) was used in an amount of 5% by weight based on the total electrolyte weight instead of succinonitrile.

(実施例5)
サクシノニトリルの代わりに1,2−ビス(ジフェニルホスフォノ)エタン(DPPE,1,2−Bis(diphenylphosphino)ethane)を全体電解液の重量に対し5重量%の量で使用した以外は,実施例1と同様に行った。
(Example 5)
Implementation was performed except that 1,2-bis (diphenylphosphono) ethane (DPPE, 1,2-Bis (diphenylphosphino) ethane) was used instead of succinonitrile in an amount of 5% by weight based on the weight of the total electrolyte. Performed as in Example 1.

(実施例6)
サクシノニトリルの代わりに1,2−ジブロモエタン(DBE,1,2−Dibromoethane)を全体電解液の重量に対し5重量%の量で使用した以外は,実施例1と同様に行った。
(Example 6)
The same procedure as in Example 1 was conducted except that 1,2-dibromoethane (DBE, 1,2-Dibromoethane) was used in an amount of 5% by weight based on the weight of the entire electrolyte instead of succinonitrile.

実施例2と比較例1のリチウム電池を1.5Cで過充電した後,作動時間による電圧および温度を測定してその結果を図3に示した。図3より,酢酸フェニルのみが添加された比較例1のリチウム電池は,作動時間によっては電圧が非常に不安定でありかつ電池温度が非常に高いので,電池安全性が良くないことが分かる。これに対し,酢酸フェニルとサクシノニトリルを共に使用した実施例2の電池は,作動電圧が均一で電池温度も比較例1に比べて非常に低いので,電池安全性に優れることが分かる。   After overcharging the lithium batteries of Example 2 and Comparative Example 1 at 1.5 C, the voltage and temperature according to the operating time were measured, and the results are shown in FIG. From FIG. 3, it can be seen that the lithium battery of Comparative Example 1 to which only phenyl acetate was added had a very unstable voltage and a very high battery temperature depending on the operation time, and therefore the battery safety was not good. In contrast, the battery of Example 2 using both phenyl acetate and succinonitrile is found to be excellent in battery safety because the operating voltage is uniform and the battery temperature is much lower than that of Comparative Example 1.

また,実施例1〜6と比較例1〜2の電池を85℃で4時間放置する高温放置実験を行った。また,上記実施例および上記比較例で製造された電池に対して過充電実験を行った。過充電実験は,製造された電池を4.2Vまで満充電した後,各端子にNiタブを抵抗溶接してリード線とし,充放電器に連結した後,定電流/定電圧条件として1.5C(1.6A)/12Vまで過充電し,12V到達の後,電流を2.5時間印加し続けて電池の発火および爆発有無を観察した。その結果を表3に示した。表3において,過充電安全性評価の基準は次のとおりである。表3において標準容量の単位はmAhである。   Moreover, the high temperature leaving experiment which leaves the battery of Examples 1-6 and Comparative Examples 1-2 at 85 degreeC for 4 hours was conducted. In addition, overcharge experiments were performed on the batteries manufactured in the above Examples and Comparative Examples. In the overcharge experiment, after the manufactured battery was fully charged to 4.2 V, a Ni tab was resistance welded to each terminal to form a lead wire, and connected to a charger / discharger. The battery was overcharged to 5 C (1.6 A) / 12 V, and after reaching 12 V, the current was continuously applied for 2.5 hours to observe the ignition and explosion of the battery. The results are shown in Table 3. In Table 3, the criteria for overcharge safety evaluation are as follows. In Table 3, the unit of standard capacity is mAh.

L0:良好,L1:漏液,L2:閃光,L2:火花,L3:煙り,L4:発火,L5:破裂   L0: Good, L1: Leakage, L2: Flash, L2: Spark, L3: Smoke, L4: Ignition, L5: Rupture

Figure 2006245001
Figure 2006245001

表3に示すように,サクシノニトリルと酢酸フェニルを共に使用した実施例2の場合が高温放置及び過充電安全性に最も優れることが分かる。酢酸フェニルを添加していない実施例3〜6の場合には,高温放置特性は全て満足し,過充電安全性はL0まで満足してはいないが,添加剤を全く使用していない比較例2に比べてやや向上したことが分かる。   As shown in Table 3, it can be seen that Example 2 using both succinonitrile and phenyl acetate is most excellent in high temperature storage and overcharge safety. In Examples 3 to 6 in which phenyl acetate was not added, all of the high temperature storage characteristics were satisfied, and the overcharge safety was not satisfied up to L0, but Comparative Example 2 in which no additive was used. It can be seen that there is a slight improvement compared to.

また,添加剤を全く使用していない比較例2の場合には,高温放置特性は満足するが,過充電安全性は非常に良くなく,酢酸フェニルのみを使用した比較例1の場合には,過充電安全性には優れるが,高温放置特性は良くないことが分かる。   In the case of Comparative Example 2 in which no additive was used, the high temperature storage characteristics were satisfied, but the overcharge safety was not very good. In the case of Comparative Example 1 using only phenyl acetate, It can be seen that the overcharge safety is excellent, but the high-temperature storage characteristics are not good.

上記実施例2と比較例2の電池に対して標準充電後のOCV,IRおよび厚さを測定し,85℃で4時間放置した後のOCV,IRおよび厚さ(85℃および常温)を測定して,その結果を表4に示した。また,標準充放電後の容量(STD DC)と,高温放置後,常温に冷却してから直ちに測定した放電容量ret(DC)と,高温放置後,放電し,さらに充放電して測定した容量rec(DC)の結果も表4に示した。表4において,ret(DC)は,充電容量をどの程度に維持するかを確認するための実験であり,rec(DC)は,高温放置後,容量をどの程度に維持するかを確認するための実験である。また表4において,OCVの単位はVであり,IRの単位はmohmであり,STD DC,ret(DC),及びrec(DC)の単位はmAhである。   The OCV, IR and thickness after standard charging were measured for the batteries of Example 2 and Comparative Example 2 above, and the OCV, IR and thickness (85 ° C. and room temperature) after being left at 85 ° C. for 4 hours were measured. The results are shown in Table 4. In addition, the capacity after standard charge / discharge (STD DC), the discharge capacity ret (DC) measured immediately after standing at high temperature and after cooling to room temperature, and the capacity measured by discharging, charging and discharging after standing at high temperature. The results of rec (DC) are also shown in Table 4. In Table 4, ret (DC) is an experiment for confirming how much the charging capacity is maintained, and rec (DC) is for confirming how much the capacity is maintained after being left at a high temperature. This is an experiment. In Table 4, the unit of OCV is V, the unit of IR is mohm, and the unit of STD DC, ret (DC), and rec (DC) is mAh.

Figure 2006245001
Figure 2006245001

表4に示すように,実施例2の電池は,比較例2の電池とほぼ同等水準の電池物性を示すことが分かる。したがって,表3および表4の結果より,サクシノニトリルと酢酸フェニルを共に使用する場合,電池物性を保ちながら高温放置および過充電安全性を確保することができることが分かる。   As shown in Table 4, it can be seen that the battery of Example 2 exhibits substantially the same level of battery physical properties as the battery of Comparative Example 2. Therefore, it can be seen from the results of Tables 3 and 4 that when both succinonitrile and phenyl acetate are used, it is possible to ensure high temperature storage and overcharge safety while maintaining the battery physical properties.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解する。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Acknowledge.

本発明は,リチウム電池用電解質およびそれを含むリチウム電池に適用可能であり,より詳しくは,安全性に優れたリチウム電池用電解質およびそれを含むリチウム電池に適用可能である。   The present invention can be applied to an electrolyte for a lithium battery and a lithium battery including the electrolyte. More specifically, the present invention can be applied to an electrolyte for lithium battery excellent in safety and a lithium battery including the electrolyte.

一般的な非水系リチウム電池の構造の概略図である。It is the schematic of the structure of a common non-aqueous lithium battery. 本発明の一実施形態の実験例1でサクシノニトリルのサイクリックボルタンメトリー測定結果を示す説明図である。It is explanatory drawing which shows the cyclic voltammetry measurement result of a succinonitrile in Experimental example 1 of one Embodiment of this invention. 本発明の一実施形態の実施例2および比較例2に係るリチウム電池を1.5C過充電した場合の電流,温度および電圧特性をグラフで示す説明図である。It is explanatory drawing which shows the electric current, temperature, and voltage characteristic at the time of carrying out 1.5C overcharge of the lithium battery which concerns on Example 2 and comparative example 2 of one Embodiment of this invention with a graph.

符号の説明Explanation of symbols

1 非水系リチウム二次電池
2 陽極
4 陰極
6 セパレータ
8 電極アセンブリ
10 ケース
12 キャッププレート
14 ガスケット
16 安全弁
18 陽極タブ
20 陰極タブ
22,24 絶縁体
26 電解質
22 陰極端子
24 リードプレート
26 絶縁プレート
1 Nonaqueous Lithium Secondary Battery 2 Anode 4 Cathode 6 Separator 8 Electrode Assembly 10 Case 12 Cap Plate 14 Gasket 16 Safety Valve 18 Anode Tab 20 Cathode Tab 22, 24 Insulator 26 Electrolyte 22 Cathode Terminal 24 Lead Plate 26 Insulating Plate

Claims (44)

非水性有機溶媒と,
リチウム塩と,
2.5〜4.8Vで安定し,遷移金属とキレートする錯体形成添加剤とを含むことを特徴とする,リチウム電池用電解質。
A non-aqueous organic solvent,
Lithium salt,
An electrolyte for a lithium battery, characterized by comprising a complex-forming additive that is stable at 2.5 to 4.8 V and chelates with a transition metal.
前記錯体形成添加剤は,下記化学式1〜3で表わす化合物の少なくとも一つであることを特徴とする,請求項1に記載のリチウム電池用電解質。
Figure 2006245001
Figure 2006245001
Figure 2006245001
(前記化学式1〜前記化学式3中,R1,R2,R3,R4,R5およびR6は同一またはそれぞれ独立しており,R1〜R3の少なくとも一つおよびR4〜R6の少なくとも一つはAXR’(AはN,O,PまたはSであり,xは0または1であり,R’はCN,C1〜C15の直鎖状または分枝状アルキル基またはカルボキシル基であり,残りはH,ハロゲン,C1〜C15アルキルまたはC6〜C15のアリール基である。)であり,
nは0〜10の整数であり,
n1は0〜15の整数であり,n1が奇数のときにaは1を示し,n1が偶数のときにaは1/2または1を示す。)
2. The electrolyte for a lithium battery according to claim 1, wherein the complex-forming additive is at least one of compounds represented by the following chemical formulas 1 to 3.
Figure 2006245001
Figure 2006245001
Figure 2006245001
(In the chemical formula 1 to the chemical formula 3, R1, R2, R3, R4, R5 and R6 are the same or independent, and at least one of R1 to R3 and at least one of R4 to R6 are AXR ′ (A Is N, O, P or S, x is 0 or 1, R ′ is CN, a C1-C15 linear or branched alkyl group or carboxyl group, and the rest are H, halogen, C1 ~ C15 alkyl or C6-C15 aryl group).
n is an integer from 0 to 10,
n1 is an integer of 0 to 15, and when n1 is an odd number, a indicates 1, and when n1 is an even number, a indicates 1/2 or 1. )
前記錯体形成添加剤は,下記化学式4〜26で表わす化合物の少なくとも一つであることを特徴とする,請求項2に記載のリチウム電池用電解質。
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
(前記化学式4〜前記化学式26中,Meはメチル基であり,Phはフェニル基である。)
The lithium battery electrolyte according to claim 2, wherein the complex-forming additive is at least one of compounds represented by the following chemical formulas 4 to 26.
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
(In the chemical formulas 4 to 26, Me is a methyl group and Ph is a phenyl group.)
前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対して0.1〜10重量%であることを特徴とする,請求項1に記載のリチウム電池用電解質。   2. The electrolyte for a lithium battery according to claim 1, wherein a content of the complex-forming additive compound is 0.1 to 10 wt% with respect to a total weight of the electrolyte. 前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対して1〜5重量%であることを特徴とする,請求項4に記載のリチウム電池用電解質。   5. The electrolyte for a lithium battery according to claim 4, wherein a content of the complex-forming additive compound is 1 to 5 wt% with respect to a total weight of the electrolyte. 前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対して3〜5重量%であることを特徴とする,請求項5に記載のリチウム電池用電解質。   6. The electrolyte for a lithium battery according to claim 5, wherein a content of the complex-forming additive compound is 3 to 5 wt% with respect to a total weight of the electrolyte. 前記電解質は,陽極から遷移金属を溶出させる溶出添加剤をさらに含むことを特徴とする,請求項1に記載のリチウム電池用電解質。   The electrolyte for a lithium battery according to claim 1, wherein the electrolyte further includes an elution additive for eluting the transition metal from the anode. 前記溶出添加剤は,エステル系列化合物であることを特徴とする,請求項7に記載のリチウム電池用電解質。   8. The electrolyte for a lithium battery according to claim 7, wherein the elution additive is an ester series compound. 前記溶出添加剤は,酢酸フェニル,安息香酸ベンジル,酢酸エチル,1−酢酸ナフチル,2−クロマノン,およびプロピオン酸エチルよりなる群から選択するものであることを特徴とする,請求項8に記載のリチウム電池用電解質。   9. The elution additive according to claim 8, wherein the elution additive is selected from the group consisting of phenyl acetate, benzyl benzoate, ethyl acetate, 1-naphthyl acetate, 2-chromanone, and ethyl propionate. Lithium battery electrolyte. 前記溶出添加剤の添加量は,前記電解質全体100重量部に対し1〜10重量部であることを特徴とする,請求項7に記載のリチウム電池用電解質。   The electrolyte for a lithium battery according to claim 7, wherein the amount of the eluting additive is 1 to 10 parts by weight with respect to 100 parts by weight of the whole electrolyte. 前記溶出添加剤の添加量は,前記電解質全体100重量部に対し1〜7重量部であることを特徴とする,請求項10に記載のリチウム電池用電解質。   11. The electrolyte for a lithium battery according to claim 10, wherein the addition amount of the elution additive is 1 to 7 parts by weight with respect to 100 parts by weight of the whole electrolyte. 前記溶出添加剤の添加量は,前記電解質全体100重量部に対し3〜5重量部であることを特徴とする,請求項11に記載のリチウム電池用電解質。   The electrolyte for a lithium battery according to claim 11, wherein the amount of the eluting additive is 3 to 5 parts by weight with respect to 100 parts by weight of the whole electrolyte. 前記リチウム塩は,LiPF,LiBF,LiSbF,LiAsF,LiClO,LiCFSO,Li(CFSON,LiCSO,LiAlO,LiAlCl,LiN(C2x+1SO)(C2y+1SO)(ここで,xおよびyは自然数である),LiCl,およびLiIよりなる群から選択する1種または2種以上であることを特徴とする,請求項1に記載のリチウム電池用電解質。 The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiAlO 4, LiAlCl 4, LiN ( C x F 2x + 1SO 2 ) (C y F 2y + 1SO 2 ) (where x and y are natural numbers), LiCl, and LiI, and one or more selected from the group consisting of LiI The electrolyte for a lithium battery according to claim 1. 前記リチウム塩は0.6〜2.0Mの濃度で使用することを特徴とする,請求項1に記載のリチウム電池用電解質。   The electrolyte for a lithium battery according to claim 1, wherein the lithium salt is used at a concentration of 0.6 to 2.0M. 前記非水性有機溶媒は,カーボネート,エステル,エーテルおよびケトンよりなる群から選択する少なくとも一つの溶媒であることを特徴とする,請求項1に記載のリチウム電池用電解質。   2. The electrolyte for a lithium battery according to claim 1, wherein the non-aqueous organic solvent is at least one solvent selected from the group consisting of carbonates, esters, ethers, and ketones. 前記カーボネートは,ジメチルカーボネート,ジエチルカーボネート,ジプロピルカーボネート,メチルプロピールカーボネート,エチルプロピルカーボネート,メチルエチルカーボネート,エチレンカーボネート,プロピレンカーボネート,およびブチレンカーボネートよりなる群から選択する少なくとも一つの溶媒であることを特徴とする,請求項15に記載のリチウム電池用電解質。   The carbonate is at least one solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and butylene carbonate. The lithium battery electrolyte according to claim 15, wherein the electrolyte is a lithium battery electrolyte. 前記非水性有機溶媒は,カーボネート系溶媒と芳香族炭化水素系有機溶媒との混合溶媒であることを特徴とする,請求項1に記載のリチウム電池用電解質。   2. The electrolyte for a lithium battery according to claim 1, wherein the non-aqueous organic solvent is a mixed solvent of a carbonate-based solvent and an aromatic hydrocarbon-based organic solvent. 前記芳香族炭化水素系有機溶媒は,下記化学式27の芳香族化合物であることを特徴とする,請求項17に記載のリチウム電池用電解質。
Figure 2006245001
(前記化学式27中,R10はハロゲンまたは炭素数1〜10のアルキル基であり,qは0〜6の整数である。)
The electrolyte for a lithium battery according to claim 17, wherein the aromatic hydrocarbon-based organic solvent is an aromatic compound represented by the following chemical formula 27.
Figure 2006245001
(In said chemical formula 27, R10 is a halogen or a C1-C10 alkyl group, and q is an integer of 0-6.)
前記芳香族炭化水素系有機溶媒は,ベンゼン,フルオロベンゼン,トルエン,フルオロトルエン,トリフルオロトルエン,クロロトルエンおよびキシレンよりなる群から選択する少なくとも一つの溶媒であることを特徴とする,請求項18に記載のリチウム電池用電解質。   The aromatic hydrocarbon-based organic solvent is at least one solvent selected from the group consisting of benzene, fluorobenzene, toluene, fluorotoluene, trifluorotoluene, chlorotoluene and xylene. The electrolyte for lithium batteries as described. 前記電解質は,ハロゲン,シアノ基(Cn)およびニトロ基(NO)よりなる群から選択する置換基を有するカーボネート,炭酸ビニレン,ジビニルスルホンおよび亜硫酸エチレンよりなる群から選択する添加剤をさらに含むことを特徴とする,請求項1に記載のリチウム電池用電解質。 The electrolyte further includes an additive selected from the group consisting of carbonate, vinylene carbonate, divinylsulfone and ethylene sulfite having a substituent selected from the group consisting of halogen, cyano group (Cn) and nitro group (NO 2 ). The electrolyte for a lithium battery according to claim 1, characterized in that: 前記電解液は,ハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する置換気を有するカーボネート添加剤をさらに含むことを特徴とする,請求項20に記載のリチウム電池用電解質。 21. The lithium battery according to claim 20, wherein the electrolyte further includes a carbonate additive having a substituent selected from the group consisting of halogen, cyano group (CN), and nitro group (NO 2 ). Electrolytes. 前記カーボネート添加剤は,下記化学式28のカーボネートであることを特徴とする,請求項20に記載のリチウム電池用電解質。
Figure 2006245001
(前記化学式28中,X1はハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する。)
21. The electrolyte for a lithium battery according to claim 20, wherein the carbonate additive is a carbonate of the following chemical formula 28.
Figure 2006245001
(In the chemical formula 28, X1 is selected from the group consisting of halogen, cyano group (CN) and nitro group (NO 2 ).)
前記カーボネート添加剤は,フルオロエチレンカーボネートであることを特徴とする,請求項22に記載のリチウム電池用電解質。   The lithium battery electrolyte according to claim 22, wherein the carbonate additive is fluoroethylene carbonate. 非水性有機溶媒,リチウム塩,および2.5〜4.8Vで安定し,遷移金属とキレートする錯体形成添加剤を含む電解質と,
リチウムをインターカレーションおよびデインターカレーションすることが可能な陽極活物質を含む陽極と,
リチウムをインターカレーションおよびデインターカレーションすることが可能な物質,リチウム金属,リチウム含有合金,およびリチウムと可逆的に反応してリチウム含有化合物を形成することが可能な物質よりなる群から選択する陰極活物質を含む陰極とを備えることを特徴とする,リチウム電池。
An electrolyte comprising a non-aqueous organic solvent, a lithium salt, and a complexing additive that is stable at 2.5-4.8 V and chelates with a transition metal;
An anode containing an anode active material capable of intercalating and deintercalating lithium;
Selected from the group consisting of materials capable of intercalating and deintercalating lithium, lithium metal, lithium-containing alloys, and materials capable of reversibly reacting with lithium to form lithium-containing compounds. A lithium battery comprising a cathode containing a cathode active material.
前記錯体形成添加剤は,下記化学式1〜3で表される化合物の少なくとも一つであることを特徴とする,請求項24に記載のリチウム電池。
Figure 2006245001
Figure 2006245001
Figure 2006245001
(前記化学式1〜前記化学式3中,R1,R2,R3,R4,R5およびR6は同一またはそれぞれ独立しており,R1〜R3の少なくとも一つおよびR4〜R6の少なくとも一つはAXR’(AはN,O,PまたはSであり,xは0または1であり,R’はCN,C1〜C15の直鎖状または分枝状アルキル基またはカルボキシル基であり,残りはH,ハロゲン,C1〜C15アルキルまたはC6〜C15のアリール基である。)であり,
nは0〜10の整数であり,
n1は0〜15の整数であり,n1が奇数のときにaは1を示し,n1が偶数のときにaは1/2または1を示す。)
The lithium battery according to claim 24, wherein the complex-forming additive is at least one of compounds represented by the following chemical formulas 1 to 3.
Figure 2006245001
Figure 2006245001
Figure 2006245001
(In the chemical formula 1 to the chemical formula 3, R1, R2, R3, R4, R5 and R6 are the same or independent, and at least one of R1 to R3 and at least one of R4 to R6 are AXR ′ (A Is N, O, P or S, x is 0 or 1, R ′ is CN, a C1-C15 linear or branched alkyl group or carboxyl group, and the rest are H, halogen, C1 ~ C15 alkyl or C6-C15 aryl group).
n is an integer from 0 to 10,
n1 is an integer of 0 to 15, and when n1 is an odd number, a indicates 1, and when n1 is an even number, a indicates 1/2 or 1. )
前記錯体形成添加剤は,下記化学式4〜26で表わす化合物の少なくとも一つであることを特徴とする,請求項25に記載のリチウム電池。
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
(前記化学式4〜前記化学式26中,Meはメチル基であり,Phはフェニル基である。)
The lithium battery according to claim 25, wherein the complex-forming additive is at least one of compounds represented by the following chemical formulas 4 to 26.
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
Figure 2006245001
(In the chemical formulas 4 to 26, Me is a methyl group and Ph is a phenyl group.)
前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対し0.1〜10重量%であることを特徴とする,請求項24に記載のリチウム電池。   [25] The lithium battery according to claim 24, wherein a content of the complex-forming additive compound is 0.1 to 10% by weight with respect to a total weight of the electrolyte. 前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対し1〜5重量%であることを特徴とする,請求項27に記載のリチウム電池。   The lithium battery according to claim 27, wherein the content of the complex-forming additive compound is 1 to 5% by weight based on the total weight of the electrolyte. 前記錯体形成添加剤化合物の含量は,前記電解質全体重量に対し3〜5重量%であることを特徴とする,請求項28に記載のリチウム電池。   The lithium battery according to claim 28, wherein the content of the complex-forming additive compound is 3 to 5% by weight based on the total weight of the electrolyte. 前記電解質は,陽極から遷移金属を溶出させる溶出添加剤をさらに含むことを特徴とする,請求項24に記載のリチウム電池。   25. The lithium battery of claim 24, wherein the electrolyte further includes an elution additive that elutes the transition metal from the anode. 前記溶出添加剤は,エステル系列化合物であることを特徴とする,請求項30に記載のリチウム電池。   The lithium battery according to claim 30, wherein the eluting additive is an ester series compound. 前記溶出添加剤は,酢酸フェニル,安息香酸ベンジル,酢酸エチル,1−酢酸ナフチル,2−クロマノン,およびプロピオン酸エチルよりなる群から選択するものであることを特徴とする,請求項31に記載のリチウム電池。   32. The elution additive of claim 31, wherein the elution additive is selected from the group consisting of phenyl acetate, benzyl benzoate, ethyl acetate, 1-naphthyl acetate, 2-chromanone, and ethyl propionate. Lithium battery. 前記溶出添加剤の添加量は,前記電解質全体100重量部に対し1〜10重量部であることを特徴とする,請求項30に記載のリチウム電池。   The lithium battery according to claim 30, wherein the amount of the eluting additive is 1 to 10 parts by weight with respect to 100 parts by weight of the entire electrolyte. 前記溶出添加剤の添加量は,前記電解質全体100重量部に対し1〜7重量部であることを特徴とする,請求項33に記載のリチウム電池。   The lithium battery according to claim 33, wherein the amount of the eluting additive is 1 to 7 parts by weight with respect to 100 parts by weight of the entire electrolyte. 前記溶出添加剤の添加量は,前記電解質全体100重量部に対し3〜5重量部であることを特徴とする,請求項34に記載のリチウム電池。   The lithium battery according to claim 34, wherein the amount of the eluting additive is 3 to 5 parts by weight with respect to 100 parts by weight of the entire electrolyte. 前記非水性有機溶媒は,カーボネート,エステル,エーテルおよびケトンよりなる群から選択する少なくとも一つの溶媒であることを特徴とする,請求項24に記載のリチウム電池。   The lithium battery according to claim 24, wherein the non-aqueous organic solvent is at least one solvent selected from the group consisting of carbonates, esters, ethers, and ketones. 前記カーボネートは,ジメチルカーボネート,ジエチルカーボネート,ジプロピルカーボネート,メチルプロピールカーボネート,エチルプロピルカーボネート,メチルエチルカーボネート,エチレンカーボネート,プロピレンカーボネート,およびブチレンカーボネートよりなる群から選択する少なくとも一つの溶媒であることを特徴とする,請求項36に記載のリチウム電池。   The carbonate is at least one solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and butylene carbonate. The lithium battery according to claim 36, characterized in that 前記非水性有機溶媒は,カーボネート系溶媒と芳香族炭化水素系有機溶媒との混合溶媒であることを特徴とする,請求項24に記載のリチウム電池。   The lithium battery according to claim 24, wherein the non-aqueous organic solvent is a mixed solvent of a carbonate-based solvent and an aromatic hydrocarbon-based organic solvent. 前記芳香族炭化水素系有機溶媒は,下記化学式27の芳香族化合物であることを特徴とする,請求項38に記載のリチウム電池。
Figure 2006245001
(前記化学式27中,R10はハロゲンまたは炭素数1〜10のアルキル基であり,qは0〜6の整数である。)
The lithium battery according to claim 38, wherein the aromatic hydrocarbon-based organic solvent is an aromatic compound represented by the following chemical formula 27.
Figure 2006245001
(In said chemical formula 27, R10 is a halogen or a C1-C10 alkyl group, and q is an integer of 0-6.)
前記芳香族炭化水素系有機溶媒は,ベンゼン,フルオロベンゼン,トルエン,フルオロトルエン,トリフルオロトルエン,クロロトルエンおよびキシレンよりなる群から選択する少なくとも一つの溶媒であることを特徴とする,請求項39に記載のリチウム電池。   The aromatic hydrocarbon-based organic solvent is at least one solvent selected from the group consisting of benzene, fluorobenzene, toluene, fluorotoluene, trifluorotoluene, chlorotoluene, and xylene, according to claim 39, The lithium battery as described. 前記電解質は,ハロゲン,シアノ基(Cn)およびニトロ基(NO)よりなる群から選択する置換基を有するカーボネート,ビニレンカーボネート,ジビニルスルホンおよび亜硫酸エチレンよりなる群から選択する添加剤をさらに含むことを特徴とする,請求項24に記載のリチウム電池。 The electrolyte further includes an additive selected from the group consisting of carbonate, vinylene carbonate, divinylsulfone and ethylene sulfite having a substituent selected from the group consisting of halogen, cyano group (Cn) and nitro group (NO 2 ). The lithium battery according to claim 24, characterized in that: 前記電解液は,ハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する置換気を有するカーボネート添加剤をさらに含むことを特徴とする,請求項41に記載のリチウム電池。 The electrolyte, halogen, characterized in that it further comprises a carbonate additive having a substituent gas which is selected from the group consisting of cyano group (CN) and a nitro group (NO 2), a lithium battery of claim 41. 前記カーボネート添加剤は下記化学式28のカーボネートであることを特徴とする,請求項42に記載のリチウム電池。
Figure 2006245001
(前記化学式28中,X1はハロゲン,シアノ基(CN)およびニトロ基(NO)よりなる群から選択する。)
43. The lithium battery of claim 42, wherein the carbonate additive is a carbonate of formula 28 below.
Figure 2006245001
(In the chemical formula 28, X1 is selected from the group consisting of halogen, cyano group (CN) and nitro group (NO 2 ).)
前記陰極活物質は,リチウムイオンを吸蔵及び放出することが可能な炭素系列物質であることを特徴とする,請求項24に記載のリチウム電池。   The lithium battery according to claim 24, wherein the cathode active material is a carbon series material capable of inserting and extracting lithium ions.
JP2006052835A 2005-02-28 2006-02-28 Lithium battery electrolyte and lithium battery Active JP4535390B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050016691A KR101191636B1 (en) 2005-02-28 2005-02-28 Electrolyte for lithium battery and lithium battery comprising same

Publications (2)

Publication Number Publication Date
JP2006245001A true JP2006245001A (en) 2006-09-14
JP4535390B2 JP4535390B2 (en) 2010-09-01

Family

ID=36178165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052835A Active JP4535390B2 (en) 2005-02-28 2006-02-28 Lithium battery electrolyte and lithium battery

Country Status (6)

Country Link
US (2) US20060194118A1 (en)
EP (1) EP1696501B1 (en)
JP (1) JP4535390B2 (en)
KR (1) KR101191636B1 (en)
CN (1) CN1866605B (en)
DE (1) DE602006000279T2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527088A (en) * 2006-02-15 2009-07-23 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device with improved safety
JP2009527087A (en) * 2006-02-15 2009-07-23 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device with improved safety
JP2010015968A (en) * 2008-07-07 2010-01-21 Samsung Sdi Co Ltd Lithium secondary battery
JP2010165653A (en) * 2008-02-29 2010-07-29 Equos Research Co Ltd Electrolyte for lithium ion battery
JP2011023160A (en) * 2009-07-14 2011-02-03 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
US8802300B2 (en) 2006-11-17 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8815454B2 (en) 2007-12-14 2014-08-26 Samsung Sdi Co., Ltd. Lithium secondary battery
US9093702B2 (en) 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery
JP2016173948A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Method for manufacturing power storage device, power storage device, and method for suppressing the reduction in voltage of power storage device
US9515351B2 (en) 2007-06-11 2016-12-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
JP2018514070A (en) * 2015-12-18 2018-05-31 シェンヂェン キャプケム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. Lithium ion battery electrolyte and lithium ion battery
WO2018169028A1 (en) 2017-03-17 2018-09-20 旭化成株式会社 Nonaqueous electrolyte, nonaqueous secondary battery, cell pack, and hybrid system
JP2019145324A (en) * 2018-02-20 2019-08-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11444328B2 (en) 2018-02-20 2022-09-13 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070057405A (en) * 2005-12-02 2007-06-07 주식회사 엘지화학 Electrolyte for lithium secondary battery comprising chelating agent and lithium secondary battery using the same
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP5188677B2 (en) * 2005-12-21 2013-04-24 三星エスディアイ株式会社 Lithium secondary battery and method for producing lithium secondary battery
CN101371398B (en) 2006-01-12 2012-08-22 株式会社Lg化学 Non-aqueous electrolyte and electrochemical device with an improved safety
CN102097654B (en) * 2006-04-27 2014-10-01 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR100941299B1 (en) 2006-07-07 2010-02-11 주식회사 엘지화학 Additive having cyano group for non-aqueous electrolyte and electrochemical device using the same
KR100778450B1 (en) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
KR100814880B1 (en) 2006-11-22 2008-03-18 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery comprising the same
KR20090095577A (en) 2006-12-06 2009-09-09 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
WO2008138132A1 (en) * 2007-05-15 2008-11-20 National Research Council Of Cananda Dinitrile-based liquid electrolytes
KR100918048B1 (en) * 2007-09-07 2009-09-22 삼성에스디아이 주식회사 Rechargeable lithium battery
CN101803099B (en) * 2007-09-12 2016-06-29 株式会社Lg化学 Non-aqueous electrolyte lithium secondary battery
KR101658678B1 (en) * 2008-02-29 2016-09-21 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2012532418A (en) * 2009-07-01 2012-12-13 エバレデイ バツテリ カンパニー インコーポレーテツド Removal of impurities from lithium-iron disulfide electrochemical cells
KR101178554B1 (en) * 2009-07-09 2012-08-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2011119097A (en) * 2009-12-02 2011-06-16 Sony Corp Nonaqueous electrolyte battery
US9136559B2 (en) 2010-12-29 2015-09-15 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
US8772412B2 (en) 2010-12-29 2014-07-08 Industrial Technology Research Institute Meta-stable state nitrogen-containing polymer
CN102569889A (en) * 2012-02-06 2012-07-11 深圳新宙邦科技股份有限公司 Non-aqueous electrolyte for lithium ion battery, and lithium ion battery
CN102569723A (en) * 2012-02-13 2012-07-11 华为技术有限公司 Lithium ion battery positive electrode material and preparation method thereof, positive electrode and lithium ion battery
JP6293256B2 (en) 2013-03-12 2018-03-14 アップル インコーポレイテッド High voltage, high volume energy density lithium-ion battery using advanced cathode material
CN105379001A (en) 2013-07-15 2016-03-02 巴斯夫欧洲公司 Maleonitrile derivatives as additives for electrolytes in lithium ion batteries
WO2015088051A1 (en) * 2013-12-09 2015-06-18 에스케이이노베이션 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
CN104409769A (en) * 2014-12-04 2015-03-11 张家港市国泰华荣化工新材料有限公司 Overcharge protecting electrolyte and lithium battery
CN104466248B (en) * 2014-12-17 2017-06-16 东莞新能源科技有限公司 A kind of electrolyte and the lithium ion battery using the electrolyte
WO2017029176A1 (en) * 2015-08-14 2017-02-23 Basf Se Cyclic dinitrile compounds as additives for electrolyte
WO2017058650A1 (en) 2015-09-30 2017-04-06 Hongli Dai Cathode-active materials, their precursors, and methods of preparation
CN105428715B (en) 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery
US10243241B2 (en) * 2015-12-01 2019-03-26 GM Global Technology Operations LLC Lithium ion battery with transition metal ion traps
CN109328409A (en) 2016-03-14 2019-02-12 苹果公司 Active material of cathode for lithium ion battery
US10008749B2 (en) 2016-06-19 2018-06-26 GM Global Technology Operations LLC Lithium ion battery
US10050313B2 (en) 2016-06-19 2018-08-14 GM Global Technology Operations LLC Lithium ion battery
CN112158891B (en) 2016-09-20 2023-03-31 苹果公司 Cathode active material having improved particle morphology
KR102223565B1 (en) 2016-09-21 2021-03-04 애플 인크. Surface-stabilized cathode material for lithium-ion battery and method for its synthesis
US10418668B2 (en) 2017-07-07 2019-09-17 GM Global Technology Operations LLC Electrolyte system including complexing agent to suppress or minimize metal contaminants and dendrite formation in lithium ion batteries
US10581117B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries
CN107666012B (en) * 2017-09-11 2019-10-11 江苏海涛新能源科技有限公司 A kind of secondary cell electrolyte and preparation method thereof
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
CN110649318B (en) * 2019-10-29 2021-12-14 珠海冠宇电池股份有限公司 Electrolyte, preparation method thereof and lithium ion battery
CN110707361B (en) * 2019-10-29 2021-10-26 珠海冠宇电池股份有限公司 Electrolyte for high-voltage soft-package lithium ion battery suitable for high-rate charge and discharge
CN110797575A (en) * 2019-10-29 2020-02-14 珠海冠宇电池有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery using same
CN110783628A (en) * 2019-10-29 2020-02-11 珠海冠宇电池有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery using same
CN110808413A (en) * 2019-10-29 2020-02-18 珠海冠宇电池有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery using same
CN112635825B (en) * 2020-11-12 2022-05-17 捷威动力工业江苏有限公司 Ternary lithium ion battery electrolyte and lithium ion battery
CN115064769B (en) * 2022-07-26 2022-11-08 华中科技大学 Electrolyte compatible with graphite cathode and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution for li secondary battery
JP2004179146A (en) * 2002-07-15 2004-06-24 Ube Ind Ltd Nonaqueous electrolyte solution and lithium cell using the same

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764385A (en) * 1970-12-22 1973-10-09 Exxon Research Engineering Co Electric battery using complexed inorganic lithium salts as charge transfer agent
US4808497A (en) * 1983-12-28 1989-02-28 Eveready Battery Company Organic electrolyte for nonaqueous cells
DE3406472A1 (en) * 1984-02-23 1985-08-29 Basf Ag, 6700 Ludwigshafen ELECTROCHEMICAL CELL OR BATTERY
US4737424A (en) * 1985-11-01 1988-04-12 Nippon Telegraph & Telephone Corporation Secondary lithium battery
US4670363A (en) * 1986-09-22 1987-06-02 Duracell Inc. Non-aqueous electrochemical cell
US5154992A (en) * 1990-08-10 1992-10-13 Medtronic, Inc. Electrolyte for lithium-manganese oxide cells and the like
JP3669024B2 (en) * 1995-05-26 2005-07-06 ソニー株式会社 Non-aqueous electrolyte secondary battery
CA2156800C (en) * 1995-08-23 2003-04-29 Huanyu Mao Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
US5589295A (en) * 1995-12-06 1996-12-31 Derzon; Dora K. Thin film polymeric gel electrolytes
US5776635A (en) * 1996-09-16 1998-07-07 Wilson Greatbatch Ltd. Ternary solvent nonaqueous organic electrolyte for alkali metal electrochemical cells
US6444360B2 (en) * 1998-01-20 2002-09-03 Wilson Greatbatch Ltd. Electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
US6045952A (en) * 1998-03-23 2000-04-04 The United States Of America As Represented By The United States Department Of Energy Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes
US6063526A (en) * 1998-04-16 2000-05-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
WO1999059218A1 (en) * 1998-05-12 1999-11-18 Ecole Polytechnique Federale De Lausanne (Epfl) Sri Primary or secondary electrochemical generator
KR100546781B1 (en) 1999-04-27 2006-01-25 제일모직주식회사 Nonaqueous electrolyte battery
JP3802287B2 (en) * 1999-08-04 2006-07-26 三洋電機株式会社 Lithium secondary battery
US6958198B2 (en) 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
KR100326468B1 (en) * 2000-07-25 2002-02-28 김순택 An Electrolyte for Lithium Sulfur batteries
JP2002075446A (en) * 2000-08-02 2002-03-15 Samsung Sdi Co Ltd Lithium-sulfur cell
KR100592235B1 (en) 2001-07-28 2006-06-21 삼성에스디아이 주식회사 Organic electrolyte and lithium battery employing the same
DE10212609B4 (en) * 2002-03-21 2015-03-26 Epcos Ag Electrolytic solution and its use
JP2004063432A (en) * 2002-06-05 2004-02-26 Sony Corp Battery
US6535373B1 (en) * 2002-06-12 2003-03-18 Lithdyne International Non-aqueous electrolyte
KR101111365B1 (en) * 2002-07-15 2012-03-09 우베 고산 가부시키가이샤 Non-aqueous electrolytic solution and lithium battery
KR100472512B1 (en) * 2002-11-15 2005-03-11 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
TWI270228B (en) * 2003-02-28 2007-01-01 Sanyo Electric Co Heat resistant lithium battery
US7718321B2 (en) * 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
KR100515298B1 (en) * 2003-03-24 2005-09-15 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100573109B1 (en) * 2003-06-17 2006-04-24 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
US7968235B2 (en) * 2003-07-17 2011-06-28 Uchicago Argonne Llc Long life lithium batteries with stabilized electrodes
US20050123835A1 (en) * 2003-12-09 2005-06-09 Luying Sun Non-aqueous electrolytes having an extended temperature range for battery applications
TWI302760B (en) * 2004-01-15 2008-11-01 Lg Chemical Ltd Electrochemical device comprising aliphatic nitrile compound
RU2327260C1 (en) * 2004-05-28 2008-06-20 Эл Джи Кем, Лтд. Additives to lithium secondary battery
US7776475B2 (en) * 2004-08-03 2010-08-17 Samsung Sdi Co., Ltd. Lithium rechargeable battery and lithium rechargeable battery pack
KR20060029747A (en) * 2004-10-01 2006-04-07 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution for li secondary battery
JP2004179146A (en) * 2002-07-15 2004-06-24 Ube Ind Ltd Nonaqueous electrolyte solution and lithium cell using the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527088A (en) * 2006-02-15 2009-07-23 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device with improved safety
JP2009527087A (en) * 2006-02-15 2009-07-23 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device with improved safety
US9590276B2 (en) 2006-02-15 2017-03-07 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device with an improved safety
US9093719B2 (en) 2006-02-15 2015-07-28 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device with an improved safety
US9350019B2 (en) 2006-10-26 2016-05-24 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US8691446B2 (en) 2006-10-26 2014-04-08 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
US8802300B2 (en) 2006-11-17 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US9515351B2 (en) 2007-06-11 2016-12-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US9673484B2 (en) 2007-06-11 2017-06-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US8815454B2 (en) 2007-12-14 2014-08-26 Samsung Sdi Co., Ltd. Lithium secondary battery
JP2010165653A (en) * 2008-02-29 2010-07-29 Equos Research Co Ltd Electrolyte for lithium ion battery
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
US8263267B2 (en) 2008-07-07 2012-09-11 Samsung Sdi Co., Ltd. Rechargeable battery and associated methods
JP2010015968A (en) * 2008-07-07 2010-01-21 Samsung Sdi Co Ltd Lithium secondary battery
JP2011023160A (en) * 2009-07-14 2011-02-03 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US9093702B2 (en) 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery
JP2016173948A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Method for manufacturing power storage device, power storage device, and method for suppressing the reduction in voltage of power storage device
JP2018514070A (en) * 2015-12-18 2018-05-31 シェンヂェン キャプケム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. Lithium ion battery electrolyte and lithium ion battery
WO2018169028A1 (en) 2017-03-17 2018-09-20 旭化成株式会社 Nonaqueous electrolyte, nonaqueous secondary battery, cell pack, and hybrid system
KR20190103453A (en) 2017-03-17 2019-09-04 아사히 가세이 가부시키가이샤 Non-Aqueous Electrolytes, Non-Aqueous Secondary Batteries, Cell Packs, and Hybrid Systems
KR20210132242A (en) 2017-03-17 2021-11-03 아사히 가세이 가부시키가이샤 Nonaqueous electrolyte, nonaqueous secondary battery, cell pack, and hybrid system
US11515567B2 (en) 2017-03-17 2022-11-29 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution, non-aqueous secondary battery, cell pack, and hybrid power system
JP2019145324A (en) * 2018-02-20 2019-08-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7131923B2 (en) 2018-02-20 2022-09-06 三星エスディアイ株式会社 Electrolyte for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11444328B2 (en) 2018-02-20 2022-09-13 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same

Also Published As

Publication number Publication date
JP4535390B2 (en) 2010-09-01
KR20060095221A (en) 2006-08-31
US20140227590A1 (en) 2014-08-14
EP1696501A1 (en) 2006-08-30
KR101191636B1 (en) 2012-10-18
US9590271B2 (en) 2017-03-07
CN1866605B (en) 2011-04-06
DE602006000279D1 (en) 2008-01-17
US20060194118A1 (en) 2006-08-31
EP1696501B1 (en) 2007-12-05
CN1866605A (en) 2006-11-22
DE602006000279T2 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4535390B2 (en) Lithium battery electrolyte and lithium battery
JP4248444B2 (en) Lithium battery electrolyte and lithium battery including the same
KR100804689B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
JP4291292B2 (en) Lithium battery electrolyte and lithium battery including the same
JP4287396B2 (en) Lithium battery electrolyte and lithium battery including the same
KR100918048B1 (en) Rechargeable lithium battery
JP2004311442A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing same
JP4842617B2 (en) Lithium battery electrolyte and lithium battery
JP4727387B2 (en) Lithium battery electrolyte and lithium battery including the same
JP4754323B2 (en) Lithium battery electrolyte and lithium battery
EP1653548B1 (en) Electrolyte for lithium battery and lithium battery comprising same
KR100766930B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
EP1716616B1 (en) Non-aqueous electrolyte for battery
KR101135480B1 (en) Electrolyte for lithium ion battery and lithium ion battery comprising the same
KR20050048935A (en) An electrolyte for a lithium battery and a lithium battery comprising the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4535390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250