JP2006241482A - Ferritic heat resistant steel having tempered martensitic structure and its production method - Google Patents

Ferritic heat resistant steel having tempered martensitic structure and its production method Download PDF

Info

Publication number
JP2006241482A
JP2006241482A JP2005054520A JP2005054520A JP2006241482A JP 2006241482 A JP2006241482 A JP 2006241482A JP 2005054520 A JP2005054520 A JP 2005054520A JP 2005054520 A JP2005054520 A JP 2005054520A JP 2006241482 A JP2006241482 A JP 2006241482A
Authority
JP
Japan
Prior art keywords
steel
resistant steel
heat resistant
ferritic heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005054520A
Other languages
Japanese (ja)
Other versions
JP4900639B2 (en
Inventor
Kazuhiro Kimura
一弘 木村
Masataka Yoshino
正崇 吉野
Kota Sawada
浩太 澤田
Hideaki Kushima
秀昭 九島
Yoshiaki Toda
佳明 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005054520A priority Critical patent/JP4900639B2/en
Publication of JP2006241482A publication Critical patent/JP2006241482A/en
Application granted granted Critical
Publication of JP4900639B2 publication Critical patent/JP4900639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic heat resistant steel in which deterioration in creep strength is reduced even when used at high temperature for a long time compared with the conventional ferritic heat resistant steel, and which is suitable as a high temperature structural member for a boiler, a thermal power generation device, a nuclear power generation device, a chemical industry device or the like. <P>SOLUTION: A steel is subjected to quenching or normalizing at ≥1,000°C, and, within 10 hr, is cooled to ≤700°C. Further, in a cooling stage, the steel is held at a fixed temperature in the temperature range of 800 to 400°C for at least ≥10 min, and is thereafter naturally let to cool, and tempering is performed at ≥730°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明はボイラー、火力発電装置、原子力発電装置、化学工業装置等の高温構造部材として好適な焼戻しマルテンサイト組織を有するフェライト耐熱鋼に関するものであり、特に従来のフェライト系耐熱鋼と比較して高温環境下で長時間使用してもクリープ強度の低下が少ないフェライト系耐熱鋼とその製造方法に関するものである。   The invention of this application relates to a ferritic heat resistant steel having a tempered martensite structure suitable as a high-temperature structural member for boilers, thermal power generators, nuclear power generators, chemical industrial equipment, etc., and particularly compared with conventional ferritic heat resistant steels. In particular, the present invention relates to a ferritic heat-resistant steel and a method for producing the same, in which creep strength is hardly lowered even when used for a long time in a high temperature environment.

最新の高効率火力発電プラントの1ユニットが一日に消費する石炭などの燃料費は20〜30年前に建設された効率の低い発電プラントに比べると一億円程度少ないと言われている。このように、燃料消費量が少ないということはそれに対応して二酸化炭素排出量をも低減されていることになる。   It is said that the cost of fuel, such as coal, consumed by one unit of the latest high-efficiency thermal power plant per day is about 100 million yen less than a low-efficiency power plant built 20-30 years ago. In this way, the fact that the fuel consumption is small means that the carbon dioxide emission is also reduced accordingly.

温暖化ガスである二酸化炭素の排出量削減が緊急の課題であり二酸化炭素の主要排出源である火力発電プラントのエネルギー効率向上が求められているが、その実現の鍵を握るのが高強度フェライト耐熱鋼の開発であるとも言われており、世界中で高Crフェライト耐熱鋼を改良するための研究開発が活発に行われている(特許文献1〜4)。高強度フェライト耐熱鋼のクリープ強度を向上させる方法として、鋼材中に炭化物などの第二相を析出分散させることの効果が大きいことはよく知られており、鋼材中に第二相を生成させる鋼材の強化方法は析出強化方法として実用耐熱鋼に数多く利用されている。たとえば、NbやVのMX炭窒化物は微細に析出して粗大化速度も小さいため高強度フェライト耐熱鋼の多くがNbやVのMX炭窒化物により析出強化する方法が開発されている。
特開平10−259452号公報 特開2003−253402号公報 特開平 9−291308号公報 特開平 8−337813号公報
Reducing emissions of carbon dioxide, a greenhouse gas, is an urgent issue, and there is a need to improve the energy efficiency of thermal power plants, which are the main source of carbon dioxide, but the key to realizing this is high-strength ferrite. It is also said that this is the development of heat resistant steel, and research and development for improving high Cr ferritic heat resistant steel is being actively carried out all over the world (Patent Documents 1 to 4). As a method for improving the creep strength of high-strength ferritic heat-resistant steel, it is well known that the effect of precipitating and dispersing the second phase such as carbides in the steel is great, and the steel that generates the second phase in the steel. This strengthening method is used in practical heat resistant steels as a precipitation strengthening method. For example, since Nb and V MX carbonitrides are finely precipitated and have a low coarsening rate, a method has been developed in which many high-strength ferritic heat resistant steels are precipitation strengthened by Nb and V MX carbonitrides.
JP-A-10-259542 JP 2003-253402 A JP-A-9-291308 JP-A-8-337813

従来のフェライト耐熱鋼の製造方法は、焼ならし熱処理後の焼戻し熱処理中にマルテンサイト組織の中にMX炭窒化物を析出させているためにマルテンサイト組織を構成するラスやブロックなどの境界上にMX炭窒化物が優先的に析出されていた。しかしながら析出強化の効果を高めるためには多量の微細な粒子を均一に分散させて粒子間隔を狭くすることが重要であるが、従来の方法では焼戻し熱処理中に析出するMX炭窒化物はラスやブロック境界上に優先して析出するためラス内部にMX炭窒化物を多く析出させることは困難であった。   Conventional ferritic heat-resisting steel manufacturing methods use MX carbonitrides precipitated in the martensite structure during tempering heat treatment after normalizing heat treatment. In this case, MX carbonitride was preferentially precipitated. However, in order to enhance the effect of precipitation strengthening, it is important to uniformly disperse a large amount of fine particles to narrow the particle interval. However, in the conventional method, MX carbonitride precipitated during tempering heat treatment is not lath or Since it preferentially precipitates on the block boundary, it was difficult to deposit a large amount of MX carbonitride inside the lath.

そこで、この出願発明ではラスやブロック境界ではなくラス内部にMX炭窒化物を均一に析出させてMX炭窒化物による析出強化の効果を最適化させることにより、クリープ強度を向上させるとともにラスやブロック境界近傍で優先的に生じるZ相の析出および成長に起因した材質劣化を抑制して長時間クリープ強度特性に優れたフェライト耐熱鋼を提供することを課題としている。   Therefore, in the present invention, the MX carbonitride is uniformly deposited inside the lath instead of the lath or block boundary to optimize the effect of precipitation strengthening by the MX carbonitride, thereby improving the creep strength and improving the lath or block. An object of the present invention is to provide a ferritic heat resistant steel excellent in long-term creep strength characteristics by suppressing material deterioration caused by precipitation and growth of the Z phase preferentially in the vicinity of the boundary.

この出願の発明は上記の課題を解決するものとして、第1には、Crを8重量%〜13.5重量%含有する鋼材に対して、1000℃以上で焼入れ又は焼ならしを行なったものを10時間以内に700℃以下に冷却するとともにこの冷却過程では800℃〜400℃の温度範囲の一定温度において少くとも10分以上保持した後で自然放冷し、次いで73
0℃以上で焼戻しすることを特徴とする焼戻しマルテンサイト組織を有するフェライト耐熱鋼の製造方法を提供する。
The invention of this application solves the above-mentioned problems. First, a steel material containing 8 wt% to 13.5 wt% of Cr is quenched or normalized at 1000 ° C. or higher. Is cooled to 700 ° C. or lower within 10 hours, and in this cooling process, it is naturally cooled after being held at a constant temperature in the temperature range of 800 ° C. to 400 ° C. for at least 10 minutes, and then 73
Provided is a method for producing a ferritic heat resistant steel having a tempered martensite structure characterized by tempering at 0 ° C. or higher.

第2には、鋼材の組成範囲がC:0.04〜0.2重量%、Cr:8.0〜13.5重量%、Mo:0〜2.0重量%、W:0〜4.0重量%、V:0.02〜0.35重量%、Nb:0.01〜0.2重量%、Co:0〜4.0重量%、Ni:0〜3.0重量%、N:0.002〜0.15重量%、B:0〜0.02重量%、Si:0〜0.5重量%、Mn:0〜1.0重量%、Al:0〜0.05重量%と不可避的不純物およびFeである上記の焼戻しマルテンサイト組織を有するフェライト耐熱鋼を製造する。   Second, the composition range of the steel material is C: 0.04 to 0.2 wt%, Cr: 8.0 to 13.5 wt%, Mo: 0 to 2.0 wt%, W: 0 to 4. 0 wt%, V: 0.02 to 0.35 wt%, Nb: 0.01 to 0.2 wt%, Co: 0 to 4.0 wt%, Ni: 0 to 3.0 wt%, N: 0.002 to 0.15 wt%, B: 0 to 0.02 wt%, Si: 0 to 0.5 wt%, Mn: 0 to 1.0 wt%, Al: 0 to 0.05 wt% A ferritic heat resistant steel having the above tempered martensite structure which is an inevitable impurity and Fe is produced.

第3には、800℃から400℃までの冷却にかかる時間を1時間以上として、上記の焼戻しマルテンサイト組織を有するフェライト耐熱鋼を製造する。   Third, the time required for cooling from 800 ° C. to 400 ° C. is set to 1 hour or longer to produce a ferritic heat resistant steel having the above tempered martensite structure.

第4には、上記製造方法フェライト耐熱鋼を提供する。   Fourth, the above manufacturing method ferritic heat resistant steel is provided.

上記第1の発明によれば、焼入れ又は焼ならし後の冷却条件を特定することにより、クリープ強度を向上するとともにラスやブロック境界近傍で優先的に生じるZ相の析出および成長に起因した材質劣化を抑制して長時間クリープ強度特性に優れたフェライト耐熱鋼を製造することができる。   According to the first aspect of the invention, by specifying the cooling condition after quenching or normalizing, the creep strength is improved, and the material resulting from the precipitation and growth of the Z phase that occurs preferentially in the vicinity of the lath or block boundary It is possible to produce a ferritic heat resistant steel that suppresses deterioration and has excellent long-term creep strength characteristics.

上記第2の発明によれば、特定の組成範囲の鋼材を用いることにより長時間クリープ強度特性に優れたフェライト耐熱鋼をより実際的に効率的に製造することができる。   According to the second aspect of the invention, the ferritic heat-resistant steel having excellent long-term creep strength characteristics can be produced more practically and efficiently by using a steel material having a specific composition range.

上記第3の発明によれば、さらに長時間クリープ強度特性に優れたフェライト耐熱鋼を効率的に製造することができる。   According to the third aspect of the invention, it is possible to efficiently produce a ferritic heat resistant steel that is further excellent in long-term creep strength characteristics.

上記第4の発明によれば、上記製造方法により高温下で長時間使用してもクリープ強度の低下が少ないフェライト系耐熱鋼を得ることができる。   According to the fourth invention, it is possible to obtain a ferritic heat resistant steel with little decrease in creep strength even when used at a high temperature for a long time by the above production method.

MX炭窒化物による析出強化の効果を利用する従来のフェライト耐熱鋼は焼ならし熱処理後の焼戻し熱処理中にマルテンサイト組織の中にMX炭窒化物を析出させているためMX炭窒化物はラスやブロックなどの境界上において優先的に析出されていた。そこで、マルテンサイトに変態する前にMX炭窒化物を析出させることができればMX炭窒化物はより微細にしかも均一に分散析出することができる。この出願の発明は焼ならし熱処理温度からの冷却の途中で、マルテンサイトに変態する温度よりも高い温度領域で一定時間保持することにより微細に、かつ均一に分散析出したMX炭窒化物の量を増大させクリープ強度を向上するものである。すなわち、この出願の発明による高強度フェライト耐熱鋼では、鋼材を1000℃以上の温度で焼入れ又は焼ならしを行なったものを10時間以内に700℃以下に冷却する過程において800℃〜400℃の温度範囲の一定温度において、少なくとも10分以上保持した後で自然放冷することにより主要な強化因子であるMX炭窒化物の析出挙動を制御してMX炭窒化物による析出強化の効果を発現させるとともに高温での長時間使用に伴う材質劣化が抑制されたフェライト鋼としている。   The conventional ferritic heat resisting steel that utilizes the effect of precipitation strengthening by MX carbonitrides has MX MXNitrides deposited in the martensite structure during tempering after normalizing heat treatment. It was preferentially deposited on the boundaries of blocks and blocks. Therefore, if MX carbonitride can be precipitated before transformation into martensite, MX carbonitride can be finely and uniformly dispersed and precipitated. In the invention of this application, the amount of MX carbonitride that is finely and uniformly dispersed and precipitated by holding for a certain time in a temperature range higher than the temperature at which it transforms into martensite during cooling from the normalizing heat treatment temperature. To increase the creep strength. That is, in the high-strength ferritic heat-resisting steel according to the invention of this application, a steel material that has been quenched or normalized at a temperature of 1000 ° C. or higher is cooled to 700 ° C. or lower within 10 hours. Controlling the precipitation behavior of MX carbonitride, which is the main strengthening factor, by allowing it to cool naturally after being held for at least 10 minutes at a constant temperature in the temperature range, thereby exhibiting the effect of precipitation strengthening by MX carbonitride At the same time, it is a ferritic steel in which material deterioration due to long-term use at high temperatures is suppressed.

従来に比べて、クリープ速度は1/2以下に、クリープ破断時間は2倍以上になることも可能とされる。   Compared with the prior art, the creep speed can be reduced to 1/2 or less, and the creep rupture time can be increased to twice or more.

そして、この出願の発明においては、800℃から400℃までの冷却に掛かる時間を1時間以上とすることが好適に考慮される。これにより従来に比べて、析出物の量は1.
5倍以上に増加し、クリープ速度は1/2以下に減少することになる。
In the invention of this application, it is preferably considered that the time required for cooling from 800 ° C. to 400 ° C. is 1 hour or more. As a result, the amount of precipitates is 1.
The creep speed will be reduced to 1/2 or less.

この出願の発明は、材料開発という実用面だけでなく、第二相の析出挙動や強化機構に関する基礎学問の領域においても重要な新知見を提供するものでありその技術的効果は多大である。なお、この出願の発明の効果は鋼材の組成範囲が厳密に限定されるものではないが、特定の組成範囲とすることにより、高温下での長時間使用に伴う材質劣化がさらに抑制されたフェライト耐熱鋼を製造することが可能となる。たとえば、組成範囲を特定の範囲にするに際しては、下記のようなことが考慮される。   The invention of this application provides important new knowledge not only in the practical aspect of material development but also in the field of basic studies related to the precipitation behavior of the second phase and the strengthening mechanism, and its technical effect is enormous. The effect of the invention of this application is not strictly limited to the composition range of the steel material, but by making it a specific composition range, the ferrite in which the material deterioration associated with long-term use at high temperatures is further suppressed. Heat-resistant steel can be manufactured. For example, the following is considered when the composition range is set to a specific range.

C:炭化物あるいは炭窒化物を形成し、強度向上のために0.04重量%以上の添加が有効であるが、0.2重量%を超えての添加は、長時間域での強度を低下させる。   C: Carbide or carbonitride is formed, and addition of 0.04% by weight or more is effective to improve the strength, but addition exceeding 0.2% by weight reduces the strength in the long-term range. Let

Cr:耐酸化性の確保のため、8.0重量%以上の添加が必要であるが、13.5重量%を超えての添加は、デルタフェライト相を生成させ、強度を低下させる。   Cr: Addition of 8.0% by weight or more is necessary to ensure oxidation resistance, but addition exceeding 13.5% by weight generates a delta ferrite phase and lowers the strength.

Mo:固溶強化のために添加が考慮されるが、2.0重量%を超えての添加は脆化を促進する。   Mo: Addition is considered for solid solution strengthening, but addition exceeding 2.0% by weight promotes embrittlement.

W:固溶強化のために添加が考慮されるが、4.0重量%を超えての添加は脆化を促進する。   W: Addition is considered for solid solution strengthening, but addition exceeding 4.0% by weight promotes embrittlement.

V:炭窒化物を形成し、強度向上のために0.02重量%以上の添加が有効であるが、未固溶析出物が増加するため、0.35重量%を超えての添加は、強度向上に有効ではない。   V: Carbonitride is formed, and addition of 0.02% by weight or more is effective for improving the strength. However, since undissolved precipitates increase, addition exceeding 0.35% by weight is It is not effective for strength improvement.

Nb:炭窒化物を形成し、強度向上のために0.01重量%以上の添加が有効であるが、未固溶析出物が増加するため、0.2重量%を超えての添加は、強度向上に有効ではない。   Nb: Carbonitride is formed, and addition of 0.01% by weight or more is effective to improve the strength. However, since insoluble precipitates increase, addition exceeding 0.2% by weight It is not effective for strength improvement.

Co:デルタフェライト相の生成を抑制して、高強度確保のために添加が考慮されるが、長時間強度を低下させるため、4.0重量%を超えての添加は有効ではない。   Co: Addition is considered in order to suppress the formation of the delta ferrite phase and ensure high strength, but in order to reduce the strength for a long time, addition exceeding 4.0% by weight is not effective.

Ni:デルタフェライト相の生成を抑制して、高強度確保のために添加が考慮されるが、フェライトとオーステナイトの変態温度を下げるため、3.0重量%を超えての添加は有効ではない。   Ni: Addition is considered in order to suppress the formation of the delta ferrite phase and ensure high strength, but in order to lower the transformation temperature of ferrite and austenite, addition exceeding 3.0% by weight is not effective.

N:窒化物あるいは炭窒化物を形成し、強度向上のために0.002重量%以上の添加が有効であるが、0.15重量%を超えての添加は製造上困難である。   N: Nitride or carbonitride is formed, and addition of 0.002% by weight or more is effective for improving strength, but addition exceeding 0.15% by weight is difficult in production.

B:析出物を微細化させ、高温での安定性を向上させるため、0.02重量%程度までの添加が強度向上のために考慮される。   B: In order to refine the precipitate and improve the stability at high temperature, the addition up to about 0.02% by weight is considered for improving the strength.

Si:脱酸素成分等として考慮されるが、0.5重量%を超える場合には析出物の粗大化が進むことになる。   Si: Considered as a deoxygenation component or the like, but when it exceeds 0.5% by weight, the coarsening of the precipitate proceeds.

Mn:Siと同様に考慮されるが、1重量%を超える場合には析出物の粗大化が進み、延性が低下することになる。   Although considered similarly to Mn: Si, when it exceeds 1 weight%, the coarsening of a precipitate will advance and ductility will fall.

Al:0.05重量%以下の添加が考慮される。   Al: Addition of 0.05% by weight or less is considered.

そこで、以下にこの出願の発明を実施例を用いてさらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, the invention of this application will be described in more detail below using examples. Of course, the invention is not limited by the following examples.

表1の組成を有する供試材について、表2に示す条件で熱処理を行った。   About the test material which has a composition of Table 1, it heat-processed on the conditions shown in Table 2. FIG.

なお、いずれの場合も焼戻しは、765℃で30分間行い、その後自然空冷させた。   In each case, tempering was performed at 765 ° C. for 30 minutes, and then natural air cooling was performed.

Figure 2006241482
Figure 2006241482

Figure 2006241482
Figure 2006241482

標準(No.1)は通常の焼ならし熱処理で行なわれている焼ならし温度の1050℃から空気中の自然放冷により室温まで冷却させたものである。この場合には、700℃以下になるまでの時間は15分以内である。また、比較例(No2)は焼ならし温度からの冷却の途中の765℃で24hr保持した後、空気中の自然放冷により室温まで冷却させたものである。一方、本願発明(No3〜No5)は、焼ならし温度からの冷却の途中、765℃、600℃および500℃の各温度でそれぞれ30分間保持した後、空気中の自然放冷により室温まで冷却させたものである。   The standard (No. 1) is cooled from the normalizing temperature of 1050 ° C., which is carried out in the normal normalizing heat treatment, to room temperature by natural cooling in the air. In this case, the time until it becomes 700 ° C. or less is within 15 minutes. The comparative example (No. 2) was held at 765 ° C. during cooling from the normalizing temperature for 24 hours and then cooled to room temperature by natural cooling in the air. On the other hand, in the present invention (No. 3 to No. 5), during the cooling from the normalizing temperature, after being held at each temperature of 765 ° C., 600 ° C. and 500 ° C. for 30 minutes, it is cooled to room temperature by natural cooling in the air. It has been made.

焼ならし熱処理後、室温まで冷却した供試材から電解抽出残渣を採取して析出相の化学成分を分析した。図1は各供試材の析出相に含まれているVとNbの重量%を示したものである。焼ならし温度から直接室温まで冷却させた標準(No1)に比べて、冷却途中で特定の温度で保持した試料では、析出相に含まれるVとNbの量が増加している。焼ならし温度からの冷却途中で保持することにより、MX炭窒化物の析出が生じていることが分かる。   After the normalizing heat treatment, the electrolytic extraction residue was collected from the specimen cooled to room temperature, and the chemical components of the precipitated phase were analyzed. FIG. 1 shows the weight percentages of V and Nb contained in the precipitated phase of each test material. Compared with the standard (No. 1) that is cooled directly from the normalizing temperature to room temperature, the amount of V and Nb contained in the precipitated phase is increased in the sample held at a specific temperature during cooling. It can be seen that the MX carbonitride precipitates by holding during the cooling from the normalizing temperature.

なお、供試材のマルテンサイト変態温度は約380℃であった。したがって、焼ならし温度からの冷却途中で保持した、500〜765℃の温度域ではオーステナイト相である。以上のことから、焼きならし温度からの冷却の途中で所定温度で保持した供試材では保持温度において、オーステナイト相中にMX炭窒化物が析出していることがわかる。   The martensitic transformation temperature of the test material was about 380 ° C. Therefore, it is an austenite phase in the temperature range of 500 to 765 ° C. maintained during cooling from the normalizing temperature. From the above, it can be seen that MX carbonitride is precipitated in the austenite phase at the holding temperature in the test material held at a predetermined temperature during cooling from the normalizing temperature.

図2はそれぞれについて焼戻し熱処理を行なった後、試験温度600℃、応力120MPaでクリープ試験を実施して求めたクリープ速度と時間との関係を示したものである。   FIG. 2 shows the relationship between the creep rate and time obtained by performing a creep test at a test temperature of 600 ° C. and a stress of 120 MPa after tempering heat treatment.

比較例(No.2)におけるクリープ速度の急激な変化は、765℃で24hの保持中にオーステナイト相が強度の低いフェライト相に変態してしまったためであると考えられる。このため、オーステナイト相のフェライト相への変態を避けるため焼ならし温度から700℃以下までの冷却に要する時間は10時間以下に制限する必要がある。一方、765℃、600℃および500℃の各温度で30分保持した本願発明(No3〜No5)では、標準熱処理の場合に比べて小さなクリープ速度であることが示されている。クリープ速度が1/2以下、クリープ破断時間が2倍以上となる。   The rapid change in the creep rate in the comparative example (No. 2) is considered to be due to the transformation of the austenite phase to a low strength ferrite phase during 24 hours at 765 ° C. For this reason, in order to avoid transformation of the austenite phase to the ferrite phase, it is necessary to limit the time required for cooling from the normalizing temperature to 700 ° C. or less to 10 hours or less. On the other hand, in this invention (No3-No5) which was hold | maintained for 30 minutes at each temperature of 765 degreeC, 600 degreeC, and 500 degreeC, it is shown that it is a small creep rate compared with the case of standard heat processing. The creep speed is ½ or less, and the creep rupture time is twice or more.

この結果から、焼ならし温度からの冷却の途中で本発明の熱処理条件を適用することによりクリープ強度が向上することがわかる。   From this result, it is understood that the creep strength is improved by applying the heat treatment condition of the present invention during the cooling from the normalizing temperature.

各供試材の焼ならし熱処理後の析出相に含まれるV、Nbの重量%を示した図である。It is the figure which showed the weight% of V and Nb contained in the precipitation phase after the normalization heat processing of each test material. 供試材の600℃での応力120MPaにおけるクリープ速度‐時間曲線を示した図である。It is the figure which showed the creep rate-time curve in the stress of 120MPa in 600 degreeC of a test material.

Claims (4)

Crを8重量%〜13.5重量%含有する鋼材に対して、1000℃以上で焼入れ又は焼ならしを行ない、10時間以内に700℃以下に冷却するとともに、この冷却の過程では800℃〜400℃の温度範囲の一定温度において少なくとも10分以上保持した後に自然放冷し、次いで730℃以上で焼戻しすることを特徴とする焼戻しマルテンサイト組織を有するフェライト耐熱鋼の製造方法。   The steel containing 8 wt% to 13.5 wt% of Cr is quenched or normalized at 1000 ° C. or higher and cooled to 700 ° C. or lower within 10 hours. A method for producing a ferritic heat resistant steel having a tempered martensite structure, characterized by holding at a constant temperature in a temperature range of 400 ° C for at least 10 minutes, allowing to cool naturally, and then tempering at 730 ° C or higher. 鋼材の組成範囲がC:0.04〜0.2重量%、Cr:8.0〜13.5重量%、Mo:0〜2.0重量%、W:0〜4.0重量%、V:0.02〜0.35重量%、Nb:0.01〜0.2重量%、Co:0〜4.0重量%、Ni:0〜3.0重量%、N:0.002〜0.15重量%、B:0〜0.02重量%、Si:0〜0.5重量%、Mn:0〜1.0重量%、Al:0〜0.05重量%と不可避的不純物およびFeであることを特徴とする請求項1に記載された焼戻しマルテンサイト組織を有するフェライト耐熱鋼の製造方法。   The composition range of the steel materials is C: 0.04 to 0.2 wt%, Cr: 8.0 to 13.5 wt%, Mo: 0 to 2.0 wt%, W: 0 to 4.0 wt%, V : 0.02-0.35 wt%, Nb: 0.01-0.2 wt%, Co: 0-4.0 wt%, Ni: 0-3.0 wt%, N: 0.002-0 .15 wt%, B: 0 to 0.02 wt%, Si: 0 to 0.5 wt%, Mn: 0 to 1.0 wt%, Al: 0 to 0.05 wt%, unavoidable impurities and Fe The method for producing a heat-resistant ferritic steel having a tempered martensite structure according to claim 1. 800℃から400℃までの冷却にかかる時間を1時間以上とすることを特徴とする請求項1または2に記載された焼戻しマルテンサイト組織を有するフェライト耐熱鋼の製造方法。   The method for producing a ferritic heat resistant steel having a tempered martensite structure according to claim 1 or 2, wherein the time required for cooling from 800 ° C to 400 ° C is 1 hour or more. 請求項1から3のいずれかの方法で製造されたものであることを特徴とする焼戻しマルテンサイト組織を有するフェライト耐熱鋼。

A ferritic heat-resistant steel having a tempered martensite structure, which is produced by the method according to any one of claims 1 to 3.

JP2005054520A 2005-02-28 2005-02-28 Ferritic heat resistant steel having tempered martensite structure and method for producing the same Expired - Fee Related JP4900639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054520A JP4900639B2 (en) 2005-02-28 2005-02-28 Ferritic heat resistant steel having tempered martensite structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054520A JP4900639B2 (en) 2005-02-28 2005-02-28 Ferritic heat resistant steel having tempered martensite structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006241482A true JP2006241482A (en) 2006-09-14
JP4900639B2 JP4900639B2 (en) 2012-03-21

Family

ID=37048181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054520A Expired - Fee Related JP4900639B2 (en) 2005-02-28 2005-02-28 Ferritic heat resistant steel having tempered martensite structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4900639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290184A (en) * 2013-05-29 2013-09-11 清华大学 Thermal processing method of chromium-containing ferrite refractory steel
WO2017178555A1 (en) * 2016-04-15 2017-10-19 Siemens Aktiengesellschaft Martensitic steel with delayed z-phase formation, and component
WO2023286204A1 (en) * 2021-07-14 2023-01-19 日本製鉄株式会社 Ferritic heat-resistant steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265914A (en) * 1997-03-21 1998-10-06 Abb Res Ltd Perfectly martensitic heat treated steel, its use, and heat treatment to obtain it
JPH11350031A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Production of high cr heat resistant steel excellent in low temperature toughness and creep strength
JP2003321752A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk High strength ferritic heat resistant steel and production method thereof
JP2004256887A (en) * 2003-02-27 2004-09-16 Japan Steel Works Ltd:The MANUFACTURING METHOD OF B-CONTAINING HIGH-Cr HEAT-RESISTANT STEEL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265914A (en) * 1997-03-21 1998-10-06 Abb Res Ltd Perfectly martensitic heat treated steel, its use, and heat treatment to obtain it
JPH11350031A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Production of high cr heat resistant steel excellent in low temperature toughness and creep strength
JP2003321752A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk High strength ferritic heat resistant steel and production method thereof
JP2004256887A (en) * 2003-02-27 2004-09-16 Japan Steel Works Ltd:The MANUFACTURING METHOD OF B-CONTAINING HIGH-Cr HEAT-RESISTANT STEEL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290184A (en) * 2013-05-29 2013-09-11 清华大学 Thermal processing method of chromium-containing ferrite refractory steel
WO2017178555A1 (en) * 2016-04-15 2017-10-19 Siemens Aktiengesellschaft Martensitic steel with delayed z-phase formation, and component
WO2023286204A1 (en) * 2021-07-14 2023-01-19 日本製鉄株式会社 Ferritic heat-resistant steel

Also Published As

Publication number Publication date
JP4900639B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4995111B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
JP6562476B2 (en) Ferritic heat resistant steel and its manufacturing method
CN110129658B (en) High-manganese nitrogen-free high-strength high-toughness hydrogen embrittlement-resistant austenitic stainless steel and preparation method thereof
WO2006100891A1 (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP4995131B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
JP2015528057A (en) Austenitic alloy steel with excellent creep strength, oxidation resistance and corrosion resistance at high operating temperature
JP2013533921A (en) Method for producing tempered martensitic heat-resistant steel for high-temperature applications
WO2014030392A1 (en) Highly strong, highly tough and highly corrosion-resistant martensitic stainless steel
JP2008248385A (en) Ferritic heat resistant steel material and heat-resistant structure excellent in the creep property of weld heat-affected zone
CN109554629A (en) A kind of ultra supercritical coal-fired unit steel and preparation method thereof
CN109763066B (en) Heat-resistant steel for key hot end component of ultrahigh parameter steam turbine
CN104946932A (en) Method for manufacturing austenite series heat-resistant alloy pipe and austenite series heat-resistant alloy pipe manufactured by the method
CN102517507B (en) Steel for blades of turbine of ultra-supercritical fossil power plants and manufacturing method
JP2005179772A (en) Method for manufacturing high-chromium ferritic/martensitic heat-resistant alloy
CN115029514A (en) Heat treatment method for regulating and controlling structure performance of high-strength and high-toughness martensitic stainless steel
JP4900639B2 (en) Ferritic heat resistant steel having tempered martensite structure and method for producing the same
CA3032502C (en) Sucker rod steel and manufacturing method thereof
JP2008266785A (en) Heat-resistant ferritic steel material superior in creep characteristics at weld heat-affected zone, and heat-resistant structure
JP2010138465A (en) Heat resistant steel having excellent creep strength, and method for producing the same
JP2005076062A (en) High-temperature bolt material
JP2013082992A (en) Method for producing steel material excellent in toughness for die
JP2012211385A (en) Precipitation strengthening type heat resistant steel
JP5981357B2 (en) Heat resistant steel and steam turbine components
KR101507898B1 (en) super heat resistant alloy and the manufacturing method thereof
JP2014148722A (en) Ferrite-based heat-resistant steel with laves phase dispersed and deposited finely and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees