KR20050048935A - An electrolyte for a lithium battery and a lithium battery comprising the same - Google Patents

An electrolyte for a lithium battery and a lithium battery comprising the same Download PDF

Info

Publication number
KR20050048935A
KR20050048935A KR1020030082682A KR20030082682A KR20050048935A KR 20050048935 A KR20050048935 A KR 20050048935A KR 1020030082682 A KR1020030082682 A KR 1020030082682A KR 20030082682 A KR20030082682 A KR 20030082682A KR 20050048935 A KR20050048935 A KR 20050048935A
Authority
KR
South Korea
Prior art keywords
electrolyte
carbonate
formula
lithium battery
lithium
Prior art date
Application number
KR1020030082682A
Other languages
Korean (ko)
Inventor
류경한
송의환
임현정
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020030082682A priority Critical patent/KR20050048935A/en
Publication of KR20050048935A publication Critical patent/KR20050048935A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 전지용 전해질 및 이를 포함하는 리튬 전지에 관한 것으로서, 상기 전해질은 비수성 유기용매; 리튬염; 및 하기 화학식 1 내지 화학식 3의 화합물로 이루어진 군에서 1종 이상 선택되는 첨가제를 포함한다. The present invention relates to a lithium battery electrolyte and a lithium battery comprising the same, wherein the electrolyte is a non-aqueous organic solvent; Lithium salts; And at least one additive selected from the group consisting of compounds represented by Formulas 1 to 3 below.

[화학식 1] [화학식 2] [화학식 3][Formula 1] [Formula 2] [Formula 3]

(상기 식들에서, A1 내지 A15는 각각 독립적으로 수소, 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수이다.(Wherein A 1 to A 15 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently NR (R is hydrogen or alkyl), S, And O, n is an integer of 5, or 6.

상기 전해질을 포함하는 리튬 전지는 전기화학적 특성, 특히 고율에서의 용량 특성이 우수할 뿐만 아니라 과충전 특성과 같은 전지의 안전성이 기존의 비수계 전해질을 사용하는 전지에 월등히 우수하다.The lithium battery including the electrolyte has excellent electrochemical characteristics, particularly capacity characteristics at a high rate, and excellent battery safety, such as overcharging characteristics, to a battery using a conventional non-aqueous electrolyte.

Description

리튬 전지용 전해질 및 이를 포함하는 리튬 전지{AN ELECTROLYTE FOR A LITHIUM BATTERY AND A LITHIUM BATTERY COMPRISING THE SAME}TECHNICAL FIELD The electrolyte for a lithium battery, and a lithium battery including the same, include: A ELITROLYTE FOR A LITHIUM BATTERY AND A LITHIUM BATTERY COMPRISING THE SAME

[산업상 이용 분야][Industrial use]

본 발명은 리튬 전지용 전해질 및 이를 포함하는 리튬 전지에 관한 것으로서, 상세하게는 전지의 과충전 안전성을 향상시키는 리튬 전지용 전해질 및 이를 포함하는 리튬 전지에 관한 것이다.The present invention relates to a lithium battery electrolyte and a lithium battery comprising the same, and more particularly, to a lithium battery electrolyte and a lithium battery including the same to improve the overcharge safety of the battery.

[종래 기술][Prior art]

최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 현재 상업화되어 사용 중인 리튬 이차 전지는 평균 방전 전위가 3.7V, 즉 4V대의 전지로서 3C라 일컬어지는 휴대용 전화, 노트북 컴퓨터, 캠코더 등에 급속도로 적용되고 있는 디지털 시대의 심장에 해당하는 요소이다. Recently, with the trend toward miniaturization and light weight of portable electronic devices, the need for high performance and high capacity of batteries used as power sources for these devices is increasing. Lithium secondary batteries, which are commercially available and currently used, correspond to the heart of the digital era, which is rapidly being applied to portable phones, notebook computers, camcorders, and the like, which have an average discharge potential of 3.7V, that is, 4C.

전지의 용량, 성능 특성의 개선과 함께 과충전 특성과 같은 안전성을 향상시키기 위한 연구도 활발하게 진행되고 있다. 전지가 과충전되면 충전상태에 따라 양극에서는 리튬이 과잉 석출되고, 음극에서는 리튬이 과잉 삽입되어 양극 및 음극이 열적으로 불안정해져 전해질의 유기용매가 분해되는 등 급격한 발열반응이 일어나고, 또한 열폭주 현상이 발생하여 전지의 안전성에 심각한 문제점이 발생한다.In addition to improving battery capacity and performance characteristics, studies are being actively conducted to improve safety such as overcharging characteristics. When the battery is overcharged, depending on the state of charge, lithium is excessively precipitated at the positive electrode, lithium is excessively inserted at the negative electrode, and the positive electrode and negative electrode are thermally unstable, causing rapid exothermic reactions such as decomposition of the organic solvent in the electrolyte and thermal runaway. Occurs, a serious problem occurs in the safety of the battery.

이러한 문제점을 해결하기 위하여, 전해질 중에 레독스 셔틀(redox shuttle) 첨가제로서 방향족 화합물을 첨가하는 방법이 이용되고 있다. 예를 들어 미국특허 제5,709,968호는 2,4-디플루오로아니솔(2,4-difluoroanisole)과 같은 벤젠 화합물을 첨가하여 과충전 전류 및 이로 인한 열폭주 현상을 방지할 수 있는 비수계 리튬 이온 전지를 개시하고 있다. 제5,879,834호에는 바이페닐(biphenyl), 3-클로로티오펜(3-chlorothiophene), 퓨란 등의 방향족 화합물을 소량 첨가하여 비정상적인 과전압 상태에서 전기화학적으로 중합되어 내부저항을 증가시킴으로써 전지의 안전성을 향상시키기 위한 방법이 기재되어 있다. 이들 레독스 셔틀 첨가제들은 산화발열 반응에 의해 발생되는 열에 의해 전지 내부 온도를 조기에 상승시켜 세퍼레이터의 기공을 빠르고 균일하게 차단(shut-down)시킴으로써 과충전 반응을 억제하는 작용을 한다. 또한 과충전시 정극 표면에서 첨가제의 중합반응이 과충전 전류를 소비하여 전지를 보호하는 기능도 한다. In order to solve this problem, a method of adding an aromatic compound as a redox shuttle additive in an electrolyte has been used. For example, U.S. Patent No. 5,709,968 adds a benzene compound such as 2,4-difluoroanisole to prevent overcharge currents and the resulting thermal runaway phenomenon. It is starting. No. 5,879,834 add a small amount of aromatic compounds such as biphenyl, 3-chlorothiophene, furan and the like to electrochemically polymerize at abnormal overvoltage conditions to increase the internal resistance to improve battery safety. A method is described. These redox shuttle additives act to suppress the overcharge reaction by prematurely raising the temperature inside the battery due to the heat generated by the oxidative heating reaction to shut down the pores of the separator quickly and uniformly. In addition, the polymerization reaction of the additive on the surface of the positive electrode during overcharge also functions to protect the battery by consuming the overcharge current.

그러나 전지가 소비자의 요구에 따라 점점 고용량화되면서 상기와 같은 과충전 방지용 첨가제로는 높은 수준의 안전성 요구 조건을 만족하기 힘들다. 따라서 전지의 고용량화에 대한 요구가 점점 증가하면서 이들의 안전성을 확보할 수 있는 새로운 과충전 첨가제의 개발이 절실히 요청되고 있다. However, as the battery becomes more and more high capacity according to the demand of the consumer, it is difficult to satisfy the high level of safety requirements with the overcharge preventing additive as described above. Accordingly, as the demand for higher capacity of batteries increases, there is an urgent demand for the development of new overcharge additives capable of securing their safety.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 전지의 과충전 안전성을 개선시킬 수 있는 리튬 전지용 전해질 및 그 제조방법을 제공하기 위한 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolyte for a lithium battery and a method of manufacturing the same that can improve the overcharge safety of the battery.

본 발명의 다른 목적은 과충전 안전성이 우수한 리튬 전지를 제공하기 위한 것이다.Another object of the present invention is to provide a lithium battery having excellent overcharge safety.

상기한 목적을 달성하기 위하여, 본 발명은 비수성 유기용매; 리튬염; 및 하기 화학식 1 내지 화학식 3의 화합물로 이루어진 군에서 1종 이상 선택되는 첨가제를 포함하는 리튬 전지용 전해질을 제공한다.In order to achieve the above object, the present invention is a non-aqueous organic solvent; Lithium salts; And at least one additive selected from the group consisting of compounds represented by Formulas 1 to 3 below.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3][Formula 3]

(상기 식들에서, A1 내지 A15는 각각 독립적으로 수소, 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수이다.)(Wherein A 1 to A 15 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently NR (R is hydrogen or alkyl), S, And O; n is an integer of 5, or 6.)

본 발명은 또한 비수성 유기용매; 리튬염 및 상기 화학식 1 내지 화학식 3의 화합물로 이루어진 군에서 1종 이상 선택되는 첨가제를 혼합하는 단계를 포함하는 리튬 전지용 전해질의 제조방법을 제공한다.The present invention also provides a non-aqueous organic solvent; It provides a method for producing an electrolyte for a lithium battery comprising mixing a lithium salt and at least one additive selected from the group consisting of the compounds of Formulas 1 to 3.

본 발명은 또한 상기 리튬 전지용 전해질을 포함하는 리튬 전지를 제공한다.The present invention also provides a lithium battery comprising the electrolyte for lithium batteries.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

일반적인 비수계 리튬 이차 전지(1)의 구조는 도 1에 도시된 바와 같다. 상기 전지는 리티에이티드 인터칼레이션 화합물을 양극(2) 및 음극(4)으로 사용하고 양극(2)과 음극(4) 사이에 세퍼레이터(6)를 삽입하여 이를 권취하여 전극조립체(8)를 형성한 다음 케이스(10)에 넣어 제조된다. 상기 전지의 상부는 캡 플레이트(12)와 가스켓(14)으로 밀봉한다. 상기 캡 플레이트(12)에는 전지의 과압 형성을 방지하는 안전밸브(safety vent)(16)가 설치될 수 있다. 상기 양극(2) 및 음극(4)에 각각 양극 탭(18)과 음극 탭(20)을 설치하고 절연체(22, 24)는 전지의 내부 단락을 방지하기 위하여 삽입된다. 전지를 밀봉하기 전에 전해질(26)을 주입한다. 주입된 전해질(26)은 세퍼레이터(6)에 함침된다.The structure of the general non-aqueous lithium secondary battery 1 is as shown in FIG. The battery uses a lithiated intercalation compound as a positive electrode (2) and a negative electrode (4), inserts a separator (6) between the positive electrode (2) and the negative electrode (4) and wound the electrode assembly (8). After forming it is put into the case 10 is manufactured. The top of the cell is sealed with a cap plate 12 and a gasket 14. The cap plate 12 may be provided with a safety vent (16) to prevent the formation of overpressure of the battery. The positive electrode tab 18 and the negative electrode tab 20 are respectively provided on the positive electrode 2 and the negative electrode 4 and the insulators 22 and 24 are inserted to prevent internal short circuit of the battery. The electrolyte 26 is injected before sealing the cell. The injected electrolyte 26 is impregnated into the separator 6.

리튬 이차 전지는 오용 및 충전기 등의 고장에 의해 과충전 및 전지 자체의 설계상의 결함에 의한 단락(short) 등으로 전지의 온도가 급격히 상승하는 열폭주 현상이 일어날 수 있다. 특히, 과충전되는 동안 과량의 리튬이 양극으로부터 빠져나와 음극 표면에 석출되어 두 전극이 열적으로 매우 불안정한 상태가 되어 전해질의 열분해, 전해질과 리튬과의 반응, 양극에서의 전해질 산화반응, 양극 활물질의 열분해에 의해 발생하는 산소와 전해질의 반응 등에 의해 발열반응이 급격하게 진행되어 전지의 온도가 급상승하는 소위, 열폭주 현상이 발생하여 전지의 최고 허용 온도를 초과하여 전지의 발화 및 발연으로 이어지게 된다. The lithium secondary battery may have a thermal runaway phenomenon in which the temperature of the battery rapidly rises due to overcharge or short circuit due to a design defect of the battery itself due to misuse or failure of a charger. In particular, during overcharging, excess lithium is released from the positive electrode and precipitated on the surface of the negative electrode so that the two electrodes are thermally very unstable, resulting in thermal decomposition of the electrolyte, reaction between the electrolyte and lithium, oxidation of the electrolyte at the positive electrode, and thermal decomposition of the positive active material The exothermic reaction proceeds abruptly by the reaction of oxygen and electrolyte generated by the so-called so-called thermal runaway phenomenon in which the temperature of the battery rises rapidly, leading to the ignition and smoke of the battery exceeding the maximum allowable temperature of the battery.

본 발명에서는 하기 화학식 1 내지 화학식 3의 화합물로 이루어진 군에서 1종 이상 선택되는 첨가제를 사용함으로써 전지의 과충전 안전성을 향상시킬 수 있는 리튬 전지용 전해질을 제공한다. The present invention provides an electrolyte for a lithium battery that can improve the overcharge safety of the battery by using an additive selected from one or more selected from the group consisting of compounds represented by the following formulas (1) to (3).

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3][Formula 3]

(상기 식들에서, A1 내지 A15는 각각 독립적으로 수소, 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수임.)(Wherein A 1 to A 15 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently NR (R is hydrogen or alkyl), S, And O; n is an integer of 5, or 6.

본 발명에서 전해질 첨가제로 사용되는 상기 화학식 1 내지 화학식 3의 화합물은 약 4.5V 이상에서 중합이 개시되어 극판 표면을 코팅함으로써 양극과 음극 사이의 저항을 증가시킬 수 있다. 또한 약 4.5V 이상의 전압에서 산화 환원 반응을 진행하여 과충전시 인가되는 전류를 소비하여 전지의 안전성을 향상시킨다.The compounds of Formulas 1 to 3 used as an electrolyte additive in the present invention may initiate polymerization at about 4.5 V or more to increase the resistance between the positive electrode and the negative electrode by coating the surface of the electrode plate. In addition, by performing a redox reaction at a voltage of about 4.5V or more to consume the current applied during overcharging to improve the safety of the battery.

상기 화학식 1의 화합물의 바람직한 예로는 [2,2']바이티오펜([2,2']Bithiophene), [2,2']바이퓨란([2,2']Bifuran), 및 1,1'-디메틸-1H,1'H-[2,2']바이피롤(1,1'-Dimethyl-1H,1'H-[2,2']bipyrrole) 등이 있고, 상기 화학식 2의 화합물의 바람직한 예로는[3,3']바이티오펜([3,3']Bithiophene), [3,3']바이퓨란([3,3']Bifuran), 및 1,1'-디메틸-1H,1'H-[3,3']바이피롤(1,1'-Dimethyl-1H,1'H-[3,3']bipyrrole) 등이 있으며, 상기 화학식 3의 화합물의 바람직한 예로는 3-시클로헥실티오펜(3-Cyclohexyl thiophene), 3-시클로펜틸티오펜(3-Cyclopentyl thiophene), 및 3-시클로펜틸퓨란(3-Cyclopentyl furan) 등과 이들의 유도체를 사용할 수 있다. 상기 기재된 화합물의 구조식을 하기 표 1에 정리하였다. 그러나, 하기 표 1에 기재된 화합물 이외에도 화학식 1 내지 3에서 A1 내지 A15가 각각 독립적으로 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수인 경우도 사용할 수 있다.Preferred examples of the compound of Formula 1 include [2,2 '] bithiophene ([2,2'] Bithiophene), [2,2 '] bifuran ([2,2'] Bifuran), and 1,1 '-Dimethyl-1H, 1'H- [2,2'] bipyrrole (1,1'-Dimethyl-1H, 1'H- [2,2 '] bipyrrole), and the like Preferred examples include [3,3 '] bithiophene ([3,3'] Bithiophene), [3,3 '] bifuran ([3,3'] Bifuran), and 1,1'-dimethyl-1H, 1'H- [3,3 '] bipyrrole (1,1'-Dimethyl-1H, 1'H- [3,3'] bipyrrole), and the like. Hexylthiophene (3-Cyclohexyl thiophene), 3-cyclopentylthiophene (3-Cyclopentyl thiophene), 3-cyclopentylfuran (3-Cyclopentyl furan) and derivatives thereof can be used. The structural formulas of the compounds described above are summarized in Table 1 below. However, in addition to the compounds listed in Table 1 below, in Formulas 1 to 3, A 1 to A 15 are each independently selected from the group consisting of halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently selected from the group consisting of NR (R is hydrogen or alkyl), S, and O; n can also be used when it is an integer of 5 or 6.

[표 1]TABLE 1

화합물 예Compound example 화학식 1Formula 1 화학식 2Formula 2 화학식 3Formula 3

상기 전해질 첨가제는 전해질의 총량을 기준으로 0.01 내지 50 중량%, 바람직하게는 0.5 내지 10 중량%, 더욱 바람직하게는 1 내지 5 중량%의 양으로 사용되는 것이 바람직하다. 첨가량이 0.01 중량% 미만이면 첨가효과가 미미하고 50 중량%를 초과하는 경우에는 전지의 수명특성이 저하되는 문제점이 있어 바람직하지 않다. The electrolyte additive is preferably used in an amount of 0.01 to 50% by weight, preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight, based on the total amount of the electrolyte. If the added amount is less than 0.01% by weight, the addition effect is insignificant, and if the amount exceeds 50% by weight, there is a problem that the life characteristics of the battery is lowered, which is not preferable.

상기 전해질 첨가제는 리튬염을 함유하는 비수성 유기용매에 첨가된다. 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 전지의 작동을 가능하게 하며, 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.The electrolyte additive is added to the non-aqueous organic solvent containing the lithium salt. Lithium salt acts as a source of lithium ions in the battery to enable the operation of the basic lithium battery, the non-aqueous organic solvent serves as a medium to move the ions involved in the electrochemical reaction of the battery.

상기 리튬염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO 4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO 4, LiAlCl4, LiN(CxF2x+1SO2)(CyF 2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, 및 LiI로 이루어진 군에서 선택되는 1 종 또는 2 종 이상을 혼합시켜 사용가능하다.Examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiN ( C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, and LiI, used in combination of one or two or more selected from the group consisting of It is possible.

리튬염의 농도는 0.6 내지 2.0M 범위 내에서 사용하는 것이 바람직하며, 0.7 내지 1.6M 범위 내에서 사용하는 것이 더 바람직하다. 리튬염의 농도가 0.6M 미만이면 전해질의 전도도가 낮아져 전해질 성능이 떨어지고, 2.0M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다. The concentration of the lithium salt is preferably used in the range of 0.6 to 2.0M, more preferably in the range of 0.7 to 1.6M. When the concentration of the lithium salt is less than 0.6M, the conductivity of the electrolyte is lowered, and the performance of the electrolyte is lowered. When the concentration of the lithium salt is higher than 2.0M, the viscosity of the electrolyte is increased to reduce the mobility of lithium ions.

비수성 유기용매로는 카보네이트, 에스테르, 에테르 또는 케톤을 사용할 수 있다. 상기 카보네이트로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르는 감마 부티로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트 등이 사용될 수 있고, 상기 에테르의 예로는 디부틸에테르가 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. As the non-aqueous organic solvent, carbonate, ester, ether or ketone can be used. The carbonate may be dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ethylene carbonate (EC), Propylene carbonate (PC), butylene carbonate (BC) and the like may be used, and the ester may be gamma butyrolactone, n-methyl acetate, n-ethyl acetate, n-propyl acetate, or the like. Is dibutyl ether, and the ketone is polymethylvinyl ketone.

상기 비수성 유기용매중 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 바람직하다. 상기 부피비로 혼합되어야 전해질의 성능이 바람직하게 나타난다. In the case of the carbonate-based solvent in the non-aqueous organic solvent, it is preferable to use a mixture of a cyclic carbonate and a chain carbonate. In this case, it is preferable to use the cyclic carbonate and the chain carbonate by mixing in a volume ratio of 1: 1 to 1: 9. The performance of the electrolyte is preferable when mixed in the above volume ratio.

또한 본 발명의 전해질은 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 방향족 탄화수소계 유기용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.In addition, the electrolyte of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. As the aromatic hydrocarbon organic solvent, an aromatic hydrocarbon compound represented by Chemical Formula 2 may be used.

[화학식 4][Formula 4]

상기 식에서 R1는 할로겐 또는 탄소수 1 내지 10의 알킬이고 n는 0 내지 6의 정수이다.Wherein R 1 is halogen or alkyl of 1 to 10 carbon atoms and n is an integer of 0 to 6;

상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 클로로벤젠, 니트로벤젠, 톨루엔, 플루오로톨루엔, 트리플루오로톨루엔, 자일렌 등이 있다. 방향족 탄화수소계 유기용매를 포함하는 전해질에서 카보네이트계 용매/방향족 탄화수소계 용매의 부피비가 1:1 내지 30:1인 것이 바람직하다. 상기 부피비로 혼합되어야 전해질의 성능이 바람직하게 나타난다.Specific examples of the aromatic hydrocarbon organic solvent include benzene, fluorobenzene, chlorobenzene, nitrobenzene, toluene, fluorotoluene, trifluorotoluene, xylene and the like. In the electrolyte containing an aromatic hydrocarbon-based organic solvent, the volume ratio of the carbonate solvent / aromatic hydrocarbon solvent is preferably 1: 1 to 30: 1. The performance of the electrolyte is preferable when mixed in the above volume ratio.

본 발명의 전해질은 비수성 유기용매에 리튬염과 상기 전해질 첨가제를 첨가하여 제조된다. 상기 전해질 첨가제를 리튬염이 용해되어 있는 유기 용매에 첨가하는 것이 일반적이나, 리튬염과 전해질 첨가제의 첨가순서는 중요하지 않다. The electrolyte of the present invention is prepared by adding a lithium salt and the electrolyte additive to a non-aqueous organic solvent. It is common to add the electrolyte additive to an organic solvent in which lithium salt is dissolved, but the order of addition of lithium salt and electrolyte additive is not important.

또한, 본 발명의 전해질에 다관능성 아크릴레이트 또는 그 중합체 및 이들의 혼합물로 이루어진 군에서 선택되는 화합물과 및 유기 과산화물을 더욱 첨가하고 혼합하여 전해질 형성용 조성물을 제조할 수 있다. 이 때, 상기 전해질 형성용 조성물은 염기성 촉매를 더욱 포함할 수 있다. In addition, the composition for forming an electrolyte may be prepared by further adding and mixing a compound selected from the group consisting of a polyfunctional acrylate or a polymer thereof and a mixture thereof and an organic peroxide to the electrolyte of the present invention. At this time, the composition for forming an electrolyte may further include a basic catalyst.

상기 제조된 전해질 형성용 조성물을 집전체에 함침 내지는 코팅하여 고체 고분자 전해질을 제조할 수 있고, 또한, 상기 고체 고분자 전해질을 열처리 또는 자외선(UV) 조사(irradiation)하여 중합반응시키는 단계를 더욱 포함할 수 있다.Impregnating or coating the prepared electrolyte composition for a current collector to produce a solid polymer electrolyte, and further comprising the step of polymerizing the solid polymer electrolyte by heat treatment or ultraviolet (UV) irradiation (irradiation). Can be.

상기 열처리 온도는 40 내지 110 ℃인 것이 바람직하다. 열처리온도가 40℃ 미만인 경우에는 중합반응이 일어나지 아니하며, 110℃를 초과하는 경우에는 세퍼레이터의 용융이 시작될 수 있다. 또한, 사용되는 전해액 및 다른 첨가유기물의 기화가 진행되면서 기포가 발생할 위험이 있다.It is preferable that the said heat processing temperature is 40-110 degreeC. If the heat treatment temperature is less than 40 ℃ polymerization does not occur, if the temperature exceeds 110 ℃ melting of the separator may be started. In addition, there is a risk that bubbles are generated as the evaporation of the electrolyte and other added organic matters is used.

본 발명은 상기 전해질을 포함하는 리튬 전지를 제공한다. 리튬 전지의 양극 활물질로는 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이 사용될 수 있다. 음극 활물질로는 리튬 금속, 리튬 함유 합금, 리튬과 가역적으로 반응하여 리튬-함유 화합물을 형성할 수 있는 물질 또는 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 탄소재 물질이 사용된다. The present invention provides a lithium battery comprising the electrolyte. As a positive electrode active material of a lithium battery, a compound (lithiated intercalation compound) capable of reversible intercalation / deintercalation of lithium may be used. As the negative electrode active material, a lithium metal, a lithium-containing alloy, a material capable of reversibly reacting with lithium to form a lithium-containing compound, or a carbon material capable of reversible intercalation / deintercalation of lithium is used.

본 발명의 리튬 전지는 다음과 같은 공정을 거쳐 제조될 수 있다.The lithium battery of the present invention can be manufactured through the following process.

우선 상기 전해질 첨가제를 리튬염을 함유하는 비수성 유기용매에 첨가하여 전해질 형성용 조성물을 제조한다. 리튬 전지 제조시 사용되는 통상적인 방법에 따라 양극과 음극을 각각 제조한다. 그런 다음 양극과 음극 사이에 망목 구조를 갖는 절연성 수지로 된 세퍼레이터를 삽입하고 이를 와인딩(winding)하거나 스택킹(stacking)하여 전극 조립체를 형성한 다음, 이를 전지 케이스에 넣어 전지를 조립한다. First, the electrolyte additive is added to a non-aqueous organic solvent containing lithium salt to prepare a composition for forming an electrolyte. A positive electrode and a negative electrode are respectively produced in accordance with conventional methods used in the production of lithium batteries. Then, a separator made of an insulating resin having a mesh structure is inserted between the positive electrode and the negative electrode, and the electrode assembly is formed by winding or stacking the electrode resin, and then putting the separator into a battery case to assemble the battery.

상기 세퍼레이터로는 폴리에틸렌 세퍼레이터, 폴리프로필렌 세퍼레이터, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터 또는 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터를 사용할 수 있다. 이러한 공정을 거쳐 제조된 리튬 전지중 각형 리튬 전지의 단면도는 도 1에 도시되어 있다.As the separator, a polyethylene separator, a polypropylene separator, a polyethylene / polypropylene two-layer separator, a polyethylene / polypropylene / polyethylene three-layer separator, or a polypropylene / polyethylene / polypropylene three-layer separator may be used. A cross-sectional view of a prismatic lithium battery among lithium batteries manufactured through such a process is shown in FIG. 1.

상술한 방법에 따라 제조된 본 발명의 리튬 전지는 리튬 일차 전지 및 리튬 이차 전지 모두가 가능하다.The lithium battery of the present invention prepared according to the method described above may be both a lithium primary battery and a lithium secondary battery.

본 발명의 전해질을 포함하는 리튬 전지는 과충전 특성과 같은 전지의 안전성이 기존의 비수계 전해질을 사용하는 전지에 월등히 우수하다. The lithium battery including the electrolyte of the present invention is excellent in battery safety, such as overcharging characteristics, to a battery using a conventional non-aqueous electrolyte.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

1.3M LiPF6가 용해되어 있는 에틸렌 카보네이트(EC):메틸에틸 카보네이트(MEC):프로필렌 카보네이트(PC):플루오로벤젠(FB)을 30:55:5:10의 부피비로 혼합한 혼합 유기용액 5 g에 전해질 첨가제로 [2,2']-바이티오펜([2,2']-bithiophene) 0.25 g을 첨가하여 전해질을 제조하였다.Mixed organic solution 5 in which ethylene carbonate (EC): methylethyl carbonate (MEC): propylene carbonate (PC): fluorobenzene (FB) in which 1.3 M LiPF 6 is dissolved is mixed in a volume ratio of 30: 55: 5: 10. An electrolyte was prepared by adding 0.25 g of [2,2 ']-bithiophene ([2,2']-bithiophene) as an electrolyte additive.

양극 활물질인 LiCoO2(평균입경: 10 ㎛) 94 g, 도전제(수퍼 P) 3g 및 바인더(PVDF) 3g을 N-메틸피롤리돈(NMP)에 첨가하여 슬러리를 제조하였다. 상기 슬러리를 폭 4.9 cm이고 두께가 147 ㎛인 알루미늄 호일 위에 도포하고 건조한 후 롤프레스로 압연한 다음 절단하여 양극 극판을 제조하였다.A slurry was prepared by adding 94 g of LiCoO 2 (average particle size: 10 μm) as a positive electrode active material, 3 g of a conductive agent (super P), and 3 g of a binder (PVDF) to N-methylpyrrolidone (NMP). The slurry was applied on an aluminum foil having a width of 4.9 cm and a thickness of 147 μm, dried, rolled, rolled, and cut to prepare a positive electrode plate.

음극 활물질인 메조카본 파이버(MCF; Petoca사) 89.8 g, 옥살산 0.2 g 및 바인더(PVDF) 10g을 NMP에 녹여 슬러리를 제조하고, 이 슬러리를 폭 5.1 cm이고 두께가 178 ㎛인 구리 집전체에 도포하고 건조한 후 롤프레스로 압연하여 음극 극판을 제조하였다. 상기 양극 극판 및 음극 극판의 사이에 폴리에틸렌(PE) 다공성 필름으로 만든 세퍼레이터를 삽입하고 상기 전해질 2.3g을 주입하여 각형의 리튬 이차 전지를 제조하였다.A slurry was prepared by dissolving 89.8 g of mesocarbon fiber (MCF; Petoca Co., Ltd.), 0.2 g of oxalic acid, and 10 g of binder (PVDF) as an anode active material in NMP, and applying the slurry to a copper current collector having a width of 5.1 cm and a thickness of 178 μm. And dried and rolled with a roll press to prepare a negative electrode plate. A separator made of a polyethylene (PE) porous film was inserted between the positive electrode plate and the negative electrode plate, and 2.3 g of the electrolyte was injected to prepare a rectangular lithium secondary battery.

(비교예 1) (Comparative Example 1)

에틸렌 카보네이트(EC):메틸에틸 카보네이트(MEC):프로필렌 카보네이트(PC):플루오로벤젠(FB)을 30:55:5:10의 부피비로 혼합한 혼합 유기용매에 1.3M LiPF6를 첨가한 용액을 전해질로 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 각형의 리튬 이차 전지를 제조하였다.A solution in which 1.3M LiPF 6 was added to a mixed organic solvent in which ethylene carbonate (EC): methylethyl carbonate (MEC): propylene carbonate (PC): fluorobenzene (FB) was mixed in a volume ratio of 30: 55: 5: 10. A rectangular lithium secondary battery was manufactured in the same manner as in Example 1, except that was used as an electrolyte.

상기 실시예 1 및 비교예 1의 각형 리튬 이차 전지를 2 C에서 충방전을 실시하여 용량을 측정하여 하기 표 2에 기재하였다. 과충전 안전성 특성은 각 리튬 이차 전지의 양극/음극 단자 사이에 2A의 충전전류로 약 2.5 시간 흘려 과충전을 행하여 평가하였다. 과충전 안전성도 하기 표 2에 기재하였다.The square lithium secondary batteries of Example 1 and Comparative Example 1 were charged and discharged at 2C to measure capacities, and are shown in Table 2 below. The overcharge safety characteristics were evaluated by performing overcharge for about 2.5 hours with a charging current of 2 A between the positive and negative terminals of each lithium secondary battery. Overcharge safety is also listed in Table 2 below.

[표 2]TABLE 2

표준용량(mAh)Standard capacity (mAh) 2C 용량(mAh)2C capacity (mAh) 과충전 안전성* Overcharge safety * 실시예 1Example 1 841841 779779 5L05L0 비교예 1Comparative Example 1 843843 781781 5L55L5

주) *과충전 안전성: L 앞에 있는 숫자는 테스트 셀의 수를 의미한다.Note) Overcharge safety: The number before L means the number of test cells.

과충전 안전성 평가 기준은 다음과 같다:Overcharge safety assessment criteria are as follows:

(L0: 양호, L1: 누액, L2: 섬광, L2: 불꽃, L3: 연기, L4: 발화, L5: 파열) (L0: good, L1: leakage, L2: flash, L2: flame, L3: smoke, L4: fire, L5: burst)

표 2에 기재된 바와 같이 본 발명의 실시예에 따른 전지가 2C 용량특성을 감소시키지 않으면서 과충전 안전성 면에서 비교예보다 월등히 우수한 것을 알 수 있다. As shown in Table 2, it can be seen that the battery according to the embodiment of the present invention is superior to the comparative example in terms of overcharge safety without reducing the 2C capacity characteristic.

상기 실시예 1 및 비교예 1의 각형 전지에 대하여 사이클릭 볼타모그램을 측정하였다. 이때 사이클릭 볼타모그램은 리튬을 기준 전극으로 사용하고 대극과 작용전극으로 백금전극을 사용하였으며, 주사속도는 10 mV/s이고 OCV에서 6.0V의 전압 범위에서 측정하였다. 실시예 1 및 비교예 1의 전지에 대한 사이클릭 볼타모그램 측정결과를 각각 도 2a 및 도 2b에 나타내었다. 도 2a를 보면 전해액의 분해범위인 5-6V의 범위에서 첨가제의 분해 피크가 나타남을 확인할 수 있는데 이와 같은 첨가제의 산화분해가 과충전시 충전전류를 소비하여 전지의 안전성을 확보하는 데 기여하는 것으로 생각된다. 이에 비하여 비교예 1(도 2b)의 경우에는 전해액 분해전류만이 나타나며 그 전류밀도는 사이클링에 따라 거의 일정한 것으로 나타났다. The cyclic voltammogram was measured about the square cells of Example 1 and Comparative Example 1. The cyclic voltammogram used lithium as a reference electrode and a platinum electrode as a counter electrode and a working electrode. The scanning speed was 10 mV / s and measured at a voltage range of OCV to 6.0V. The cyclic voltammogram measurement results for the batteries of Example 1 and Comparative Example 1 are shown in FIGS. 2A and 2B, respectively. 2a shows that the decomposition peak of the additive appears in the range of 5-6V, which is the decomposition range of the electrolyte, and oxidative decomposition of such additives is thought to contribute to securing the safety of the battery by consuming the charging current during overcharging. do. On the other hand, in Comparative Example 1 (FIG. 2B), only the electrolyte decomposition current appeared and the current density was found to be almost constant according to cycling.

도 3a는 실시예 1의 전지를 2A의 전류로 12V 과충전할 경우 전지의 전류 및 전압 특성을 보인 도면이다. 도 3a에 도시된 바와 같이 본 발명의 실시예 1의 전지는 전해질 첨가제가 전지 내부 온도를 조기에 상승시켜 세퍼레이터의 기공을 균일하게 차단시키는 셧 다운(shut down) 현상에 의하여 과충전 반응이 억제된 것으로 보인다. 이는 전해질 첨가제가 전극 표면에 피막을 형성함으로써 전류의 흐름을 차단하였기 때문인 것으로 생각된다. 도 3b는 비교예 1의 전지를 2A의 전류로 12V 과충전할 경우 전지의 전류, 온도 및 전압 특성을 보인 도면이다. 도 3b에 도시된 바와 같이 비교예 1의 경우에는 전지의 온도가 급격히 상승하였으며 전압도 약 15V까지 올라간 후 0V로 떨어져 전지의 단락 현상이 일어난 것을 알 수 있다3A is a diagram showing the current and voltage characteristics of the battery when the battery of Example 1 is overcharged with 12V at a current of 2A. As shown in FIG. 3A, the battery of Example 1 of the present invention is suppressed by an overcharge reaction by a shut down phenomenon in which the electrolyte additive increases the temperature of the battery early to uniformly block pores of the separator. see. This is considered to be because the electrolyte additive blocked the flow of current by forming a film on the electrode surface. 3B is a diagram showing current, temperature, and voltage characteristics of a battery when the battery of Comparative Example 1 is overcharged with a current of 2A at 12V. As shown in FIG. 3B, in the case of Comparative Example 1, the temperature of the battery was sharply increased, and the voltage was also increased to about 15V and then dropped to 0V.

본 발명의 전해질을 포함하는 리튬 전지는 전기화학적 특성, 특히 고율에서의 용량 특성이 우수할 뿐만 아니라 과충전 특성과 같은 전지의 안전성이 기존의 비수계 전해질을 사용하는 전지에 월등히 우수하다.The lithium battery including the electrolyte of the present invention not only has excellent electrochemical characteristics, especially capacity characteristics at high rates, but also excellent battery safety, such as overcharging characteristics, in a battery using a conventional non-aqueous electrolyte.

도 1은 각형 리튬 이차 전지의 단면도.1 is a cross-sectional view of a rectangular lithium secondary battery.

도 2a 및 2b는 각각 본 발명에 따른 실시예 1 및 비교예 1의 사이클릭 볼타모그램 측정결과를 보인 도면.Figure 2a and 2b is a view showing a cyclic voltammogram measurement results of Example 1 and Comparative Example 1 according to the present invention, respectively.

도 3a 및 3b는 각각 본 발명에 따른 실시예 1 및 비교예 1의 과충전시 전류, 전압, 및 온도 특성을 보인 도면.3A and 3B are diagrams showing current, voltage, and temperature characteristics during overcharging of Example 1 and Comparative Example 1 according to the present invention, respectively.

Claims (20)

비수성 유기용매; 리튬염; 및 하기 화학식 1 내지 화학식 3의 화합물로 이루어진 군에서 1종 이상 선택되는 첨가제를 포함하는 리튬 전지용 전해질.Non-aqueous organic solvents; Lithium salts; And at least one additive selected from the group consisting of compounds represented by Formulas 1 to 3 below. [화학식 1][Formula 1] [화학식 2][Formula 2] [화학식 3][Formula 3] (상기 식들에서, A1 내지 A15는 각각 독립적으로 수소, 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수임.)(Wherein A 1 to A 15 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently NR (R is hydrogen or alkyl), S, And O; n is an integer of 5, or 6. 제1항에 있어서, 상기 전해질 첨가제는 [2,2']바이티오펜([2,2']Bithiophene), [2,2']바이퓨란([2,2']Bifuran), 1,1'-디메틸-1H,1'H-[2,2']바이피롤(1,1'-Dimethyl-1H,1'H-[2,2']bipyrrole), [3,3']바이티오펜([3,3']Bithiophene), [3,3']바이퓨란([3,3']Bifuran), 1,1'-디메틸-1H,1'H-[3,3']바이피롤(1,1'-Dimethyl-1H,1'H-[3,3']bipyrrole), 3-시클로헥실티오펜(3-Cyclohexyl thiophene), 3-시클로펜틸티오펜(3-Cyclopentyl thiophene), 3-시클로펜틸퓨란(3-Cyclopentyl furan), 및 이들의 혼합물로 이루어진 군에서 선택되는 적어도 하나의 화합물인 리튬 전지용 전해질.The method of claim 1, wherein the electrolyte additive is [2,2 '] bithiophene ([2,2'] Bithiophene), [2,2 '] bifuran ([2,2'] Bifuran), 1,1 '-Dimethyl-1H, 1'H- [2,2'] bipyrrole (1,1'-Dimethyl-1H, 1'H- [2,2 '] bipyrrole), [3,3'] bithiophene ([3,3 '] Bithiophene), [3,3'] bifuran ([3,3 '] Bifuran), 1,1'-dimethyl-1H, 1'H- [3,3'] bipyrrole ( 1,1'-Dimethyl-1H, 1'H- [3,3 '] bipyrrole), 3-cyclohexyl thiophene, 3-cyclopentylthiophene, 3- An electrolyte for a lithium battery, which is at least one compound selected from the group consisting of cyclopentylfuran (3-Cyclopentyl furan), and mixtures thereof. 제1항에 있어서, 상기 전해질 첨가제의 함량은 전해질에 대하여 0.01 내지 50 중량%인 리튬 전지용 전해질.The electrolyte for a lithium battery of claim 1, wherein the content of the electrolyte additive is 0.01 to 50 wt% based on the electrolyte. 제3항에 있어서, 상기 전해질 첨가제의 함량은 전해질에 대하여 1 내지 5 중량%인 리튬 전지용 전해질.The electrolyte for a lithium battery of claim 3, wherein the content of the electrolyte additive is 1 to 5 wt% based on the electrolyte. 제1항에 있어서, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6 , LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F 9SO3, LiAlO4, LiAlCl4, LiN(CxF2x+1 SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, 및 LiI로 이루어진 군에서 선택되는 적어도 하나인 리튬 전지용 전해질.The method of claim 1, wherein the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 4 , For a lithium battery which is at least one selected from the group consisting of LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, LiCl, and LiI Electrolyte. 제5항에 있어서, 상기 리튬염은 0.6 내지 2.0M의 농도로 사용되는 리튬 전지용 전해질.The electrolyte for a lithium battery of claim 5, wherein the lithium salt is used at a concentration of 0.6 to 2.0M. 제1항에 있어서, 상기 비수성 유기용매는 카보네이트, 에스테르, 에테르 및 케톤으로 이루어진 군에서 선택되는 적어도 하나의 용매인 리튬 전지용 전해질.The electrolyte of claim 1, wherein the non-aqueous organic solvent is at least one solvent selected from the group consisting of carbonates, esters, ethers, and ketones. 제7항에 있어서, 상기 카보네이트는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택되는 적어도 하나의 용매인 리튬 전지용 전해질.The method of claim 7, wherein the carbonate is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ethylene An electrolyte for a lithium battery, which is at least one solvent selected from the group consisting of carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). 제7항에 있어서, 상기 카보네이트는 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트의 혼합용매인 리튬 전지용 전해질.The electrolyte of claim 7, wherein the carbonate is a mixed solvent of a cyclic carbonate and a chain carbonate. 제1항에 있어서, 상기 비수성 유기용매는 카보네이트계 용매와 방향족 탄화수소계 유기용매의 혼합용매인 리튬 전지용 전해질.The electrolyte of claim 1, wherein the non-aqueous organic solvent is a mixed solvent of a carbonate solvent and an aromatic hydrocarbon organic solvent. 제10항에 있어서, 상기 방향족 탄화수소계 유기용매는 하기 화학식 4의 방향족 화합물인 리튬 전지용 전해질.The electrolyte of claim 10, wherein the aromatic hydrocarbon-based organic solvent is an aromatic compound represented by Formula 4 below. [화학식 4][Formula 4] (상기 식에서 R1은 할로겐 또는 탄소수 1 내지 10의 알킬이고 n는 0 내지 6의 정수임.)(Wherein R 1 is halogen or alkyl of 1 to 10 carbon atoms and n is an integer of 0 to 6). 제10항에 있어서, 상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 클로로벤젠, 니트로벤젠, 톨루엔, 플루오로톨루엔, 트리플루오로톨루엔, 자일렌 및 이들의 혼합물로 이루어진 군에서 선택되는 적어도 하나의 용매인 리튬 전지용 전해질.The method of claim 10, wherein the aromatic hydrocarbon organic solvent is at least one selected from the group consisting of benzene, fluorobenzene, chlorobenzene, nitrobenzene, toluene, fluorotoluene, trifluorotoluene, xylene, and mixtures thereof. A lithium battery electrolyte which is a solvent. 제10항에 있어서, 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 혼합되는 것인 리튬 전지용 전해질.The electrolyte of claim 10, wherein the carbonate solvent and the aromatic hydrocarbon organic solvent are mixed in a volume ratio of 1: 1 to 30: 1. 비수성 유기용매; 리튬염; 및 하기 화학식 1 내지 화학식 3의 화합물로 이루어진 군에서 1종 이상 선택되는 첨가제를 혼합하는 단계를 포함하는 리튬 전지용 전해질의 제조방법. Non-aqueous organic solvents; Lithium salts; And mixing at least one additive selected from the group consisting of compounds represented by Formulas 1 to 3 below. [화학식 1][Formula 1] [화학식 2][Formula 2] [화학식 3][Formula 3] (상기 식들에서, A1 내지 A15는 각각 독립적으로 수소, 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수임.)(Wherein A 1 to A 15 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently NR (R is hydrogen or alkyl), S, And O; n is an integer of 5, or 6. 비수성 유기용매; 리튬염; 및 하기 화학식 1 내지 화학식 3의 화합물; 다관능성 아크릴레이트 또는 그 중합체 및 이들의 혼합물로 이루어진 군에서 선택되는 화합물; 및 유기 과산화물을 포함하는 전해질 형성용 조성물을 제조하는 단계; 및 Non-aqueous organic solvents; Lithium salts; And a compound of Formula 1 to Formula 3; A compound selected from the group consisting of polyfunctional acrylates or polymers thereof and mixtures thereof; And preparing a composition for forming an electrolyte comprising an organic peroxide; And 상기 전해질 형성용 조성물을 집전체에 함침 내지는 코팅하여 고체 고분자 전해질을 제조하는 단계Preparing a solid polymer electrolyte by impregnating or coating the current collector-forming composition on a current collector 를 포함하는 리튬 전지용 전해질의 제조방법.Method for producing a lithium battery electrolyte comprising a. [화학식 1][Formula 1] [화학식 2][Formula 2] [화학식 3][Formula 3] (상기 식들에서, A1 내지 A15는 각각 독립적으로 수소, 할로겐, 알킬, 알콕시, 및 히드록시로 이루어진 군에서 선택되고; X 및 Y는 각각 독립적으로 NR(R은 수소 또는 알킬), S, 및 O로 이루어진 군에서 선택되며; n은 5, 또는 6의 정수임.)(Wherein A 1 to A 15 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, and hydroxy; X and Y are each independently NR (R is hydrogen or alkyl), S, And O; n is an integer of 5, or 6. 제15항에 있어서, 상기 전해질 형성용 조성물은 염기성 촉매를 더욱 포함하는 것인 리튬 전지용 전해질의 제조방법.The method of claim 15, wherein the composition for forming an electrolyte further comprises a basic catalyst. 제15항에 있어서, 상기 고체 고분자 전해질을 열처리 또는 자외선(UV) 조사(irradiation)하여 중합반응시키는 단계The method of claim 15, wherein the solid polymer electrolyte is heat-treated or irradiated with ultraviolet (UV) radiation to polymerize the solid polymer electrolyte. 를 더욱 포함하는 리튬 전지용 전해질의 제조방법.Method for producing a lithium battery electrolyte further comprising. 제17항에 있어서, 상기 열처리온도는 40 내지 110 ℃인 리튬 전지용 전해질의 제조방법.18. The method of claim 17, wherein the heat treatment temperature is 40 to 110 ° C. 제1항 내지 제13항 중 어느 하나의 항에 따른 전해질을 포함하는 리튬 전지.A lithium battery comprising the electrolyte according to any one of claims 1 to 13. 제19항에 있어서, 상기 리튬 전지가 리튬 이온 전지 또는 리튬 폴리머 전지인 리튬 전지.The lithium battery according to claim 19, wherein said lithium battery is a lithium ion battery or a lithium polymer battery.
KR1020030082682A 2003-11-20 2003-11-20 An electrolyte for a lithium battery and a lithium battery comprising the same KR20050048935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030082682A KR20050048935A (en) 2003-11-20 2003-11-20 An electrolyte for a lithium battery and a lithium battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030082682A KR20050048935A (en) 2003-11-20 2003-11-20 An electrolyte for a lithium battery and a lithium battery comprising the same

Publications (1)

Publication Number Publication Date
KR20050048935A true KR20050048935A (en) 2005-05-25

Family

ID=37247535

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030082682A KR20050048935A (en) 2003-11-20 2003-11-20 An electrolyte for a lithium battery and a lithium battery comprising the same

Country Status (1)

Country Link
KR (1) KR20050048935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600862B2 (en) 2016-06-02 2023-03-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600862B2 (en) 2016-06-02 2023-03-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery containing same

Similar Documents

Publication Publication Date Title
KR100515332B1 (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR100804689B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
US7678504B2 (en) Lithium secondary battery and a method for preparing the same
KR100463188B1 (en) An electrolyte for a lithium ion battery and a lithium ion battery comprising the same
KR100536252B1 (en) Electrolyte for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR20050096401A (en) Electrolyte for lithium battery and lithium battery comprising same
JP4842617B2 (en) Lithium battery electrolyte and lithium battery
EP1653548B1 (en) Electrolyte for lithium battery and lithium battery comprising same
JP4727387B2 (en) Lithium battery electrolyte and lithium battery including the same
JP4754323B2 (en) Lithium battery electrolyte and lithium battery
KR100766930B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
US7238452B2 (en) Electrolyte for lithium battery and lithium battery comprising same
KR100471979B1 (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR100467451B1 (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR20050048935A (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR101156251B1 (en) Lithium ion battery
KR100982323B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
KR100570601B1 (en) Rechargeable lithium battery
KR101135480B1 (en) Electrolyte for lithium ion battery and lithium ion battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application