JP2006242778A - Oxidation-reduction potential measuring device and measuring method of oxidation-reduction potential - Google Patents

Oxidation-reduction potential measuring device and measuring method of oxidation-reduction potential Download PDF

Info

Publication number
JP2006242778A
JP2006242778A JP2005059723A JP2005059723A JP2006242778A JP 2006242778 A JP2006242778 A JP 2006242778A JP 2005059723 A JP2005059723 A JP 2005059723A JP 2005059723 A JP2005059723 A JP 2005059723A JP 2006242778 A JP2006242778 A JP 2006242778A
Authority
JP
Japan
Prior art keywords
liquid
measured
oxidation
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005059723A
Other languages
Japanese (ja)
Other versions
JP4528159B2 (en
Inventor
Hidemitsu Aoki
秀充 青木
Hisashi Kawamata
尚志 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005059723A priority Critical patent/JP4528159B2/en
Publication of JP2006242778A publication Critical patent/JP2006242778A/en
Application granted granted Critical
Publication of JP4528159B2 publication Critical patent/JP4528159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure stably an oxidation-reduction potential of liquid to be measured. <P>SOLUTION: This oxidation-reduction potential measuring device 100 has a measuring vessel 101 for storing reduction water 115 which is a measuring object of the oxidation-reduction potential; a working electrode 105 and a reference electrode 107 arranged in contact with the reduction water 115 in the measuring vessel 101, for measuring the oxidation-reduction potential of the reduction water 115; a communication port of a liquid supply tube 109 provided near the bottom part of the measuring vessel 101, for supplying the reduction water 115 to the measuring vessel 101; and a communication port of a drain tube 111 provided near the bottom part of the measuring vessel 101, for discharging the reduction water 115 from the measuring vessel 101. A communication port of an overflow tube 113 for overflowing and discharging excessive reduction water 115 in the measuring vessel 101 is provided on a furthermore upper part of the communication port of the liquid supply tube 109. The working electrode 105 and the reference electrode 107 are arranged on the furthermore lower side than the communication port of the overflow tube 113. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化還元電位測定装置および酸化還元電位の測定方法に関する。   The present invention relates to a redox potential measuring apparatus and a redox potential measuring method.

機能水の一つである還元水(水素水)は、たとえば半導体装置の製造ラインにおいて、Cu配線のCMP、CMP洗浄、剥離リンス等に用いられている。また、半導体以外の分野においても、たとえば、液晶や工業部品の洗浄に広く用いられている。   Reduced water (hydrogen water), which is one of functional waters, is used for CMP of a Cu wiring, CMP cleaning, peeling rinsing and the like in a semiconductor device manufacturing line, for example. In fields other than semiconductors, for example, they are widely used for cleaning liquid crystals and industrial parts.

還元水の水質を制御するために、pHおよび酸化還元電位(ORP:Oxidation Reduction Potential)がモニタされる。しかしながら、ORP電極(白金)の表面に水素ガスが付着し、正しい測定が困難となる場合がある。   In order to control the water quality of the reduced water, the pH and oxidation reduction potential (ORP) are monitored. However, hydrogen gas may adhere to the surface of the ORP electrode (platinum), making correct measurement difficult.

ORP電極への気泡接触を防止する技術として、従来、特許文献1に記載のものがある。特許文献1には、外筒および内筒からなる二重構造の測定槽とし、内筒を衝突板として用い、測定槽側面底部に液供給管を設け、測定槽側面上部に液排出管を設けた酸化還元電位測定装置が記載されている。   Conventionally, as a technique for preventing bubble contact with the ORP electrode, there is one disclosed in Patent Document 1. In Patent Document 1, a measurement tank having a double structure including an outer cylinder and an inner cylinder is used, the inner cylinder is used as a collision plate, a liquid supply pipe is provided at the bottom of the measurement tank, and a liquid discharge pipe is provided at the upper part of the measurement tank. A redox potential measuring device is described.

この装置は、液体排出管が、液体供給管および酸化還元電位測定電極よりも上方に位置するように構成されるとともに、液がオーバーフローにより常時流出するように構成されている。これにより、上昇流により常時新しい液体が電極に接触し、測定値の変動を防止することができるとされている。
特開2004−340717号公報
This apparatus is configured such that the liquid discharge pipe is positioned above the liquid supply pipe and the oxidation-reduction potential measurement electrode, and the liquid always flows out due to overflow. Thereby, it is said that a new liquid always contacts an electrode by an upward flow, and the fluctuation | variation of a measured value can be prevented.
JP 2004-340717 A

ところが、特許文献1に記載の技術について本発明者が検討したところ、簡素な装置構成で酸化還元電位の測定を長期間安定的に行う点で、改善の余地があった。   However, when the inventor examined the technique described in Patent Document 1, there was room for improvement in that the measurement of the oxidation-reduction potential was stably performed over a long period of time with a simple apparatus configuration.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽の前記底部の近傍に設けられ、前記測定槽から前記被測定液を排出する排出口と、
を有することを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
Provided near the bottom of the measurement tank, and a discharge port for discharging the liquid to be measured from the measurement tank;
There is provided an oxidation-reduction potential measuring device characterized by comprising:

また、本発明によれば、
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定する工程と、
酸化還元電位を測定する前記工程の後、測定槽の底部の近傍から前記被測定液を排出し、前記電極の表面を露出させる工程と、
電極の表面を露出させる前記工程の後、前記測定槽の前記底部の近傍から被測定液を供給し、前記電極を再度前記被測定液に接触させる工程と、
を含むことを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
Contacting an electrode for measuring the oxidation-reduction potential of the measurement liquid with the measurement liquid, and measuring the oxidation-reduction potential of the measurement liquid;
After the step of measuring the oxidation-reduction potential, discharging the liquid to be measured from the vicinity of the bottom of the measurement tank and exposing the surface of the electrode;
After the step of exposing the surface of the electrode, supplying a liquid to be measured from the vicinity of the bottom of the measurement tank, and bringing the electrode into contact with the liquid to be measured again;
A method for measuring an oxidation-reduction potential is provided.

本発明によれば、測定槽の底部の近傍に、被測定液を排出する排出口が設けられているため、排出口から被測定液を排出して電極を露出させることができる。このため、被測定液との接触中に電極に付着した気泡を除去し、その後再度被測定液に電極を接触させて酸化還元電位の測定を行うことができる。よって、この測定装置を用いることにより、酸化還元電位の測定を安定的に行うことができる。   According to the present invention, since the discharge port for discharging the liquid to be measured is provided in the vicinity of the bottom of the measurement tank, the liquid to be measured can be discharged from the discharge port to expose the electrode. For this reason, bubbles attached to the electrode during contact with the liquid to be measured can be removed, and then the electrode is brought into contact with the liquid to be measured again to measure the oxidation-reduction potential. Therefore, by using this measuring apparatus, it is possible to stably measure the redox potential.

なお、本発明において、排出口が測定槽の近傍に設けられているとは、被測定液を排出した際に電極を露出させることができる程度に充分低い位置に配置されていることを指し、たとえば、供給口を測定槽の底面または側面の低い位置に設けることができる。   In the present invention, the fact that the discharge port is provided in the vicinity of the measurement tank means that the discharge port is disposed at a position sufficiently low so that the electrode can be exposed when the liquid to be measured is discharged, For example, the supply port can be provided at a low position on the bottom surface or side surface of the measurement tank.

また、本発明においては、供給口が測定槽の底部の近傍に設けられているため、測定槽内に被測定液を供給する際に、被測定液が測定槽内の気泡を巻き込むことを抑制できる。このため、被測定液への気体の混入による、酸化還元電位の変動を抑制することができる。   In the present invention, since the supply port is provided in the vicinity of the bottom of the measurement tank, the measurement liquid is prevented from entraining bubbles in the measurement tank when the measurement liquid is supplied into the measurement tank. it can. For this reason, the fluctuation | variation of the oxidation reduction potential by mixing of the gas to a to-be-measured liquid can be suppressed.

なお、本発明において、測定槽が被測定液を収容するとは、酸化還元電位を測定する電極が被測定液に接する程度の量の被測定液が測定槽内に満たされることをいい、被測定液が測定槽内にとどまっている場合には限られず、被測定液の流動経路中に測定槽が配置されており、被測定液が測定液中に連続的に供給および排出される構成であってもよい。また、供給口および排出口は、電極が被測定液に接する程度の量の被測定液が測定槽内に満たされるように構成される。   In the present invention, the measurement tank containing the measurement liquid means that the measurement tank is filled with an amount of the measurement liquid in such an amount that the electrode for measuring the oxidation-reduction potential is in contact with the measurement liquid. It is not limited to the case where the liquid stays in the measurement tank, and the measurement tank is arranged in the flow path of the measurement liquid, and the measurement liquid is continuously supplied to and discharged from the measurement liquid. May be. Further, the supply port and the discharge port are configured such that the measurement tank is filled with an amount of the liquid to be measured such that the electrode is in contact with the measurement liquid.

また、供給口が測定槽の近傍に設けられているとは、被測定液への気体の混入を充分抑制できる位置であって、被測定液を測定槽の下部から上部に向かって穏やかに供給できる位置に供給口が配置されていることを指し、たとえば、供給口を測定槽の底面または側面の低い位置に設けることができる。   In addition, the supply port is provided in the vicinity of the measurement tank is a position where the gas mixture into the measurement liquid can be sufficiently suppressed, and the measurement liquid is gently supplied from the lower part to the upper part of the measurement tank. For example, the supply port can be provided at a low position on the bottom surface or side surface of the measurement tank.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽内の前記被測定液に振動を与える振動手段と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
Vibration means for applying vibration to the liquid to be measured in the measurement tank;
Have
There is provided an oxidation-reduction potential measuring apparatus, wherein the electrode is disposed below the surplus liquid discharge port.

また、本発明によれば、
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させた状態で、前記被測定液を振動させながら、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
An oxidation reduction characterized by measuring an oxidation-reduction potential of the measurement liquid while vibrating the measurement liquid while an electrode for measuring the oxidation-reduction potential of the measurement liquid is in contact with the measurement liquid. A method for measuring potential is provided.

本発明によれば、被測定液の酸化還元電位を測定する際に、被測定液に振動を与えることができる。被測定液に振動を与えるとは、電極の近傍に乱流が生じるような振動を被測定液に与えることを指す。こうすることにより、電極表面に付着した気泡を効果的に除去することができる。よって、被測定液の酸化還元電位測定を安定的に行うことができる。   According to the present invention, when measuring the oxidation-reduction potential of a liquid to be measured, vibration can be given to the liquid to be measured. Giving vibration to the liquid to be measured refers to giving vibration to the liquid to be measured such that turbulent flow is generated in the vicinity of the electrode. By doing so, bubbles attached to the electrode surface can be effectively removed. Therefore, it is possible to stably measure the redox potential of the liquid to be measured.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽内の前記被測定液を攪拌する攪拌手段と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
Stirring means for stirring the liquid to be measured in the measurement tank;
Have
There is provided an oxidation-reduction potential measuring apparatus, wherein the electrode is disposed below the surplus liquid discharge port.

また、本発明によれば、
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させた状態で、前記被測定液を攪拌しながら、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
An oxidation reduction characterized by measuring an oxidation-reduction potential of the measurement liquid while stirring the measurement liquid in a state where an electrode for measuring the oxidation-reduction potential of the measurement liquid is in contact with the measurement liquid. A method for measuring potential is provided.

本発明によれば、被測定液の酸化還元電位を測定する際に、被測定液を攪拌することができる。被測定液を攪拌するとは、電極の近傍に乱流が生じるように被測定液を攪拌することを指す。こうすることにより、電極表面に付着した気泡を効果的に除去することができる。よって、被測定液の酸化還元電位測定を安定的に行うことができる。   According to the present invention, when measuring the oxidation-reduction potential of the liquid to be measured, the liquid to be measured can be stirred. Stirring the liquid to be measured refers to stirring the liquid to be measured so that a turbulent flow is generated in the vicinity of the electrode. By doing so, bubbles attached to the electrode surface can be effectively removed. Therefore, it is possible to stably measure the redox potential of the liquid to be measured.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽内に配置された前記電極の近傍に、不活性ガスを導くガス供給部と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
In the vicinity of the electrode arranged in the measurement tank, a gas supply unit for introducing an inert gas,
Have
There is provided an oxidation-reduction potential measuring apparatus, wherein the electrode is disposed below the surplus liquid discharge port.

また、本発明によれば、
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させるとともに、前記電極の近傍に不活性ガスを導きながら、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
Oxidation characterized in that an electrode for measuring a redox potential of a liquid to be measured is brought into contact with the liquid to be measured and an oxidation-reduction potential of the liquid to be measured is measured while introducing an inert gas in the vicinity of the electrode. A method for measuring the reduction potential is provided.

本発明によれば、電極の近傍に不活性ガスを導きながら、被測定液の酸化還元電位を測定を行うことができる。このため、長期間測定を続けた場合にも、不活性ガスの上昇とともに電極表面に付着した気泡を除去することができる。よって、被測定液の酸化還元電位測定を安定的に行うことができる。   According to the present invention, the oxidation-reduction potential of the liquid to be measured can be measured while introducing an inert gas in the vicinity of the electrode. For this reason, even when measurement is continued for a long period of time, bubbles adhering to the electrode surface can be removed as the inert gas rises. Therefore, it is possible to stably measure the redox potential of the liquid to be measured.

なお、本発明において、ガス供給部は、不活性ガスを供給して、電極の近傍に気泡を除去できる程度の気流を生じさせる部材であればよく、たとえば、不活性ガスの噴出口とすることができる。また、本発明において、不活性ガスとは、酸化還元電位測定に影響を与えないガスを指す。   In the present invention, the gas supply unit may be any member that supplies an inert gas and generates an air flow that can remove bubbles in the vicinity of the electrode. For example, the gas supply unit may be an inert gas outlet. Can do. In the present invention, the inert gas refers to a gas that does not affect the oxidation-reduction potential measurement.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽の内部が外部に対して陽圧になるように前記供給口から前記測定槽内に前記被測定液を送液する送液部と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置され、
前記測定槽が密閉構造を有することを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
A liquid feeding section for feeding the liquid to be measured from the supply port into the measurement tank so that the inside of the measurement tank has a positive pressure with respect to the outside;
Have
The electrode is disposed below the excess liquid discharge port;
An oxidation-reduction potential measuring device is provided in which the measurement tank has a sealed structure.

また、本発明によれば、
被測定液の酸化還元電位を測定する電極を、密閉した測定槽内で前記被測定液に接触させた状態で、前記測定槽の内部を前記測定槽の外部よりも陽圧として、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
The electrode for measuring the oxidation-reduction potential of the liquid to be measured is in contact with the liquid to be measured in a sealed measuring tank, and the inside of the measuring tank is set to a positive pressure from the outside of the measuring tank. There is provided a method for measuring a redox potential characterized by measuring a redox potential of a liquid.

本発明によれば、被測定液を外部よりも陽圧にした状態で被測定液を電極に接触させて、酸化還元電位の測定を行うことができる。このため、測定槽内における気泡の発生を抑制できるため、酸化還元電位測定を長期間安定的に行うことができる。   According to the present invention, the redox potential can be measured by bringing the measured liquid into contact with the electrode in a state where the measured liquid is at a positive pressure from the outside. For this reason, since generation | occurrence | production of the bubble in a measurement tank can be suppressed, a redox potential measurement can be performed stably for a long period of time.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記被測定液を冷却する冷却手段と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
A cooling means for cooling the liquid to be measured;
Have
There is provided an oxidation-reduction potential measuring apparatus, wherein the electrode is disposed below the surplus liquid discharge port.

また、本発明によれば、
被測定液を冷却した状態で、前記被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
An oxidation-reduction potential characterized by measuring an oxidation-reduction potential of the measurement liquid by bringing an electrode for measuring the oxidation-reduction potential of the measurement liquid in contact with the measurement liquid while the measurement liquid is cooled. A measurement method is provided.

本発明によれば、被測定液を冷却した状態で電極に接触させて、酸化還元電位の測定を行うことができる。このため、測定槽内における気泡の発生を抑制できるため、酸化還元電位測定を長期間安定的に行うことができる。   According to the present invention, the redox potential can be measured by bringing the liquid to be measured into contact with the electrode in a cooled state. For this reason, since generation | occurrence | production of the bubble in a measurement tank can be suppressed, a redox potential measurement can be performed stably for a long period of time.

なお、本発明において、被測定液を冷却するとは、被測定液中の気泡の発生が抑制できる程度の温度まで被測定液の温度を低下させることを指し、たとえば10℃以下に被測定液を冷却することをいう。   In the present invention, to cool the liquid to be measured refers to lowering the temperature of the liquid to be measured to a temperature that can suppress the generation of bubbles in the liquid to be measured. It means cooling.

本発明によれば、
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記電極を洗浄する洗浄液を収容する洗浄槽と、
を有し、
前記測定槽が、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽から前記被測定液を排出する排出口と、
前記電極を前記測定槽中に取り付ける第一電極取付部と、
を有し、
前記洗浄槽が、
前記電極を前記洗浄槽中に取り付ける第二電極取付部を有することを特徴とする酸化還元電位測定装置が提供される。
According to the present invention,
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A cleaning tank containing a cleaning solution for cleaning the electrode;
Have
The measuring tank is
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
A discharge port for discharging the liquid to be measured from the measurement tank;
A first electrode mounting portion for mounting the electrode in the measuring tank;
Have
The washing tank is
There is provided an oxidation-reduction potential measuring device having a second electrode mounting portion for mounting the electrode in the cleaning tank.

また、本発明によれば、
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定する工程と、
酸化還元電位を測定する前記工程の後、前記電極を洗浄液に接触させて洗浄する工程と、
電極を洗浄液に接触させて洗浄する前記工程の後、前記電極を再度被測定液に接触させて、前記被測定液の酸化還元電位を測定する工程と、
を含むことを特徴とする酸化還元電位の測定方法が提供される。
Moreover, according to the present invention,
Contacting an electrode for measuring the oxidation-reduction potential of the measurement liquid with the measurement liquid, and measuring the oxidation-reduction potential of the measurement liquid;
After the step of measuring the oxidation-reduction potential, the step of cleaning the electrode in contact with a cleaning solution;
After the step of bringing the electrode into contact with the cleaning liquid and cleaning, the step of bringing the electrode into contact with the liquid to be measured again and measuring the oxidation-reduction potential of the liquid to be measured;
A method for measuring an oxidation-reduction potential is provided.

本発明によれば、酸化還元電位測定を行った後、電極を洗浄槽中で洗浄液に接触させて洗浄し、再度、酸化還元電位の測定を行うことができる。電極は取り外し可能であって、第一電極取付部または第二電極取付部のいずれかに電極を取り付けることにより、測定槽および洗浄槽のいずれにも配置することができる。このため、電極表面に水素が吸着または吸蔵した場合にも、これを除去して再度測定を行うことができる。よって、酸化還元電位測定を長期間安定的に行うことができる。   According to the present invention, after measuring the oxidation-reduction potential, the electrode can be cleaned by contacting with the cleaning liquid in the cleaning tank, and the oxidation-reduction potential can be measured again. The electrode is removable, and can be placed in either the measurement tank or the cleaning tank by attaching the electrode to either the first electrode attachment portion or the second electrode attachment portion. For this reason, even when hydrogen is adsorbed or occluded on the electrode surface, it can be removed and measurement can be performed again. Therefore, the redox potential can be measured stably for a long period.

本発明において、前記測定槽内に前記被測定液を供給しつつ、前記電極の設置位置よりも上部から、余剰の前記被測定液を越流させて排出しながら、前記被測定液の酸化還元電位を測定することができる。こうすれば、電極を被測定液に接触させつつ、測定槽内の被測定液を入れ替えながら測定を行うことができる。このため、被測定液の酸化還元電位の経時変化を長期間安定的に測定することができる。   In the present invention, while supplying the liquid to be measured into the measurement tank, the excess of the liquid to be measured overflows and is discharged from above the position where the electrode is installed. The potential can be measured. If it carries out like this, it can measure, replacing the to-be-measured liquid in a measuring tank, contacting an electrode to a to-be-measured liquid. For this reason, the time-dependent change of the oxidation-reduction potential of the liquid to be measured can be stably measured for a long time.

本発明において、前記被測定液は、還元水とすることができる。こうすることにより、還元水の酸化還元電位を安定的に測定することができる。よって、還元の酸化還元電位を確実に把握することができる。本明細書において、還元水とは、純水よりも還元作用の高い水であり、たとえば純水に水素ガスを溶解して得られる水素水や、純水を電気分解して得られる電解水が挙げられる。還元水の酸化還元電位は、たとえば0mV未満であり、さらに具体的には、−1V以上−500mV以下とすることができる。なお、ここでは酸化還元電位は銀・塩化銀電極を用いた値として記載しており、標準水素電極を用いた値に換算するには、その想定温度での補正値(通常、約+200mV)を加算すればよい。また、還元水の水素イオン濃度は、たとえばpH6.5以上14以下である。   In the present invention, the liquid to be measured can be reduced water. By doing so, the redox potential of the reduced water can be stably measured. Therefore, it is possible to reliably grasp the redox potential of reduction. In this specification, reduced water is water having a higher reducing action than pure water. For example, hydrogen water obtained by dissolving hydrogen gas in pure water or electrolyzed water obtained by electrolyzing pure water is used. Can be mentioned. The oxidation-reduction potential of the reduced water is, for example, less than 0 mV, and more specifically can be set to −1 V or more and −500 mV or less. Here, the oxidation-reduction potential is described as a value using a silver / silver chloride electrode, and in order to convert to a value using a standard hydrogen electrode, a correction value at the assumed temperature (usually about +200 mV) is used. What is necessary is just to add. The hydrogen ion concentration of the reducing water is, for example, pH 6.5 or more and 14 or less.

なお、これらの各構成の任意の組み合わせや、本発明の表現を方法、装置などの間で変換したものもまた本発明の態様として有効である。   It should be noted that any combination of these components, or a conversion of the expression of the present invention between a method, an apparatus, and the like is also effective as an aspect of the present invention.

たとえば、本発明によれば、前記酸化還元電位測定装置と、酸化還元電位の測定を制御する制御部とを備える酸化還元電位測定システムが提供される。   For example, according to the present invention, there is provided an oxidation-reduction potential measurement system including the oxidation-reduction potential measurement device and a control unit that controls measurement of the oxidation-reduction potential.

また、本発明によれば、被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定し、酸化還元電位を測定した後、前記測定槽の底部の近傍から前記被測定液を排出し、前記電極の表面を露出させ、その後、前記測定槽の前記底部の近傍から被測定液を供給し、前記電極を再度被測定液に接触させるように制御されることを特徴とする酸化還元電位測定システムが提供される。   According to the present invention, the electrode for measuring the oxidation-reduction potential of the liquid to be measured is brought into contact with the liquid to be measured, the redox potential of the liquid to be measured is measured, and the redox potential is measured. The measurement liquid is discharged from the vicinity of the bottom of the measurement tank, the surface of the electrode is exposed, and then the measurement liquid is supplied from the vicinity of the bottom of the measurement tank, and the electrode is again contacted with the measurement liquid. An oxidation-reduction potential measurement system is provided that is controlled to be controlled.

本発明によれば、簡素な構成で酸化還元電位を安定的に測定することができる。   According to the present invention, the oxidation-reduction potential can be stably measured with a simple configuration.

以下、本発明の実施形態について、図面を参照して説明する。なお、以下の実施形態においては、還元水の水質を制御するための酸化還元電位のモニタに酸化還元電位測定装置を用いる場合を例に説明する。また、すべての図面において、同様の構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, a case where an oxidation-reduction potential measuring device is used for monitoring the oxidation-reduction potential for controlling the quality of the reduced water will be described as an example. Moreover, in all drawings, the same code | symbol is attached | subjected to the same component and description is abbreviate | omitted suitably.

(第一の実施形態)
図1は、本実施形態の酸化還元電位測定装置の構成を示す断面図である。図1に示した酸化還元電位測定装置100は、酸化還元電位の測定対象となる被測定液(還元水115)を収容する測定槽101と、測定槽101内の還元水115に接触するように配置され、還元水115の酸化還元電位を測定する電極(作用極105、参照極107)と、測定槽101の底部の近傍に設けられ、測定槽101に還元水115を供給する供給口(液体供給管109の連通口)と、測定槽101の底部の近傍に設けられ、測定槽101から還元水115を排出する排出口(ドレン管111の連通口)と、を有する。
液体供給管109の連通口よりも上部に、測定槽101内の余剰の還元水115を越流させて排出する余剰液排出口(オーバーフロー管113の連通口)が設けられている。作用極105および参照極107は、オーバーフロー管113の連通口よりも下方に配置される。
オーバーフロー管113の連通口は、図1に示したように測定槽101の壁面の一部に設けられていてもよいし、測定槽101の上面全面であってもよい。
(First embodiment)
FIG. 1 is a cross-sectional view showing the configuration of the oxidation-reduction potential measuring apparatus of this embodiment. The oxidation-reduction potential measuring apparatus 100 shown in FIG. 1 is in contact with the measurement tank 101 that stores the liquid to be measured (reduced water 115) that is the target of measurement of the oxidation-reduction potential, and the reduced water 115 in the measurement tank 101. An electrode (working electrode 105, reference electrode 107) that is disposed and measures the oxidation-reduction potential of the reducing water 115 and a supply port (liquid) that is provided near the bottom of the measuring tank 101 and supplies the reducing water 115 to the measuring tank 101 A communication port of the supply pipe 109) and a discharge port (a communication port of the drain pipe 111) provided near the bottom of the measurement tank 101 and discharging the reducing water 115 from the measurement tank 101.
Above the communication port of the liquid supply pipe 109, an excess liquid discharge port (a communication port of the overflow pipe 113) that discharges excess reducing water 115 in the measurement tank 101 by overflowing is provided. The working electrode 105 and the reference electrode 107 are disposed below the communication port of the overflow pipe 113.
The communication port of the overflow pipe 113 may be provided on a part of the wall surface of the measurement tank 101 as shown in FIG.

以下、酸化還元電位測定装置100の構成をさらに詳細に説明する。酸化還元電位測定装置100は、測定槽101、測定槽101内の所定の位置に配置されるセンサ103、測定槽101に還元水115を供給する液体供給管109、ならびにセンサ103から還元水115を排出するドレン管111およびオーバーフロー管113を有する。   Hereinafter, the configuration of the oxidation-reduction potential measuring apparatus 100 will be described in more detail. The oxidation-reduction potential measuring apparatus 100 includes a measurement tank 101, a sensor 103 disposed at a predetermined position in the measurement tank 101, a liquid supply pipe 109 that supplies the reduction water 115 to the measurement tank 101, and reduced water 115 from the sensor 103. It has a drain pipe 111 and an overflow pipe 113 for discharging.

測定槽101の形状はたとえば直方体とし、その大きさは、たとえば底面の幅15cm程度、奥行き10cm程度、高さを10cm程度である。   The shape of the measuring tank 101 is, for example, a rectangular parallelepiped, and the size thereof is, for example, about 15 cm in width at the bottom, about 10 cm in depth, and about 10 cm in height.

液体供給管109は、測定槽101の底面から測定槽101内に挿入されており、測定槽101に連通している。なお、液体供給管109に還元水115の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。ドレン管111も、測定槽101の底面から測定槽101内に挿入されており、測定槽101に連通している。オーバーフロー管113は、測定槽101の側面から測定槽101に挿入されており、測定槽101に連通している。オーバーフロー管113の固定位置は、測定槽101中にセンサ103を配置したときの作用極105および参照極107の位置よりも高い位置とする。こうすることにより、酸化還元電位のモニタ時の測定槽101中の還元水115の液面117の高さを充分に確保し、作用極105および参照極107を還元水115に確実に接触させておくことができる。   The liquid supply pipe 109 is inserted into the measurement tank 101 from the bottom surface of the measurement tank 101 and communicates with the measurement tank 101. The liquid supply pipe 109 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 115. The drain pipe 111 is also inserted into the measurement tank 101 from the bottom surface of the measurement tank 101 and communicates with the measurement tank 101. The overflow pipe 113 is inserted into the measurement tank 101 from the side surface of the measurement tank 101 and communicates with the measurement tank 101. The fixing position of the overflow pipe 113 is a position higher than the positions of the working electrode 105 and the reference electrode 107 when the sensor 103 is arranged in the measurement tank 101. By doing so, the height of the liquid surface 117 of the reducing water 115 in the measuring tank 101 when monitoring the oxidation-reduction potential is sufficiently secured, and the working electrode 105 and the reference electrode 107 are reliably brought into contact with the reducing water 115. I can leave.

酸化還元電位測定装置100においては、ドレン管111からの排液とオーバーフロー管113からの排液とが切り替え可能に構成されている。たとえば、ドレン管111およびオーバーフロー管113のそれぞれにバルブ(図13の第一還元水排出バルブ159および第二還元水排出バルブ161)を設け、一方のバルブを開状態とするとともに、他方のバルブを閉状態とすることもできる。   The oxidation-reduction potential measuring apparatus 100 is configured to be able to switch between drainage from the drain pipe 111 and drainage from the overflow pipe 113. For example, a valve (first reduced water discharge valve 159 and second reduced water discharge valve 161 in FIG. 13) is provided in each of the drain pipe 111 and the overflow pipe 113 so that one valve is opened and the other valve is opened. It can also be in a closed state.

センサ103は、酸化還元電位測定センサであり、電極として、作用極105および参照極107を有する。なお、本実施形態および以下の実施形態において、センサ103の電極が作用極と参照極とからなる二極式である場合を例に説明するが、二極式の場合には限られず、さらに対極を備える三極式とすることもできる。また、本実施形態および以下の実施形態において、たとえば作用極を白金(Pt)とし、参照極は、内部液を3.3mol/LのKClとするAg−AgCl電極とする。   The sensor 103 is a redox potential measurement sensor, and has a working electrode 105 and a reference electrode 107 as electrodes. In the present embodiment and the following embodiments, a case where the electrode of the sensor 103 is a bipolar type composed of a working electrode and a reference electrode will be described as an example. It can also be set as a three-pole type provided with. In the present embodiment and the following embodiments, for example, the working electrode is platinum (Pt), and the reference electrode is an Ag-AgCl electrode having an internal liquid of 3.3 mol / L KCl.

次に、酸化還元電位測定装置100を用いた還元水115の酸化還元電位測定方法を説明する。
本実施形態の測定方法は、以下のステップを含む。
ステップ101:被測定液(還元水115)の酸化還元電位を測定する電極(作用極105、参照極107)を還元水115に接触させて、還元水115の酸化還元電位を測定する工程、
ステップ102:酸化還元電位を測定する工程(ステップ101)の後、測定槽101の底部の近傍から還元水115を排出し、作用極105および参照極107の表面を露出させる工程、および
ステップ103:作用極105および参照極107の表面を露出させる工程(ステップ102)の後、測定槽101の底部の近傍から還元水115を供給し、作用極105および参照極107を還元水115に接触させる工程、
を含む。
ステップ101の被測定液の酸化還元電位を測定する工程は、測定槽101内に還元水115を供給しつつ、作用極105および参照極107の設置位置よりも上部から、余剰の還元水115を越流させて排出しながら、還元水115の酸化還元電位を測定する工程である。
Next, a method for measuring the redox potential of the reduced water 115 using the redox potential measuring apparatus 100 will be described.
The measurement method of the present embodiment includes the following steps.
Step 101: Contacting the electrode (working electrode 105, reference electrode 107) for measuring the oxidation-reduction potential of the liquid to be measured (reduced water 115) with the reduced water 115 and measuring the oxidation-reduction potential of the reduced water 115;
Step 102: After the step of measuring the oxidation-reduction potential (step 101), the step of discharging the reducing water 115 from the vicinity of the bottom of the measurement tank 101 to expose the surfaces of the working electrode 105 and the reference electrode 107, and step 103: After the step of exposing the surfaces of the working electrode 105 and the reference electrode 107 (step 102), the reducing water 115 is supplied from the vicinity of the bottom of the measuring tank 101, and the working electrode 105 and the reference electrode 107 are brought into contact with the reducing water 115. ,
including.
In the step of measuring the oxidation-reduction potential of the liquid to be measured in step 101, while supplying the reduced water 115 into the measurement tank 101, the excess reduced water 115 is removed from above the installation position of the working electrode 105 and the reference electrode 107. This is a step of measuring the oxidation-reduction potential of the reduced water 115 while making it overflow and discharge.

以下、本実施形態の酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽101にセンサ103を設置し、液体供給管109から還元水115を送液する。このとき、作用極105および参照極107の設置位置よりも高い所定の位置にオーバーフロー管113が設けられているため、過剰量の還元水115がオーバーフロー管113から測定槽101の外部に排出される。よって、液面117の高さが略一定に保たれる。
Hereinafter, the oxidation-reduction potential measurement method of this embodiment will be described in more detail.
First, the sensor 103 is installed in the measurement tank 101 and the reducing water 115 is fed from the liquid supply pipe 109. At this time, since the overflow pipe 113 is provided at a predetermined position higher than the installation positions of the working electrode 105 and the reference electrode 107, an excessive amount of reducing water 115 is discharged from the overflow pipe 113 to the outside of the measuring tank 101. . Therefore, the height of the liquid surface 117 is kept substantially constant.

そして、センサ103による還元水115の酸化還元電位測定を行う(ステップ101)。酸化還元電位のモニタ時間が長くなると、センサ103の表面に気泡119が付着する。そこで、所定のタイミングで気泡119の除去操作を行う。具体的には、オーバーフロー管113からの排液を停止し、ドレン管111からの排液に切り替える。すると、測定槽101の底面近傍から還元水115が測定槽101外部に排出されて、液面117の位置が下がり、作用極105および参照極107の表面が露出する(ステップ102)。   Then, the redox potential of the reduced water 115 is measured by the sensor 103 (step 101). When the monitoring time of the oxidation-reduction potential becomes longer, bubbles 119 adhere to the surface of the sensor 103. Therefore, the bubble 119 is removed at a predetermined timing. Specifically, drainage from the overflow pipe 113 is stopped and switched to drainage from the drain pipe 111. Then, the reducing water 115 is discharged from the vicinity of the bottom surface of the measuring tank 101 to the outside of the measuring tank 101, the position of the liquid surface 117 is lowered, and the surfaces of the working electrode 105 and the reference electrode 107 are exposed (step 102).

作用極105および参照極107の表面を露出させた後、ドレン管111からの排液を停止し、再度液体供給管109から測定槽101内に還元水115を供給して、作用極105および参照極107を還元水115に接触させる(ステップ103)。その後、上に述べた手順で酸化還元電位の測定を繰り返す。   After exposing the surfaces of the working electrode 105 and the reference electrode 107, the drainage from the drain pipe 111 is stopped, and the reducing water 115 is supplied again from the liquid supply pipe 109 into the measuring tank 101. The electrode 107 is brought into contact with the reducing water 115 (step 103). Thereafter, the redox potential measurement is repeated according to the procedure described above.

次に、酸化還元電位測定装置100の効果を説明する。
酸化還元電位測定装置100においては、測定槽101の底面にドレン管111が設けられている。このため、センサ103の表面に気泡119が付着した際に、ドレン管111から一旦還元水115を排出して作用極105および参照極107の表面を露出させた後、再度還元水115に接触させることができる。よって、酸化還元電位測定装置100は、還元水115を排出して電極表面を露出させることにより、気泡119を除去することができる。よって、還元水115の酸化還元電位の測定を長期間安定的に行うことができる。
Next, the effect of the oxidation-reduction potential measuring apparatus 100 will be described.
In the oxidation-reduction potential measuring apparatus 100, a drain pipe 111 is provided on the bottom surface of the measurement tank 101. For this reason, when bubbles 119 adhere to the surface of the sensor 103, the reducing water 115 is once discharged from the drain pipe 111 to expose the surfaces of the working electrode 105 and the reference electrode 107, and then contacted with the reducing water 115 again. be able to. Therefore, the oxidation-reduction potential measuring apparatus 100 can remove the bubbles 119 by discharging the reducing water 115 and exposing the electrode surface. Therefore, the redox potential of the reduced water 115 can be stably measured for a long time.

たとえば、ドレン管111からの廃液を行わずに還元水115の酸化還元電位の測定を続けた場合、測定開始時は、−0.75Vを示した酸化還元電位が、数時間後以降は−0.3V程度しか示さなくなることがある。また、還元水製造装置から半導体洗浄装置に供給される還元水115の酸化還元電位をモニタする場合、還元水115を半導体洗浄装置の本体へ供給する配管から、pH/ORP測定部への配管が分岐されるが、ORP測定部(測定槽101)に流れる還元水115の流量が少ないため、センサ103に水素ガスが付着しやすい。特に、電極材料として用いられる白金は水素吸蔵性の金属であるため、水素ガスを引き寄せやすい。   For example, when the measurement of the oxidation-reduction potential of the reduced water 115 is continued without performing the waste liquid from the drain pipe 111, the oxidation-reduction potential indicating −0.75 V is −0 after several hours after the measurement starts. Only about 3V may be shown. In addition, when monitoring the oxidation-reduction potential of the reduced water 115 supplied from the reduced water production apparatus to the semiconductor cleaning apparatus, a pipe for supplying the reduced water 115 to the main body of the semiconductor cleaning apparatus is connected to a pH / ORP measurement unit. Although branched, hydrogen gas tends to adhere to the sensor 103 because the flow rate of the reducing water 115 flowing through the ORP measurement unit (measurement tank 101) is small. In particular, platinum used as an electrode material is a hydrogen-occlusion metal, and therefore easily attracts hydrogen gas.

そこで本実施形態では、所定のタイミングで還元水115の排出と再充填を行うことにより、センサ103に付着した気泡119を簡便で確実に除去することができる。このため、還元水115の酸化還元電位を長期間安定的に測定することができる。   Thus, in the present embodiment, the bubbles 119 attached to the sensor 103 can be easily and reliably removed by discharging and refilling the reducing water 115 at a predetermined timing. For this reason, the oxidation-reduction potential of the reduced water 115 can be stably measured for a long period.

なお、酸化還元電位測定装置100は、液体供給管109、ドレン管111、およびオーバーフロー管113の開閉を制御する制御部を有してもよい。こうすれば、排出経路を自動的に調節して、センサ103の電極表面をさらに容易に露出させるとともに、再度還元水115に接触させることができる。   The oxidation-reduction potential measuring apparatus 100 may include a control unit that controls opening and closing of the liquid supply pipe 109, the drain pipe 111, and the overflow pipe 113. In this way, the discharge path can be automatically adjusted so that the electrode surface of the sensor 103 can be more easily exposed and brought into contact with the reduced water 115 again.

なお、図1においては、ドレン管111とオーバーフロー管113の二つのドレン管を有する構成の酸化還元電位測定装置100を例示したが、酸化還元電位測定装置100は、少なくとも測定槽101の底面近傍に設けられるドレン管111を有していればよい。   1 illustrates the oxidation-reduction potential measuring apparatus 100 having two drain pipes of the drain pipe 111 and the overflow pipe 113. However, the oxidation-reduction potential measuring apparatus 100 is at least near the bottom surface of the measurement tank 101. What is necessary is just to have the drain pipe 111 provided.

図2は、このような構成の酸化還元電位測定装置の構成を示す断面図である。図2に示した酸化還元電位測定装置110の基本構成は図1に示した酸化還元電位測定装置100と同様であるが、オーバーフロー管113を有しない点が異なる。酸化還元電位測定装置110のように、オーバーフロー管113を有しない構成の場合、還元水115をたとえば0.2〜0.3MPa程度に加圧して供給するとよい。こうすれば、さらに安定的に液面117の高さを電極上に維持することができる。   FIG. 2 is a cross-sectional view showing the configuration of the oxidation-reduction potential measuring apparatus having such a configuration. The basic configuration of the oxidation-reduction potential measurement apparatus 110 shown in FIG. 2 is the same as that of the oxidation-reduction potential measurement apparatus 100 shown in FIG. 1 except that the overflow pipe 113 is not provided. In the case where the overflow pipe 113 is not provided as in the oxidation-reduction potential measuring apparatus 110, the reducing water 115 may be supplied under a pressure of, for example, about 0.2 to 0.3 MPa. In this way, the height of the liquid surface 117 can be more stably maintained on the electrode.

また、図1に示した酸化還元電位測定装置100のように、オーバーフロー管113をさらに有する構成とすることにより、酸化還元電位のモニタ中の液面117の高さを所定の位置にさらに確実に維持することができる。よって、酸化還元電位測定を長期間さらに安定的に行うことができる。   Further, like the oxidation-reduction potential measuring apparatus 100 shown in FIG. 1, the configuration further including the overflow pipe 113 further ensures that the height of the liquid surface 117 during monitoring of the oxidation-reduction potential is at a predetermined position. Can be maintained. Therefore, the redox potential can be measured more stably for a long period.

以下の実施形態においては、第一の実施形態に記載の酸化還元電位測定装置(図1または図2)と異なる点を中心に説明する。   In the following embodiment, it demonstrates centering on a different point from the oxidation-reduction potential measuring apparatus (FIG. 1 or FIG. 2) described in 1st embodiment.

(第二の実施形態)
図3は、本実施形態の酸化還元電位測定装置の構成を示す断面図である。図3に示した酸化還元電位測定装置200は、酸化還元電位の測定対象となる被測定液(還元水215)を収容する測定槽201と、測定槽201内の還元水215に接触するように配置され、還元水215の酸化還元電位を測定する電極(作用極205、参照極207)と、測定槽201の底部の近傍に設けられ、測定槽201に還元水215を供給する供給口(液体供給管209の連通口)と、測定槽201に設けられ、測定槽201の余剰の還元水215を越流させて排出する余剰液排出口(オーバーフロー管213の連通口)と、測定槽201内の還元水215に振動を与える振動手段(振動板221)と、を有する。作用極205および参照極207は、オーバーフロー管213の連通口よりも下方に配置される。
(Second embodiment)
FIG. 3 is a cross-sectional view showing a configuration of the oxidation-reduction potential measuring apparatus of the present embodiment. The oxidation-reduction potential measuring apparatus 200 shown in FIG. 3 is in contact with the measurement tank 201 that stores the liquid to be measured (reduced water 215) that is the target for measuring the oxidation-reduction potential, and the reduced water 215 in the measurement tank 201. An electrode (working electrode 205, reference electrode 207) that is disposed and measures the oxidation-reduction potential of the reduced water 215, and a supply port (liquid) that is provided near the bottom of the measurement tank 201 and supplies the reduced water 215 to the measurement tank 201 A communication port of the supply pipe 209), an excess liquid discharge port (a communication port of the overflow pipe 213) that is provided in the measurement tank 201 and discharges the excess reduced water 215 in the measurement tank 201. Vibration means (vibrating plate 221) for applying vibration to the reduced water 215. The working electrode 205 and the reference electrode 207 are disposed below the communication port of the overflow pipe 213.

以下、図3の酸化還元電位測定装置200の構成をさらに詳細に説明する。酸化還元電位測定装置200は、測定槽201、測定槽201内の所定の位置に配置されるセンサ203、測定槽201に還元水215を供給する液体供給管209、測定槽201から還元水215を排出するオーバーフロー管213、および測定槽201の底部に設けられた振動板221を有する。センサ203は、酸化還元電位センサであり、電極として、作用極205および参照極207を有する。   Hereinafter, the configuration of the oxidation-reduction potential measuring apparatus 200 of FIG. 3 will be described in more detail. The oxidation-reduction potential measuring device 200 includes a measurement tank 201, a sensor 203 disposed at a predetermined position in the measurement tank 201, a liquid supply pipe 209 that supplies the reduced water 215 to the measurement tank 201, and reduced water 215 from the measurement tank 201. An overflow pipe 213 for discharging and a diaphragm 221 provided at the bottom of the measurement tank 201 are provided. The sensor 203 is a redox potential sensor, and has a working electrode 205 and a reference electrode 207 as electrodes.

液体供給管209は、測定槽201の底面から測定槽201内に挿入されており、測定槽201に連通している。なお、液体供給管209に還元水215の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。オーバーフロー管213は、測定槽201の側面から測定槽201に挿入されており、測定槽201に連通している。オーバーフロー管213の固定位置は、測定槽201中にセンサ203を配置したときの作用極205および参照極207の位置よりも高い位置とする。こうすることにより、酸化還元電位のモニタ時の測定槽201中の還元水215の液面217の高さを電極に対して充分高く保つとともに、作用極205および参照極207を還元水215に確実に接触させ続けることができる。   The liquid supply pipe 209 is inserted into the measurement tank 201 from the bottom surface of the measurement tank 201 and communicates with the measurement tank 201. The liquid supply pipe 209 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 215. The overflow pipe 213 is inserted into the measurement tank 201 from the side surface of the measurement tank 201 and communicates with the measurement tank 201. The fixing position of the overflow pipe 213 is a position higher than the positions of the working electrode 205 and the reference electrode 207 when the sensor 203 is arranged in the measurement tank 201. By doing so, the height of the liquid surface 217 of the reduced water 215 in the measurement tank 201 when monitoring the oxidation-reduction potential is kept sufficiently high with respect to the electrodes, and the working electrode 205 and the reference electrode 207 are securely attached to the reduced water 215. Can continue to touch.

次に、酸化還元電位測定装置200を用いた還元水215の酸化還元電位測定方法を説明する。
本実施形態においては、被測定液(還元水215)の酸化還元電位を測定する電極(作用極205、参照極207)を還元水215に接触させた状態で、還元水215に振動を与えながら、還元水215の酸化還元電位を測定する。
Next, a method for measuring the redox potential of the reduced water 215 using the redox potential measuring apparatus 200 will be described.
In the present embodiment, while the electrodes (working electrode 205, reference electrode 207) for measuring the redox potential of the liquid to be measured (reduced water 215) are in contact with the reduced water 215, the reduced water 215 is vibrated. Then, the redox potential of the reduced water 215 is measured.

以下、本実施形態の酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽201にセンサ203を設置し、液体供給管209から還元水215を送液する。このとき、作用極205および参照極207の設置位置よりも高い所定の位置にオーバーフロー管213が設けられているため、過剰量の還元水215がオーバーフロー管213から測定槽201の外部に排出される。
Hereinafter, the oxidation-reduction potential measurement method of this embodiment will be described in more detail.
First, the sensor 203 is installed in the measurement tank 201 and the reducing water 215 is fed from the liquid supply pipe 209. At this time, since the overflow pipe 213 is provided at a predetermined position higher than the installation positions of the working electrode 205 and the reference electrode 207, an excessive amount of reduced water 215 is discharged from the overflow pipe 213 to the outside of the measurement tank 201. .

そして、センサ203による還元水215の酸化還元電位測定を行う。このとき、振動板221を動作させて、測定槽201内に振動波223を生じさせながら測定を行う。   Then, the redox potential of the reduced water 215 is measured by the sensor 203. At this time, the vibration plate 221 is operated to perform measurement while generating the vibration wave 223 in the measurement tank 201.

次に、本実施形態の効果を説明する。
酸化還元電位測定装置200は、測定槽201の底部に振動板221が設けられ、振動板221を振動させることにより、測定槽201中に振動波223を生じさせることができる。このため、振動波223のエネルギーにより、還元水215中の水素ガスが気泡219としてセンサ203の表面に付着しないようにするとともに、付着した気泡219を確実に除去することができる。よって、還元水215の酸化還元電位の測定を安定的に行うことができる。
Next, the effect of this embodiment will be described.
The oxidation-reduction potential measuring apparatus 200 is provided with a vibration plate 221 at the bottom of the measurement tank 201, and can generate a vibration wave 223 in the measurement tank 201 by vibrating the vibration plate 221. For this reason, the energy of the vibration wave 223 can prevent the hydrogen gas in the reduced water 215 from adhering to the surface of the sensor 203 as the bubbles 219, and the attached bubbles 219 can be reliably removed. Therefore, the redox potential of the reduced water 215 can be stably measured.

なお、図3の酸化還元電位測定装置200においては、測定槽201の底面に振動板221を配置する構成を例示したが、振動板221を設ける位置は測定槽201の底面には限られず、たとえば、測定槽201の側面に設けることもできる。   3 exemplifies a configuration in which the diaphragm 221 is disposed on the bottom surface of the measurement tank 201, the position where the diaphragm 221 is provided is not limited to the bottom surface of the measurement tank 201. It can also be provided on the side surface of the measuring tank 201.

また、図3の酸化還元電位測定装置200においても、第一の実施形態に記載の酸化還元電位測定装置100(図1)と同様に、オーバーフロー管213に加えて、測定槽201の底面にさらに別のドレン管が設けられていてもよい。   Further, in the oxidation-reduction potential measuring apparatus 200 of FIG. 3, in addition to the overflow pipe 213, the oxidation-reduction potential measuring apparatus 100 (FIG. 1) described in the first embodiment is further added to the bottom surface of the measurement tank 201. Another drain pipe may be provided.

図4は、このような構成の酸化還元電位測定装置を示す断面図である。図4に示した酸化還元電位測定装置210の基本構成は図3の酸化還元電位測定装置200と同様であるが、さらに、測定槽201の底面にドレン管211が設けられ、ドレン管211およびオーバーフロー管213からの排出が切り替え可能に構成されている。酸化還元電位測定装置210によれば、振動板221を用いた気泡219の除去効果に加えて、さらに、還元水215のドレン管211からの排出と再供給を行うことができる。このため、センサ203に付着する気泡219をより一層確実に除去することができる。   FIG. 4 is a cross-sectional view showing the oxidation-reduction potential measuring apparatus having such a configuration. The basic configuration of the oxidation-reduction potential measurement device 210 shown in FIG. 4 is the same as that of the oxidation-reduction potential measurement device 200 of FIG. 3, but further, a drain pipe 211 is provided on the bottom surface of the measurement tank 201, and the drain pipe 211 and overflow The discharge from the pipe 213 is configured to be switchable. According to the oxidation-reduction potential measuring device 210, in addition to the effect of removing the bubbles 219 using the vibration plate 221, the reduced water 215 can be discharged from the drain pipe 211 and supplied again. For this reason, the bubble 219 adhering to the sensor 203 can be more reliably removed.

(第三の実施形態)
図5は、本実施形態の酸化還元電位測定装置の構成を示す断面図である。図5に示した酸化還元電位測定装置300は、酸化還元電位の測定対象となる被測定液を収容する測定槽301と、測定槽301内の還元水315に接触するように配置され、還元水315の酸化還元電位を測定する電極(作用極305、参照極307)と、測定槽301の底部の近傍に設けられ、測定槽301に還元水315を供給する供給口(液体供給管309の連通口)と、測定槽301に設けられ、測定槽301内の余剰の還元水315を越流させて排出する余剰液排出口(オーバーフロー管313の連通口)と、測定槽301内の還元水315を攪拌する攪拌手段(スターラー321、攪拌子323)と、を有する。作用極305および参照極307は、オーバーフロー管313の連通口よりも下方に配置される。スターラー321としては、マグネティックスターラーを用いることができる。
(Third embodiment)
FIG. 5 is a cross-sectional view showing a configuration of the oxidation-reduction potential measuring apparatus of the present embodiment. The oxidation-reduction potential measuring apparatus 300 shown in FIG. 5 is disposed so as to be in contact with a measurement tank 301 that stores a liquid to be measured whose oxidation-reduction potential is to be measured, and reduced water 315 in the measurement tank 301. An electrode (working electrode 305, reference electrode 307) that measures the oxidation-reduction potential of 315 and a supply port (communication of the liquid supply pipe 309) that is provided in the vicinity of the bottom of the measurement tank 301 and supplies the reducing water 315 to the measurement tank 301 A surplus liquid discharge port (a communication port of the overflow pipe 313) that is provided in the measurement tank 301 and discharges the excess reduced water 315 in the measurement tank 301, and the reduced water 315 in the measurement tank 301. Stirring means (stirrer 321 and stirrer 323). The working electrode 305 and the reference electrode 307 are disposed below the communication port of the overflow pipe 313. As the stirrer 321, a magnetic stirrer can be used.

以下、図5の酸化還元電位測定装置300の構成をさらに詳細に説明する。酸化還元電位測定装置300は、測定槽301、測定槽301内の所定の位置に配置されるセンサ303、測定槽301に還元水315を供給する液体供給管309、測定槽301から還元水315を排出するオーバーフロー管313、測定槽301の下部に設けられたスターラー321、および測定槽301の底面に配置されるとともに測定槽301の底面を介してスターラー321上に配置された攪拌子323を有する。スターラー321は、センサ303の配置領域の下方に設置される。センサ303は、酸化還元電位センサであり、電極として、作用極305および参照極307を有する。   Hereinafter, the configuration of the oxidation-reduction potential measuring apparatus 300 in FIG. 5 will be described in more detail. The oxidation-reduction potential measuring apparatus 300 includes a measurement tank 301, a sensor 303 arranged at a predetermined position in the measurement tank 301, a liquid supply pipe 309 that supplies the reduced water 315 to the measurement tank 301, and reduced water 315 from the measurement tank 301. It has an overflow pipe 313 to be discharged, a stirrer 321 provided at the lower part of the measurement tank 301, and a stirrer 323 disposed on the stirrer 321 via the bottom surface of the measurement tank 301 while being disposed on the bottom surface of the measurement tank 301. The stirrer 321 is installed below the arrangement area of the sensor 303. The sensor 303 is an oxidation-reduction potential sensor, and has a working electrode 305 and a reference electrode 307 as electrodes.

液体供給管309は、測定槽301の底面から測定槽301内に挿入されており、測定槽301に連通している。なお、液体供給管309に還元水315の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。オーバーフロー管313は、測定槽301の側面から測定槽301に挿入されており、測定槽301に連通している。オーバーフロー管313の固定位置は、測定槽301中にセンサ303を配置したときの作用極305および参照極307の位置よりも高い位置とする。こうすることにより、酸化還元電位のモニタ時の測定槽301中の還元水315の液面317の高さを電極に対して充分に高く保ち、作用極305および参照極307を還元水315に確実に接触させ続けることができる。   The liquid supply pipe 309 is inserted into the measurement tank 301 from the bottom surface of the measurement tank 301 and communicates with the measurement tank 301. The liquid supply pipe 309 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 315. The overflow pipe 313 is inserted into the measurement tank 301 from the side surface of the measurement tank 301 and communicates with the measurement tank 301. The fixed position of the overflow pipe 313 is set to a position higher than the positions of the working electrode 305 and the reference electrode 307 when the sensor 303 is arranged in the measurement tank 301. By doing so, the height of the liquid surface 317 of the reduced water 315 in the measurement tank 301 at the time of monitoring the oxidation-reduction potential is kept sufficiently high with respect to the electrodes, and the working electrode 305 and the reference electrode 307 are reliably attached to the reduced water 315. Can continue to touch.

次に、酸化還元電位測定装置300を用いた還元水315の酸化還元電位測定方法を説明する。
本実施形態においては、被測定液(還元水315)の酸化還元電位を測定する電極(作用極305、参照極307)を還元水315に接触させた状態で、還元水315を攪拌しながら、還元水315の酸化還元電位を測定する。
Next, a method for measuring the redox potential of the reduced water 315 using the redox potential measuring apparatus 300 will be described.
In the present embodiment, while the electrode (working electrode 305, reference electrode 307) for measuring the oxidation-reduction potential of the liquid to be measured (reduced water 315) is in contact with the reduced water 315, the reduced water 315 is stirred, The redox potential of the reduced water 315 is measured.

以下、本実施形態の酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽301にセンサ303を設置し、液体供給管309から還元水315を送液する。このとき、作用極305および参照極307の設置位置よりも高い所定の位置にオーバーフロー管313が設けられているため、過剰量の還元水315がオーバーフロー管313から測定槽301の外部に排出される。
Hereinafter, the oxidation-reduction potential measurement method of this embodiment will be described in more detail.
First, the sensor 303 is installed in the measurement tank 301, and reducing water 315 is sent from the liquid supply pipe 309. At this time, since the overflow pipe 313 is provided at a predetermined position higher than the installation positions of the working electrode 305 and the reference electrode 307, an excessive amount of reduced water 315 is discharged from the overflow pipe 313 to the outside of the measurement tank 301. .

そして、センサ303による還元水315の酸化還元電位測定を行う。このとき、スターラー321を動作させて、測定槽301の底面上で攪拌子323を回転させて、還元水315を攪拌しながら測定を行う。   Then, the redox potential of the reduced water 315 is measured by the sensor 303. At this time, the stirrer 321 is operated, the stirrer 323 is rotated on the bottom surface of the measurement tank 301, and measurement is performed while stirring the reduced water 315.

次に、本実施形態の効果を説明する。
酸化還元電位測定装置300は、測定槽301の下部にスターラー321が設けられ、スターラー321を動作させることにより、測定槽301中で攪拌子323を回転させて、還元水315を攪拌することができる。このため、攪拌子323の攪拌により生じる還元水315の水流により、還元水315中の水素ガスが気泡319としてセンサ303の表面に付着しないようにするとともに、付着した気泡319を確実に除去することができる。よって、還元水315の酸化還元電位の測定を安定的に行うことができる。
Next, the effect of this embodiment will be described.
In the oxidation-reduction potential measuring apparatus 300, a stirrer 321 is provided in the lower part of the measurement tank 301, and the stirrer 323 is rotated in the measurement tank 301 by operating the stirrer 321, whereby the reduced water 315 can be stirred. . For this reason, the flow of the reduced water 315 generated by the stirring of the stirrer 323 prevents the hydrogen gas in the reduced water 315 from adhering to the surface of the sensor 303 as the bubbles 319 and reliably removes the attached bubbles 319. Can do. Therefore, the redox potential of the reduced water 315 can be stably measured.

なお、酸化還元電位測定装置300において、攪拌子323の形状には特に限定はないが、たとえば円盤状とするとよい。このようにすれば、攪拌子323をスターラー321上にさらに安定的に保持して回転させることができる。よって、さらに確実に気泡319を除去することができる。   In the oxidation-reduction potential measuring apparatus 300, the shape of the stirrer 323 is not particularly limited, but may be a disk shape, for example. In this way, the stirrer 323 can be more stably held on the stirrer 321 and rotated. Therefore, the bubbles 319 can be removed more reliably.

なお、図5の酸化還元電位測定装置300においても、第一の実施形態に記載の酸化還元電位測定装置100(図1)と同様に、オーバーフロー管313に加えて、測定槽301の底面にさらに別のドレン管が設けられていてもよい。   In addition to the overflow pipe 313, the oxidation-reduction potential measurement apparatus 300 in FIG. 5 is further provided on the bottom surface of the measurement tank 301 in the same manner as the oxidation-reduction potential measurement apparatus 100 (FIG. 1) described in the first embodiment. Another drain pipe may be provided.

図6は、このような構成の酸化還元電位測定装置を示す断面図である。図6に示した酸化還元電位測定装置310の基本構成は図5の酸化還元電位測定装置300と同様であるが、さらに、測定槽301の底面にドレン管311が設けられ、ドレン管311およびオーバーフロー管313からの排出が切り替え可能に構成されている。酸化還元電位測定装置310によれば、スターラー321を用いた気泡319の除去効果に加えて、さらに、還元水315のドレン管311からの排出と再供給を行うことができる。このため、センサ303に付着する気泡319をより一層確実に除去することができる。   FIG. 6 is a cross-sectional view showing an oxidation-reduction potential measuring apparatus having such a configuration. The basic configuration of the oxidation-reduction potential measurement device 310 shown in FIG. 6 is the same as that of the oxidation-reduction potential measurement device 300 of FIG. 5, but a drain pipe 311 is further provided on the bottom surface of the measurement tank 301. The discharge from the pipe 313 is configured to be switchable. According to the oxidation-reduction potential measuring device 310, in addition to the effect of removing the bubbles 319 using the stirrer 321, the reduced water 315 can be discharged from the drain pipe 311 and supplied again. For this reason, the bubble 319 adhering to the sensor 303 can be more reliably removed.

(第四の実施形態)
図7は、本実施形態の酸化還元電位測定装置の構成を示す断面図である。図7に示した酸化還元電位測定装置400は、酸化還元電位の測定対象となる被測定液(還元水415)を収容する測定槽401と、測定槽401内の還元水415に接触するように配置され、還元水415の酸化還元電位を測定する電極(作用極405、参照極407)と、測定槽401の底部の近傍に設けられ、測定槽401に還元水415を供給する供給口(液体供給管409の連通口)と、測定槽401に設けられ、測定槽401内の余剰の還元水415を越流させて排出する余剰液排出口(オーバーフロー管413の連通口)と、測定槽401内に配置された作用極405および参照極407の近傍に、不活性ガス(N2ガス423)を導くガス供給部(不活性ガス供給管421)と、を有する。
作用極405および参照極407は、オーバーフロー管413の連通口よりも下方に配置される。
(Fourth embodiment)
FIG. 7 is a cross-sectional view showing the configuration of the oxidation-reduction potential measuring apparatus of the present embodiment. The oxidation-reduction potential measuring apparatus 400 shown in FIG. 7 is in contact with the measurement tank 401 that stores the liquid to be measured (reduced water 415) to be measured for the oxidation-reduction potential, and the reduced water 415 in the measurement tank 401. An electrode (working electrode 405, reference electrode 407) that is disposed and measures the oxidation-reduction potential of the reduced water 415, and a supply port (liquid) that supplies the reduced water 415 to the measurement tank 401 provided near the bottom of the measurement tank 401 A communication port of the supply pipe 409), an excess liquid discharge port (a communication port of the overflow pipe 413) that is provided in the measurement tank 401 and discharges the excess reduced water 415 in the measurement tank 401. In the vicinity of the working electrode 405 and the reference electrode 407 disposed therein, a gas supply unit (inert gas supply pipe 421) for introducing an inert gas (N 2 gas 423) is provided.
The working electrode 405 and the reference electrode 407 are disposed below the communication port of the overflow pipe 413.

以下、図7の酸化還元電位測定装置400の構成をさらに詳細に説明する。酸化還元電位測定装置400は、測定槽401と、測定槽401内の所定の位置に配置されるセンサ403、測定槽401に還元水415を供給する液体供給管409、測定槽401から還元水415を排出するオーバーフロー管413、および測定槽401の側面から測定槽401内に導入されるとともに測定槽401と連通する不活性ガス供給管421を有する。センサ403は、酸化還元電位センサであり、電極として、作用極405および参照極407を有する。   Hereinafter, the configuration of the oxidation-reduction potential measuring apparatus 400 of FIG. 7 will be described in more detail. The oxidation-reduction potential measuring device 400 includes a measurement tank 401, a sensor 403 disposed at a predetermined position in the measurement tank 401, a liquid supply pipe 409 that supplies the reduced water 415 to the measurement tank 401, and the reduced water 415 from the measurement tank 401. And an inert gas supply pipe 421 that is introduced into the measurement tank 401 from the side surface of the measurement tank 401 and communicates with the measurement tank 401. The sensor 403 is an oxidation-reduction potential sensor, and has a working electrode 405 and a reference electrode 407 as electrodes.

液体供給管409は、測定槽401の底面から測定槽401内に挿入されており、測定槽401に連通している。なお、液体供給管409に還元水415の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。オーバーフロー管413は、測定槽401の側面から測定槽401に挿入されており、測定槽401に連通している。オーバーフロー管413の固定位置は、測定槽401中にセンサ403を配置したときの作用極405および参照極407の位置よりも高い位置とする。こうすることにより、酸化還元電位のモニタ時の測定槽401中の還元水415の液面417の高さを電極に対して充分に高く保ち、作用極405および参照極407を還元水415に確実に接触させ続けることができる。   The liquid supply pipe 409 is inserted into the measurement tank 401 from the bottom surface of the measurement tank 401 and communicates with the measurement tank 401. The liquid supply pipe 409 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 415. The overflow pipe 413 is inserted into the measurement tank 401 from the side surface of the measurement tank 401 and communicates with the measurement tank 401. The fixed position of the overflow pipe 413 is a position higher than the positions of the working electrode 405 and the reference electrode 407 when the sensor 403 is disposed in the measurement tank 401. By doing so, the height of the liquid surface 417 of the reduced water 415 in the measurement tank 401 at the time of monitoring the oxidation-reduction potential is kept sufficiently high with respect to the electrode, and the working electrode 405 and the reference electrode 407 are reliably attached to the reduced water 415. Can continue to touch.

不活性ガス供給管421の先端は、センサ403の下方に配置されており、先端から不活性ガス、たとえばN2ガス423が測定槽401内に供給される。また、不活性ガス供給管421の他端は、たとえばN2ボンベ等の不活性ガス収容部に接続されている。 The tip of the inert gas supply pipe 421 is disposed below the sensor 403, and an inert gas such as N 2 gas 423 is supplied from the tip into the measurement tank 401. In addition, the other end of the inert gas supply pipe 421 is connected to an inert gas storage unit such as an N 2 cylinder.

次に、酸化還元電位測定装置400を用いた還元水415の酸化還元電位測定方法を説明する。
本実施形態においては、被測定液(還元水415)の酸化還元電位を測定する電極(作用極405、参照極407)を還元水415に接触させるとともに、作用極405および参照極407の近傍に不活性ガス(N2ガス423)を導きながら、還元水415の酸化還元電位を測定する。
Next, a method for measuring the redox potential of the reduced water 415 using the redox potential measuring device 400 will be described.
In the present embodiment, electrodes (working electrode 405, reference electrode 407) for measuring the oxidation-reduction potential of the liquid to be measured (reduced water 415) are brought into contact with the reduced water 415, and in the vicinity of the working electrode 405 and the reference electrode 407. While introducing an inert gas (N 2 gas 423), the redox potential of the reduced water 415 is measured.

以下、本実施形態の酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽401にセンサ403を設置し、液体供給管409から還元水415を送液する。このとき、作用極405および参照極407の設置位置よりも高い所定の位置にオーバーフロー管413が設けられているため、過剰量の還元水415がオーバーフロー管413から測定槽401の外部に排出される。
Hereinafter, the oxidation-reduction potential measurement method of this embodiment will be described in more detail.
First, the sensor 403 is installed in the measurement tank 401, and reducing water 415 is sent from the liquid supply pipe 409. At this time, since the overflow pipe 413 is provided at a predetermined position higher than the installation positions of the working electrode 405 and the reference electrode 407, an excessive amount of reduced water 415 is discharged from the overflow pipe 413 to the outside of the measuring tank 401. .

そして、センサ403による還元水415の酸化還元電位測定を行う。このとき、不活性ガス供給管421を動作させて、センサ403の下方からN2ガス423を噴出させながら測定を行う。N2ガス423の供給方法は、たとえば間欠バブリングとする。 Then, the redox potential of the reduced water 415 is measured by the sensor 403. At this time, the inert gas supply pipe 421 is operated, and measurement is performed while N 2 gas 423 is ejected from below the sensor 403. The supply method of the N 2 gas 423 is, for example, intermittent bubbling.

次に、本実施形態の効果を説明する。
酸化還元電位測定装置400は、不活性ガス供給管421を有し、不活性ガス供給管421の先端がセンサ403の下方に位置するように構成されている。このため、センサ403の下方からN2ガス423を噴出させながら酸化還元電位測定を行うことができる。N2ガス423は、還元水415の酸化還元電位に影響を与えないガスである。このため、このようなガスをバブリングしながら測定することにより、N2ガス423の気流によりセンサ403の表面に気泡419が付着することを抑制するとともに、付着した気泡419を確実に除去することができる。よって、還元水415の酸化還元電位の測定を安定的に行うことができる。
Next, the effect of this embodiment will be described.
The oxidation-reduction potential measuring device 400 includes an inert gas supply pipe 421 and is configured such that the tip of the inert gas supply pipe 421 is positioned below the sensor 403. For this reason, the oxidation-reduction potential can be measured while N 2 gas 423 is ejected from below the sensor 403. The N 2 gas 423 is a gas that does not affect the redox potential of the reduced water 415. For this reason, by measuring such a gas while bubbling, it is possible to suppress the bubble 419 from adhering to the surface of the sensor 403 due to the air flow of the N 2 gas 423 and to reliably remove the bubble 419 attached. it can. Therefore, the redox potential of the reduced water 415 can be stably measured.

(第五の実施形態)
図8は、本実施形態の酸化還元電位測定装置の構成を示す断面図である。図8に示した酸化還元電位測定装置500は、酸化還元電位の測定対象となる被測定液(還元水515)を収容する測定槽501と、測定槽501内の還元水515に接触するように配置され、還元水515の酸化還元電位を測定する電極(作用極505、参照極507)と、測定槽501の底部の近傍に設けられ、測定槽501に還元水515を供給する供給口(液体供給管509の連通口)と、測定槽501に設けられ、測定槽501内の余剰の還元水515を越流させて排出する余剰液排出口(オーバーフロー管513の連通口)と、測定槽501の内部が外部に対して陽圧になるように、液体供給管509の連通口から測定槽501内に還元水515を送液する送液部(液体供給管509、ポンプ523、オーバーフロー管513、流量調整バルブ521)と、を有する。
作用極505および参照極507は、オーバーフロー管513の連通口よりも下方に配置される。オーバーフロー管513の連通口は、測定槽501の上面近傍に設けられている。
また、測定槽501は密閉構造を有する。
送液部は、液体供給管509の連通口から測定槽501への還元水515の供給速度が、オーバーフロー管513の連通口からの還元水515の排出速度よりも大きくなるようにする。
ポンプ523は、液体供給管509の還元水515を測定槽501に圧送する。
流量調整バルブ521は、オーバーフロー管513に設けられ、オーバーフロー管513の連通口からの還元水515の排出速度を調節する。
(Fifth embodiment)
FIG. 8 is a cross-sectional view showing the configuration of the oxidation-reduction potential measuring apparatus of this embodiment. The oxidation-reduction potential measuring apparatus 500 shown in FIG. 8 is in contact with the measurement tank 501 that contains the liquid to be measured (reduced water 515) that is the target for measuring the oxidation-reduction potential, and the reduced water 515 in the measurement tank 501. An electrode (working electrode 505, reference electrode 507) that is disposed and measures the oxidation-reduction potential of the reducing water 515, and a supply port (liquid) that supplies the reducing water 515 to the measuring tank 501 provided near the bottom of the measuring tank 501. A communication port of the supply pipe 509), an excess liquid discharge port (a communication port of the overflow pipe 513) that is provided in the measurement tank 501 and discharges the excess reduced water 515 in the measurement tank 501, and the measurement tank 501. The liquid feed section (liquid feed pipe 509, pump 523, overflow pipe 513, liquid feed pipe 509 feeds the reduced water 515 into the measuring tank 501 from the communication port of the liquid feed pipe 509 so that the inside of the chamber becomes positive pressure with respect to the outside. With an amount adjusting valve 521), the.
The working electrode 505 and the reference electrode 507 are disposed below the communication port of the overflow pipe 513. The communication port of the overflow pipe 513 is provided in the vicinity of the upper surface of the measurement tank 501.
Moreover, the measurement tank 501 has a sealed structure.
The liquid feeding unit makes the supply rate of the reduced water 515 from the communication port of the liquid supply pipe 509 to the measurement tank 501 larger than the discharge rate of the reduced water 515 from the communication port of the overflow pipe 513.
The pump 523 pumps the reducing water 515 in the liquid supply pipe 509 to the measurement tank 501.
The flow rate adjustment valve 521 is provided in the overflow pipe 513 and adjusts the discharge speed of the reduced water 515 from the communication port of the overflow pipe 513.

以下、図8の酸化還元電位測定装置500の構成をさらに詳細に説明する。酸化還元電位測定装置500は、測定槽501、測定槽501内の所定の位置に配置されるセンサ503、測定槽501に還元水515を供給する液体供給管509、液体供給管509に設けられたポンプ523、測定槽501から還元水515を排出するオーバーフロー管513、およびオーバーフロー管513に設けられた流量調整バルブ521を有する。センサ503は、酸化還元電位センサであり、電極として、作用極505および参照極507を有する。   Hereinafter, the configuration of the oxidation-reduction potential measuring apparatus 500 of FIG. 8 will be described in more detail. The oxidation-reduction potential measuring device 500 is provided in a measurement tank 501, a sensor 503 disposed at a predetermined position in the measurement tank 501, a liquid supply pipe 509 for supplying reduced water 515 to the measurement tank 501, and a liquid supply pipe 509. It has a pump 523, an overflow pipe 513 that discharges the reduced water 515 from the measurement tank 501, and a flow rate adjustment valve 521 provided in the overflow pipe 513. The sensor 503 is an oxidation-reduction potential sensor, and has a working electrode 505 and a reference electrode 507 as electrodes.

液体供給管509は、測定槽501の底面から測定槽501内に挿入されており、測定槽501に連通している。また、液体供給管509に還元水515の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。ポンプ523は、液体供給管509から測定槽501内に供給される還元水515を圧送し、測定槽501内を加圧する機能を有する。オーバーフロー管513は、測定槽501の上面近傍から測定槽501に挿入されており、測定槽501に連通している。オーバーフロー管513が測定槽501の上面近傍に固定されているため、測定槽501内は還元水515で満たすことができる。   The liquid supply pipe 509 is inserted into the measurement tank 501 from the bottom surface of the measurement tank 501 and communicates with the measurement tank 501. The liquid supply pipe 509 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 515. The pump 523 has a function of pumping the reducing water 515 supplied from the liquid supply pipe 509 into the measurement tank 501 and pressurizing the measurement tank 501. The overflow pipe 513 is inserted into the measurement tank 501 from the vicinity of the upper surface of the measurement tank 501 and communicates with the measurement tank 501. Since the overflow pipe 513 is fixed near the upper surface of the measurement tank 501, the measurement tank 501 can be filled with the reduced water 515.

次に、酸化還元電位測定装置500を用いた還元水515の酸化還元電位測定方法を説明する。
本実施形態においては、被測定液(還元水515)の酸化還元電位を測定する電極(作用極505、参照極507)を、密閉した測定槽501内で還元水515に接触させた状態で、測定槽501の内部を測定槽501の外部よりも陽圧として、還元水515の酸化還元電位を測定する。
Next, a method for measuring the redox potential of the reduced water 515 using the redox potential measuring apparatus 500 will be described.
In the present embodiment, the electrodes (working electrode 505, reference electrode 507) for measuring the oxidation-reduction potential of the liquid to be measured (reduced water 515) are in contact with the reduced water 515 in the sealed measurement tank 501. The oxidation-reduction potential of the reduced water 515 is measured by setting the inside of the measurement tank 501 to be more positive than the outside of the measurement tank 501.

以下、本実施形態の酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽501にセンサ503を設置し、液体供給管509から還元水515を送液する。このとき、オーバーフロー管513からの排液速度に応じて、必要に応じてポンプ523を用い、還元水515を加圧する。前述したように、測定槽501の上面近傍にオーバーフロー管513が設けられているため、測定槽501内は、ほぼ100%還元水515で満たされ、水位が一定に保たれる。
Hereinafter, the oxidation-reduction potential measurement method of this embodiment will be described in more detail.
First, the sensor 503 is installed in the measurement tank 501, and the reducing water 515 is sent from the liquid supply pipe 509. At this time, the reduced water 515 is pressurized using the pump 523 according to the drainage speed | rate from the overflow pipe | tube 513 as needed. As described above, since the overflow pipe 513 is provided in the vicinity of the upper surface of the measurement tank 501, the inside of the measurement tank 501 is filled with almost 100% reduced water 515, and the water level is kept constant.

そして、センサ503による還元水515の酸化還元電位測定を行う。このとき、流量調整バルブ521を調節し、オーバーフロー管513からの還元水515の排出速度を調節する。具体的には、測定槽501内が充分に加圧される程度に、流量調整バルブ521をしぼり、排出速度を低下させる。   Then, the redox potential of the reduced water 515 is measured by the sensor 503. At this time, the flow rate adjustment valve 521 is adjusted to adjust the discharge rate of the reduced water 515 from the overflow pipe 513. Specifically, the flow rate adjustment valve 521 is squeezed so that the inside of the measurement tank 501 is sufficiently pressurized, and the discharge speed is reduced.

次に、本実施形態の効果を説明する。
酸化還元電位測定装置500は、流量調整バルブ521を有する。このため、流量調整バルブ521を調整して、還元水515のオーバーフロー管513からの排出速度を液体供給管509からの供給速度に対して充分に小さくすることができる。また、ポンプ523を有するため、還元水515を測定槽501に所定の速度で圧送することができる。このため、簡素な構成で測定槽501内の還元水515を加圧した状態に維持することができる。測定槽501内を加圧した状態に保つことにより、還元水515中の水素ガスが気泡519となることを抑制し、気泡519がセンサ503の表面に付着することを抑制できる。
Next, the effect of this embodiment will be described.
The oxidation-reduction potential measuring apparatus 500 has a flow rate adjustment valve 521. For this reason, the flow rate adjusting valve 521 can be adjusted so that the discharge rate of the reduced water 515 from the overflow pipe 513 can be made sufficiently smaller than the supply rate from the liquid supply pipe 509. In addition, since the pump 523 is included, the reduced water 515 can be pumped to the measurement tank 501 at a predetermined speed. For this reason, it is possible to maintain the reduced water 515 in the measurement tank 501 in a pressurized state with a simple configuration. By keeping the inside of the measurement tank 501 pressurized, the hydrogen gas in the reduced water 515 can be prevented from becoming bubbles 519 and the bubbles 519 can be prevented from adhering to the surface of the sensor 503.

このように、酸化還元電位測定装置500は、抑泡手段として機能する送液部を有し、液体供給管509、ポンプ523、オーバーフロー管513、および流量調整バルブ521からなる送液部が測定槽501内の還元水515を加圧するため、簡素な構成で効果的に還元水515中の気泡の発生を抑制し、還元水513の酸化還元電位の測定を安定的に行うことができる。この効果は、液体供給管509にポンプ523が設けられ、液体供給管509から測定槽501内に加圧して供給する場合に顕著に発揮される。   As described above, the oxidation-reduction potential measuring apparatus 500 includes a liquid feeding unit that functions as a foam suppression unit, and the liquid feeding unit including the liquid supply pipe 509, the pump 523, the overflow pipe 513, and the flow rate adjustment valve 521 is a measurement tank. Since the reducing water 515 in the 501 is pressurized, the generation of bubbles in the reducing water 515 can be effectively suppressed with a simple configuration, and the redox potential of the reducing water 513 can be stably measured. This effect is remarkably exhibited when the liquid supply pipe 509 is provided with a pump 523 and is supplied from the liquid supply pipe 509 to the measurement tank 501 under pressure.

(第六の実施形態)
図9は、本実施形態の酸化還元電位測定装置の構成を示す断面図である。図9に示した酸化還元電位測定装置600は、酸化還元電位の測定対象となる被測定液(還元水615)を収容する測定槽601と、測定槽601内の還元水615に接触するように配置され、還元水615の酸化還元電位を測定する電極(作用極605、参照極607)と、測定槽601の底部の近傍に設けられ、測定槽601に還元水615を供給する供給口(液体供給管609の連通口)と、測定槽601に設けられ、測定槽601内の余剰の還元水615を越流させて排出する余剰液排出口(オーバーフロー管613の連通口)と、還元水615を冷却する冷却手段(冷却器621)と、を有する。
作用極605および参照極607は、オーバーフロー管613の連通口よりも下方に配置される。
(Sixth embodiment)
FIG. 9 is a cross-sectional view showing the configuration of the oxidation-reduction potential measuring apparatus of this embodiment. The oxidation-reduction potential measuring apparatus 600 shown in FIG. 9 is in contact with the measurement tank 601 that contains the measurement target liquid (reduced water 615) that is the target for measuring the oxidation-reduction potential, and the reduced water 615 in the measurement tank 601. An electrode (working electrode 605, reference electrode 607) that is disposed and measures the oxidation-reduction potential of the reducing water 615, and a supply port (liquid) that supplies the reducing water 615 to the measuring tank 601 provided near the bottom of the measuring tank 601. A communication port of the supply pipe 609), an excess liquid discharge port (a communication port of the overflow pipe 613) that is provided in the measurement tank 601 and discharges the excess reduced water 615 in the measurement tank 601. Cooling means (cooler 621) for cooling the air.
The working electrode 605 and the reference electrode 607 are disposed below the communication port of the overflow pipe 613.

以下、図9の酸化還元電位測定装置600の構成をさらに詳細に説明する。酸化還元電位測定装置600は、測定槽601、測定槽601内の所定の位置に配置されるセンサ603、測定槽601に還元水615を供給する液体供給管609、ならびに液体供給管609に接して設けられ、液体供給管609およびその内部の還元水515を冷却する冷却器621を有する。センサ603は、酸化還元電位センサであり、電極として、作用極605および参照極607を有する。また、センサ603は、測定値の温度較正を行う較正部(不図示)を有する。   Hereinafter, the configuration of the oxidation-reduction potential measuring apparatus 600 of FIG. 9 will be described in more detail. The oxidation-reduction potential measuring device 600 is in contact with the measurement tank 601, the sensor 603 disposed at a predetermined position in the measurement tank 601, the liquid supply pipe 609 that supplies the reducing water 615 to the measurement tank 601, and the liquid supply pipe 609. A cooler 621 that cools the liquid supply pipe 609 and the reducing water 515 inside the liquid supply pipe 609 is provided. The sensor 603 is a redox potential sensor, and has a working electrode 605 and a reference electrode 607 as electrodes. The sensor 603 includes a calibration unit (not shown) that performs temperature calibration of the measurement value.

液体供給管609は、測定槽601の底面から測定槽601内に挿入されており、測定槽601に連通している。なお、液体供給管609に還元水615の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。オーバーフロー管613は、測定槽601の側面から測定槽601に挿入されており、測定槽601に連通している。オーバーフロー管613の固定位置は、測定槽601中にセンサ603を配置したときの作用極605および参照極607の位置よりも高い位置とする。こうすることにより、酸化還元電位のモニタ時の測定槽601中の還元水615の液面617の高さを充分に高く保ち、作用極405および参照極607を還元水615に確実に接触させ続けることができる。   The liquid supply pipe 609 is inserted into the measurement tank 601 from the bottom surface of the measurement tank 601 and communicates with the measurement tank 601. The liquid supply pipe 609 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 615. The overflow pipe 613 is inserted into the measurement tank 601 from the side surface of the measurement tank 601 and communicates with the measurement tank 601. The fixing position of the overflow pipe 613 is higher than the positions of the working electrode 605 and the reference electrode 607 when the sensor 603 is arranged in the measurement tank 601. By doing this, the height of the liquid surface 617 of the reduced water 615 in the measuring tank 601 when monitoring the oxidation-reduction potential is kept sufficiently high, and the working electrode 405 and the reference electrode 607 are reliably kept in contact with the reduced water 615. be able to.

次に、酸化還元電位測定装置600を用いた還元水615の酸化還元電位測定方法を説明する。
本実施形態においては、被測定液(還元水615)を冷却した状態で、還元水615の酸化還元電位を測定する電極(作用極605、参照極607)を還元水615に接触させて、還元水615の酸化還元電位を測定する。
Next, a method for measuring the redox potential of the reduced water 615 using the redox potential measuring apparatus 600 will be described.
In the present embodiment, in a state in which the liquid to be measured (reduced water 615) is cooled, the electrode (working electrode 605, reference electrode 607) for measuring the oxidation-reduction potential of the reduced water 615 is brought into contact with the reduced water 615 for reduction. The redox potential of water 615 is measured.

以下、本実施形態の酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽601にセンサ603を設置し、液体供給管609から還元水615を送液する。このとき、冷却器621を動作させて、還元水615を冷却して測定槽601内に供給する。冷却温度は、還元水615が凍結しない温度以上とする。また、凍結しない範囲でできるだけ低い温度とすることができ、たとえば10℃以下、好ましくは5℃以下とする。そして、センサ603による還元水615の酸化還元電位測定を行う。このとき、較正部(不図示)において、測定値の温度較正を行う。
Hereinafter, the oxidation-reduction potential measurement method of this embodiment will be described in more detail.
First, the sensor 603 is installed in the measurement tank 601, and the reducing water 615 is sent from the liquid supply pipe 609. At this time, the cooler 621 is operated to cool the reduced water 615 and supply it to the measurement tank 601. The cooling temperature is set to a temperature at which the reduced water 615 is not frozen. Further, the temperature can be set as low as possible within a range not to be frozen, for example, 10 ° C. or less, preferably 5 ° C. or less. Then, the redox potential of the reduced water 615 is measured by the sensor 603. At this time, temperature calibration of the measured value is performed in a calibration unit (not shown).

なお、本実施形態においても、作用極605および参照極607の設置位置よりも高い所定の位置にオーバーフロー管613が設けられているため、過剰量の還元水615がオーバーフロー管613から測定槽601の外部に排出される。よって、液面617の高さが略一定に保たれる。   In this embodiment as well, since the overflow pipe 613 is provided at a predetermined position higher than the installation positions of the working electrode 605 and the reference electrode 607, an excessive amount of reduced water 615 flows from the overflow pipe 613 to the measuring tank 601. It is discharged outside. Therefore, the height of the liquid level 617 is kept substantially constant.

次に、酸化還元電位測定装置600の効果を説明する。
酸化還元電位測定装置600は、冷却器621にて還元水615を冷却して測定槽601に連続的に供給する構成となっている。このため、測定槽601内を冷却した状態で酸化還元電位を測定することができる。よって、測定槽601内の還元水615中に溶解している水素ガスが気泡619となることを効果的に抑制することができる。したがって、酸化還元電位の測定時にセンサ603の表面に気泡619が付着することを抑制し、酸化還元電位測定を安定的に行うことができる。
Next, the effect of the oxidation-reduction potential measuring apparatus 600 will be described.
The oxidation-reduction potential measuring apparatus 600 is configured to cool the reducing water 615 with a cooler 621 and continuously supply it to the measurement tank 601. For this reason, the oxidation-reduction potential can be measured in a state where the inside of the measurement tank 601 is cooled. Therefore, hydrogen gas dissolved in the reducing water 615 in the measurement tank 601 can be effectively suppressed from becoming bubbles 619. Therefore, it is possible to suppress the bubble 619 from adhering to the surface of the sensor 603 during the measurement of the redox potential and stably perform the redox potential measurement.

なお、図9に示した酸化還元電位測定装置600においては、液体供給管609にインライン冷却器として冷却器621を設けた構成を例示したが、冷却器621に加えて、さらに測定槽601を冷却する冷却器を設けてもよい。こうすれば、測定槽601内の還元水615をより一層確実に冷却することができるため、気泡619の発生をさらに効果的に抑制することができる。また、測定槽601を冷却する冷却器のみを用いることもできる。   In the oxidation-reduction potential measuring apparatus 600 shown in FIG. 9, the configuration in which the liquid supply pipe 609 is provided with the cooler 621 as an in-line cooler is illustrated, but in addition to the cooler 621, the measurement tank 601 is further cooled. A cooler may be provided. By so doing, the reduced water 615 in the measurement tank 601 can be cooled more reliably, and the generation of bubbles 619 can be further effectively suppressed. Moreover, only the cooler which cools the measurement tank 601 can also be used.

(第七の実施形態)
以上の実施形態に記載の酸化還元電位測定装置は、センサの電極を酸性液または酸化性液に接触させる機構を有していてもよい。以下、第一の実施形態に記載の酸化還元電位測定装置(図1、図2)の構成を基本構成とする場合を例に説明するが、他の実施形態に記載の酸化還元電位測定装置を本実施形態の構成に適用したり、本実施形態の構成に組み合わせたりすることができる。
(Seventh embodiment)
The oxidation-reduction potential measuring device described in the above embodiment may have a mechanism for bringing the sensor electrode into contact with an acidic liquid or an oxidizing liquid. Hereinafter, a case where the configuration of the oxidation-reduction potential measurement device (FIGS. 1 and 2) described in the first embodiment is used as a basic configuration will be described as an example. However, the oxidation-reduction potential measurement device described in other embodiments will be described. It can be applied to the configuration of the present embodiment, or can be combined with the configuration of the present embodiment.

はじめに、測定槽中でセンサの電極の洗浄を行うタイプの酸化還元電位測定装置について、洗浄液がオゾン水であって、酸化還元電位測定装置を還元水製造システムに適用する場合を例に説明する。図10は、本実施形態の還元水製造システムの構成を示す図である。図10に示した還元水製造システム700は、第一の実施形態に記載の酸化還元電位測定装置において、測定槽101の底部の近傍に、測定槽101に洗浄液を供給する洗浄液供給口(液体供給管109の連通口)が設けられている。なお、図10および図11に示した還元水製造システムでは、還元水115の供給口と洗浄液の供給口が同じであって、この液体供給管109の連通口への液体の供給を切り替える構成となっているが、これらの供給口を別々に設けることもできる。
還元水製造システム700は、水の電気分解により生じた水素ガスを水に溶解させて還元水115を得る還元水生成手段(電気分解装置720、第一溶解モジュール737、第二溶解モジュール735、脱イオン水供給管729、オゾンガス供給管731、水素ガス供給管733)と、液体供給管109の連通口から測定槽101内に供給される液体を切り替える切替手段(還元水供給バルブ749、オゾン水供給バルブ751)と、を有する。
液体は、被測定液と洗浄液である。被測定液は、還元水115である。また、洗浄液が、水と、上記前記還元水生成手段において水の電気分解により生じたオゾンガスと、を含む。
First, a description will be given of an example of a type of oxidation-reduction potential measurement device that cleans a sensor electrode in a measurement tank, in which the cleaning liquid is ozone water, and the oxidation-reduction potential measurement device is applied to a reduced water production system. FIG. 10 is a diagram showing a configuration of the reduced water production system of the present embodiment. A reduction water production system 700 shown in FIG. 10 is a cleaning liquid supply port (liquid supply) for supplying a cleaning liquid to the measurement tank 101 in the vicinity of the bottom of the measurement tank 101 in the oxidation-reduction potential measuring apparatus described in the first embodiment. A communication port for the pipe 109 is provided. 10 and FIG. 11, the supply port of the reduction water 115 and the supply port of the cleaning liquid are the same, and the supply of the liquid to the communication port of the liquid supply pipe 109 is switched. However, these supply ports can be provided separately.
The reduced water production system 700 is a reduced water generating means (electrolyzer 720, first dissolution module 737, second dissolution module 735, desorption) that obtains reduced water 115 by dissolving hydrogen gas generated by water electrolysis in water. Ion water supply pipe 729, ozone gas supply pipe 731, hydrogen gas supply pipe 733) and switching means (reduction water supply valve 749, ozone water supply) for switching the liquid supplied into the measurement tank 101 from the communication port of the liquid supply pipe 109. And a valve 751).
The liquid is a liquid to be measured and a cleaning liquid. The liquid to be measured is reduced water 115. In addition, the cleaning liquid contains water and ozone gas generated by electrolysis of water in the reduced water generating means.

以下、図10に示した還元水製造システム700の構成をさらに詳細に説明する。還元水製造システム700は、図2に示した酸化還元電位測定装置110および電気分解装置720を有する。   Hereinafter, the configuration of the reduced water production system 700 shown in FIG. 10 will be described in more detail. The reduced water production system 700 includes the oxidation-reduction potential measuring device 110 and the electrolysis device 720 shown in FIG.

電気分解装置720は、外部給水源から水が供給される電気分解槽を備える。電気分解槽中に供給される水中に一対の電極を配置して、電極間に電圧を付与することにより電気分解する。得られた水素ガスとオゾンガスをそれぞれ水に溶解させて、還元水(水素水)酸化水(オゾン水)とを生成する。具体的には、電気分解槽721と、電気分解槽721を二つの室に区画する隔壁725と、電気分解槽721の一方の室に配置されたアノード電極723と、電気分解槽721の他方の室に配置されたカソード電極727とを有する。   The electrolyzer 720 includes an electrolysis tank to which water is supplied from an external water supply source. A pair of electrodes is disposed in the water supplied into the electrolysis tank, and electrolysis is performed by applying a voltage between the electrodes. The obtained hydrogen gas and ozone gas are each dissolved in water to produce reduced water (hydrogen water) and oxidized water (ozone water). Specifically, an electrolysis tank 721, a partition wall 725 that divides the electrolysis tank 721 into two chambers, an anode electrode 723 disposed in one chamber of the electrolysis tank 721, and the other of the electrolysis tank 721. A cathode electrode 727 disposed in the chamber.

カソード電極727が設けられた室からは、水素(H2)ガスが発生する。この水素ガスは、カソード電極727が設けられた室から水素ガス供給管733を経由して、第一溶解モジュール737に至る。第一溶解モジュール737には、脱イオン水(DIW)収容部(不図示)中の脱イオン水が脱イオン水供給管729を経由して供給される。第一溶解モジュール737は、脱イオン水中に水素ガスを溶解させて還元水115を生成するモジュールである。第一溶解モジュール737にて生成した還元水115は、第一溶解モジュール737に連通する第一還元水供給管743中でpH調整がなされた後、第一還元水供給管743から還元水115の使用目的の装置に供給される。 Hydrogen (H 2 ) gas is generated from the chamber in which the cathode electrode 727 is provided. This hydrogen gas reaches the first melting module 737 through the hydrogen gas supply pipe 733 from the chamber in which the cathode electrode 727 is provided. The first dissolution module 737 is supplied with deionized water in a deionized water (DIW) housing (not shown) via a deionized water supply pipe 729. The first dissolution module 737 is a module that generates reduced water 115 by dissolving hydrogen gas in deionized water. The reduced water 115 generated in the first dissolution module 737 is pH adjusted in the first reduced water supply pipe 743 communicating with the first dissolution module 737, and then the reduced water 115 is supplied from the first reduced water supply pipe 743. Supplied to the intended device.

第一還元水供給管743には、希釈アンモニア供給管741を介して希釈アンモニア収容部739が連通しており、希釈アンモニア収容部739には、還元水115のpH調整用のアンモニアが収容されている。希釈アンモニア供給管741には、希釈アンモニア収容部739から第一還元水供給管743への希釈アンモニアの供給の有無および供給量を調節する希釈アンモニア供給バルブ753が設けられている。   The first reduced water supply pipe 743 communicates with a diluted ammonia storage section 739 via a diluted ammonia supply pipe 741, and the diluted ammonia storage section 739 stores ammonia for adjusting the pH of the reduced water 115. Yes. The diluted ammonia supply pipe 741 is provided with a diluted ammonia supply valve 753 that adjusts whether or not the diluted ammonia is supplied from the diluted ammonia storage part 739 to the first reduced water supply pipe 743 and the supply amount.

また、還元水115の一部は、第一還元水供給管743から分岐する第二還元水供給管745を経由して液体供給管109に至る。第二還元水供給管745は、希釈アンモニア供給管741との合流部よりも下流側すなわち電気分解装置720から遠ざかる側において第一還元水供給管743から分岐している。液体供給管109と第二還元水供給管745との接続部には還元水供給バルブ749が設けられており、酸化還元電位測定装置110の測定槽101への還元水115の供給を調節することができる。   A part of the reduced water 115 reaches the liquid supply pipe 109 via the second reduced water supply pipe 745 branched from the first reduced water supply pipe 743. The second reduced water supply pipe 745 branches from the first reduced water supply pipe 743 on the downstream side of the junction with the diluted ammonia supply pipe 741, that is, on the side away from the electrolyzer 720. A connecting portion between the liquid supply pipe 109 and the second reducing water supply pipe 745 is provided with a reducing water supply valve 749 for adjusting the supply of the reducing water 115 to the measuring tank 101 of the oxidation-reduction potential measuring device 110. Can do.

一方、アノード電極723が設けられた室からは、オゾン(O3)ガスが発生する。このオゾンガスは、アノード電極723電極が設けられた室から、オゾンガス供給管731を経由して第二溶解モジュール735に至る。第二溶解モジュール735には、脱イオン水収容部(不図示)中の脱イオン水が脱イオン水供給管729を経由して供給される。第二溶解モジュール735は、脱イオン水中にオゾンガスを溶解させてオゾン水を生成するモジュールである。オゾン水は、酸化水の一つであり、洗浄液として用いられる。第二溶解モジュール735にて生成したオゾン水は、第二溶解モジュール735に連通するオゾン水供給管747を経由して液体供給管109に至る。オゾン水供給管747と液体供給管109との接続部には、オゾン水の供給の有無および供給量を調節するオゾン水供給バルブ751が設けられている。 On the other hand, ozone (O 3 ) gas is generated from the chamber in which the anode electrode 723 is provided. The ozone gas reaches the second melting module 735 through the ozone gas supply pipe 731 from the chamber in which the anode electrode 723 electrode is provided. Deionized water in a deionized water storage unit (not shown) is supplied to the second dissolution module 735 via a deionized water supply pipe 729. The second dissolution module 735 is a module that generates ozone water by dissolving ozone gas in deionized water. Ozone water is one type of oxidizing water and is used as a cleaning liquid. The ozone water generated by the second dissolution module 735 reaches the liquid supply pipe 109 via the ozone water supply pipe 747 communicating with the second dissolution module 735. An ozone water supply valve 751 is provided at the connection between the ozone water supply pipe 747 and the liquid supply pipe 109 to adjust whether or not the ozone water is supplied and the supply amount.

液体供給管109は二つに分岐しており、一方が第二還元水供給管745に接続され、他方がオゾン水供給管747に接続されている。このため、測定槽101に供給する液体を、オゾン水と還元水115との間で切り替えることができる。   The liquid supply pipe 109 is branched into two, one connected to the second reducing water supply pipe 745 and the other connected to the ozone water supply pipe 747. For this reason, the liquid supplied to the measurement tank 101 can be switched between ozone water and reducing water 115.

次に、図10に示した還元水製造システム700の制御系の構成を説明する。図11は、還元水製造システム700の構成を示すブロック図である。図11に示したように、還元水製造システム700は、還元水供給バルブ749、オゾン水供給バルブ751および希釈アンモニア供給バルブ753の動作を制御する制御部755(図10には不図示)を有する。制御部755は、pH制御部767(図10には不図示)およびORP制御部765(図10には不図示)を有する。   Next, the configuration of the control system of the reduced water production system 700 shown in FIG. 10 will be described. FIG. 11 is a block diagram illustrating a configuration of the reduced water production system 700. As shown in FIG. 11, the reduced water production system 700 has a control unit 755 (not shown in FIG. 10) that controls the operations of the reduced water supply valve 749, the ozone water supply valve 751, and the diluted ammonia supply valve 753. . The control unit 755 has a pH control unit 767 (not shown in FIG. 10) and an ORP control unit 765 (not shown in FIG. 10).

pH制御部767は、還元水115のpHを計測するpHセンサ763(図10には不図示)における計測値に基づき、希釈アンモニア供給バルブ753の開閉を調節し、第一還元水供給管743へのpH調整用のアンモニアの供給の有無および量を制御する。これにより、還元水115のpHが所定の範囲内に調整される。還元水115のpHは、たとえば6.5以上14以下とする。   The pH control unit 767 adjusts the opening and closing of the diluted ammonia supply valve 753 based on the measured value of the pH sensor 763 (not shown in FIG. 10) that measures the pH of the reduced water 115, and supplies the first reduced water supply pipe 743. The presence / absence and amount of ammonia for pH adjustment are controlled. Thereby, the pH of the reduced water 115 is adjusted within a predetermined range. The pH of the reduced water 115 is, for example, 6.5 or more and 14 or less.

ORP制御部765は、計時部757(図10には不図示)から入力される時間情報に基づいて、一定の時間ごとに還元水供給バルブ749およびオゾン水供給バルブ751の開閉を調節し、液体供給管109から測定槽101への還元水115およびオゾン水の供給を制御する。これにより、還元水115の酸化還元電位の測定に加えて、作用極105および参照極107の洗浄が行われる。   The ORP control unit 765 adjusts the opening and closing of the reducing water supply valve 749 and the ozone water supply valve 751 at regular intervals based on the time information input from the time measuring unit 757 (not shown in FIG. 10), and the liquid The supply of the reducing water 115 and the ozone water from the supply pipe 109 to the measurement tank 101 is controlled. Thereby, in addition to the measurement of the oxidation-reduction potential of the reduced water 115, the working electrode 105 and the reference electrode 107 are cleaned.

次に、本実施形態の還元水115の酸化還元電位の測定および電極の洗浄手順を説明する。本実施形態でも、基本的な測定ステップとして、第一の実施形態のステップ101〜ステップ104を用いる。
そして、ステップ102の作用極105および参照極107の表面を露出させる工程の後、ステップ103の作用極105および参照極107を再度還元水115中に接触させる工程の前に、測定槽101の底部の近傍から洗浄液を供給し、作用極105および参照極107を洗浄液に接触させる工程と、測定槽101の底部の近傍から洗浄液を排出する工程と、を含む。
還元水115の酸化還元電位を測定する工程は、水の電気分解で生じた水素と水とを含む還元水115の酸化還元電位を測定する工程であって、洗浄液が、当該水の電気分解で生じたオゾンと水とを含む液体(オゾン液)である。
Next, the measurement of the oxidation-reduction potential of the reducing water 115 and the electrode cleaning procedure of this embodiment will be described. Also in this embodiment, steps 101 to 104 of the first embodiment are used as basic measurement steps.
Then, after the step of exposing the working electrode 105 and the reference electrode 107 in Step 102 and before the step of contacting the working electrode 105 and the reference electrode 107 in Step 103 again with the reducing water 115, the bottom of the measuring tank 101 is obtained. A step of supplying the cleaning liquid from near the working electrode 105 and contacting the working electrode 105 and the reference electrode 107 with the cleaning liquid, and a step of discharging the cleaning liquid from the vicinity of the bottom of the measuring tank 101.
The step of measuring the oxidation-reduction potential of the reduced water 115 is a step of measuring the oxidation-reduction potential of the reduced water 115 containing hydrogen and water generated by water electrolysis, and the cleaning liquid is electrolyzed by the water. It is a liquid (ozone liquid) containing the generated ozone and water.

以下、図10〜図12を参照して、測定槽101中の還元水115の酸化還元電位の測定および電極の洗浄手順をさらに詳細に説明する。図12は、還元水115の酸化還元電位の測定および電極洗浄の手順を示すフローチャートである。   Hereinafter, with reference to FIGS. 10 to 12, the measurement of the oxidation-reduction potential of the reducing water 115 in the measuring tank 101 and the procedure for cleaning the electrodes will be described in more detail. FIG. 12 is a flowchart showing the procedure for measuring the redox potential of the reduced water 115 and cleaning the electrodes.

まず、ORP制御部765は、還元水供給バルブ749を開状態、オゾン水供給バルブ751を閉状態とし、測定槽101中に還元水115を供給する(S701)。これにより、センサ103において還元水115の酸化還元電位測定が可能な状態となる。所定の時間が経過した後(S702のYES)、ORP制御部765は還元水供給バルブ749を閉状態として還元水の供給を停止し(S703)、測定槽101中の還元水115をドレン管111から排出する(S704)。これにより、作用極105および参照極107の表面が露出し、表面に付着した気泡119が除去される。   First, the ORP control unit 765 opens the reduced water supply valve 749 and closes the ozone water supply valve 751 to supply the reduced water 115 into the measurement tank 101 (S701). As a result, the sensor 103 can measure the redox potential of the reduced water 115. After a predetermined time has elapsed (YES in S702), the ORP control unit 765 closes the reduced water supply valve 749 to stop the supply of reduced water (S703), and the reduced water 115 in the measurement tank 101 is drained from the drain pipe 111. (S704). As a result, the surfaces of the working electrode 105 and the reference electrode 107 are exposed, and the bubbles 119 attached to the surfaces are removed.

還元水115の排出を所定時間行った後(S705のYES)、ORP制御部765はオゾン水供給バルブ751を開状態とし、測定槽101中にオゾン水を供給する(S706)。これにより、作用極105および参照極107がオゾン水中に浸されて、電極表面の洗浄がなされる。なお、センサ103の洗浄頻度は、たとえば1回/日程度とする。また、作用極105および参照極107をオゾン水に接触させる時間は、たとえば1〜5分程度とする。   After discharging the reducing water 115 for a predetermined time (YES in S705), the ORP control unit 765 opens the ozone water supply valve 751 and supplies ozone water into the measurement tank 101 (S706). As a result, the working electrode 105 and the reference electrode 107 are immersed in the ozone water, and the electrode surface is cleaned. The cleaning frequency of the sensor 103 is, for example, about once / day. Moreover, the time which makes the working electrode 105 and the reference electrode 107 contact ozone water shall be about 1 to 5 minutes, for example.

所定の時間経過したら(S707のYES)、オゾン水供給バルブ751を閉状態とし、オゾン水の供給を停止(S708)する。そして、測定槽101中のオゾン水をドレン管111から排出する(S709)。オゾン水の排水を一定時間行った後(S710のYES)、酸化還元電位の測定を行う場合には(S711のYES)、還元水供給バルブ749を開状態とし、測定槽101中に再度還元水を供給する(S701)。   When the predetermined time has elapsed (YES in S707), the ozone water supply valve 751 is closed, and the supply of ozone water is stopped (S708). Then, the ozone water in the measurement tank 101 is discharged from the drain pipe 111 (S709). After the ozone water is drained for a certain time (YES in S710), when the redox potential is measured (YES in S711), the reduced water supply valve 749 is opened and the reduced water is again put into the measurement tank 101. Is supplied (S701).

なお、以上の手順において、ORP制御部765は、センサ103における酸化還元電位の測定値が所定の範囲外となったときに、還元水115の供給を停止し(S703)、ステップ704以降のセンサ103の洗浄を行う構成としてもよい。   In the above procedure, the ORP control unit 765 stops the supply of the reducing water 115 when the measured value of the oxidation-reduction potential in the sensor 103 is outside the predetermined range (S703), and the sensor after step 704 103 may be configured to perform cleaning.

次に、図10および図11に示した還元水製造システム700の効果を説明する。
還元水製造システム700においては、液体供給管109にオゾン水供給管747が接続されており、測定槽101中にオゾン水を供給可能な構成となっている。このため、作用極105および参照極107を定期的にオゾン水に接触させることができる。作用極105および参照極107を定期的にオゾン水に接触させることにより、これらの電極表面の改質を行い、電極表面に付着したり、白金電極中に吸蔵されていた水素ガスを効果的に除去することができる。このため、以上の実施形態に記載の酸化還元電位測定装置のみを用いる測定の場合に比べて、さらに充分に測定値を回復させることができる。
Next, the effect of the reduced water production system 700 shown in FIGS. 10 and 11 will be described.
In the reduced water production system 700, an ozone water supply pipe 747 is connected to the liquid supply pipe 109 so that ozone water can be supplied into the measurement tank 101. For this reason, the working electrode 105 and the reference electrode 107 can be periodically contacted with ozone water. By periodically bringing the working electrode 105 and the reference electrode 107 into contact with ozone water, these electrode surfaces are modified to effectively remove the hydrogen gas adhering to the electrode surfaces or occluded in the platinum electrodes. Can be removed. For this reason, compared with the case of the measurement using only the oxidation-reduction potential measuring device described in the above embodiment, the measured value can be recovered more sufficiently.

また、還元水製造システム700においては、電気分解装置720のアノード電極723が設けられた室にて発生するオゾンガスを第一溶解モジュール737にて脱イオン水に溶解させてオゾン水を製造し、還元水供給バルブ749とオゾン水供給バルブ751のバルブを切り替えることにより、定期的に作用極105および参照極107の洗浄を行うことができる。このため、還元水115を製造するための電気分解装置720において副生成物として生じ、廃棄されていたオゾンガスを電極洗浄用に効率よく利用することができる。このため、還元水製造システム700は、システム全体が簡素な構成で、電気分解装置720における生成物を効率よく利用して還元水115の品質を管理することができる。   Further, in the reduced water production system 700, ozone gas generated in the chamber provided with the anode electrode 723 of the electrolyzer 720 is dissolved in deionized water by the first dissolution module 737 to produce ozone water, and reduced. By switching the water supply valve 749 and the ozone water supply valve 751, the working electrode 105 and the reference electrode 107 can be periodically cleaned. For this reason, ozone gas generated as a by-product in the electrolyzer 720 for producing the reduced water 115 and discarded can be efficiently used for electrode cleaning. For this reason, the reduced water production system 700 can manage the quality of the reduced water 115 by efficiently using the product in the electrolyzer 720 with a simple configuration of the entire system.

また、制御部755がORP制御部765およびpH制御部767を有し、還元水115のpH調整ならびに還元水115の酸化還元電位測定および電極洗浄を制御する構成となっている。このため、還元水115のpHおよび酸化還元電位をより簡便な方法でより一層安定的に調整することができる。   Further, the control unit 755 has an ORP control unit 765 and a pH control unit 767, and is configured to control pH adjustment of the reducing water 115, measurement of the oxidation-reduction potential of the reducing water 115, and electrode cleaning. For this reason, the pH and redox potential of the reduced water 115 can be adjusted more stably by a simpler method.

以上においては、図2に示した酸化還元電位測定装置110を有する還元水製造システム700を例に説明したが、還元水製造システムが図1に示した酸化還元電位測定装置100を有する構成とすることもできる。   In the above description, the reduced water production system 700 having the redox potential measuring device 110 shown in FIG. 2 has been described as an example. However, the reduced water production system has a configuration having the redox potential measuring device 100 shown in FIG. You can also

図13は、酸化還元電位測定装置100を有する還元水製造システムの構成を示す図である。図13に示した還元水製造システム710の基本構成は図10に示した還元水製造システム700と同様であるが、酸化還元電位測定装置110に代えて酸化還元電位測定装置100が設けられている点が異なる。   FIG. 13 is a diagram showing a configuration of a reduced water production system having the oxidation-reduction potential measuring device 100. As shown in FIG. The basic configuration of the reduced water production system 710 shown in FIG. 13 is the same as that of the reduced water production system 700 shown in FIG. 10, but the oxidation reduction potential measurement device 100 is provided instead of the oxidation reduction potential measurement device 110. The point is different.

具体的には、還元水製造システム710は、図10に示した構成に加えて、さらに、オーバーフロー管113、オーバーフロー管113に設けられた第二還元水排出バルブ161、およびドレン管111に設けられた第一還元水排出バルブ159を有する。第二還元水排出バルブ161は、測定槽101からオーバーフロー管113を経由する還元水115の排出の有無および量を調節する。第一還元水排出バルブ159は、測定槽101からドレン管111を経由する還元水115の排出の有無および量を調節する。   Specifically, in addition to the configuration shown in FIG. 10, the reduced water production system 710 is further provided in the overflow pipe 113, the second reduced water discharge valve 161 provided in the overflow pipe 113, and the drain pipe 111. And a first reduced water discharge valve 159. The second reducing water discharge valve 161 adjusts whether or not the reducing water 115 is discharged from the measuring tank 101 via the overflow pipe 113 and the amount thereof. The first reducing water discharge valve 159 adjusts whether or not the reducing water 115 is discharged from the measurement tank 101 via the drain pipe 111 and the amount thereof.

図14は、図11に示した還元水製造システム710の構成を示すブロック図である。図14に示したように、還元水製造システム710においては、ORP制御部765が還元水供給バルブ749およびオゾン水供給バルブ751に加えて、第一還元水排出バルブ159および第二還元水排出バルブ161の開閉も制御する。   FIG. 14 is a block diagram showing the configuration of the reduced water production system 710 shown in FIG. As shown in FIG. 14, in the reduced water production system 710, the ORP controller 765 has a first reduced water discharge valve 159 and a second reduced water discharge valve in addition to the reduced water supply valve 749 and the ozone water supply valve 751. The opening / closing of 161 is also controlled.

図13および図14に示した還元水製造システム710における還元水115の酸化還元電位測定およびセンサ103の洗浄手順は、図12に示した手順で行うことができる。   The redox potential measurement of the reduced water 115 and the cleaning procedure of the sensor 103 in the reduced water production system 710 shown in FIGS. 13 and 14 can be performed according to the procedure shown in FIG.

ORP制御部765は、図12のステップ701において、還元水115を供給する際に、還元水供給バルブ749および第二還元水排出バルブ161を開状態とし、オゾン水供給バルブ751および第一還元水排出バルブ159を閉状態とする。また、ステップ704にて還元水115を排出する際に、第一還元水排出バルブ159を開状態とし、還元水供給バルブ749、オゾン水供給バルブ751および第二還元水排出バルブ161を閉状態とする。また、ステップ706において、オゾン水を供給する際に、オゾン水供給バルブ751および第二還元水排出バルブ161を開状態とし、還元水供給バルブ749および第一還元水排出バルブ159を閉状態とする。そして、ステップ709にてオゾン水を排出する際に、第一還元水排出バルブ159を開状態とし、還元水供給バルブ749、オゾン水供給バルブ751および第二還元水排出バルブ161を閉状態とする。   In step 701 in FIG. 12, the ORP control unit 765 opens the reduced water supply valve 749 and the second reduced water discharge valve 161 when supplying the reduced water 115, and opens the ozone water supply valve 751 and the first reduced water. The discharge valve 159 is closed. Further, when the reduced water 115 is discharged in step 704, the first reduced water discharge valve 159 is opened, and the reduced water supply valve 749, the ozone water supply valve 751 and the second reduced water discharge valve 161 are closed. To do. In step 706, when supplying ozone water, the ozone water supply valve 751 and the second reduced water discharge valve 161 are opened, and the reduced water supply valve 749 and the first reduced water discharge valve 159 are closed. . When the ozone water is discharged in step 709, the first reduced water discharge valve 159 is opened, and the reduced water supply valve 749, the ozone water supply valve 751 and the second reduced water discharge valve 161 are closed. .

図13および図14に示した還元水製造システム710によれば、酸化還元電位測定装置として図1に示した酸化還元電位測定装置100を有するため、測定槽101の水位をより一層安定的に維持することができる。よって、還元水115の酸化還元電位測定をさらに安定的に行うことができる。また、ドレン管111およびオーバーフロー管113からの排水の切り替えをORP制御部765にて制御する構成となっているため、オーバーフロー管113をさらに有する構成においても、酸化還元電位の測定および電極の洗浄を簡便で確実に行うことが可能な構成となっている。   According to the reduced water production system 710 shown in FIG. 13 and FIG. 14, the water level in the measuring tank 101 is more stably maintained because the redox potential measuring device 100 shown in FIG. 1 is provided as the redox potential measuring device. can do. Therefore, the redox potential measurement of the reduced water 115 can be performed more stably. In addition, since the ORP control unit 765 controls the switching of the drainage from the drain pipe 111 and the overflow pipe 113, the measurement of the oxidation-reduction potential and the cleaning of the electrodes can be performed even in the configuration further including the overflow pipe 113. It is a simple and reliable configuration.

なお、図11および図14においては、一つの制御部755が各バルブの動作を直接制御する構成としたが、各バルブの動作を制御する制御部が別々に設けられ、これらの制御部を管理するプロセス管理部が設けられた構成としてもよい。このとき、プロセス管理部において、計時部757の情報ならびに、センサ103およびpHセンサ763における測定結果を参照して、各制御部の動作を管理する構成とすることができる。   11 and 14, a single control unit 755 directly controls the operation of each valve. However, a control unit that controls the operation of each valve is provided separately, and these control units are managed. The process management unit may be provided. At this time, the process management unit can be configured to manage the operation of each control unit with reference to the information of the timing unit 757 and the measurement results of the sensor 103 and the pH sensor 763.

また、作用極105および参照極107をオゾン水に接触させた後、再度還元水115に接触させる前に、オゾン水から純水に置換してリンスすることがさらに好ましい。こうすれば、センサ103表面に付着したオゾン水を確実に除去した後に還元水115に接触させることができるため、還元水115へのオゾン水の混入を抑制することができる。よって、還元水115の還元性の低下を抑制することができる。   Further, it is more preferable that after the working electrode 105 and the reference electrode 107 are brought into contact with ozone water, before the contact with the reducing water 115 again, the ozone water is replaced with pure water and rinsed. In this case, ozone water adhering to the surface of the sensor 103 can be reliably removed and then brought into contact with the reduced water 115, so that mixing of the ozone water into the reduced water 115 can be suppressed. Therefore, it is possible to suppress a reduction in reducing property of the reducing water 115.

次に、洗浄槽を有するタイプの酸化還元電位測定装置について説明する。このタイプの酸化還元電位測定装置についても、基本構成は以上の実施形態に記載の酸化還元電位測定装置の構成、たとえば図1に示した酸化還元電位測定装置100の構成とすることができるが、測定槽に隣接して洗浄槽が設けられており、洗浄槽に洗浄液が供給される構成となっている点が大きく異なる。   Next, a redox potential measuring device of a type having a cleaning tank will be described. Also for this type of oxidation-reduction potential measuring device, the basic configuration can be the configuration of the oxidation-reduction potential measuring device described in the above embodiment, for example, the configuration of the oxidation-reduction potential measuring device 100 shown in FIG. A difference is that a cleaning tank is provided adjacent to the measurement tank, and the cleaning liquid is supplied to the cleaning tank.

図15は、このような酸化還元電位測定装置の構成を示す図である。図15に示した酸化還元電位測定装置800は、酸化還元電位の測定対象となる被測定液(還元水815)を収容する測定槽801と、測定槽801内の還元水815に接触するように配置され、還元水815の酸化還元電位を測定する(作用極805、参照極807)と、作用極805および参照極807を洗浄する洗浄液831が収容される洗浄槽825と、を有する。
測定槽801は、測定槽801の底部の近傍に設けられ、測定槽801に還元水815を供給する供給口(液体供給管809の連通口)と、測定槽801から還元水815を排出する排出口(ドレン管811の連通口)と、作用極805および参照極807を測定槽801中に取り付ける第一電極取付部(測定槽蓋841)と、を有する。
洗浄槽825は、作用極805および参照極807を洗浄槽825中に取り付ける第二電極取付部(洗浄槽蓋843)を有する。
FIG. 15 is a diagram showing the configuration of such a redox potential measuring apparatus. The oxidation-reduction potential measuring apparatus 800 shown in FIG. 15 is in contact with the measurement tank 801 that stores the liquid to be measured (reduced water 815) to be measured for the oxidation-reduction potential, and the reduced water 815 in the measurement tank 801. And a cleaning tank 825 in which a cleaning liquid 831 for cleaning the working electrode 805 and the reference electrode 807 is accommodated, and a redox potential of the reduced water 815 is measured (the working electrode 805 and the reference electrode 807).
The measurement tank 801 is provided in the vicinity of the bottom of the measurement tank 801, a supply port for supplying the reduced water 815 to the measurement tank 801 (a communication port of the liquid supply pipe 809), and a discharge for discharging the reduced water 815 from the measurement tank 801. It has an outlet (a communication port for the drain pipe 811) and a first electrode attachment portion (measurement tank lid 841) for attaching the working electrode 805 and the reference electrode 807 in the measurement tank 801.
The cleaning tank 825 has a second electrode mounting portion (cleaning tank lid 843) for mounting the working electrode 805 and the reference electrode 807 in the cleaning tank 825.

酸化還元電位測定装置800は、さらに詳しくは、測定槽801、測定槽801に隣接して設けられた洗浄槽825、測定槽801内の所定の位置に配置されるセンサ803、測定槽801に還元水815を供給する液体供給管809、測定槽801から還元水815を排出するドレン管811、洗浄槽825に洗浄液831を供給する洗浄液供給管827、および洗浄槽825から洗浄液831を排出する洗浄液排出管829を有する。   More specifically, the oxidation-reduction potential measuring device 800 is reduced to a measurement tank 801, a cleaning tank 825 provided adjacent to the measurement tank 801, a sensor 803 disposed at a predetermined position in the measurement tank 801, and the measurement tank 801. A liquid supply pipe 809 that supplies water 815, a drain pipe 811 that discharges the reduced water 815 from the measurement tank 801, a cleaning liquid supply pipe 827 that supplies the cleaning liquid 831 to the cleaning tank 825, and a cleaning liquid discharge that discharges the cleaning liquid 831 from the cleaning tank 825 It has a tube 829.

センサ803は、酸化還元電位センサであり、電極として、作用極805および参照極807を有する。センサ803は、たとえば測定槽801の上板である測定槽蓋841および洗浄槽825の上板である洗浄槽蓋843に対して取り付けおよび取り外しが可能である。これらのいずれかにセンサ803を取り付けることにより、測定槽801および洗浄槽825のいずれにも作用極805および参照極807を配置することができる。   The sensor 803 is a redox potential sensor, and has a working electrode 805 and a reference electrode 807 as electrodes. The sensor 803 can be attached to and detached from, for example, a measurement tank lid 841 that is an upper plate of the measurement tank 801 and a cleaning tank lid 843 that is an upper plate of the cleaning tank 825. By attaching the sensor 803 to any one of these, the working electrode 805 and the reference electrode 807 can be arranged in any of the measurement tank 801 and the cleaning tank 825.

洗浄液831としては、たとえば希釈HCl等の酸性液を用いる。また、オゾン水等の酸化液を用いてもよい。このとき、たとえば図10に示した還元水製造用の電気分解装置720において生成するオゾンを水に溶解させて、洗浄槽825に供給することができる。   As the cleaning liquid 831, for example, an acidic liquid such as diluted HCl is used. Further, an oxidizing solution such as ozone water may be used. At this time, for example, ozone generated in the electrolyzer 720 for producing reduced water shown in FIG. 10 can be dissolved in water and supplied to the cleaning tank 825.

液体供給管809は、測定槽801の底面から測定槽801内に挿入されており、測定槽801内に連通している。なお、液体供給管809に還元水815の供給量を調節するバルブ等の流量調節部材(不図示)が設けられていてもよい。ドレン管811は、測定槽801の底面に設けられ、測定槽801内に連通している。   The liquid supply pipe 809 is inserted into the measurement tank 801 from the bottom surface of the measurement tank 801 and communicates with the measurement tank 801. Note that the liquid supply pipe 809 may be provided with a flow rate adjusting member (not shown) such as a valve for adjusting the supply amount of the reducing water 815. The drain pipe 811 is provided on the bottom surface of the measurement tank 801 and communicates with the measurement tank 801.

次に、酸化還元電位測定装置800を用いた還元水815の酸化還元電位測定方法を説明する。
本実施形態の測定方法は、以下のステップを含む。
ステップ801:被測定液(測定槽801)の酸化還元電位を測定する電極(作用極805、参照極807)を還元水815に接触させて、還元水815の酸化還元電位を測定する工程、
ステップ802:酸化還元電位を測定する工程(ステップ801)の後、作用極805および参照極807を洗浄液831に接触させて洗浄する工程、および
ステップ803:作用極805および参照極807を洗浄液831に接触させて洗浄する工程(ステップ802)の後、再度作用極805および参照極807を還元水815に接触させて、還元水815の酸化還元電位を測定する工程。
Next, a method for measuring the redox potential of the reduced water 815 using the redox potential measuring apparatus 800 will be described.
The measurement method of the present embodiment includes the following steps.
Step 801: A step of bringing the electrode (working electrode 805, reference electrode 807) for measuring the oxidation-reduction potential of the liquid to be measured (measurement tank 801) into contact with the reduced water 815 and measuring the oxidation-reduction potential of the reduced water 815,
Step 802: After the step of measuring the oxidation-reduction potential (Step 801), the working electrode 805 and the reference electrode 807 are brought into contact with the cleaning solution 831 for cleaning, and Step 803: The working electrode 805 and the reference electrode 807 are set to the cleaning solution 831. A step of measuring the oxidation-reduction potential of the reduced water 815 by bringing the working electrode 805 and the reference electrode 807 into contact with the reduced water 815 again after the step of cleaning by contact (step 802).

以下、酸化還元電位測定装置800を用いた酸化還元電位測定方法をさらに詳細に説明する。
まず、測定槽801にセンサ803を設置し、液体供給管809から還元水815を送液する。そして、センサ803による還元水815の酸化還元電位測定を行う。
Hereinafter, the oxidation-reduction potential measurement method using the oxidation-reduction potential measuring apparatus 800 will be described in more detail.
First, the sensor 803 is installed in the measurement tank 801, and the reducing water 815 is sent from the liquid supply pipe 809. Then, the redox potential of the reduced water 815 is measured by the sensor 803.

所定の時間が経過したら、センサ803を測定槽801から洗浄槽825に移動させる。そして、洗浄液供給管827から洗浄槽825中に洗浄液831を供給し、センサ803の作用極805および参照極807を洗浄液831に接触させる。なお、測定槽801中の還元水815はドレン管811から排出し、新たに液体供給管809から測定槽801内に還元水815を供給する。   When a predetermined time has elapsed, the sensor 803 is moved from the measurement tank 801 to the cleaning tank 825. Then, the cleaning liquid 831 is supplied from the cleaning liquid supply pipe 827 into the cleaning tank 825, and the working electrode 805 and the reference electrode 807 of the sensor 803 are brought into contact with the cleaning liquid 831. Note that the reduced water 815 in the measurement tank 801 is discharged from the drain pipe 811, and the reduced water 815 is newly supplied into the measurement tank 801 from the liquid supply pipe 809.

所定の時間センサ803を洗浄液831に接触させて洗浄を行った後、センサ803を測定槽801に戻し、再度測定を行う。   After the sensor 803 is brought into contact with the cleaning solution 831 for a predetermined time for cleaning, the sensor 803 is returned to the measuring tank 801 and measurement is performed again.

次に、酸化還元電位測定装置800の効果を説明する。
酸化還元電位測定装置800においては、測定槽801と洗浄槽825とが隣接する構成となっており、洗浄槽825に酸性液等の洗浄液831が収容される。そして、センサ803は可動であり、測定槽801と洗浄槽825との両方に配置させることができる。このため、測定を所定時間行うごとに、作用極805および参照極807を定期的に洗浄液831に接触させて、電極を洗浄することができる。よって、第一の実施形態に記載の酸化還元電位測定装置のみを用いる測定の場合に比べて、さらに確実に気泡819を除去し、より一層安定的な測定が可能となる。
Next, the effect of the oxidation-reduction potential measuring apparatus 800 will be described.
In the oxidation-reduction potential measuring apparatus 800, a measurement tank 801 and a cleaning tank 825 are adjacent to each other, and a cleaning liquid 831 such as an acidic liquid is accommodated in the cleaning tank 825. The sensor 803 is movable and can be arranged in both the measurement tank 801 and the cleaning tank 825. Therefore, the electrode can be cleaned by periodically bringing the working electrode 805 and the reference electrode 807 into contact with the cleaning liquid 831 every time measurement is performed for a predetermined time. Therefore, the bubble 819 can be removed more reliably and measurement can be performed more stably than in the case of measurement using only the oxidation-reduction potential measuring device described in the first embodiment.

なお、酸化還元電位測定装置800において、ドレン管811に代えて、測定槽801の側面に設けられ、測定槽801内に連通するオーバーフロー管を設けてもよい。こうすれば、還元水815の酸化還元電位測定時には、過剰の還元水815をオーバーフロー管から排出させることができるため、還元水815の水位をさらに安定的に維持し、測定を安定的に行うことができる。また、ドレン管811とオーバーフロー管をともに設けることもできる。   In the oxidation-reduction potential measuring apparatus 800, an overflow pipe provided on the side surface of the measurement tank 801 and communicating with the measurement tank 801 may be provided instead of the drain pipe 811. In this way, when measuring the redox potential of the reduced water 815, excess reduced water 815 can be discharged from the overflow pipe, so that the level of the reduced water 815 can be maintained more stably and measurement can be performed stably. Can do. Further, both the drain pipe 811 and the overflow pipe can be provided.

また、センサ803を蓋部に固定しておき、蓋部ごと測定槽801と洗浄槽825との間で移動させる構成としてもよい。   Alternatively, the sensor 803 may be fixed to the lid portion and moved between the measurement tank 801 and the cleaning tank 825 together with the lid portion.

また、酸化還元電位測定装置800においても、還元水製造システム700および還元水製造システム710の場合と同様に、作用極805および参照極807を洗浄液831に接触させた後、再度還元水815に接触させる前に、洗浄液831から純水に置換してリンスすることがさらに好ましい。こうすれば、センサ803表面に付着した洗浄液831を確実に除去した後に還元水815に接触させることができるため、還元水815へのオゾン水の混入を抑制することができる。よって、還元水815の還元性をさらに充分に確保することができる。   Also in the oxidation-reduction potential measuring apparatus 800, as in the case of the reduced water production system 700 and the reduced water production system 710, the working electrode 805 and the reference electrode 807 are brought into contact with the cleaning solution 831 and then again brought into contact with the reduced water 815. More preferably, the cleaning liquid 831 is replaced with pure water before being rinsed. In this way, since the cleaning liquid 831 attached to the surface of the sensor 803 can be reliably removed and then brought into contact with the reduced water 815, the mixing of ozone water into the reduced water 815 can be suppressed. Therefore, the reducibility of the reduced water 815 can be further ensured.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment. 実施形態における還元水製造システムの構成を示す図である。It is a figure which shows the structure of the reduced water manufacturing system in embodiment. 実施形態における還元水製造システムの構成を示すブロック図である。It is a block diagram which shows the structure of the reduced water manufacturing system in embodiment. 実施形態における酸化還元電位測定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the oxidation-reduction potential measurement in embodiment. 実施形態における還元水製造システムの構成を示す図である。It is a figure which shows the structure of the reduced water manufacturing system in embodiment. 実施形態における還元水製造システムの構成を示すブロック図である。It is a block diagram which shows the structure of the reduced water manufacturing system in embodiment. 実施形態における酸化還元電位測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the oxidation reduction potential measuring apparatus in embodiment.

符号の説明Explanation of symbols

100 酸化還元電位測定装置
101 測定槽
103 センサ
105 作用極
107 参照極
109 液体供給管
110 酸化還元電位測定装置
111 ドレン管
113 オーバーフロー管
115 還元水
117 液面
119 気泡
159 第一還元水排出バルブ
161 第二還元水排出バルブ
200 酸化還元電位測定装置
201 測定槽
203 センサ
205 作用極
207 参照極
209 液体供給管
210 酸化還元電位測定装置
211 ドレン管
213 オーバーフロー管
215 還元水
217 液面
219 気泡
221 振動板
223 振動波
300 酸化還元電位測定装置
301 測定槽
303 センサ
305 作用極
307 参照極
309 液体供給管
310 酸化還元電位測定装
311 ドレン管
313 オーバーフロー管
315 還元水
317 液面
319 気泡
321 スターラー
323 攪拌子
400 酸化還元電位測定装置
401 測定槽
403 センサ
405 作用極
407 参照極
409 液体供給管
413 オーバーフロー管
415 還元水
417 液面
419 気泡
421 不活性ガス供給管
423 N2ガス
500 酸化還元電位測定装置
501 測定槽
503 センサ
505 作用極
507 参照極
509 液体供給管
513 オーバーフロー管
515 還元水
519 気泡
521 流量調整バルブ
523 ポンプ
600 酸化還元電位測定装置
601 測定槽
603 センサ
605 作用極
607 参照極
609 液体供給管
613 オーバーフロー管
615 還元水
617 液面
619 気泡
621 冷却器
700 還元水製造システム
710 還元水製造システム
720 電気分解装置
721 電気分解槽
723 アノード電極
725 隔壁
727 カソード電極
729 脱イオン水供給管
731 オゾンガス供給管
733 水素ガス供給管
735 第二溶解モジュール
737 第一溶解モジュール
739 希釈アンモニア収容部
741 希釈アンモニア供給管
743 第一還元水供給管
745 第二還元水供給管
747 オゾン水供給管
749 還元水供給バルブ
751 オゾン水供給バルブ
753 希釈アンモニア供給バルブ
755 制御部
757 計時部
763 pHセンサ
765 ORP制御部
767 pH制御部
800 酸化還元電位測定装置
801 測定槽
803 センサ
805 作用極
807 参照極
809 液体供給管
811 ドレン管
815 還元水
819 気泡
825 洗浄槽
827 洗浄液供給管
829 洗浄液排出管
831 洗浄液
841 測定槽蓋
843 洗浄槽蓋
100 Redox potential measuring device 101 Measuring tank 103 Sensor 105 Working electrode 107 Reference electrode 109 Liquid supply pipe 110 Redox potential measuring device 111 Drain pipe 113 Overflow pipe 115 Reducing water 117 Liquid surface 119 Bubble 159 First reducing water discharge valve 161 1st Bireduced water discharge valve 200 Redox potential measuring device 201 Measuring tank 203 Sensor 205 Working electrode 207 Reference electrode 209 Liquid supply pipe 210 Redox potential measuring device 211 Drain pipe 213 Overflow pipe 215 Reduced water 217 Liquid surface 219 Bubble 221 Vibration plate 223 Vibration wave 300 Redox potential measuring device 301 Measuring tank 303 Sensor 305 Working electrode 307 Reference electrode 309 Liquid supply pipe 310 Redox potential measuring device 311 Drain pipe 313 Overflow pipe 315 Reduced water 317 Liquid surface 319 Bubble 321 Star Over 323 stirrer 400 redox potential measuring apparatus 401 measuring tank 403 sensor 405 working electrode 407 reference electrode 409 liquid supply pipe 413 overflow pipe 415 reduced water 417 liquid level 419 bubbles 421 inert gas supply pipe 423 N 2 gas 500 redox potential Measuring device 501 Measuring tank 503 Sensor 505 Working electrode 507 Reference electrode 509 Liquid supply pipe 513 Overflow pipe 515 Reduced water 519 Bubble 521 Flow adjustment valve 523 Pump 600 Oxidation reduction potential measuring device 601 Measuring tank 603 Sensor 605 Working electrode 607 Reference electrode 609 Liquid Supply pipe 613 Overflow pipe 615 Reduced water 617 Liquid level 619 Bubble 621 Cooler 700 Reduced water production system 710 Reduced water production system 720 Electrolysis apparatus 721 Electrolysis tank 723 Anode electrode 725 Bulkhead 727 Casaw Electrode 729 Deionized water supply pipe 731 Ozone gas supply pipe 733 Hydrogen gas supply pipe 735 Second dissolution module 737 First dissolution module 739 Diluted ammonia storage part 741 Diluted ammonia supply pipe 743 First reduced water supply pipe 745 Second reduced water supply pipe 747 Ozone water supply pipe 749 Reduced water supply valve 751 Ozone water supply valve 753 Diluted ammonia supply valve 755 Control unit 757 Timekeeping unit 763 pH sensor 765 ORP control unit 767 pH control unit 800 Oxidation reduction potential measuring device 801 Measurement tank 803 Sensor 805 Action Electrode 807 Reference electrode 809 Liquid supply pipe 811 Drain pipe 815 Reduced water 819 Bubble 825 Cleaning tank 827 Cleaning liquid supply pipe 829 Cleaning liquid discharge pipe 831 Cleaning liquid 841 Measurement tank lid 843 Cleaning tank lid

Claims (20)

酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽の前記底部の近傍に設けられ、前記測定槽から前記被測定液を排出する排出口と、
を有することを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
Provided near the bottom of the measurement tank, and a discharge port for discharging the liquid to be measured from the measurement tank;
An oxidation-reduction potential measuring apparatus comprising:
請求項1に記載の酸化還元電位測定装置において、前記排出口よりも上部に、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口が設けられ、前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置。   The oxidation-reduction potential measuring device according to claim 1, wherein an excess liquid discharge port for discharging the excess liquid to be measured in the measurement tank is provided above the discharge port, and the electrode is The oxidation-reduction potential measuring device is disposed below the surplus liquid discharge port. 請求項1または2に記載の酸化還元電位測定装置において、前記測定槽の前記底部の近傍に、前記測定槽に洗浄液を供給する洗浄液供給口が設けられたことを特徴とする酸化還元電位測定装置。   3. The oxidation-reduction potential measuring apparatus according to claim 1, wherein a cleaning liquid supply port for supplying a cleaning liquid to the measurement tank is provided in the vicinity of the bottom of the measurement tank. . 請求項3に記載の酸化還元電位測定装置において、
水の電気分解により生じた水素ガスを水に溶解させて還元水を得る還元水生成手段と、
前記供給口から前記測定槽内に供給される液体を切り替える切替手段と、
を有し、
前記液体が、前記被測定液と前記洗浄液であって、
前記被測定液が、前記還元水であって、
前記洗浄液が、水と、前記還元水生成手段において前記水の電気分解により生じたオゾンガスと、を含むことを特徴とする酸化還元電位測定装置。
In the oxidation-reduction potential measuring device according to claim 3,
Reduced water generating means for obtaining reduced water by dissolving hydrogen gas generated by water electrolysis in water;
Switching means for switching the liquid supplied from the supply port into the measurement tank;
Have
The liquid is the liquid to be measured and the cleaning liquid,
The measured liquid is the reduced water,
The oxidation-reduction potential measuring apparatus, wherein the cleaning liquid contains water and ozone gas generated by electrolysis of the water in the reduced water generating means.
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽内の前記被測定液に振動を与える振動手段と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
Vibration means for applying vibration to the liquid to be measured in the measurement tank;
Have
The oxidation-reduction potential measuring device, wherein the electrode is disposed below the surplus liquid discharge port.
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽内の前記被測定液を攪拌する攪拌手段と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
Stirring means for stirring the liquid to be measured in the measurement tank;
Have
The oxidation-reduction potential measuring device, wherein the electrode is disposed below the surplus liquid discharge port.
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽内に配置された前記電極の近傍に、不活性ガスを導くガス供給部と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
In the vicinity of the electrode arranged in the measurement tank, a gas supply unit for introducing an inert gas,
Have
The oxidation-reduction potential measuring device, wherein the electrode is disposed below the surplus liquid discharge port.
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記測定槽の内部が外部に対して陽圧になるように前記供給口から前記測定槽内に前記被測定液を送液する送液部と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置され、
前記測定槽が密閉構造を有することを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
A liquid feeding section for feeding the liquid to be measured from the supply port into the measurement tank so that the inside of the measurement tank has a positive pressure with respect to the outside;
Have
The electrode is disposed below the excess liquid discharge port;
An oxidation-reduction potential measuring apparatus, wherein the measuring tank has a sealed structure.
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽に設けられ、前記測定槽内の余剰の前記被測定液を越流させて排出する余剰液排出口と、
前記被測定液を冷却する冷却手段と、
を有し、
前記電極が、前記余剰液排出口よりも下方に配置されることを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
An excess liquid discharge port provided in the measurement tank, for discharging excess liquid to be measured in the measurement tank,
A cooling means for cooling the liquid to be measured;
Have
The oxidation-reduction potential measuring device, wherein the electrode is disposed below the surplus liquid discharge port.
酸化還元電位の測定対象となる被測定液を収容する測定槽と、
前記測定槽内の前記被測定液に接触するように配置され、前記被測定液の酸化還元電位を測定する電極と、
前記電極を洗浄する洗浄液を収容する洗浄槽と、
を有し、
前記測定槽が、
前記測定槽の底部の近傍に設けられ、前記測定槽に前記被測定液を供給する供給口と、
前記測定槽から前記被測定液を排出する排出口と、
前記電極を前記測定槽中に取り付ける第一電極取付部と、
を有し、
前記洗浄槽が、
前記電極を前記洗浄槽中に取り付ける第二電極取付部を有することを特徴とする酸化還元電位測定装置。
A measuring tank for storing a liquid to be measured whose oxidation-reduction potential is to be measured;
An electrode that is disposed so as to be in contact with the liquid to be measured in the measurement tank, and that measures a redox potential of the liquid to be measured;
A cleaning tank containing a cleaning solution for cleaning the electrode;
Have
The measuring tank is
A supply port that is provided near the bottom of the measurement tank and supplies the liquid to be measured to the measurement tank;
A discharge port for discharging the liquid to be measured from the measurement tank;
A first electrode mounting portion for mounting the electrode in the measuring tank;
Have
The washing tank is
An oxidation-reduction potential measuring device having a second electrode mounting portion for mounting the electrode in the cleaning tank.
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定する工程と、
酸化還元電位を測定する前記工程の後、測定槽の底部の近傍から前記被測定液を排出し、前記電極の表面を露出させる工程と、
電極の表面を露出させる前記工程の後、前記測定槽の前記底部の近傍から被測定液を供給し、前記電極を再度前記被測定液に接触させる工程と、
を含むことを特徴とする酸化還元電位の測定方法。
Contacting an electrode for measuring the oxidation-reduction potential of the measurement liquid with the measurement liquid, and measuring the oxidation-reduction potential of the measurement liquid;
After the step of measuring the oxidation-reduction potential, discharging the liquid to be measured from the vicinity of the bottom of the measurement tank and exposing the surface of the electrode;
After the step of exposing the surface of the electrode, supplying a liquid to be measured from the vicinity of the bottom of the measurement tank, and bringing the electrode into contact with the liquid to be measured again;
A method for measuring an oxidation-reduction potential, comprising:
請求項11に記載の酸化還元電位の測定方法において、被測定液の酸化還元電位を測定する前記工程が、前記測定槽内に前記被測定液を供給しつつ、前記電極の設置位置よりも上部から、余剰の前記被測定液を越流させて排出しながら、前記被測定液の酸化還元電位を測定する工程であることを特徴とする酸化還元電位の測定方法。   The method for measuring the oxidation-reduction potential according to claim 11, wherein the step of measuring the oxidation-reduction potential of the liquid to be measured is above the position where the electrode is installed while supplying the liquid to be measured into the measurement tank. And measuring the oxidation-reduction potential of the liquid to be measured while allowing excess liquid to be measured to flow over and discharging. 請求項11または12に記載の酸化還元電位の測定方法において、電極の表面を露出させる前記工程の後、電極を再度被測定液中に接触させる前記工程の前に、
前記測定槽の前記底部の近傍から洗浄液を供給し、前記電極を前記洗浄液に接触させる工程と、
前記測定槽の前記底部の近傍から前記洗浄液を排出する工程と、
を含むことを特徴とする酸化還元電位の測定方法。
The method for measuring a redox potential according to claim 11 or 12, wherein after the step of exposing the surface of the electrode, before the step of bringing the electrode into contact with the liquid to be measured again,
Supplying a cleaning liquid from the vicinity of the bottom of the measuring tank, and bringing the electrode into contact with the cleaning liquid;
Discharging the cleaning liquid from the vicinity of the bottom of the measuring tank;
A method for measuring an oxidation-reduction potential, comprising:
請求項13に記載の酸化還元電位の測定方法において、
被測定液の酸化還元電位を測定する前記工程が、水の電気分解で生じた水素と水とを含む還元水の酸化還元電位を測定する工程であって、
前記洗浄液が、前記水の電気分解で生じたオゾンと水とを含む液体であることを特徴とする酸化還元電位の測定方法。
The method for measuring a redox potential according to claim 13,
The step of measuring the oxidation-reduction potential of the liquid to be measured is a step of measuring the oxidation-reduction potential of reduced water containing hydrogen and water generated by water electrolysis,
The method for measuring an oxidation-reduction potential, wherein the cleaning liquid is a liquid containing ozone and water generated by electrolysis of the water.
被測定液の酸化還元電位を測定する電極を前記被測定液に接触させた状態で、前記被測定液を振動させながら、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法。   An oxidation reduction characterized by measuring an oxidation-reduction potential of the measurement liquid while vibrating the measurement liquid while an electrode for measuring the oxidation-reduction potential of the measurement liquid is in contact with the measurement liquid. Measuring method of potential. 被測定液の酸化還元電位を測定する電極を前記被測定液に接触させた状態で、前記被測定液を攪拌しながら、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法。   An oxidation reduction characterized by measuring an oxidation-reduction potential of the measurement liquid while stirring the measurement liquid in a state where an electrode for measuring the oxidation-reduction potential of the measurement liquid is in contact with the measurement liquid. Measuring method of potential. 被測定液の酸化還元電位を測定する電極を前記被測定液に接触させるとともに、前記電極の近傍に不活性ガスを導きながら、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法。   Oxidation characterized in that an electrode for measuring a redox potential of a liquid to be measured is brought into contact with the liquid to be measured and an oxidation-reduction potential of the liquid to be measured is measured while introducing an inert gas in the vicinity of the electrode. Method for measuring reduction potential. 被測定液の酸化還元電位を測定する電極を、密閉した測定槽内で前記被測定液に接触させた状態で、前記測定槽の内部を前記測定槽の外部よりも陽圧として、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法。   The electrode for measuring the oxidation-reduction potential of the liquid to be measured is in contact with the liquid to be measured in a sealed measuring tank, and the inside of the measuring tank is set to a positive pressure from the outside of the measuring tank. A method for measuring a redox potential, comprising measuring a redox potential of a liquid. 被測定液を冷却した状態で、前記被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定することを特徴とする酸化還元電位の測定方法。   An oxidation-reduction potential characterized by measuring an oxidation-reduction potential of the measurement liquid by bringing an electrode for measuring the oxidation-reduction potential of the measurement liquid into contact with the measurement liquid in a state where the measurement liquid is cooled. Measuring method. 被測定液の酸化還元電位を測定する電極を前記被測定液に接触させて、前記被測定液の酸化還元電位を測定する工程と、
酸化還元電位を測定する前記工程の後、前記電極を洗浄液に接触させて洗浄する工程と、
電極を洗浄液に接触させて洗浄する前記工程の後、前記電極を再度被測定液に接触させて、前記被測定液の酸化還元電位を測定する工程と、
を含むことを特徴とする酸化還元電位の測定方法。
Contacting an electrode for measuring the oxidation-reduction potential of the measurement liquid with the measurement liquid, and measuring the oxidation-reduction potential of the measurement liquid;
After the step of measuring the oxidation-reduction potential, the step of cleaning the electrode in contact with a cleaning solution;
After the step of bringing the electrode into contact with the cleaning liquid and cleaning, the step of bringing the electrode into contact with the liquid to be measured again and measuring the oxidation-reduction potential of the liquid to be measured;
A method for measuring an oxidation-reduction potential, comprising:
JP2005059723A 2005-03-03 2005-03-03 Redox potential measuring device and method for measuring redox potential Expired - Fee Related JP4528159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059723A JP4528159B2 (en) 2005-03-03 2005-03-03 Redox potential measuring device and method for measuring redox potential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059723A JP4528159B2 (en) 2005-03-03 2005-03-03 Redox potential measuring device and method for measuring redox potential

Publications (2)

Publication Number Publication Date
JP2006242778A true JP2006242778A (en) 2006-09-14
JP4528159B2 JP4528159B2 (en) 2010-08-18

Family

ID=37049344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059723A Expired - Fee Related JP4528159B2 (en) 2005-03-03 2005-03-03 Redox potential measuring device and method for measuring redox potential

Country Status (1)

Country Link
JP (1) JP4528159B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210880A (en) * 2007-02-23 2008-09-11 Fujitsu Ltd Manufacturing method of semiconductor device, and apparatus used for the method
JP2011203025A (en) * 2010-03-25 2011-10-13 Jfe Steel Corp DEVICE AND METHOD FOR WASHING pH METER
WO2015045978A1 (en) * 2013-09-24 2015-04-02 株式会社Taane Negative hydrogen ion detection method
WO2020129313A1 (en) * 2018-12-18 2020-06-25 株式会社堀場アドバンスドテクノ Analysis device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180749A (en) * 1989-12-11 1991-08-06 Hitachi Chem Co Ltd Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution
JPH10151462A (en) * 1996-11-26 1998-06-09 Matsushita Electric Works Ltd Electrolytic water forming apparatus
JPH10314742A (en) * 1997-05-14 1998-12-02 Matsushita Electric Works Ltd Electrolyzed water producing apparatus
JP2001000972A (en) * 1999-06-21 2001-01-09 Matsushita Electric Ind Co Ltd Alkali ion water maker
JP2001340855A (en) * 2000-06-01 2001-12-11 Matsushita Electric Ind Co Ltd Apparatus and method for making alkali ion water
JP2003033425A (en) * 2001-07-19 2003-02-04 Jonan Kk Method for disinfecting metallic instrument and device therefor
JP2003062559A (en) * 2001-08-28 2003-03-04 Matsushita Electric Works Ltd Water treating apparatus
JP2004340717A (en) * 2003-05-15 2004-12-02 Babcock Hitachi Kk Oxidation-reduction potential measuring vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180749A (en) * 1989-12-11 1991-08-06 Hitachi Chem Co Ltd Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution
JPH10151462A (en) * 1996-11-26 1998-06-09 Matsushita Electric Works Ltd Electrolytic water forming apparatus
JPH10314742A (en) * 1997-05-14 1998-12-02 Matsushita Electric Works Ltd Electrolyzed water producing apparatus
JP2001000972A (en) * 1999-06-21 2001-01-09 Matsushita Electric Ind Co Ltd Alkali ion water maker
JP2001340855A (en) * 2000-06-01 2001-12-11 Matsushita Electric Ind Co Ltd Apparatus and method for making alkali ion water
JP2003033425A (en) * 2001-07-19 2003-02-04 Jonan Kk Method for disinfecting metallic instrument and device therefor
JP2003062559A (en) * 2001-08-28 2003-03-04 Matsushita Electric Works Ltd Water treating apparatus
JP2004340717A (en) * 2003-05-15 2004-12-02 Babcock Hitachi Kk Oxidation-reduction potential measuring vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210880A (en) * 2007-02-23 2008-09-11 Fujitsu Ltd Manufacturing method of semiconductor device, and apparatus used for the method
JP2011203025A (en) * 2010-03-25 2011-10-13 Jfe Steel Corp DEVICE AND METHOD FOR WASHING pH METER
WO2015045978A1 (en) * 2013-09-24 2015-04-02 株式会社Taane Negative hydrogen ion detection method
WO2020129313A1 (en) * 2018-12-18 2020-06-25 株式会社堀場アドバンスドテクノ Analysis device
JPWO2020129313A1 (en) * 2018-12-18 2021-11-04 株式会社 堀場アドバンスドテクノ Analysis equipment
JP7165749B2 (en) 2018-12-18 2022-11-04 株式会社 堀場アドバンスドテクノ Analysis equipment

Also Published As

Publication number Publication date
JP4528159B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
KR100626586B1 (en) Electrolytic water generation apparatus
KR101980383B1 (en) Electrolytic on-site generator
US5599438A (en) Method for producing electrolyzed water
JP4644677B2 (en) Cooling water circulation device
US20080237054A1 (en) Low Maintenance On-Site Generator
JP4528159B2 (en) Redox potential measuring device and method for measuring redox potential
JP2012189320A (en) Method of measuring persulfuric acid concentration, persulfuric acid concentration measuring apparatus and persulfuric acid supplying device
JP2004169123A (en) Fluorine gas generator
US20140076355A1 (en) Treatment apparatus, method for manufacturing treatment liquid, and method for manufacturing electronic device
JP2019155221A (en) Circulation type gas dissolution liquid supply device and circulation type gas dissolution liquid supply method
KR20020081122A (en) Apparatus for refining alkali solution and method for the same
KR20100034088A (en) Apparatus for removing scale by electrochemical reaction and method thereof
KR100571635B1 (en) Electric current control method and apparatus for use in gas generators
JP2008306089A (en) Immersion type cleaning device
JP2000218271A (en) Electrolytic device
JP6621150B2 (en) Electrolyzed water generator and endoscope cleaning device
JP2004041829A (en) Method and apparatus for preparing electrolytic water, and water
JP2002001341A (en) Electrolytic sodium hypochlorite generator
JP2005060761A (en) Hypohalite generating device and method
JP2010156033A (en) Apparatus and method for producing persulfuric acid
JP3586364B2 (en) Electrolytic ionic water generating apparatus, electrolytic ionic water generating method and cleaning method
US10718062B2 (en) Prevent and remove organics from reservoir wells
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
KR20130116351A (en) Cooling water circulation device
JP2013221243A (en) Hot-water washing toilet seat device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees