JPH03180749A - Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution - Google Patents

Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution

Info

Publication number
JPH03180749A
JPH03180749A JP32091089A JP32091089A JPH03180749A JP H03180749 A JPH03180749 A JP H03180749A JP 32091089 A JP32091089 A JP 32091089A JP 32091089 A JP32091089 A JP 32091089A JP H03180749 A JPH03180749 A JP H03180749A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
pump
temperature
cell
oxygen meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32091089A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamanoi
清 山野井
Kiyoshi Hasegawa
清 長谷川
Akishi Nakaso
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP32091089A priority Critical patent/JPH03180749A/en
Publication of JPH03180749A publication Critical patent/JPH03180749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To allow a stable, automatic and continuous analysis with small long-time errors by installing a bubble separating and removing part just before the flow system of the electrode cell of a dissolved oxygen meter. CONSTITUTION:A structural part 1 of branch pipes is provided just before the flow system of the electrode cell 2 of the dissolved oxygen meter and one system after the branching is connected between through a pump 3, a cooler 5 and a cell 2 to a conduit 16. The other system is connected through a pump 4 to a conduit 16 and respective sample liquids 17 are returned to a sample tank 18. The bubbles surely flow into the pump 4 system if the liquid flow rate ratio on a pump 4 side with respect to a pump 3 side is specified to 1 to 2. The sample liquid to be measured is eventually admitted into the cell 2 and is analyzed after the bubbles are separated and removed in the initial stage before stirring. The continuous measurement is thus executed stably with the small measurement errors in the high-temp. water and the high-temp. aq. soln.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温水中または高温水溶液中溶存酸素濃度の
連続測定装置、特に高温で使用する無電解銅めっきなど
のめっき液中の溶存酸素濃度の連続測定装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an apparatus for continuously measuring dissolved oxygen concentration in high-temperature water or high-temperature aqueous solution, and particularly for measuring dissolved oxygen concentration in plating solutions such as electroless copper plating used at high temperatures. Concerning a continuous measurement device.

(従来技術〉 高温めっき液中の溶存酸素濃度は、めっき液成分と同様
に重要な条件の1つであり、その制御の如何が被めっき
製品の品質に大きな影響を及ぼす。
(Prior Art) The dissolved oxygen concentration in the high-temperature plating solution is one of the important conditions as well as the components of the plating solution, and how well it is controlled greatly affects the quality of the plated product.

したがって、めっき運転時の高温めっき液中溶存酸素濃
度を正確に測定・制御することが重要である。
Therefore, it is important to accurately measure and control the dissolved oxygen concentration in the high temperature plating solution during plating operation.

ところで、現在市販されている隔膜形電極方式の溶存酸
素計の測定温度範囲は、隔膜の酸素透過特性の温度変化
に基づく温度補償可能範囲とセンサー電極の耐熱性とに
制約を受け、通常は5〜40℃であり、測定中の温度変
化が少ない20〜30℃で測定されることが多い。
By the way, the measurement temperature range of currently commercially available diaphragm-type dissolved oxygen meters is limited by the temperature compensation range based on temperature changes in the oxygen permeability characteristics of the diaphragm and the heat resistance of the sensor electrode, and is usually 5. -40°C, and is often measured at 20-30°C, where there is little temperature change during measurement.

したがって、70〜80℃で運転される無電解銅めっき
液においては、隔膜形電極方式の溶存酸素計を直接に使
用することは不可能である。
Therefore, in an electroless copper plating solution operated at 70 to 80°C, it is impossible to directly use a diaphragm electrode type dissolved oxygen meter.

上記問題点を解決した従来技術として、本発明者が先に
出面した特願昭63−141985の「高温水中または
高温水溶液中の溶存酸素濃度の測定方法」がある。この
方法は、被測定試料である高温水または高温水溶液を容
器にとり、空気を遮断して冷却後、隔膜形溶存酸素計で
測定するバッチ式測定に関するものであった。
As a prior art technique that has solved the above-mentioned problems, there is a Japanese Patent Application No. 141985/1985 filed by the present inventor entitled ``Method for Measuring Dissolved Oxygen Concentration in High-Temperature Water or High-Temperature Aqueous Solution''. This method involved a batch-type measurement in which the sample to be measured, high-temperature water or high-temperature aqueous solution, was placed in a container, cooled with air cut off, and then measured using a diaphragm-type dissolved oxygen meter.

(発明が解決しようとする課題) しかしながら、上記方法は、高混水中または高温水溶液
中の正確な溶存酸素濃度が比較的容易かつ短時間に得ら
れ、高温で運転するめっき液などに十分使用可能である
が、この方法は手分析であり、かつ、バッチ式測定であ
るという問題があり、特にめっき製造現場などにおいて
は分析の自動化、連続化が必要であるという課題があっ
た。
(Problem to be Solved by the Invention) However, the above method can obtain an accurate dissolved oxygen concentration in highly mixed water or high-temperature aqueous solution relatively easily and in a short time, and is fully applicable to plating solutions that operate at high temperatures. However, this method has the problem of manual analysis and batch-type measurement, and there is a problem that automation and continuous analysis are necessary, especially in plating manufacturing sites.

そこで、上記課題を解決しようとしてめっき槽などから
被測定試料液を導管を通じて連続的に採取すると、導管
内に試料液とともに気泡(空気)が流入し、この気泡が
導管内を移動し、ポンプ内で試料液とともに攪拌される
際など試料液中の溶存酸素濃度が増加すること、および
、上記の連続的採取を長時間を行い、上記気泡が隔膜形
溶存酸素計電極セル内に流入すると、セル内での攪拌や
隔膜表面への気泡の付着により、酸素計の分析指示値が
著しく不安定になるという問題があった。
Therefore, in order to solve the above problem, when sample liquid to be measured is continuously collected from a plating tank etc. through a conduit, air bubbles (air) flow into the conduit along with the sample liquid, and these bubbles move inside the conduit and enter the pump. The concentration of dissolved oxygen in the sample solution increases when the sample solution is stirred with the sample solution, and if the above-mentioned continuous sampling is performed for a long time and the above-mentioned air bubbles flow into the electrode cell of the diaphragm-type dissolved oxygen meter, the cell There was a problem in that the analytical readings of the oxygen meter became extremely unstable due to agitation within the tank and the adhesion of air bubbles to the surface of the diaphragm.

上記の気泡流入の原因は、主にめっき槽などにおいて行
われるエアレーションであるが、これ以外にも、槽内の
液が外気温(室温)より高温であり、かつ、槽内の液が
現場の作業などで静止していないことにより、各温度に
おける気液平衡状態の場合より過剰に空気を含んでいる
ことによる。
The above-mentioned cause of bubble inflow is mainly due to aeration performed in plating tanks, etc., but there are also other causes, such as when the liquid inside the tank is higher than the outside temperature (room temperature) and the liquid inside the tank is hotter than the outside temperature (room temperature). This is due to the fact that it is not stationary during work, and therefore contains more air than in the gas-liquid equilibrium state at each temperature.

すなわち、高温かつエアレーションを行っているめっき
波などでは、多かれ少なかれ気液状態が平衡に達してい
ない。したがって、上記のような状態の液について、溶
存酸素を分析する場合、十分な時間静置して平衡に達し
た液について成立する空気飽和溶存酸素濃度のような厳
密で絶対的な測定値を得ることは、いかなる方法を用い
ても不可能であり、生産技術の立場から、信頼性が高く
誤差の小さい相対値を自動的、連続的に得ることにより
、当初の目的を達成することが必要である。
That is, in plating waves that are at high temperatures and are undergoing aeration, the gas-liquid state does not reach equilibrium to a greater or lesser extent. Therefore, when analyzing dissolved oxygen in a liquid in the state described above, it is necessary to obtain a precise and absolute measurement value such as the air-saturated dissolved oxygen concentration, which holds true for a liquid that has been allowed to stand still for a sufficient period of time to reach equilibrium. This is impossible no matter what method is used, and from the standpoint of production technology, it is necessary to achieve the original objective by automatically and continuously obtaining relative values with high reliability and small errors. be.

本発明は、以上の問題点を解決し、高温水中または高温
水溶液中の溶存酸素濃度の測定において、長時間誤差が
小さく安定して得られ、自動的、連続的に分析できる装
置を提供するものである。
The present invention solves the above problems and provides an apparatus that can stably measure dissolved oxygen concentration in high-temperature water or high-temperature aqueous solution with little error over a long period of time, and can perform automatic and continuous analysis. It is.

(課題を解決するための手段) 本発明は、導管内に流入した気泡をポンプなどで攪拌さ
れる前に溶存酸素計電極セルのフロー系における手前で
分離除去すれば、長時間分析しても誤差が小さく安定し
た分析値が得られるという知見によってなされたもので
あり、気泡分離除去部を溶存酸素計電極セルのフロー系
における手前に設置した高温水中または高温水溶液中溶
存酸素濃度の連続測定装置である。
(Means for Solving the Problems) The present invention allows for long-term analysis by separating and removing air bubbles that have flowed into the conduit before being stirred by a pump or the like before the flow system of the dissolved oxygen meter electrode cell. This device was developed based on the knowledge that stable analysis values with small errors can be obtained, and the device is a continuous measuring device for dissolved oxygen concentration in high-temperature water or high-temperature aqueous solution, with a bubble separation and removal section installed before the flow system of the dissolved oxygen meter electrode cell. It is.

上記気泡分離除去の手段としては、溶存酸素計電極セル
のフロー系における手前に分岐管構造部を連結すること
である。
The means for separating and removing the bubbles is to connect a branch pipe structure upstream of the dissolved oxygen meter electrode cell in the flow system.

以下、本発明の代表的装置構成を示す第1図に従い、本
発明を説明する。
The present invention will be described below with reference to FIG. 1, which shows a typical device configuration of the present invention.

分岐管構造部1を溶存酸素計電極セル2のフロ系におけ
る手前に設け、分岐管構造部5の分岐後の2つの系のそ
れぞれにポンプ3.ポンプ4を設け、一方のポンプ3の
後に冷却部5、さらにその後に、溶存酸素計電極セル2
を設け、以上各部、ポンプ等を導管16で連結する。溶
存酸素計電極2の後は、導管16により、試料液17を
試料液槽18に戻し、他方の系であるポンプ4の後は何
も設けず、導管16により試料液17を試料液槽18に
戻す。なお、ポンプ3は冷却部5の後あるいは、溶存酸
素計電極セル2の後に設けてもよい。
A branch pipe structure 1 is provided in front of the dissolved oxygen meter electrode cell 2 in the flow system, and a pump 3. A pump 4 is provided, and one pump 3 is followed by a cooling part 5, and further thereafter a dissolved oxygen meter electrode cell 2.
A conduit 16 connects the above parts, pumps, etc. After the dissolved oxygen meter electrode 2, the sample liquid 17 is returned to the sample liquid tank 18 through the conduit 16, and nothing is provided after the pump 4, which is the other system, and the sample liquid 17 is returned to the sample liquid tank 18 through the conduit 16. Return to Note that the pump 3 may be provided after the cooling section 5 or after the dissolved oxygen meter electrode cell 2.

上記ポンプ3.ポンプ4の系をそれぞれセル側、気泡流
入側と呼ぶと、ポンプ3とポンプ4の液流量比は、セル
側に対する気泡流入側の比で1以上が好ましく、より好
ましくは1以上2以下がよい。
Above pump 3. When the system of the pump 4 is called the cell side and the bubble inflow side, respectively, the liquid flow rate ratio of the pumps 3 and 4 is preferably 1 or more, and more preferably 1 or more and 2 or less, as a ratio of the bubble inflow side to the cell side. .

上記液流量比が1以上であれば、気泡が気泡流入側によ
り確実に流入する。また、上記液流量比が2以上であっ
ても分析可能であるが、実際にはポンプの送液可能量は
限界があり、かつセル2内の試料液はより速く入替わっ
た方が好ましいから、上記液流量比が2以上になるほど
セル側のポンプ3の流量を下げるのは好ましくない。
If the liquid flow rate ratio is 1 or more, bubbles will more reliably flow into the bubble inflow side. In addition, analysis is possible even if the above liquid flow rate ratio is 2 or more, but in reality there is a limit to the amount of liquid that can be delivered by the pump, and it is preferable that the sample liquid in cell 2 be replaced more quickly. It is not preferable to lower the flow rate of the pump 3 on the cell side as the liquid flow rate ratio becomes 2 or more.

上記分岐管構造部1は、分岐していれば材質、形状等は
特に限定されないが、内部の状態が監視できる透明なも
のがよく、飼えば入手しやすいT型やY型の透明プラス
チック製チューブコネクターなどがよい。上記分岐管構
造部1は、分岐後の2つの管の進行方向が、気泡流入側
では水平面に対して上向きであり、セル側では、水平面
に対して下向きになるように設置するのが好ましく、上
記の管の向きおよび、前記ポンプ流入比を用いれば気泡
自身の浮力と流速により気泡を確実に分離除去できる。
The branch pipe structure 1 is not particularly limited in material, shape, etc. as long as it is branched, but it is preferably transparent so that the internal condition can be monitored, and it is a T-shaped or Y-shaped transparent plastic tube that is easy to obtain if you keep it. Connectors are good. The branch pipe structure 1 is preferably installed so that the direction of movement of the two pipes after branching is upward with respect to the horizontal plane on the bubble inflow side, and downward with respect to the horizontal plane on the cell side, By using the above-mentioned direction of the pipe and the above-mentioned pump inflow ratio, the bubbles can be reliably separated and removed by the buoyancy and flow rate of the bubbles themselves.

上記導管16は、制質、形状等に限定されないが、やは
り、内部の状況が監視できる透明なものがよく、透明で
人手および、取扱いが容易でかつ耐薬品性のあるシリコ
ンゴムチューブやフッ素ゴムチューブなどがよい。試料
採取部6から分岐管構造部1に至る導管16には保温拐
7を用いて保温することができる。
The conduit 16 is not limited in quality, shape, etc., but it is preferably transparent so that the internal situation can be monitored, such as a silicone rubber tube or fluorine rubber tube that is transparent, easy to handle, and has chemical resistance. Tubes are good. The conduit 16 extending from the sample collection section 6 to the branch tube structure section 1 can be kept warm by using a heat insulating tube 7.

」二記試料採取部6は、何ら特別の構造を必要としない
が、エアレーションのエアー量が多い場合などには、目
の細かい布やガラスポールフィルタを取付けることがで
きる。
The sample collection section 6 does not require any special structure, but if the amount of air for aeration is large, a fine cloth or a glass pole filter can be attached.

上記冷却部5は、導管16を流水中に通すだけでもよい
が、透明なテフロンコイルチューブなどと冷却恒温槽9
を用いるのがよい。
The cooling unit 5 may be constructed by simply passing the conduit 16 through running water, but it may also be constructed using a transparent Teflon coil tube or the like and a cooling constant temperature bath 9.
It is better to use

上記ポンプ3および4は、チューブポンプ、ベローズポ
ンプ、マグネットポンプなど各秤使えるが、液流はを制
御しやすいチューブポンプなどがよい。
As the pumps 3 and 4, tube pumps, bellows pumps, magnet pumps, and other types of scales can be used, but tube pumps or the like are preferable because they can easily control the liquid flow.

」−記溶存酸素計電極セル2は、材質等特に限定されな
いが、透明なもの、例えば、透明アクリル製などがよく
、セル内部が試料液で充満し、かつシールド10により
外気から密閉される構造がよい。また、上記セル内底部
にスターラーチップ11を入れ、セル下部のマグネチッ
クスクーラー12でセル内部に試料液を攪拌するのがよ
い。
The dissolved oxygen meter electrode cell 2 is not particularly limited in material, but is preferably made of a transparent material, such as transparent acrylic, and has a structure in which the inside of the cell is filled with sample liquid and sealed from the outside air by a shield 10. Good. It is also preferable to insert a stirrer chip 11 into the bottom of the cell and stir the sample liquid inside the cell using a magnetic cooler 12 at the bottom of the cell.

隔膜形溶存酸素計14は、ガルバニ電池式でもポーラロ
電極式でもよい。また、上記隔膜形溶存酸素計14には
記録計15を接続することができる。
The diaphragm type dissolved oxygen meter 14 may be of a galvanic cell type or a polaro electrode type. Further, a recorder 15 can be connected to the diaphragm type dissolved oxygen meter 14.

(作用) 本発明は、導管に流入する気泡を攪拌などされる前の初
期の段階で分離除去して冷却した後、被1ii11J定
試料液を溶存酸素計電極セル内に流入させて分析するの
で、空気の影響が小さく、高温水または高温水溶液中溶
存酸素濃度の測定誤差が小さく安定して連続測定ができ
る。
(Function) The present invention separates and removes air bubbles flowing into the conduit at an early stage before they are stirred, cools them, and then flows the 1ii11J constant sample solution into the dissolved oxygen meter electrode cell for analysis. , the influence of air is small, and the measurement error of dissolved oxygen concentration in high-temperature water or high-temperature aqueous solution is small, allowing stable and continuous measurement.

(実施例の説明〉 以下、本発明を実施例によって説明する。(Explanation of Examples) Hereinafter, the present invention will be explained by examples.

以下に示す組成と条件で連続運転する厚付用無電解銅め
っき液について、以下に示す装置と条件で約100時間
溶存酸素濃度を連続測定した結果を第2図に示す。
FIG. 2 shows the results of continuous measurement of dissolved oxygen concentration for about 100 hours using the apparatus and conditions shown below for a thick electroless copper plating solution that was continuously operated with the composition and conditions shown below.

(試料液) (12当たりの試料液組成) CuSO40,03〜0.04モル EDTA      O,08〜0.10モルPH(N
aOH)   12.3±0.1 (25℃)HCHO
0,04〜0.05モル ポリエチレングリコール類 、0〜2.Ogα、α′−
ジピリジル   25〜30mg純水       全
量を1℃とする量 (試料液運転条件) 液温       ニア0±1℃ エアレーション  :約200m1/分・l液循環  
    :あり めっき面積    :2dボ/l 補充液      :CuSO4,NaOH。
(Sample solution) (Sample solution composition per 12) CuSO40.03-0.04 mol EDTA O, 08-0.10 mol PH (N
aOH) 12.3±0.1 (25℃)HCHO
0.04-0.05 mol polyethylene glycols, 0-2. Ogα, α′−
Dipyridyl 25-30mg Pure water Amount to bring the total amount to 1℃ (sample liquid operating conditions) Liquid temperature Near 0±1℃ Aeration: Approx. 200ml/min・l liquid circulation
: Plated area: 2dbo/l Replenisher: CuSO4, NaOH.

HCHO (連続atり主装置・条件) (装置主要部分) 分岐管構造部二T型チューブコネクター;透明ポリメチ
ルペンテン樹脂製、■弁内 盛栄堂製 ポンプ   :ペリスタポンプ(チューブポンプ)・ア
ト−■製5J−1215型 導管    :シリコンゴムチューブ;内径3IIII
溶存酸素計 :ガルバニ電池式、東亜電波工業■製Do
−25A型 冷却恒温槽 :■サイニクス製LC−102型(装置・
分析条件) 測定時間  :連続約100時間 ポンプ流量 :セル側10m1/分。
HCHO (Continuous AT main equipment/conditions) (Main parts of the equipment) Branch pipe structure two T-type tube connectors; made of transparent polymethylpentene resin, ■Benuchi Seieido pump: Peristaltic pump (tube pump) manufactured by AT-■ 5J-1215 type conduit: silicone rubber tube; inner diameter 3III
Dissolved oxygen meter: Galvanic battery type, Do manufactured by Toa Denpa Kogyo ■
-25A type cooling constant temperature bath: ■ Cynics LC-102 type (equipment/
Analysis conditions) Measurement time: Continuous approximately 100 hours Pump flow rate: Cell side 10 m1/min.

気泡流入量側12m1/分 セル内スターラー攪拌:あり 溶存酸素計キャリブレーション:25℃飽和水1回 冷却水水温 :25℃(一定) セル内試料液液温:30±2℃ 試料採取部フィルター:あり(布製) 試料採取場所:液面から約50cm下の地点この結果か
ら、100時間にわたって溶存酸素濃度は3.2〜4.
lppmであり、これらの値は70℃における空気飽和
溶存酸素濃度の文献値(化学便覧基礎編■1日本化学学
会編、丸善株式会社、1975年6月20日発行)から
算出される値約4.0ppmと比較して差がないので、
本発明の装置を用いれば、100時間という長時間誤差
が小さく安定して連続測定できることがわかる。なお、
上記結果で時間とともに、溶存酸素濃度が低下するのは
、岐組戊やめっき速度の変化が影響していると考えられ
、また、比較的短時間で濃度が上下しているのは、被め
っき物(製品)の出入の影響を示しており、逆に本発明
の装置を用いれば、−1−記のような微妙な濃度変化も
分析できることがわかる。
Air bubble inflow side 12m1/min Stirrer stirring in the cell: Yes Dissolved oxygen meter calibration: 25℃ saturated water once Cooling water temperature: 25℃ (constant) Sample liquid temperature in the cell: 30±2℃ Sample collection section filter: Yes (made of cloth) Sample collection location: Approximately 50 cm below the liquid level From these results, the dissolved oxygen concentration over 100 hours was 3.2 to 4.
lppm, and these values are approximately 4, calculated from literature values for air saturated dissolved oxygen concentration at 70°C (Chemical Handbook Basic Edition ■1, edited by the Chemical Society of Japan, published by Maruzen Co., Ltd., June 20, 1975). There is no difference compared to .0ppm, so
It can be seen that by using the apparatus of the present invention, continuous measurement can be performed stably and with small errors over a long period of 100 hours. In addition,
The reason why the dissolved oxygen concentration decreases over time in the above results is thought to be due to changes in the cross section and plating rate, and the reason why the concentration goes up and down in a relatively short period of time is due to the change in the plating rate. This shows the influence of the inflow and outflow of substances (products), and conversely, it can be seen that by using the apparatus of the present invention, it is possible to analyze subtle changes in concentration as shown in -1-.

(発四の効果) 以」二に説明したように、本発明の装置によれば以下の
効果が得られる。
(Four Effects) As explained in Section 2 below, the apparatus of the present invention provides the following effects.

(1)被測定高温水溶l(lが測定時には、溶存酸素計
使用可能温度以下に冷却されているため、電極をいため
ることがない。
(1) The high-temperature aqueous solution to be measured (l) is cooled to a temperature below the usable temperature of the dissolved oxygen meter at the time of measurement, so the electrode will not be damaged.

(2)気泡分離除去を溶存酸素計電極セルの手前で行っ
ているので、誤差が小さく安定した溶存酸素濃度値が1
00時間程度の長時間連続して得られる。
(2) Since bubble separation and removal is performed before the dissolved oxygen meter electrode cell, stable dissolved oxygen concentration values with small errors can be obtained.
It can be obtained continuously for a long time of about 00 hours.

(3)分析が自動的かつ連続的であるので、装置を1度
セットすれば手間がかからず、厚付用無電解銅めっきな
どの高温めっき酸中溶存酸素の濃度管理が容易にでき、
被めっき製品の品質向」二ができる。
(3) Since the analysis is automatic and continuous, it is easy to set up the device once, and it is easy to manage the concentration of dissolved oxygen in high-temperature plating acids such as thick electroless copper plating.
Improves the quality of plated products.

(4)装置を構成している各部分品は何ら特別なもので
なく、入手が容易であり、装置全体が比較的簡単である
ため、調整やメンテナンスが容易に行える。
(4) The parts that make up the device are not special and are easily available, and the device as a whole is relatively simple, making adjustment and maintenance easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る連続測定装置の概観を示す全体シ
ステム図、第2図は本発明による実施例の連続測定結果
を示す特性図である。 1・・・分岐管構造部(気泡分離・除去部)2・・・溶
存酸素計電極セル 3・・・ポンプ(セル側) 4・・・ポンプ(気泡流入側) 5・・・冷却部 6・・・試料l夜採取部 7・・・保温材 8・・・エアレーンヨン 9・・・冷Jilt恒温槽 10・・・ンールド 11・・・スターラーチップ 12・・・マグネチックスターラー 13・・・溶存酸素計電極 14・・・溶存酸素計本体 15・・・記録言1 16・・・導管 17・・・高温試料液 18・・・試料液哨
FIG. 1 is an overall system diagram showing an overview of a continuous measuring device according to the present invention, and FIG. 2 is a characteristic diagram showing continuous measurement results of an embodiment according to the present invention. 1... Branch pipe structure section (bubble separation/removal section) 2... Dissolved oxygen meter electrode cell 3... Pump (cell side) 4... Pump (bubble inflow side) 5... Cooling section 6 ... Sample l night collection section 7 ... Insulating material 8 ... Air lane 9 ... Cold Jilt constant temperature bath 10 ... Nold 11 ... Stirrer chip 12 ... Magnetic stirrer 13 ... Dissolved Oxygen meter electrode 14...Dissolved oxygen meter body 15...Record word 1 16...Conduit 17...High temperature sample liquid 18...Sample liquid sentinel

Claims (1)

【特許請求の範囲】 1、試料液フロー系において、溶存酸素計電極セルの手
前に気泡分離・除去部を設け、かつ、装置構成が試料採
取部、上記気泡分離・除去部、冷却部、ポンプ、上記溶
存酸素計電極セル、隔膜形溶存酸素計、および上記各部
を連結させる導管からなる、高温水中または高温水溶液
中溶存酸素濃度の連続測定装置。 2、特許請求の範囲第1項において、気泡分離・除去部
が分岐管構造であり、分岐管に連結した2つの導管にそ
れぞれポンプを連結した後、該2つのポンプの一方にの
み溶存酸素計電極セルを導管により連結し、かつ、上記
2つのポンプの液流量比が、上記セル側の液流量に対す
る他方の流量の比で1以上であり、より好ましくは1以
上2以下であることを特徴とする高温水中または高温水
溶液中溶存酸素濃度の連続測定装置。
[Claims] 1. In the sample liquid flow system, a bubble separation/removal section is provided before the dissolved oxygen meter electrode cell, and the device configuration includes a sample collection section, the bubble separation/removal section, a cooling section, and a pump. , a continuous measuring device for dissolved oxygen concentration in high-temperature water or a high-temperature aqueous solution, comprising the dissolved oxygen meter electrode cell, the diaphragm-type dissolved oxygen meter, and a conduit connecting each of the above parts. 2. In claim 1, the bubble separation/removal section has a branched pipe structure, and after a pump is connected to each of the two conduits connected to the branched pipe, a dissolved oxygen meter is installed only in one of the two pumps. The electrode cells are connected by a conduit, and the liquid flow rate ratio of the two pumps is a ratio of the liquid flow rate of the other side to the liquid flow rate of the cell side, and is 1 or more, and more preferably 1 or more and 2 or less. Continuous measuring device for dissolved oxygen concentration in high-temperature water or high-temperature aqueous solution.
JP32091089A 1989-12-11 1989-12-11 Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution Pending JPH03180749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32091089A JPH03180749A (en) 1989-12-11 1989-12-11 Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32091089A JPH03180749A (en) 1989-12-11 1989-12-11 Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution

Publications (1)

Publication Number Publication Date
JPH03180749A true JPH03180749A (en) 1991-08-06

Family

ID=18126634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32091089A Pending JPH03180749A (en) 1989-12-11 1989-12-11 Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution

Country Status (1)

Country Link
JP (1) JPH03180749A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242778A (en) * 2005-03-03 2006-09-14 Nec Electronics Corp Oxidation-reduction potential measuring device and measuring method of oxidation-reduction potential
CN1308682C (en) * 2003-12-19 2007-04-04 株式会社日立高新技术 Automatic analyzer
JP2008278853A (en) * 2007-05-14 2008-11-20 Asahi Breweries Ltd Wort-transporting system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122357A (en) * 1981-01-23 1982-07-30 Hitachi Ltd Flow cell type liquid sample analyzing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122357A (en) * 1981-01-23 1982-07-30 Hitachi Ltd Flow cell type liquid sample analyzing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308682C (en) * 2003-12-19 2007-04-04 株式会社日立高新技术 Automatic analyzer
JP2006242778A (en) * 2005-03-03 2006-09-14 Nec Electronics Corp Oxidation-reduction potential measuring device and measuring method of oxidation-reduction potential
JP2008278853A (en) * 2007-05-14 2008-11-20 Asahi Breweries Ltd Wort-transporting system

Similar Documents

Publication Publication Date Title
CN101738486B (en) Fully-automatic analyzer and analysis method of urea in milk and milk products
US3658679A (en) System for determining the hydrogen ion concentration of flowing liquids
CN100557422C (en) A kind of flow injection colorimetric of measuring cyanide content is surveyed the cyanogen method
CN109507264A (en) Film surface Zeta potential automatic tester
Buchholz et al. Bubble column bioreactors: I. Methods for measuring the bubble size
EP2420846A2 (en) Chemical analysis apparatus
JPH03180749A (en) Continuously measuring instrument for concentration of dissolved oxygen in high-temperature water or high-temperature aqueous solution
CN209673712U (en) BOD Quick testing instrument
CN205317631U (en) Positive osmotic membrane testing arrangement in laboratory
US3716333A (en) Process of and apparatus for thermometric analysis
CN206618713U (en) A kind of Water quality ammonia nitrogen on-Line Monitor Device
CN109709197A (en) BOD Quick testing instrument and accurately compensate measuring method
BR102014025371A2 (en) system for measuring, monitoring and controlling bubble size in flotation columns
CN213337424U (en) Sewage ammonia nitrogen rapid detection device
CN204740223U (en) Detection apparatus for be used for detecting ammonia nitrogen concentration
CN208455061U (en) Wafer chemical nickel adds control system automatically
CN112461771A (en) Automatic online real-time detection device and method for total iron of water vapor system of thermal power plant
CN112162003B (en) Device and method for measuring width of micro-scale flow system crystal metastable region
CN205562574U (en) Aquatic permanganate index autoanalyzer
CN215727716U (en) Water nitrite high-flux detection device based on micro-fluidic technology
US20010008210A1 (en) Method an apparatus for measuring the ph of pure water
CN216798770U (en) Bisphenol A crystallizer capable of analyzing component concentration of solution system on line
JP3304878B2 (en) Method and apparatus for measuring halogen concentration by flow analysis
Martin et al. Tubular debubbler for segmented continuous-flow automated analyzers
CN220339309U (en) Microbubble detection device based on laser particle sizer