JP2008248385A - Ferritic heat resistant steel material and heat-resistant structure excellent in the creep property of weld heat-affected zone - Google Patents

Ferritic heat resistant steel material and heat-resistant structure excellent in the creep property of weld heat-affected zone Download PDF

Info

Publication number
JP2008248385A
JP2008248385A JP2008052271A JP2008052271A JP2008248385A JP 2008248385 A JP2008248385 A JP 2008248385A JP 2008052271 A JP2008052271 A JP 2008052271A JP 2008052271 A JP2008052271 A JP 2008052271A JP 2008248385 A JP2008248385 A JP 2008248385A
Authority
JP
Japan
Prior art keywords
affected zone
steel material
heat
weld
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008052271A
Other languages
Japanese (ja)
Other versions
JP4995122B2 (en
Inventor
Hiroshi Hasegawa
泰士 長谷川
Taro Muraki
太郎 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008052271A priority Critical patent/JP4995122B2/en
Publication of JP2008248385A publication Critical patent/JP2008248385A/en
Application granted granted Critical
Publication of JP4995122B2 publication Critical patent/JP4995122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic heat resistant steel material capable of suppressing the occurrence of a type IV type damage in a weld heat affected zone. <P>SOLUTION: The ferritic heat resistant steel material having the excellent creep characteristic of the weld heat affected zone contains, by mass%, 0.01 to 0.20% C, 0.02 to 0.50% Si, 0.05 to 1.0% Mn, ≤0.02% P, ≤0.01% S, 0.4 to 12.0% Cr, 0.001 to 0.05% Al, 0.001 to 0.07% N, is limited to ≤0.01% O, consists of the balance Fe and inevitable impurities, and is 0.5 to 80 in a weld heat-affected zone hardenability index HDL defined by formula. The low temperature transformation texture of 1×10<SP>12</SP>pieces/m<SP>2</SP>or more (in the case of 0.4 to 3.0% Cr) or 1×10<SP>13</SP>pieces/m<SP>2</SP>or more (in the case of 3.0 to 12.0% Cr) in dislocation density or 1×10<SP>12</SP>pieces/m<SP>2</SP>(in the case of 3.0 or over to 12.0% Cr) in dislocation density is created in the weld heat affected zone of the steel material heated to an AC<SB>1</SB>transformation point to the AC<SB>1</SB>transformation point +300°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、450℃以上でかつ高圧で使用する耐熱溶接構造体、特に、エネルギー変換を目的とする火力発電プラントや、エネルギー精製を目的とする石油化学プラントを構成するフェライト系耐熱鋼材、詳しくは、溶接熱影響部(Heat Affected Zone of weld、以下、「HAZ」ということがある。)のクリープ特性に優れたフェライト系耐熱鋼材に関するものである。   The present invention relates to a heat-resistant welded structure used at a high pressure of 450 ° C. or higher, particularly a thermal power plant for energy conversion and a ferritic heat-resistant steel material constituting a petrochemical plant for energy purification. The present invention relates to a ferritic heat resistant steel material having excellent creep characteristics of a heat affected zone of weld (hereinafter sometimes referred to as “HAZ”).

近年のエネルギー資源の枯渇及び大量消費の見直しを背景とし、地球環境保護のため、高温高圧で使用する鋼構造体、特に、圧力機器の稼動においては、効率よくエネルギーを変換する技術が求められている。将来的には、原子力発電や、高速増殖炉、軽水炉、核融合炉等の低排出大型発電を実現する技術の開発が期待されている。   With the background of recent depletion of energy resources and a review of mass consumption, steel structures used at high temperature and high pressure, especially in the operation of pressure equipment, are required to efficiently convert energy to protect the global environment. Yes. In the future, it is expected to develop technologies for realizing low-emission large-scale power generation such as nuclear power generation and fast breeder reactors, light water reactors, and fusion reactors.

また、従来から稼働している石油、石炭又は天然ガス火力発電においても、地球温暖化防止の観点から、効率よく電気エネルギーを獲得する技術を開発することが重要視されている。   Further, in oil, coal, or natural gas thermal power generation that has been operating in the past, it is important to develop a technique for efficiently acquiring electric energy from the viewpoint of preventing global warming.

また、交通手段の車両から排出される排出ガス中に、地球環境に悪影響を与える物質が含まれていることから、燃料自体を清浄化し、該物質の排出量を低減するため、原油の脱硫をより高温高圧で行う、いわゆる、浸深度脱硫技術が注目されている。   In addition, since exhaust gas discharged from vehicles for transportation contains substances that adversely affect the global environment, crude oil is desulfurized in order to clean the fuel itself and reduce the emissions of these substances. So-called deep immersion desulfurization technology, which is performed at higher temperature and pressure, has attracted attention.

このような、電力プラント及び化学プラントでの稼動率の向上、又は、精製率の向上のために、プラントを構成する機器の使用環境は、高温高圧化する傾向にあり、また、同時に、エネルギー需要の増大から、電力プラント及び化学プラントの建設需要が、世界規模で進行する現状において、電力プラント及び化学プラントを高温高圧化においても安定的に稼働し得る技術の開発が求められている。   In order to improve the operation rate in such power plants and chemical plants, or to improve the purification rate, the usage environment of the equipment constituting the plant tends to increase in temperature and pressure, and at the same time, energy demand As the demand for construction of electric power plants and chemical plants advances on a global scale, the development of technology that can stably operate electric power plants and chemical plants even at high temperatures and high pressures is required.

現在、火力発電が電気エネルギーの大部分を賄い、また、化学プラントが450〜500℃の高温域で稼動している状況において、これらのシステムを構成する機器の事故は、エネルギーの供給の観点から致命的なものであって、上記システムの数日間の停止でさえ、社会に与える影響及び経済的損失は計り知れない。   Currently, thermal power generation covers the majority of electrical energy, and in the situation where chemical plants are operating in the high temperature range of 450-500 ° C, accidents in the equipment that makes up these systems are from the perspective of energy supply. It is fatal, and even with the system shut down for several days, the impact on society and economic loss are immeasurable.

このような操業不能を招く大規模な事故は、機器を構成する鋼板の損傷による場合が多いが、該損傷は、一般に、鋼板の溶接部で発生する。   Such large-scale accidents that cause inoperability are often caused by damage to the steel sheets that make up the equipment, but such damage generally occurs at the welds of the steel sheets.

溶接部の金属組織を採取し光学顕微鏡で観察すると、鋼材の変態点以上に加熱されて組織が変化し損傷の起点となり得る部位を特定することができるが、特に、溶接熱影響部の外縁(母材に最も近い部位)で生じる局部的なクリープ強度の低下に起因する破壊が、プラント機器の安全性の点から大きな問題となっている。   When the metallographic structure of the weld is collected and observed with an optical microscope, it is possible to identify the part that is heated beyond the transformation point of the steel material and the structure can change to become the starting point of damage. Destruction caused by a local decrease in creep strength occurring at a portion closest to the base material) is a serious problem in terms of plant equipment safety.

上記破壊(損傷)は、その発生位置による分類により、一般に、Type IV型損傷(又は、Type IV型破壊)として知られている現象(図1、参照)であるが、その発生機構に係る報告は少なく(非特許文献1及び2、参照)、発生機構解明のための共通認識は、未だ確立されていない。したがって、現在、工業的に実用化されたType IV型損傷防止技術は開発されていない。   The above destruction (damage) is a phenomenon (refer to Fig. 1) generally known as Type IV type damage (or Type IV type destruction) according to the classification according to the location of its occurrence. There are few (see Non-Patent Documents 1 and 2), and common recognition for elucidating the generation mechanism has not been established yet. Therefore, at present, no Type IV type damage prevention technology that has been put into practical use has been developed.

プラント機器の設計においては、基準や規制で、溶接部がある場合の高温許容応力を決定する際の目安が定められているに過ぎず、機器・プラントメーカーの自主的な安全裕度追加により、大規模な事故の未然防止を図っているのが現状である。   In the design of plant equipment, the standards and regulations only provide guidelines for determining the high temperature allowable stress when there are welds, and by adding voluntary safety margins for equipment and plant manufacturers, The current situation is to prevent large-scale accidents.

このため、設計は、過剰に安全性を確保する設計となり、その結果、プラント機器の重量が増し、製造コストが増加する。さらに、プラント工程が増えて、操業コストが増大して、供給するエネルギーのコスト上昇が懸念される。エネルギーコストの上昇は、安定供給の支障となる。   For this reason, the design is designed to ensure safety excessively, resulting in an increase in the weight of the plant equipment and an increase in manufacturing cost. Furthermore, there are concerns about an increase in the cost of energy to be supplied due to an increase in plant processes, an increase in operating costs. An increase in energy costs hinders stable supply.

また、過剰に安全性を確保する設計を行っても、溶接部の強度に依然として不安が残り、プラントの事故発生率を低減することは期待できないから、溶接部の強度低下は、エネルギーの安定供給を妨げる大きな要因となる。なお、鋼材の強度を高める組成設計をしても、プラントの設計強度は、溶接部の強度で決定するので、鋼材の機能の向上自体、意味がないことになる。   In addition, even if a design that ensures excessive safety is performed, there remains concern about the strength of the weld, and it is not expected to reduce the accident rate of the plant. It becomes a big factor to prevent. In addition, even if the composition design is performed to increase the strength of the steel material, the design strength of the plant is determined by the strength of the welded portion, so the improvement in the function of the steel material itself is meaningless.

このように、溶接熱影響部におけるType IV型損傷を解消することは、エネルギー変換を高温高圧で行うプラントの建造にとって極めて重要である。即ち、溶接熱影響部におけるType IV型損傷の発生を防止することができれば、高温高圧プラント機器は、その機能を安定的に充分に発揮し、低コストエネルギーの安定供給に大きく貢献する。   Thus, eliminating Type IV damage in the weld heat affected zone is extremely important for the construction of plants that perform high-temperature and high-pressure energy conversion. That is, if the occurrence of Type IV damage in the weld heat affected zone can be prevented, the high-temperature and high-pressure plant equipment will stably and sufficiently exert its function, and greatly contribute to the stable supply of low-cost energy.

ところで、溶接部(溶接継手)の強度低下は、一般に、10万時間で30〜50%といわれている。この強度の低下をなくすことは、低下率から推定して、高温プラント機器の強度は、逆に、30〜50%上昇することに等しい。この強度の上昇は、プラント操業条件の点でみると、操業温度が50〜80℃上昇することに匹敵する。   By the way, the strength reduction of the welded portion (welded joint) is generally said to be 30 to 50% in 100,000 hours. Eliminating this decrease in strength is equivalent to increasing the strength of the high-temperature plant equipment by 30 to 50%, as estimated from the rate of decrease. This increase in strength is comparable to an increase in operating temperature of 50 to 80 ° C. in terms of plant operating conditions.

この操業温度の上昇は、例えば、火力発電プラントの場合、エネルギー変換効率を5%改善することになる。その結果、火力発電プラントは、原子力発電に匹敵する高効率エネルギー変換プラントになる。   For example, in the case of a thermal power plant, this increase in operating temperature improves the energy conversion efficiency by 5%. As a result, the thermal power plant becomes a high-efficiency energy conversion plant comparable to nuclear power generation.

以上の背景の下、高温高圧プラント用耐熱鋼材の溶接部における強度低下を抑制する技術の開発が精力的に行われ、その結果が、これまで数多く報告されている。その代表的な技術の一つとして、溶接熱影響部のクリープ特性を支える析出強化因子、例えば、炭化物、炭窒化物、酸化物を安定化する技術を挙げることができる(特許文献1〜5、参照)。   Under the above background, the development of technology for suppressing the strength reduction in the welded portion of the heat-resistant steel material for high-temperature and high-pressure plants has been vigorously performed, and many results have been reported so far. As one of the representative techniques, a precipitation strengthening factor that supports the creep characteristics of the weld heat-affected zone, for example, techniques for stabilizing carbides, carbonitrides, and oxides (Patent Documents 1 to 5, reference).

溶接熱影響部に存在する析出物は、マルテンサイト組織やベイナイト組織に内包される転位の移動を妨げる移動障害物であるから、変態点以上の温度に再熱されて分解固溶する可能性がある炭化物や炭窒化物を安定化することは、溶接部における強度低下の抑制する点で効果がある(特許文献1〜5、参照)。   Precipitates present in the weld heat-affected zone are migration obstacles that hinder the movement of dislocations contained in the martensite structure and bainite structure, so they may be reheated to a temperature above the transformation point and decompose and dissolve. Stabilizing a certain carbide or carbonitride has an effect in terms of suppressing a decrease in strength at the weld (see Patent Documents 1 to 5).

また、酸化物は、再熱温度域でも分解固溶しないので、炭窒化物の替わりに酸化物を分散させて析出強化を図ると、溶接部における強度低下を抑制することができる(特許文献1〜5、参照)。   In addition, since the oxide does not decompose and dissolve even in the reheat temperature range, if the oxide is dispersed instead of carbonitride and precipitation strengthening is attempted, a decrease in strength at the welded portion can be suppressed (Patent Document 1). ~ 5).

しかし、溶接熱影響部における析出物の安定化による効果は、析出物が極めて微細にかつ高密度に析出した場合にこそ大きいが、通常、転位密度が高いベイナイト組織やマルテンサイト組織においては不動転位密度が高いので、析出物の安定化は、主たる強化因子にならない場合がある。   However, the effect of stabilizing the precipitates in the heat affected zone is large when the precipitates are deposited very finely and with high density, but usually in the bainite structure and martensite structure where the dislocation density is high, the fixed dislocations. Due to the high density, the stabilization of the precipitate may not be the main strengthening factor.

また、炭化物や炭窒化物が大量に析出したまま分解固溶しない場合、再度冷却される際に、基材中の炭素濃度や窒素濃度が低下し、溶接熱影響部の組織形成に悪影響を及ぼす場合があり、溶接方法によっては、溶接熱影響部の強度低下を大幅に改善することができない場合もある。   Also, if a large amount of carbide or carbonitride is deposited and does not decompose and dissolve, when it is cooled again, the carbon concentration and nitrogen concentration in the base material will decrease, adversely affecting the structure formation of the weld heat affected zone In some cases, depending on the welding method, the strength reduction of the weld heat affected zone may not be significantly improved.

特許文献6には、溶接部を、溶接後に、再度、母材とともに熱処理する技術、例えば、焼入れ焼戻し、又は、焼準焼戻しすることで、溶接熱影響部における強度低下を解決する技術が開示されている。   Patent Document 6 discloses a technique for heat-treating a welded part together with a base material after welding again, for example, a technique for solving strength reduction in a weld heat-affected zone by quenching and tempering. ing.

この技術は、溶接熱影響部の組織を、母材組織と同じ組織に戻す技術であり、Type IV型損傷の発生を防止する技術ではない。また、部品機器や構成ユニットがある程度以上の大きさになると、溶接構造体全体を同時に熱処理することは困難である。   This technology is a technology that returns the structure of the heat affected zone to the same structure as the base material structure, and is not a technique that prevents the occurrence of Type IV damage. In addition, when the component device or the constituent unit is larger than a certain size, it is difficult to heat treat the entire welded structure at the same time.

さらに、通常は、溶接金属強度を、溶接まま、即ち、鋳造まま+焼戻しによって設計していることから、上記方法、即ち、溶接金属を含む構造体全体の焼入れ+焼戻しでは、溶接金属の高温強度を確保することが困難となり、Type IV型損傷発生以前に、溶接継手としては、強度の設計が困難となってしまう。   Further, since the weld metal strength is usually designed by welding, that is, as cast, by tempering, the above-described method, that is, quenching and tempering the entire structure including the weld metal, the high temperature strength of the weld metal. It is difficult to ensure the strength of the welded joint before the occurrence of Type IV damage.

溶接構造体全体を熱処理するためには、大型炉を使用する必要があるが、大型炉の場合には、設備費が高くつき、また、使用するエネルギーコストも増大するので、特許文献6に開示の技術を工業的な大量生産に適用するためには、さらなる技術開発が必要となる。   In order to heat-treat the entire welded structure, it is necessary to use a large furnace. However, in the case of a large furnace, the equipment cost is high and the energy cost to be used is also increased. In order to apply this technology to industrial mass production, further technological development is required.

しかし、溶接構造体全体を熱処理することは、実際には不可能であり、この熱処理で、溶接熱影響部におけるType IV型損傷を完全に抑制することはできない。   However, it is actually impossible to heat treat the entire welded structure, and this heat treatment cannot completely suppress Type IV damage in the heat affected zone.

一方、非特許文献3には、溶接熱影響部組織の細粒化を抑制し、クリープ特性の改善を図る手法が報告されている。この手法は、溶接前にAc3変態点以上に加熱し、残留オーステナイトを3%導入し、その成長合体によって細粒化を防止するものであるが、セメンタイト、又は、M236型炭化物を生成して残留オーステナイトを生成しない合金系には適用できないものである。 On the other hand, Non-Patent Document 3 reports a method for suppressing the refinement of the weld heat-affected zone structure and improving the creep characteristics. In this method, heating is performed to the Ac 3 transformation point or higher before welding, 3% of retained austenite is introduced, and the growth coalescence prevents fine graining, but cementite or M 23 C 6 type carbide is used. It cannot be applied to an alloy system that does not generate retained austenite.

さらに、上記手法によれば、溶接後に、母材中に残留オーステナイトが生じて、クリープ中に徐々に変形が進行して、配管類や熱交換器系において大きな熱応力が発生するという、耐熱鋼としては致命的な事態を避けることができない。   Furthermore, according to the above method, after welding, residual austenite occurs in the base metal, and the deformation progresses gradually during creep, resulting in a large heat stress in the piping and heat exchanger system. As a fatal situation can not be avoided.

即ち、非特許文献3は、工業的な特殊解しか提案しておらず、安定してType IV型損傷を抑制する技術を開示するものではない。非特許文献3は、むしろ、Bを90ppm添加すると、Type IV型損傷を安定的に抑制することができることを示唆するものである。   That is, Non-Patent Document 3 proposes only an industrial special solution and does not disclose a technique for stably suppressing Type IV damage. Rather, Non-Patent Document 3 suggests that the addition of 90 ppm of B can stably suppress Type IV damage.

特開2002−332547号公報JP 2002-332547 A 特開2001−192761号公報Japanese Patent Laid-Open No. 2001-192761 特開平11−256269号公報JP-A-11-256269 特開平07−242935号公報Japanese Patent Application Laid-Open No. 07-242935 特開平06−065689号公報Japanese Patent Application Laid-Open No. 06-0665689 特開2001−003120号公報JP 2001-003120 A 「高Crフェライト系先端耐熱鋼の熱影響部に見られるType IV型クリープ損傷を発生する組織の特定と生成機構」,鉄と鋼,Vol.90(2006)No.10,pp31-39“Identification and generation mechanism of type IV creep damage observed in heat affected zone of high Cr ferritic heat resistant steel”, Iron and Steel, Vol. 90 (2006) No. 10, pp31-39 「高Crフェライト系先端耐熱鋼のType IV型クリープ損傷の組織支配因子の考察」,鉄と鋼,Vol.90(2006)No.10,pp40-48“Study on the structure controlling factor of type IV creep damage of high Cr ferritic advanced heat resistant steel”, Iron and Steel, Vol. 90 (2006) No. 10, pp40-48 「細粒化を抑制したP92HAZ再現材のクリープ特性」,CAMP-ISIJ,Vol.19(2006),1180"Creep characteristics of P92HAZ reproduction material with reduced grain size", CAMP-ISIJ, Vol. 19 (2006), 1180

本発明は、フェライト系耐熱鋼材を用いて、火力発電プラント又は石油化学プラントを構成する耐熱溶接構造体を建造する時、溶接部に必然的に発生する溶接熱影響部における局部的な強度低下現象に起因するType IV型損傷の発生を抑制して、溶接熱影響部からの耐熱溶接構造体の破壊を防止することを課題とする。   The present invention uses a ferritic heat-resistant steel material, and when a heat-resistant welded structure constituting a thermal power plant or a petrochemical plant is constructed, a local strength decrease phenomenon in a weld heat affected zone inevitably generated in a welded portion. It is an object to prevent the destruction of the heat-resistant welded structure from the weld heat-affected zone by suppressing the occurrence of Type IV damage caused by the welding.

そして、本発明は、上記課題を解決して、発電ブラント又は石油化学プラントを構成する耐熱溶接構造体の設計において、設計裕度を小さくとっても、耐熱溶接構造体の安全性を損なわないか、又は、従来の設計基準を活用して設計裕度を高くとり、操業条件、特に、圧力条件を高めてエネルギー変換効率を高め、低排出型プラントの建造を実現することを目的とする。   And this invention solves the said subject, and does not impair the safety | security of a heat-resistant welded structure, even if design tolerance is made small in the design of the heat-resistant welded structure which comprises a power generation blunt or a petrochemical plant, or The purpose is to increase the design margin by utilizing the conventional design standards, increase the operating conditions, especially the pressure conditions, increase the energy conversion efficiency, and realize the construction of a low emission type plant.

本発明者は、9%Cr鋼において、Type IV型損傷が、非特許文献1及び2に記載の発生機構に従い発生することを実験的に確認した。   The inventor has experimentally confirmed that Type IV damage occurs in 9% Cr steel according to the generation mechanism described in Non-Patent Documents 1 and 2.

その結果、本発明者は、次の知見を得るに至った。   As a result, the present inventors have obtained the following knowledge.

(i)9%Cr鋼の溶接部における強度低下の主たる原因は、溶接熱影響部において、溶接熱影響部の外縁(母鋼材に近接した部位)に形成された細粒域における転位密度の低下である。   (I) The main cause of the strength decrease in the welded part of 9% Cr steel is the decrease in the dislocation density in the fine grain region formed at the outer edge of the welded heat affected part (site close to the base steel) in the welded heat affected part. It is.

(ii)溶接部におけるType IV型損傷の発生を抑制するためには、溶接熱の影響を受けた後の冷却時に、たとえ、Ac3点直上に加熱された細粒域において、炭化物が一部未固溶で残留し、低温変態組織形成に必要な固溶C量が減少しても、転位密度の高いマルテンサイト及び/又はベイナイトを形成し、溶接熱影響部の組織と母鋼材組織の均一性及び整合性を確保することが重要である。 (Ii) In order to suppress the occurrence of Type IV damage in the weld zone, during cooling after being affected by the welding heat, even in the fine grain region heated just above the Ac 3 point, some carbides Even if it remains undissolved and the amount of dissolved C necessary for low-temperature transformation structure formation decreases, martensite and / or bainite with high dislocation density is formed, and the structure of the weld heat-affected zone and the base steel structure are uniform. It is important to ensure consistency and consistency.

さらに、本発明者は、上記知見に加え、次の知見を得るに至った。   Furthermore, in addition to the said knowledge, this inventor came to obtain the following knowledge.

(iii)転位密度の高いマルテンサイト及び/又はベイナイトを形成するためには、溶接熱影響部焼入性指数HDIを定義し、このHDIを所要の範囲に規制すれば、溶接熱影響部において結晶粒径が顕著に変化しても、Type IV型損傷の発生を抑制することができる。   (Iii) In order to form martensite and / or bainite having a high dislocation density, a weld heat-affected zone hardenability index HDI is defined, and if this HDI is regulated within a required range, crystals are formed in the weld-heat-affected zone. Even if the particle size changes significantly, the occurrence of Type IV damage can be suppressed.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 質量%で、C:0.01〜0.20%、Si:0.02〜0.50%、Mn:0.05〜1.0%、P:0.02%以下、S:0.01%以下、Cr:0.4〜12.0%、Al:0.001〜0.05%、N:0.001〜0.07%を含有し、O:0.01%以下に制限し、残部Fe及び不可避的不純物からなり、かつ、下記式(1)で定義する溶接熱影響部焼入性指数HDIが0.5〜80のフェライト系耐熱鋼材であって、
Ac1変態点〜Ac1変態点+300℃に加熱される鋼材の溶接熱影響部位に、転位密度が1×1012個/m2以上(Cr:0.4〜3.0%の場合)、又は、1×1013個/m2以上(Cr:3.0超〜12.0%の場合)の低温変態組織が生成する
ことを特徴とする溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。
HDI=√[%C]√[%N](1+0.5[%Si])(1+3[%Mn])(1+2[%Cr])(1+3[%Mo])(1+0.8[%W])(1+0.3[%Cu])(1+0.5[%Ni])(1+2.5[%Nb])(1+1.5[%V])(1+0.5[%Al])(1+0.3[%Ti])(1+0.3[%Zr])(1+0.2[%Re])(1+25[%B])(1+0.5[%Co]) ・・・(1)
(1) By mass%, C: 0.01 to 0.20%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.02% or less, S: 0.01% or less, Cr: 0.4 to 12.0%, Al: 0.001 to 0.05%, N: 0.001 to 0.07%, O: 0.01% or less A ferritic heat resistant steel material having a weld heat-affected zone hardenability index HDI of 0.5 to 80 defined by the following formula (1):
Ac 1 to weld heat affected zone of the steel is heated to a transformation point to Ac 1 transformation point + 300 ° C., the dislocation density of 1 × 10 12 pieces / m 2 or more (Cr: For 0.4 to 3.0%), Alternatively, a ferrite system having excellent creep characteristics in the heat affected zone of welding, wherein a low temperature transformation structure of 1 × 10 13 pieces / m 2 or more (in the case of Cr: more than 3.0 to 12.0%) is generated. Heat resistant steel.
HDI = √ [% C] √ [% N] (1 + 0.5 [% Si]) (1 + 3 [% Mn]) (1 + 2 [% Cr]) (1 + 3 [% Mo]) (1 + 0.8 [% W] ) (1 + 0.3 [% Cu]) (1 + 0.5 [% Ni]) (1 + 2.5 [% Nb]) (1 + 1.5 [% V]) (1 + 0.5 [% Al]) (1 + 0.3 [% Ti]) (1 + 0.3 [% Zr]) (1 + 0.2 [% Re]) (1 + 25 [% B]) (1 + 0.5 [% Co]) (1)

(2) 前記フェライト系耐熱鋼材が、さらに、質量%で、B:0.0003〜0.005%を含有することを特徴とする前記(1)に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (2) The ferritic heat resistant steel material further contains B: 0.0003 to 0.005% by mass%, and is excellent in the creep characteristics of the weld heat affected zone according to (1) above Ferritic heat resistant steel.

(3) 前記フェライト系耐熱鋼材が、さらに、質量%で、Mo:0.05〜2.0%、W:0.05〜3.0%、Re:0.05〜2.0%のうちの一種又は二種以上を含有することを特徴とする前記(1)又は(2)に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (3) The ferritic heat resistant steel material is further in mass%, Mo: 0.05 to 2.0%, W: 0.05 to 3.0%, Re: 0.05 to 2.0% The ferritic heat resistant steel material excellent in the creep characteristics of the weld heat affected zone according to (1) or (2), characterized by containing one or more of the above.

(4) 前記フェライト系耐熱鋼材が、さらに、質量%で、Ni:0.01〜0.5%、Co:0.01〜3.0%、Cu:0.01〜1.5%のうちの一種又は二種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (4) The ferritic heat-resisting steel material is further in% by mass of Ni: 0.01 to 0.5%, Co: 0.01 to 3.0%, and Cu: 0.01 to 1.5%. The ferritic heat resistant steel material excellent in the creep characteristics of the weld heat affected zone according to any one of the above (1) to (3), characterized by containing one or more of the above.

(5) 前記フェライト系耐熱鋼材が、さらに、質量%で、Ti:0.005〜0.20%、Zr:0.002〜0.10%、Nb:0.005〜0.50%、V:0.01〜1.0%のうちの一種又は二種以上を含有することを特徴とする前記(1)〜(4)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (5) The ferritic heat resistant steel material is further in mass%, Ti: 0.005 to 0.20%, Zr: 0.002 to 0.10%, Nb: 0.005 to 0.50%, V : Ferrite excellent in creep characteristics of weld heat affected zone according to any one of (1) to (4), characterized by containing one or more of 0.01 to 1.0% Heat resistant steel.

(6) 前記フェライト系耐熱鋼材が、さらに、質量%で、Ca:0.0003〜0.005%、Mg:0.0003〜0.01%、La:0.005〜0.05%、Ce:0.005〜0.10%、Y:0.005〜0.10%、Ba:0.0003〜0.005%のうちの一種又は二種以上を含有することを特徴とする前記(1)〜(5)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (6) The ferritic heat resistant steel material is further in mass%, Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.01%, La: 0.005 to 0.05%, Ce. : 0.005 to 0.10%, Y: 0.005 to 0.10%, Ba: 0.0003 to 0.005%, or one or more of the above (1) The ferritic heat resistant steel material excellent in the creep characteristics of the weld heat affected zone according to any one of (1) to (5).

(7) 前記Ac1変態点〜Ac1変態点+300℃に加熱される鋼材の溶接熱影響部位に、予め、旧オーステナイトの粒径が球相当平均直径で100μm以上の低温変態組織が形成されていることを特徴とする前記(1)〜(6)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。 (7) in the weld heat affected zone of the steel is heated to the Ac 1 transformation point to Ac 1 transformation point + 300 ° C., in advance, 100 [mu] m or more low-temperature transformation structure with a grain size of old austenite is an average equivalent-sphere diameter is formed The ferritic heat resistant steel material having excellent creep characteristics of the weld heat affected zone according to any one of the above (1) to (6).

(8) 前記低温変態組織が、ベイナイト及び/又はマルテンサイトであることを特徴とする前記(1)〜(7)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (8) The ferritic heat resistant steel material having excellent creep characteristics of the weld heat affected zone according to any one of (1) to (7), wherein the low temperature transformation structure is bainite and / or martensite. .

(9) 前記溶接熱影響部焼入性指数HDIが3.0〜65であることを特徴とする前記(1)〜(8)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   (9) The weld heat affected zone hardenability index HDI is 3.0 to 65, which is excellent in the creep characteristics of the weld heat affected zone according to any one of (1) to (8). Ferritic heat resistant steel.

(10) 前記(1)〜(9)のいずれかに記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材を溶接して製造したことを特徴とする溶接熱影響部のクリープ特性に優れた耐熱構造体。   (10) The creep characteristics of the weld heat-affected zone characterized by being manufactured by welding the ferritic heat-resistant steel material having excellent creep characteristics of the weld heat-affected zone according to any one of (1) to (9). Excellent heat resistant structure.

本発明によれば、フェライト系耐熱鋼材の溶接部の熱影響部において、Type IV型損傷が発生しないから、高温高圧プラント機器を構成する耐熱溶接構造体(耐熱構造体)の設計において、その高温強度を、クリープ破断強度の0.67倍(通常の安全率)として設計することができる。その結果、従来発生していた溶接熱影響部起点の事故を防止することができる。   According to the present invention, Type IV type damage does not occur in the heat-affected zone of the welded portion of the ferritic heat-resistant steel material. Therefore, in the design of the heat-resistant welded structure (heat-resistant structure) constituting the high-temperature and high-pressure plant equipment, the high temperature The strength can be designed as 0.67 times the normal creep rupture strength (normal safety factor). As a result, it is possible to prevent an accident at the starting point of the weld heat affected zone that has occurred in the past.

図1に、フェライト系耐熱鋼材の溶接熱影響部に発生したType IV型損傷の断面を示すが、本発明のフェライト系耐熱鋼材(本発明鋼材)は、溶接熱影響部において、図1に示すType IV型損傷が発生しないから、溶接熱影響部のクリープ特性が著しく優れたものである。   FIG. 1 shows a cross-section of Type IV damage occurring in a weld heat affected zone of a ferritic heat resistant steel material. The ferritic heat resistant steel material of the present invention (the steel material of the present invention) is shown in FIG. Since no type IV damage occurs, the creep characteristics of the weld heat affected zone are remarkably excellent.

本発明鋼材は、質量%で、C:0.01〜0.20%、Si:0.02〜0.50%、Mn:0.05〜1.0%、P:0.02%以下、S:0.01%以下、Cr:0.4〜12.0%、Al:0.001〜0.05%、N:0.001〜0.07%を含有し、O:0.01%以下に制限し、残部Fe及び不可避的不純物からなり、かつ、下記式(1)で定義する溶接熱影響部焼入性指数HDIが、0.5〜80のフェライト系耐熱鋼である。   This invention steel material is the mass%, C: 0.01-0.20%, Si: 0.02-0.50%, Mn: 0.05-1.0%, P: 0.02% or less, S: 0.01% or less, Cr: 0.4-12.0%, Al: 0.001-0.05%, N: 0.001-0.07%, O: 0.01% It is a ferritic heat resistant steel which is limited to the following, consists of the remaining Fe and inevitable impurities, and has a weld heat affected zone hardenability index HDI defined by the following formula (1) of 0.5 to 80.

HDI=√[%C]√[%N](1+0.5[%Si])(1+3[%Mn])(1+2[%Cr])(1+3[%Mo])(1+0.8[%W])(1+0.3[%Cu])(1+0.5[%Ni])(1+2.5[%Nb])(1+1.5[%V])(1+0.5[%Al])(1+0.3[%Ti])(1+0.3[%Zr])(1+0.2[%Re])(1+25[%B])(1+0.5[%Co]) ・・・(1)   HDI = √ [% C] √ [% N] (1 + 0.5 [% Si]) (1 + 3 [% Mn]) (1 + 2 [% Cr]) (1 + 3 [% Mo]) (1 + 0.8 [% W] ) (1 + 0.3 [% Cu]) (1 + 0.5 [% Ni]) (1 + 2.5 [% Nb]) (1 + 1.5 [% V]) (1 + 0.5 [% Al]) (1 + 0.3 [% Ti]) (1 + 0.3 [% Zr]) (1 + 0.2 [% Re]) (1 + 25 [% B]) (1 + 0.5 [% Co]) (1)

ここで、溶接熱影響部焼入性指数HDIの式(1)は、炭素量が0.2%以下の低合金鋼の溶接熱影響部における焼入性を評価するに際し、一般に用いられている理想臨界直径DIの式を最適化したものである。   Here, the expression (1) of the weld heat affected zone hardenability index HDI is generally used when evaluating the hardenability in the weld heat affected zone of a low alloy steel having a carbon content of 0.2% or less. This is an optimization of the formula for the ideal critical diameter DI.

即ち、主要合金元素Xの焼入性倍数fXは、一次式:fX=1+αX[%X]で表せると仮定して、炭素量が0.2%以下の低合金鋼の溶接熱影響部の組織を光学顕微鏡で観察した結果を基に、回帰分析により、αXを決定して求めた。 That is, it is assumed that the hardenability factor f X of the main alloy element X can be expressed by a linear expression: f X = 1 + α X [% X], and the effect of welding heat on a low alloy steel having a carbon content of 0.2% or less. Based on the result of observation of the tissue of the part with an optical microscope, α X was determined and determined by regression analysis.

焼入性倍数の式を前記一次式と仮定した理由は、一般によく知られている、Grossmannらが求めた焼入性倍数の図において、各主要合金元素の焼入性倍数が、一定範囲で、前記一次式で表されることによる。ただし、炭素量及び窒素量については、1/2乗に比例することを知見したので、(1)式では、1/2乗として組み入れている。   The reason why the hardenability factor expression is assumed to be the linear equation is that the hardenability factor of each main alloy element in a well-known figure of hardenability factor obtained by Grossmann et al. , By the linear expression. However, since it has been found that the amount of carbon and the amount of nitrogen are proportional to the 1/2 power, they are incorporated as the 1/2 power in the equation (1).

なお、フェライト系耐熱鋼では、焼き戻して使用する場合がほとんどであり、その結果、有効結晶粒径が、おおよそ、10〜15μmとほぼ一定となることも解ったので、結晶粒径の影響については、HDIの式に組み入れていない。   Ferritic heat-resistant steel is mostly tempered and used, and as a result, it has been found that the effective crystal grain size is approximately constant at 10 to 15 μm. Is not incorporated into the HDI formula.

したがって、対象製品の溶接熱影響部焼入性を、指数HDIで表すことができる。このHDIと鋼材の特性との関係から、満足すべきHDI閾値を決定して、適用した。   Therefore, the weld heat affected zone hardenability of the target product can be expressed by the index HDI. A satisfactory HDI threshold was determined from the relationship between the HDI and the characteristics of the steel material, and applied.

まず、化学成分及びHDI値の範囲を前述のように限定する理由について説明する。なお、%は、質量%を意味する。   First, the reason for limiting the ranges of chemical components and HDI values as described above will be described. In addition,% means the mass%.

C:Cは、フェライト系耐熱鋼材の焼入性の向上に寄与し、同時に、炭化物を形成してクリープ破断強度の向上に寄与する。この向上効果は、0.01%以上の添加で明瞭となるが、0.20%を超えて添加すると、炭化物の粗大化が著しく、かえってクリープ破断強度を損なう場合があるので、上限を0.20%とする。加工性及び組織安定性を考慮すれば、0.05〜0.12%が好ましい。   C: C contributes to the improvement of the hardenability of the ferritic heat resistant steel material, and at the same time, forms carbides and contributes to the improvement of the creep rupture strength. This improvement effect becomes clear when 0.01% or more is added, but if added over 0.20%, the carbides are significantly coarsened, and the creep rupture strength may be impaired. 20%. In consideration of workability and structure stability, 0.05 to 0.12% is preferable.

Si:Siは、製鋼工程で脱酸剤として添加するが、鋼の強度向上、及び、高温での耐水蒸気酸化性の向上に寄与する元素である。0.02%以上の添加で、その効果が顕著となるが、0.50%を超えて添加すると、酸化物クラスターを生成して靭性が低下するので、上限を0.50%とする。安定して、水蒸気酸化性と靱性を両立させるためには、0.1〜0.35%が好ましい。   Si: Si is added as a deoxidizer in the steelmaking process, but is an element that contributes to improving the strength of the steel and the resistance to steam oxidation at high temperatures. The effect becomes remarkable with addition of 0.02% or more, but if added over 0.50%, oxide clusters are formed and toughness is lowered, so the upper limit is made 0.50%. In order to stably achieve both steam oxidation and toughness, 0.1 to 0.35% is preferable.

Mn:Mnは、鋼の強度及び靭性の向上に寄与する元素であるので、0.05%以上添加する。一方、1.0%を超えて添加すると、クリープ破断強度が低下するので、上限を1.0%とする。長時間のクリープ破断強度を向上させる目的からすると、0.1〜0.5%が好ましい。   Mn: Since Mn is an element that contributes to the improvement of the strength and toughness of steel, 0.05% or more is added. On the other hand, if added over 1.0%, the creep rupture strength decreases, so the upper limit is made 1.0%. For the purpose of improving the long-term creep rupture strength, 0.1 to 0.5% is preferable.

Cr:Crは、焼入性を著しく高める元素であり、耐熱鋼では、さらに、高温水蒸気酸化性も同時に向上させる元素であるので、0.4%以上添加する。一方、12.0%を超えて添加すると、δフェライトの析出量が増加して、クリープ破断強度や靭性が著しく低下するので、上限を12.0%とする。   Cr: Cr is an element that remarkably improves hardenability. In heat-resistant steel, it is an element that simultaneously improves high-temperature steam oxidation, so 0.4% or more is added. On the other hand, if added over 12.0%, the amount of precipitation of δ ferrite increases, and the creep rupture strength and toughness are remarkably reduced, so the upper limit is made 12.0%.

工業的に、均一な焼入組織を得て、同時に、所要レベルの耐水蒸気酸化性を得るためには、1.0〜9.0%が好ましいが、さらに、クリープ強度を高めるためには、3.0〜7.0%が、より好ましい。   Industrially, in order to obtain a uniform hardened structure and at the same time to obtain a required level of steam oxidation resistance, 1.0 to 9.0% is preferable. In order to further increase the creep strength, 3.0-7.0% is more preferable.

N:Nは、Cと同様に、鋼材の焼き入れ性向上に寄与し、また、本発明鋼材においては、HDI値を高める効果を有する。さらに、炭窒化物等を形成して鋼材のクリープ強度向上に寄与する。0.001%未満の添加では、その効果が顕在化せず、一方、0.07%を超えて添加すると、粗大な窒化物又は炭窒化物等を形成し、鋼材の靭性低下、又は、クリープ破断強度の低下を招く場合があるため、その添加範囲を0.001〜0.07%とする。   N: N, like C, contributes to improving the hardenability of the steel material, and has the effect of increasing the HDI value in the steel material of the present invention. Furthermore, carbonitrides and the like are formed to contribute to the improvement of the creep strength of the steel material. When the addition is less than 0.001%, the effect does not become obvious. On the other hand, when the addition exceeds 0.07%, coarse nitrides or carbonitrides are formed, and the toughness of the steel material is reduced, or creep. Since the strength at break may be reduced, the addition range is set to 0.001 to 0.07%.

P、S:P及びSは、不可避的な不純物元素であるので、少ないほうが好ましく、Pは0.02%以下、Sは0.01%以下とする。   P, S: Since P and S are unavoidable impurity elements, it is preferable that P and S be less, P being 0.02% or less, and S being 0.01% or less.

本発明鋼材は、上記元素の他、本発明鋼の特性、及び、溶接部の特性を阻害しない通常の範囲で、不可避的に、Al、Oを含有してもよい。   In addition to the above elements, the steel material of the present invention may inevitably contain Al and O in a normal range that does not impair the characteristics of the steel of the present invention and the properties of the welded portion.

低Cr鋼を、500℃以下の比較的低温の領域で使用する際に、むしろ、靱性を重視して、Alを脱酸元素として添加する場合がある。この場合、Alを最大0.05%まで添加することが可能である。   When low Cr steel is used in a relatively low temperature region of 500 ° C. or lower, Al is sometimes added as a deoxidizing element with emphasis on toughness. In this case, it is possible to add Al up to 0.05%.

一方、製鋼技術的には困難を伴うが、通常、クリープ破断強度の観点から、Alを0.005%以下に抑制することが好ましいが、製鋼技術上の制約もあり、Alの下限を、0.001%とする。   On the other hand, although it is difficult in terms of steelmaking technology, it is usually preferable to suppress Al to 0.005% or less from the viewpoint of creep rupture strength. However, due to steelmaking technology limitations, the lower limit of Al is set to 0. 0.001%.

Oは、Cr添加を前提とする成分であり、基本的に添加しないが、不純物量程度の0.01%以下の範囲内で、耐火物の損耗を防ぐため、敢えて添加する場合がある。この場合に、Oは、微小酸化物を生成して鋼材中に存在し、固溶化処理時に、結晶粒が異常に成長するのを抑制する効果を発揮する。   O is a component premised on the addition of Cr, and is basically not added, but may be added in order to prevent wear of the refractory within a range of 0.01% or less of the amount of impurities. In this case, O produces | generates a micro oxide, exists in steel materials, and exhibits the effect which suppresses that a crystal grain grows abnormally at the time of a solution treatment.

本発明鋼材は、クリープ特性のさらなる向上のため、又は、他の特性の向上のため、上記以外の他の元素を含有してもよい。   The steel of the present invention may contain other elements other than those described above for further improving the creep characteristics or for improving other characteristics.

本発明鋼材は、鋼材の焼入性を高めるため、Bを0.0003〜0.005%含有してもよい。   The steel of the present invention may contain 0.0003 to 0.005% B in order to improve the hardenability of the steel.

本発明鋼材は、金属間化合物析出、又は、M2C、さらに、MC型炭化物又は炭窒化物の析出による析出強化機構を活用して、高温強度を高めるため、Mo:0.05〜2.0%、W:0.05〜3.0%、Re:0.05〜2.0%のうちの一種又は二種以上を含有してもよい。 In order to increase the high temperature strength by utilizing the precipitation strengthening mechanism by precipitation of intermetallic compounds or precipitation of M 2 C, and MC type carbide or carbonitride, the steel of the present invention has a Mo: 0.05-2. You may contain 1 type, or 2 or more types in 0%, W: 0.05-3.0%, Re: 0.05-2.0%.

また、本発明鋼材は、上記のフェライト安定化元素を多量に添加し、その結果、相安定性が低下して、δフェライトが生成し、クリープ強度が損なわれるよりは、クリープ強度に対する影響が少ない、Ni:0.01〜0.5%、Co:0.01〜3.0%、Cu:0.01〜1.5%を、変態点を著しく低下させない範囲内で、一種又は二種以上を含有してもよい。   In addition, the steel material of the present invention has a large effect on the creep strength as compared with the case where a large amount of the above-mentioned ferrite stabilizing element is added, and as a result, the phase stability is lowered and δ ferrite is generated and the creep strength is impaired. , Ni: 0.01 to 0.5%, Co: 0.01 to 3.0%, Cu: 0.01 to 1.5%, within a range not significantly reducing the transformation point, one or more It may contain.

さらに、本発明鋼材は、高温クリープ特性を長時間にわたって支えるのに必要な粒内析出型炭化物又は炭窒化物を形成するため、Ti:0.005〜0.20%、Zr:0.002〜0.10%、Nb:0.005〜0.50%、V:0.01〜1.0%のうちの一種又は二種以上を含有してもよい。   Furthermore, in order to form the intragranular precipitation type carbide | carbonized_material or carbonitride required for this invention steel materials to support a high temperature creep characteristic over a long time, Ti: 0.005-0.20%, Zr: 0.002- You may contain 1 type, or 2 or more types in 0.10%, Nb: 0.005-0.50%, V: 0.01-1.0%.

また、本発明鋼材は、粗大硫化物、具体的には、MnSが偏析部に粗大析出することを防止するため、また、粒界に偏析してクリープ破断強度を低下させるSを固定するため、Ca:0.0003〜0.005%、Mg:0.0003〜0.01%、La:0.005〜0.05%、Ce:0.005〜0.10%、Y:0.005〜0.10%、Ba:0.0003〜0.005%のうちの一種又は二種以上を含有してもよい。   In addition, the steel of the present invention is a coarse sulfide, specifically, to prevent MnS from coarsely precipitating in the segregation part, and to fix S that segregates at the grain boundary and decreases the creep rupture strength. Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.01%, La: 0.005 to 0.05%, Ce: 0.005 to 0.10%, Y: 0.005 You may contain 1 type, or 2 or more types in 0.10% and Ba: 0.0003-0.005%.

本発明鋼においては、個々の元素の組成に加え、上記式(1)で定義する溶接熱影響部焼入性指数HDIを、0.5〜80に限定する。HDIの限定は、以下に説明するように、溶接熱影響部におけるType IV型損傷の発生を抑制する上で最も重要である。   In the steel of the present invention, in addition to the composition of each element, the weld heat affected zone hardenability index HDI defined by the above formula (1) is limited to 0.5-80. As described below, the limitation of HDI is the most important in suppressing the occurrence of Type IV damage in the weld heat affected zone.

溶接熱影響部焼入性指数HDIが、所要の範囲内にあれば、たとえ、溶接熱影響部外縁において、平均旧γ粒径が5μm程度まで小さくなる場合、即ち、溶接熱により、Ac1変態点以上、Ac1変態点+300℃の範囲の温度に曝されて生成した細粒組織が存在しても、内部の転位密度が高いままに維持され、従来から課題となっている“細粒組織域の転位密度低下”を、直接、防止することができる。 If the weld heat affected zone hardenability index HDI is within the required range, even if the average old γ grain size is reduced to about 5 μm at the outer edge of the weld heat affected zone, that is, the Ac 1 transformation is caused by welding heat. Even if there is a fine grain structure formed by exposure to a temperature in the range of Ac 1 transformation point + 300 ° C. above the above point, the internal dislocation density remains high, which has been a problem in the past. The “dislocation density drop in the region” can be directly prevented.

溶接熱影響部における“細粒組織域の転位密度低下”を防止することができれば、Type IV型損傷の発生を抑制することができるから、HDIが所要の範囲に限定されていることは、本発明鋼材において、極めて重要な要件である。   If it is possible to prevent the occurrence of Type IV damage by preventing “decrease in dislocation density in the fine-grained structure region” in the weld heat-affected zone, the fact that HDI is limited to the required range is This is an extremely important requirement for the invention steel.

HDIは、鋼の焼入性、特に、溶接熱影響部の焼入性を評価する指標であるが、本発明者は、溶接熱影響部の焼入性の良否が、溶接熱影響部への転位の導入に大きく影響することから、個々の元素の焼入性を総合して評価する指数を、新規に上記式(1)で定義し、本発明鋼材においては、値を0.5〜80に規制した。この点が、本発明の第一の特徴である。   HDI is an index for evaluating the hardenability of steel, in particular, the hardenability of the weld heat affected zone. Since this greatly affects the introduction of dislocations, an index for comprehensively evaluating the hardenability of individual elements is newly defined by the above formula (1). In the steel of the present invention, the value is 0.5-80. Regulated. This is the first feature of the present invention.

HDIを0.5〜80に規制した理由は、次の通りである。   The reason why the HDI is regulated to 0.5 to 80 is as follows.

本発明鋼材において、HDIが0.5未満であると、溶接熱影響部の焼入性は低いままであり、一度、加熱を受けた部位が、溶接熱影響部の組成や冷却速度に依存して、再度、変態する際、低温変態する能力を欠くことになる。その結果、溶接熱影響部の組織は、ベイナイト又はマルテンサイトとなり難く、一部は、フェライト組織になってしまうので、溶接熱影響部の高温クリープ強度が著しく低下して、典型的なType IV型損傷が生起することになる。   In the steel of the present invention, if the HDI is less than 0.5, the hardenability of the weld heat affected zone remains low, and the portion once heated depends on the composition and cooling rate of the weld heat affected zone. When transforming again, the ability to transform at low temperatures is lacking. As a result, the structure of the weld heat-affected zone is unlikely to be bainite or martensite, and part of it becomes a ferrite structure, so the high-temperature creep strength of the weld heat-affected zone is significantly reduced, and the typical Type IV type Damage will occur.

したがって、溶接熱影響部焼入性指数HDIは、最低限必要な値として、0.5を下限とする。なお、溶接熱影響部において、再度低温変態する能力を確実に確保するため、HDIは、3.0以上が好ましく、5.0以上が、より好ましい。   Therefore, the weld heat affected zone hardenability index HDI has a minimum required value of 0.5 as a lower limit. In addition, in order to ensure reliably the ability to carry out low temperature transformation again in a welding heat affected zone, 3.0 or more are preferable and HDI or more is more preferable.

一方、本発明鋼材が、HDI80を超える強い焼入性を有する場合、溶接熱影響部の強度は極めて高くなり、その結果、溶接残留応力起因の高温割れが発生する可能性があり、また、焼戻した場合における焼戻し脆化が顕著となり、場合によっては、焼戻し割れが発生する可能性がある。それ故、HDIの上限は80とするが、上記割れ発生の可能性を確実になくすためには、65以下が好ましい。   On the other hand, when the steel material of the present invention has a strong hardenability exceeding HDI80, the strength of the weld heat-affected zone becomes extremely high, and as a result, hot cracking due to welding residual stress may occur, and tempering may occur. In such a case, temper embrittlement becomes remarkable, and in some cases, temper cracking may occur. Therefore, the upper limit of HDI is 80, but 65 or less is preferable in order to eliminate the possibility of the occurrence of cracks.

通常、フェライト系耐熱鋼材の溶接は、1kJ/mm以上の溶接入熱で行うが、1kJ/mm以上の溶接入熱の影響で、溶接熱影響部に細粒の低温変態組織が生成する。   Usually, ferritic heat-resistant steel is welded with a heat input of 1 kJ / mm or more, but a fine low-temperature transformation structure is generated in the weld heat affected zone due to the influence of the heat input of 1 kJ / mm or more.

上記化学成分及び上記HDIの本発明鋼材においては、1kJ/mm以上の溶接入熱の影響を受けて、冷却後、細粒の低温変態組織が生成しても、上記転位密度の低温変態組織が生成し、転位の挙動により、溶接熱影響部でType IV型損傷が発生するのを抑制する。   In the present steel material of the above chemical composition and the above HDI, even if a low temperature transformation structure of fine grains is formed after cooling due to the influence of welding heat input of 1 kJ / mm or more, the low temperature transformation structure of the above dislocation density is generated. Generates and suppresses the occurrence of Type IV damage in the heat affected zone due to the dislocation behavior.

この点が、本発明鋼の第二の特徴であるが、転位密度の下限が、3%Crを境にして異なる(Cr:0.4〜3.0%の場合:1×1012個/m2以上、Cr:3.0%超〜12.0%の場合:1×1013個/m2以上)理由は、次の通りである。 This point is the second feature of the steel of the present invention. However, the lower limit of the dislocation density differs at a boundary of 3% Cr (in the case of Cr: 0.4 to 3.0%: 1 × 10 12 pieces / m 2 or more, Cr: more than 3.0% to 12.0%: 1 × 10 13 pieces / m 2 or more) The reason is as follows.

Cr量の多寡により合金状態図の形態が変化する。Cr量が少ない場合、鉄−炭素系状態図に近い形態のγループ型状態図を形成し、Cr量が多い場合、典型的なγループ型状態図を形成する。それ故、Cr量、また、Cr量に応じて第3元素の影響の度合いも変化し、その結果、変態点は変化し、当然、焼入性は変化する。   The form of the alloy phase diagram changes depending on the amount of Cr. When the Cr content is small, a γ loop type phase diagram having a form close to that of an iron-carbon phase diagram is formed, and when the Cr content is large, a typical γ loop type phase diagram is formed. Therefore, the degree of influence of the third element also changes according to the Cr amount and the Cr amount. As a result, the transformation point changes, and naturally the hardenability changes.

焼入性の変化は、そのまま、低温変態組織そのものを変え、Cr量が少ない場合は、ベイナイト主体の組織となり、Cr量が多い場合は、マルテンサイト主体の組織となる。したがって、導入する転位の転位密度は、低温変態組織により変えなければならず、当然に、Cr量の多寡に応じて変えるべきである。   The change in hardenability changes the low temperature transformation structure itself, and when the Cr content is small, it becomes a bainite-based structure, and when the Cr content is large, it becomes a martensite-based structure. Therefore, the dislocation density of the dislocations to be introduced must be changed depending on the low temperature transformation structure, and naturally, it should be changed according to the amount of Cr.

即ち、Cr:0.4〜3.0%の場合には、転位密度が1×1012個/m2以上の低温変態組織を形成し、Cr:3.0%超〜12.0%の場合には、転位密度が1×1013個/m2以上の低温変態組織を形成すれば、溶接熱影響部の転位密度は、母鋼材の転位密度に比較して低下していない。 That is, in the case of Cr: 0.4 to 3.0%, a low temperature transformation structure having a dislocation density of 1 × 10 12 pieces / m 2 or more is formed, and Cr: more than 3.0% to 12.0% In this case, if a low temperature transformation structure having a dislocation density of 1 × 10 13 pieces / m 2 or more is formed, the dislocation density in the weld heat affected zone is not lowered as compared with the dislocation density of the base steel material.

なお、本明細書において、転位密度は“個/m2”で表示するが、単位を表示していない場合も、転位密度の単位は“個/m2”である。 In this specification, the dislocation density is displayed in "pieces / m 2", even if you do not display the units, units of the dislocation density is "number / m 2".

低温変態組織は、ベイナイト及び/又はマルテンサイトであり、溶接熱影響部を、腐食液(ナイタール、ピクリン酸、硝酸、王水等)でエッチングし、光学顕微鏡で観察することにより、低温変態組織の生成を確認することができる。   The low temperature transformation structure is bainite and / or martensite, and the weld heat affected zone is etched with a corrosive liquid (nitral, picric acid, nitric acid, aqua regia, etc.) and observed with an optical microscope. Generation can be confirmed.

本発明鋼おいて、Ac1変態点〜Ac1変態点+300℃に加熱される鋼材の溶接熱影響部位に、予め、旧オーステナイトの粒径が球相当平均直径で100μm以上の低温変態組織を形成しておくと、溶接後の低温変態組織の細粒化を、さらに抑制して、溶接熱影響部におけるType IV型損傷の発生を、より安定して防止することができる。 At the present invention steels, the welding heat affected zone of the steel is heated to Ac 1 transformation point to Ac 1 transformation point + 300 ° C., in advance, the 100μm or more low-temperature transformation structure with a grain size of old austenite is an average equivalent-sphere diameter formed If so, it is possible to further suppress the refinement of the low-temperature transformation structure after welding and more stably prevent the occurrence of Type IV damage in the heat affected zone.

なお、旧オーステナイト粒径は、低温変態組織を、光学顕微鏡で、100倍の倍率で少なくとも10箇所を観察して確認した。   The prior austenite grain size was confirmed by observing the low temperature transformation structure with an optical microscope at least 10 locations at a magnification of 100 times.

次に、本発明鋼材の製造と、溶接部特性の確認について説明する。   Next, the production of the steel of the present invention and the confirmation of the welded portion characteristics will be described.

本発明鋼材で規定する化学成分の鋼を、通常の高炉−転炉−連続鋳造の銑鋼一貫プロセス、又は、電気炉製鋼法、直接還元製鉄法等を用いて溶製し、続いて、溶鋼を、インゴット鋳造法又は連続鋳造法で鋳込んで、所定の寸法・形状の鋳片とする。   The steel of the chemical composition specified by the steel material of the present invention is melted by using an ordinary blast furnace-converter-continuous cast iron steel integrated process, or an electric furnace steelmaking method, a direct reduction steelmaking method, etc. Is cast by an ingot casting method or a continuous casting method to obtain a slab having a predetermined size and shape.

上記鋳片に熱間圧延を施して鋼板とし、また、さらに、鋼板を加工・成型して鋼管とするか、又は、上記鋳片に鍛造を施して鍛造部材とし、所要の調質熱処理、即ち、焼入れ−焼戻し処理、又は、焼準−焼戻し処理を施して、焼戻しベイナイト及び/又は焼戻しマルテンサイトを実質的に80%以上含む組織を形成する。   The slab is hot-rolled into a steel plate, and further, the steel plate is processed and molded into a steel pipe, or the slab is forged into a forged member, ie, the required tempering heat treatment, A structure containing substantially 80% or more of tempered bainite and / or tempered martensite is formed by performing quenching-tempering treatment or tempering-tempering treatment.

本発明鋼材においては、焼戻しベイナイト及び/又は焼戻しマルテンサイトを、ベイナイト及び/又はマルテンサイトと称するが、ベイナイト/マルテンサイトの体積率(体積%)は、光学顕微鏡による観察で得ることができる。   In the steel material of the present invention, tempered bainite and / or tempered martensite are referred to as bainite and / or martensite, and the volume ratio (% by volume) of bainite / martensite can be obtained by observation with an optical microscope.

上記調質熱処理を施した鋼材は、本来、良好な高温クリープ特性及び靱性、さらに、加工性を有していて、プラント建設用に適するが、加えて、前記式(1)で定義するHDIが0.5〜80に規制されている。   The steel material subjected to the tempering heat treatment originally has good high-temperature creep characteristics and toughness, and further has workability and is suitable for plant construction. In addition, the HDI defined by the above formula (1) is It is regulated to 0.5-80.

したがって、本発明鋼材においては、たとえ、溶接熱でAc1〜Ac1+300℃に再加熱された部位でも、また、旧γ粒径が、光学顕微鏡観察によって測定した平均値で最小5μm程度まで減少した部位でも、該部位の組織は、冷却時に低温変態し、ベイナイト(Cr:0.4〜3%)又はマルテンサイト(Cr:3超〜12%)となり、溶接熱影響部でType IV型損傷は発生しない。 Therefore, in the present invention steel, even if re-heated sites Ac 1 ~Ac 1 + 300 ℃ in welding heat, also reduced the old γ grain size is to a minimum 5μm about an average value measured by light microscopy Even in the welded part, the structure of the part undergoes low-temperature transformation during cooling and becomes bainite (Cr: 0.4 to 3%) or martensite (Cr: more than 3 to 12%). Does not occur.

本発明者は、このことを、上記部位の断面組織を、ピクリン酸飽和アルコール溶液にてエッチングし、光学顕微鏡を用い、100倍の倍率で組織を観察して確認した。   The present inventor confirmed this by etching the cross-sectional structure of the above site with a picric acid saturated alcohol solution and observing the structure at a magnification of 100 times using an optical microscope.

なお、Type IV型損傷の発生の有無は、旧γ粒径が小さい場合、光学顕微鏡による組織観察では判別が困難であるので、同時に、透過電子顕微鏡を用いて、1万倍の倍率で組織観察を実施し、溶接後熱処理の後でも、組織が健全なベイナイト又はマルテンサイトであることを確認した。   The presence or absence of Type IV type damage is difficult to determine by observation of the structure with an optical microscope when the old γ particle size is small. At the same time, the observation of the structure is performed at a magnification of 10,000 times using a transmission electron microscope. It was confirmed that the structure was healthy bainite or martensite even after heat treatment after welding.

その後、X線回折ピーク高さ判定法を用いて、上記部位における転位密度を測定し、ベイナイト(Cr:0.4〜3%)及びマルテンサイト(Cr:3超〜12%)において、それぞれ、1×1012以上及び1×1013以上となっていることを確認した。 Then, using the X-ray diffraction peak height determination method, the dislocation density in the above part was measured. In bainite (Cr: 0.4 to 3%) and martensite (Cr: more than 3 to 12%), respectively. It was confirmed that it was 1 × 10 12 or more and 1 × 10 13 or more.

ここで、転位密度の測定に用いたX線回折ピーク高さ判定法として、具体的には、X線回折ピークの半価幅から判定・評価する方法(下記、参考文献1、参照)を用いた。   Here, as a method for determining the height of the X-ray diffraction peak used for measuring the dislocation density, specifically, a method for determining and evaluating from the half-value width of the X-ray diffraction peak (see Reference Document 1 below) is used. It was.

試験片素材を10mm×10mm×2mmに切断加工し、主面を鏡面研磨した後、化学研磨又は電解研磨によって、鏡面研磨表面を50μm以上溶削した。この試料をX線回折装置に設置し、前記研磨主面に、Cr−Kα特性X線又はCu−Kα特性X線を入射して、背面反射X線回折法により、α−Fe(110)、(211)、及び、(220)面の回折線を測定した。 The specimen material was cut into 10 mm × 10 mm × 2 mm, the main surface was mirror-polished, and then the mirror-polished surface was cut by 50 μm or more by chemical polishing or electrolytic polishing. This sample was placed in an X-ray diffractometer, and Cr—K α characteristic X-ray or Cu—K α characteristic X-ray was incident on the main polishing surface, and α-Fe (110 ), (211), and (220) plane diffraction lines were measured.

Cr−Kα特性X線及びCu−Kα特性X線は、それぞれ、近接するKα1線及びKα2線からなる。このため、Rachingerの方法(下記、参考文献2、参照)によって、それぞれの結晶面の回折ピークにおいて、近接するKα2線回折ピーク高さを差し引いて、Kα1線回折ピーク半価幅を評価した。 The Cr-K α characteristic X-ray and the Cu-K α characteristic X-ray are respectively composed of adjacent K α1 line and K α2 line. For this reason, the half-width of the K α1 line diffraction peak was evaluated by subtracting the adjacent K α2 line diffraction peak height from the diffraction peak of each crystal plane by the method of Rachinger (see Reference 2 below). .

この回折ピーク半価幅は、結晶内の平均歪みεに比例するので、Williamson-Hall法(下記、参考文献3、参照)によって、この半価幅から、εを求めた。   Since the half width of the diffraction peak is proportional to the average strain ε in the crystal, ε was determined from the half width by the Williamson-Hall method (see Reference 3 below).

さらに、このεから、参考文献1に記載の(10)式:ρ=14.4ε2/b2
を用いて、転位密度ρ(個/m2)を求めた。bは、バーガースベクトルの大きさ(=0.248×10-9m)である。
Furthermore, from this ε, the equation (10) described in Reference Document 1 is: ρ = 14.4ε 2 / b 2
Was used to determine the dislocation density ρ (pieces / m 2 ). b is the magnitude of the Burgers vector (= 0.248 × 10 −9 m).

参考文献1:中島孝一ら、「X線回折を利用した転位密度の評価法」(材料とプロセス、日本鉄鋼協会、Vol.17(2004),No.3)、p.396-399
参考文献2:Guinier,A.、高良和武ら訳「X線結晶学の理論と実際改訂3版」(理学電機、(1967),p.406
参考文献3:G.K.Williamson and W.H.Hall,「Acta Metall.,1(1953)」,p.22
Reference 1: Koichi Nakajima et al., “Method for evaluating dislocation density using X-ray diffraction” (Materials and Processes, Japan Iron and Steel Institute, Vol. 17 (2004), No. 3), p. 396-399
Reference 2: Guinier, A., translated by Kazutake Takara et al., “Theory and Actual Revision 3rd Edition of X-ray Crystallography” (Rigaku Denki, (1967), p. 406)
Reference 3: GKWilliamson and WHHall, “Acta Metall., 1 (1953)”, p. twenty two

このようにして、本発明鋼材の化学成分の範囲で、溶接熱影響部の組織が、Type IV型損傷が発生し難い組織となっていることを確認した。   In this way, it was confirmed that the structure of the weld heat-affected zone was a structure in which Type IV damage was unlikely to occur within the range of the chemical composition of the steel material of the present invention.

続いて、上記組織を含む溶接部から、溶接線と垂直な方向に沿って、直径6mmφ、評点間距及び平行部が、ともに、30mmのクリープ破断試験片を採取し、クリープ破断試験を行った。鋼材の使用想定温度から最大100℃高い温度に至る温度範囲において、温度加速クリープ試験を行い、その試験結果に基づいて、10万時間推定のクリープ破断強度を、3次曲線外挿を用いるLarson-Miller-Parameter法で得た。   Subsequently, from the welded portion including the above structure, a creep rupture test piece having a diameter of 6 mmφ, a distance between scores and a parallel portion of 30 mm was taken along a direction perpendicular to the weld line, and a creep rupture test was performed. A temperature-accelerated creep test is performed in a temperature range from the assumed temperature of the steel material to a temperature higher by up to 100 ° C. Based on the test results, the creep rupture strength estimated for 100,000 hours is calculated using Larson- Obtained by Miller-Parameter method.

本発明鋼材は、化学成分とHDI値を前提に、溶接熱影響部の転位密度を規定して、Type IV型損傷の発生を抑制するものであるが、化学成分が同一であっても、結晶粒径により焼入性は変化する。   The steel of the present invention prescribes the chemical composition and the HDI value, and regulates the dislocation density of the weld heat affected zone to suppress the occurrence of Type IV damage. The hardenability changes depending on the particle size.

特に、旧オーステナイト粒径(旧γ粒径)が連続的に大きく変化する溶接熱影響部において、旧γ粒径の影響は顕著であり、旧γ粒径が、もともと、数十μmの粒径であるか、100μmを超える粒径であるかは、後続の溶接によって生成する溶接熱影響部の旧γ粒径に影響を与えることになる。   In particular, in the welding heat-affected zone where the prior austenite particle size (old γ particle size) continuously changes greatly, the influence of the old γ particle size is significant, and the old γ particle size is originally several tens of μm. Or whether the particle size exceeds 100 μm affects the old γ particle size of the weld heat-affected zone generated by subsequent welding.

この理由は、溶接入熱が比較的大きい場合、溶接熱影響部が溶接熱に曝される時間が、結果的に、α→γ変態の後のγ粒に、粒成長する時間的な余裕を提供することになるということである。   The reason for this is that when the welding heat input is relatively large, the time that the weld heat affected zone is exposed to the welding heat results in a time margin for grain growth in the γ grains after the α → γ transformation. It will be provided.

したがって、本発明鋼材においては、特に、Type IV型損傷の発生を確実に抑制するため、溶接熱の影響を受ける前組織の旧γ粒径を、100μm以上にすることが好ましい。   Therefore, in the steel material of the present invention, it is particularly preferable that the old γ grain size of the previous structure affected by welding heat is 100 μm or more in order to surely suppress the occurrence of Type IV damage.

母鋼材の旧γ粒径が100μm以上であれば、HDI値が低い領域の鋼材であっても、HDI値が高い領域の鋼材並みのType IV型損傷抑制効果を発揮することができることを、本発明者は、鋭意研究の結果見いだした。この点も、本発明の特徴の一つである。   If the old γ grain size of the base steel material is 100 μm or more, even if it is a steel material in a region where the HDI value is low, it is possible to demonstrate the same type IV damage suppression effect as a steel material in a region where the HDI value is high. The inventor found out the result of earnest research. This point is also one of the features of the present invention.

なお、本発明鋼材のType IV型損傷抑制効果を確認するに際し、Type IV型損傷の発生の有無は、溶接部のクリープ破断強度と、母鋼材のクリープ破断強度の比で判定した。   In confirming the Type IV type damage suppressing effect of the steel of the present invention, the presence or absence of Type IV type damage was determined by the ratio of the creep rupture strength of the welded portion to the creep rupture strength of the base steel material.

従来技術では、Type IV型損傷を発生する溶接部の10万時間推定のクリープ破断強度は、母鋼材のクリープ破断強度に対して、0.5〜0.6程度であり、0.7を超えることはほとんどない。   In the prior art, the creep rupture strength estimated for 100,000 hours of a weld that causes Type IV type damage is about 0.5 to 0.6 with respect to the creep rupture strength of the base steel, and exceeds 0.7. There is hardly anything.

そこで、本発明鋼材の溶接部のクリープ破断強度を評価するに際しては、外乱因子となる溶接状態や溶接金属強度、継手の形状や健全性をも考慮して、クリープ破断強度比の閾値を、上記“0.7”を超える“0.8”とした。   Therefore, when evaluating the creep rupture strength of the welded portion of the steel of the present invention, the threshold value of the creep rupture strength ratio in consideration of the weld state and weld metal strength, joint shape and soundness, which are disturbance factors, It was set to “0.8” exceeding “0.7”.

ここで、図2に、10万時間推定のクリープ破断強度に基づいて求めた、母鋼材、本発明鋼材の溶接部、及び、従来鋼材の溶接部のクリープ破断強度比を示す。図2には、2.25%Cr−1%Mo鋼材(Cr3.0%以下の本発明鋼材)の溶接部のクリープ破断強度比と、9%Cr−1%Mo鋼材(Cr3.0%超の本発明鋼材)のクリープ破断強度比を示した。   Here, FIG. 2 shows the creep rupture strength ratio of the base steel, the weld of the steel of the present invention, and the weld of the conventional steel obtained based on the creep rupture strength estimated for 100,000 hours. FIG. 2 shows the creep rupture strength ratio of the welded portion of 2.25% Cr-1% Mo steel material (the steel material of the present invention of Cr 3.0% or less) and 9% Cr-1% Mo steel material (Cr over 3.0%). The creep rupture strength ratio of the present invention steel).

2.25%Cr−1%Mo鋼材(Cr3.0%以下の本発明鋼材)の場合、Ac1変態点〜Ac1変態点+300℃に加熱される溶接熱影響部位の転位密度は、クリープ試験前で、3.2×1012個/m2であり、9%Cr−1%Mo鋼材(Cr3.0%超の本発明鋼材)の場合、7.8×1014個/m2であった。 2. In the case of 2.25% Cr-1% Mo steel (the steel of the present invention of Cr 3.0% or less), the dislocation density at the weld heat affected zone heated from Ac 1 transformation point to Ac 1 transformation point + 300 ° C. is the creep test. Previously, it was 3.2 × 10 12 pieces / m 2 , and in the case of 9% Cr-1% Mo steel material (the steel material of the present invention exceeding Cr 3.0%), it was 7.8 × 10 14 pieces / m 2. It was.

従来鋼材の場合において、上記部位の転位密度は、クリープ試験前で、9.8×109個/m2でしかなく、本発明鋼材と従来鋼材との間には、転位密度の顕著な差異が認められる。 In the case of the conventional steel material, the dislocation density in the above part is only 9.8 × 10 9 pieces / m 2 before the creep test, and there is a significant difference in the dislocation density between the steel material of the present invention and the conventional steel material. Is recognized.

図3に、Ac1変態点〜Ac1変態点+300℃に加熱された溶接熱影響部位における転位密度(溶接後熱処理の後、クリープ試験前に、前記X線回折ピーク高さ判定法で測定した)と、母鋼材と溶接部の10万時間推定のクリープ破断強度を比較したクリープ破断強度比との相関を、各種鋼材について示した。なお、図3では、Cr3.0%以下の鋼材(黒丸)とCr3.0%超の鋼材(白丸)に分けて示した。 3, after the dislocation density (after welding heat treatment in the weld heat affected zone which is heated to Ac 1 transformation point to Ac 1 transformation point + 300 ° C., prior to the creep test was measured by the X-ray diffraction peak height determination method ) And the creep rupture strength ratio comparing the estimated creep rupture strength of the base steel and the welded portion for 100,000 hours are shown for various steel materials. In FIG. 3, the steel material is divided into a steel material of Cr 3.0% or less (black circle) and a steel material of Cr 3.0% or more (white circle).

図3から、Cr3.0%以下の鋼材では、転位密度1×1012を維持しないと、クリープ破断強度比が、本発明で設定した閾値0.80を超えないこと、及び、Cr3%超の鋼材では、転位密度1×1013を維持しないと、クリープ破断強度比が、閾値0.80を超えないことが解る。 From FIG. 3, in the steel material of Cr 3.0% or less, unless the dislocation density 1 × 10 12 is maintained, the creep rupture strength ratio does not exceed the threshold value 0.80 set in the present invention, and the Cr content exceeds 3%. It is understood that the creep rupture strength ratio does not exceed the threshold value 0.80 unless the dislocation density of 1 × 10 13 is maintained in the steel material.

さらに、図4に、Type IV型損傷が発生しなかった9%Cr鋼の溶接部における溶接前の旧γ粒径と、溶接後、クリープ試験前の、Ac1変態点〜Ac1変態点+300℃に加熱された溶接熱影響部位の転位密度との関係を示す。図4から、溶接前の旧γ粒径が100μm以上の場合においては、明らかに、溶接後の溶接熱影響部位の転位密度が上昇していることが解る。 Furthermore, FIG. 4 shows the old γ grain size before welding in the welded portion of 9% Cr steel in which Type IV type damage did not occur, and the Ac 1 transformation point to Ac 1 transformation point +300 after welding and before the creep test. The relationship with the dislocation density of the welding heat affected zone heated to ° C is shown. FIG. 4 clearly shows that when the old γ grain size before welding is 100 μm or more, the dislocation density in the weld heat affected zone after welding is increased.

本発明の耐熱構造体は、本発明鋼材を、通常の溶接方法で溶接したものであるが、本発明鋼材は、溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材であるから、耐熱構造体自体、溶接熱影響部のクリープ特性に優れた耐熱構造体である。   The heat-resistant structure of the present invention is obtained by welding the steel of the present invention by a normal welding method, but the steel of the present invention is a ferritic heat-resistant steel having excellent creep characteristics in the weld heat affected zone. The body itself is a heat resistant structure excellent in the creep characteristics of the weld heat affected zone.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表1に示す化学成分とHDI値の本発明鋼材(発明例)と比較鋼材(比較例)を、前述した製造方法で製造し、これら鋼材につき、前述した試験方法により、溶接部の特性及び組織を調査した。その結果を、表2に示す。
(Example)
The steels of the present invention (invention examples) and comparative steels (comparative examples) having the chemical components and HDI values shown in Table 1 were produced by the above-described production methods, and the properties and structure of the welded parts were examined by the above-described test methods for these steel materials. investigated. The results are shown in Table 2.

第31番の比較例は、化学成分が本発明鋼材の化学成分を満足するものの、HDI値が0.5(本発明鋼材の下限)より低く、Ac1変態点〜Ac1変態点+300℃に加熱された溶接熱影響部位の転位密度が、1×1012(Cr3%以下の本発明鋼材における下限)に達せず、溶接熱影響部にType IV型損傷が発生して、母鋼材と溶接部の10万時間推定のクリープ破断強度比(以下、単に「クリープ破断強度比」という。)が著しく低下した例である。 In the comparative example No. 31, although the chemical component satisfies the chemical component of the steel of the present invention, the HDI value is lower than 0.5 (the lower limit of the steel of the present invention), and the Ac 1 transformation point to Ac 1 transformation point + 300 ° C. The dislocation density of the heated weld heat affected zone does not reach 1 × 10 12 (the lower limit in the steel of the present invention of Cr 3% or less), and type IV type damage occurs in the weld heat affected zone, and the base steel and weld zone This is an example in which the creep rupture strength ratio estimated for 100,000 hours (hereinafter simply referred to as “creep rupture strength ratio”) is significantly reduced.

第32番の比較例は、Mn量が過多となり(表1、参照)、HDI値が高すぎて、溶接割れが、溶接金属と母鋼材の境界から発生して破断したため、クリープ破断強度比が著しく低下した例である。   In Comparative Example No. 32, the amount of Mn was excessive (see Table 1), the HDI value was too high, and weld cracking occurred and broke from the boundary between the weld metal and the base steel. This is an example of a significant decrease.

第33番の比較例は、Cr量が過多となり、第34番の比較例は、Mo量が過多となり、また、第35番の比較例は、W量が過多となり(表1、参照)、同様に、溶接金属と母材の境界付近で焼戻し割れを生じ、クリープ破断強度比が著しく低下した例である。   The No. 33 comparative example has an excessive Cr amount, the No. 34 comparative example has an excessive Mo amount, and the No. 35 comparative example has an excessive W amount (see Table 1). Similarly, this is an example in which temper cracking occurred near the boundary between the weld metal and the base metal, and the creep rupture strength ratio was significantly reduced.

第36番の比較例は、化学成分が本発明鋼材の化学成分を満足するものの、HDI値が80(本発明鋼材の上限)より高く、Ac1変態点〜Ac1変態点+300℃に加熱された溶接熱影響部位の転位密度は十分で、1×1013個/m2(本発明鋼材の下限)を超えているが、溶接金属と母鋼材の境界付近で焼戻し割れを生じ、クリープ破断強度比が著しく低下した例である。 In the comparative example No. 36, although the chemical component satisfies the chemical component of the steel of the present invention, the HDI value is higher than 80 (the upper limit of the steel of the present invention), and it is heated from Ac 1 transformation point to Ac 1 transformation point + 300 ° C. The dislocation density at the weld heat affected zone is sufficient and exceeds 1 × 10 13 pieces / m 2 (the lower limit of the steel of the present invention), but temper cracks occur near the boundary between the weld metal and the base steel, and the creep rupture strength This is an example in which the ratio is significantly reduced.

比較例に比べ、発明例においては、従来値を超えて設定した閾値“0.8”を超えるクリープ破断強度比が得られている。   Compared with the comparative example, in the inventive example, a creep rupture strength ratio exceeding the threshold value “0.8” set exceeding the conventional value is obtained.

前述したように、本発明によれば、フェライト系耐熱鋼材の溶接部の熱影響部において、Type IV型損傷が発生しないから、高温高圧プラント機器を構成する耐熱溶接構造体(耐熱構造体)の設計において、その高温強度を、クリープ破断強度の0.67倍(通常の安全率)として設計することができる。その結果、従来発生していた溶接部起点の事故を防止することができる。したがって、本発明は、プラント建設産業において利用可能性が大きいものである。   As described above, according to the present invention, the Type IV type damage does not occur in the heat-affected zone of the welded portion of the ferritic heat-resistant steel material. In designing, the high-temperature strength can be designed as 0.67 times the normal creep rupture strength (normal safety factor). As a result, it is possible to prevent an accident at the starting point of the weld that has occurred in the past. Therefore, the present invention has great applicability in the plant construction industry.

フェライト系耐熱鋼の溶接熱影響部に発生したType IV型損傷を示す図である。It is a figure which shows the Type IV type damage which generate | occur | produced in the welding heat affected zone of ferritic heat resistant steel. 本発明鋼材の溶接部と従来鋼材の10万時間推定のクリープ破断強度を、母鋼材のクリープ破断強度に対する比で示す図である。It is a figure which shows the creep rupture strength of the welded part of this invention steel material, and the conventional steel material estimated for 100,000 hours by ratio with respect to the creep rupture strength of a base steel material. 本発明鋼材の溶接熱影響部の転位密度と、溶接部の10万時間推定のクリープ破断強度比の関係を示す図である。It is a figure which shows the relationship between the dislocation density of the welding heat affected zone of this invention steel material, and the creep rupture strength ratio of 100,000 hours estimation of a welding part. 溶接前の鋼材の旧γ粒径(平均値)と、HDI値が本発明範囲を満たす溶接部の溶接熱影響部の転位密度の関係を示す図である。It is a figure which shows the relationship between the old (gamma) particle size (average value) of the steel materials before welding, and the dislocation density of the welding heat affected zone of the welding part with which an HDI value satisfy | fills the range of this invention.

Claims (10)

質量%で、C:0.01〜0.20%、Si:0.02〜0.50%、Mn:0.05〜1.0%、P:0.02%以下、S:0.01%以下、Cr:0.4〜12.0%、Al:0.001〜0.05%、N:0.001〜0.07%を含有し、O:0.01%以下に制限し、残部Fe及び不可避的不純物からなり、かつ、下記式(1)で定義する溶接熱影響部焼入性指数HDIが、0.5〜80のフェライト系耐熱鋼材であって、
Ac1変態点〜Ac1変態点+300℃に加熱される鋼材の溶接熱影響部位に、転位密度が1×1012個/m2以上(Cr:0.4〜3.0%の場合)、又は、1×1013個/m2以上(Cr:3.0超〜12.0%の場合)の低温変態組織が生成する
ことを特徴とする溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。
HDI=√[%C]√[%N](1+0.5[%Si])(1+3[%Mn])(1+2[%Cr])(1+3[%Mo])(1+0.8[%W])(1+0.3[%Cu])(1+0.5[%Ni])(1+2.5[%Nb])(1+1.5[%V])(1+0.5[%Al])(1+0.3[%Ti])(1+0.3[%Zr])(1+0.2[%Re])(1+25[%B])(1+0.5[%Co]) ・・・(1)
In mass%, C: 0.01 to 0.20%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.02% or less, S: 0.01 %: Cr: 0.4-12.0%, Al: 0.001-0.05%, N: 0.001-0.07%, O: limited to 0.01% or less, The weld heat affected zone hardenability index HDI, which consists of the remaining Fe and inevitable impurities and is defined by the following formula (1), is a ferritic heat resistant steel material of 0.5 to 80,
Ac 1 to weld heat affected zone of the steel is heated to a transformation point to Ac 1 transformation point + 300 ° C., the dislocation density of 1 × 10 12 pieces / m 2 or more (Cr: For 0.4 to 3.0%), Alternatively, a ferrite system having excellent creep characteristics in the heat affected zone of welding, wherein a low temperature transformation structure of 1 × 10 13 pieces / m 2 or more (in the case of Cr: more than 3.0 to 12.0%) is generated. Heat resistant steel.
HDI = √ [% C] √ [% N] (1 + 0.5 [% Si]) (1 + 3 [% Mn]) (1 + 2 [% Cr]) (1 + 3 [% Mo]) (1 + 0.8 [% W] ) (1 + 0.3 [% Cu]) (1 + 0.5 [% Ni]) (1 + 2.5 [% Nb]) (1 + 1.5 [% V]) (1 + 0.5 [% Al]) (1 + 0.3 [% Ti]) (1 + 0.3 [% Zr]) (1 + 0.2 [% Re]) (1 + 25 [% B]) (1 + 0.5 [% Co]) (1)
前記フェライト系耐熱鋼材が、さらに、質量%で、B:0.0003〜0.005%を含有することを特徴とする請求項1に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   The ferritic heat resistant steel material having excellent creep characteristics of the weld heat affected zone according to claim 1, wherein the ferritic heat resistant steel material further contains B: 0.0003 to 0.005% by mass. Steel material. 前記フェライト系耐熱鋼材が、さらに、質量%で、Mo:0.05〜2.0%、W:0.05〜3.0%、Re:0.05〜2.0%のうちの一種又は二種以上を含有することを特徴とする請求項1又は2に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   The ferritic heat-resisting steel material is further, in mass%, Mo: 0.05 to 2.0%, W: 0.05 to 3.0%, Re: 0.05 to 2.0%, or The ferritic heat resistant steel material excellent in creep characteristics of the weld heat affected zone according to claim 1 or 2, wherein the ferritic heat resistant steel material contains two or more kinds. 前記フェライト系耐熱鋼材が、さらに、質量%で、Ni:0.01〜0.5%、Co:0.01〜3.0%、Cu:0.01〜1.5%のうちの一種又は二種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   The ferritic heat-resisting steel material is further, in mass%, Ni: 0.01 to 0.5%, Co: 0.01 to 3.0%, Cu: 0.01 to 1.5%, The ferritic heat resistant steel material excellent in creep characteristics of the weld heat affected zone according to any one of claims 1 to 3, comprising two or more kinds. 前記フェライト系耐熱鋼材が、さらに、質量%で、Ti:0.005〜0.20%、Zr:0.002〜0.10%、Nb:0.005〜0.50%、V:0.01〜1.0%のうちの一種又は二種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   Further, the ferritic heat resistant steel material is, in mass%, Ti: 0.005 to 0.20%, Zr: 0.002 to 0.10%, Nb: 0.005 to 0.50%, V: 0.00. The ferritic heat resistant steel material having excellent creep characteristics of the weld heat affected zone according to any one of claims 1 to 4, wherein the ferritic heat resistant steel material contains at least one of 01 to 1.0%. 前記フェライト系耐熱鋼材が、さらに、質量%で、Ca:0.0003〜0.005%、Mg:0.0003〜0.01%、La:0.005〜0.05%、Ce:0.005〜0.10%、Y:0.005〜0.10%、Ba:0.0003〜0.005%のうちの一種又は二種以上を含有することを特徴とする請求項1〜5のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   Further, the ferritic heat resistant steel material is, in mass%, Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.01%, La: 0.005 to 0.05%, Ce: 0.00. It contains one or more of 005 to 0.10%, Y: 0.005 to 0.10%, and Ba: 0.0003 to 0.005%. A ferritic heat resistant steel material excellent in creep characteristics of the weld heat affected zone according to any one of the items. 前記Ac1変態点〜Ac1変態点+300℃に加熱される鋼材の溶接熱影響部位に、予め、旧オーステナイトの粒径が球相当平均直径で100μm以上の低温変態組織が形成されていることを特徴とする請求項1〜6のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。 The welding heat affected zone of the steel is heated to the Ac 1 transformation point to Ac 1 transformation point + 300 ° C., in advance, that the particle size of prior austenite is 100μm or more low-temperature transformation structure at an average equivalent-sphere diameter is formed The ferritic heat resistant steel material excellent in creep characteristics of the weld heat affected zone according to any one of claims 1 to 6. 前記低温変態組織が、ベイナイト及び/又はマルテンサイトであることを特徴とする請求項1〜7のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   The ferritic heat resistant steel material excellent in creep characteristics of the weld heat affected zone according to any one of claims 1 to 7, wherein the low temperature transformation structure is bainite and / or martensite. 前記溶接熱影響部焼入性指数HDIが3.0〜65であることを特徴とする請求項1〜8のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材。   The ferritic heat resistant steel material having excellent creep characteristics of the weld heat affected zone according to any one of claims 1 to 8, wherein the weld heat affected zone hardenability index HDI is 3.0 to 65. . 請求項1〜9のいずれか1項に記載の溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材を溶接して製造したことを特徴とする溶接熱影響部のクリープ特性に優れた耐熱構造体。   A heat-resistant structure excellent in creep characteristics of a weld heat-affected zone, manufactured by welding the ferritic heat-resistant steel material excellent in creep characteristics of the weld heat-affected zone according to any one of claims 1 to 9. body.
JP2008052271A 2007-03-02 2008-03-03 Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone Expired - Fee Related JP4995122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052271A JP4995122B2 (en) 2007-03-02 2008-03-03 Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007052875 2007-03-02
JP2007052875 2007-03-02
JP2008052271A JP4995122B2 (en) 2007-03-02 2008-03-03 Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone

Publications (2)

Publication Number Publication Date
JP2008248385A true JP2008248385A (en) 2008-10-16
JP4995122B2 JP4995122B2 (en) 2012-08-08

Family

ID=39973667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052271A Expired - Fee Related JP4995122B2 (en) 2007-03-02 2008-03-03 Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone

Country Status (1)

Country Link
JP (1) JP4995122B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668002A (en) * 2013-11-20 2014-03-26 马鞍山瑞辉实业有限公司 Novel ferrite heat-resistant cast steel and production method thereof
US20160153312A1 (en) * 2014-12-02 2016-06-02 Hyundai Motor Company Heat resistant cast steel having superior high temperature strength and oxidation resistance
CN105925882A (en) * 2016-05-19 2016-09-07 南京工程学院 Centrifugal casting furnace tube and preparation technology thereof
WO2019052766A1 (en) * 2017-09-18 2019-03-21 Siemens Aktiengesellschaft Martensitic steel having a z-phase, powder and component
US11060156B2 (en) 2016-09-30 2021-07-13 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
US11167369B2 (en) 2016-09-30 2021-11-09 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
KR20220027391A (en) * 2020-08-27 2022-03-08 주식회사 포스코 Chromium steel having excellent creep strength and impact toughness and method for manufacturing thereof
US20220372601A1 (en) * 2021-05-24 2022-11-24 Rugao Hongmao Heavy-duty Forging Co., Ltd. Hot working die steel with high thermal strength and high toughness and manufacturing process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326339B2 (en) * 2007-04-25 2013-10-30 新日鐵住金株式会社 Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
JP5326344B2 (en) * 2007-04-27 2013-10-30 新日鐵住金株式会社 Heat-resistant structure with excellent creep characteristics in heat-affected zone
CN105695881B (en) * 2016-04-18 2017-06-16 东北大学 A kind of 650 DEG C of ultra supercritical casting heat resisting steel
CN106086667A (en) * 2016-05-31 2016-11-09 安徽潜山轴承制造有限公司 A kind of corrosion-resistant stamping resistance bearing and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337813A (en) * 1995-06-12 1996-12-24 Nkk Corp Production of high chromium ferritic steel excellent in creep characteristic of welded joint
JP2002294402A (en) * 2001-03-28 2002-10-09 Nippon Steel Corp Low alloy steel tube for heat resistant boiler with excellent wear resistance
JP2005133167A (en) * 2003-10-31 2005-05-26 Nippon Steel Corp Low-alloy ferritic heat-resisting steel having superior high-temperature creep strength in weld heat-affected zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337813A (en) * 1995-06-12 1996-12-24 Nkk Corp Production of high chromium ferritic steel excellent in creep characteristic of welded joint
JP2002294402A (en) * 2001-03-28 2002-10-09 Nippon Steel Corp Low alloy steel tube for heat resistant boiler with excellent wear resistance
JP2005133167A (en) * 2003-10-31 2005-05-26 Nippon Steel Corp Low-alloy ferritic heat-resisting steel having superior high-temperature creep strength in weld heat-affected zone

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668002A (en) * 2013-11-20 2014-03-26 马鞍山瑞辉实业有限公司 Novel ferrite heat-resistant cast steel and production method thereof
US20160153312A1 (en) * 2014-12-02 2016-06-02 Hyundai Motor Company Heat resistant cast steel having superior high temperature strength and oxidation resistance
US9551267B2 (en) * 2014-12-02 2017-01-24 Hyundai Motor Company Heat resistant cast steel having superior high temperature strength and oxidation resistance
CN105925882A (en) * 2016-05-19 2016-09-07 南京工程学院 Centrifugal casting furnace tube and preparation technology thereof
US11060156B2 (en) 2016-09-30 2021-07-13 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
US11167369B2 (en) 2016-09-30 2021-11-09 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
CN111133120A (en) * 2017-09-18 2020-05-08 西门子股份公司 Martensitic steel, powder and component with Z phase
WO2019052766A1 (en) * 2017-09-18 2019-03-21 Siemens Aktiengesellschaft Martensitic steel having a z-phase, powder and component
US11492686B2 (en) 2017-09-18 2022-11-08 Siemens Energy Global GmbH & Co. KG Martensitic steel having a Z-phase, powder and component
KR20220027391A (en) * 2020-08-27 2022-03-08 주식회사 포스코 Chromium steel having excellent creep strength and impact toughness and method for manufacturing thereof
KR102415765B1 (en) 2020-08-27 2022-07-01 주식회사 포스코 Chromium steel having excellent creep strength and impact toughness and method for manufacturing thereof
US20220372601A1 (en) * 2021-05-24 2022-11-24 Rugao Hongmao Heavy-duty Forging Co., Ltd. Hot working die steel with high thermal strength and high toughness and manufacturing process thereof
US11608550B2 (en) * 2021-05-24 2023-03-21 Rugao Hongmao Heavy-duty Forging Co., Ltd. Hot working die steel with high thermal strength and high toughness and manufacturing process thereof

Also Published As

Publication number Publication date
JP4995122B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4995122B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
JP5326344B2 (en) Heat-resistant structure with excellent creep characteristics in heat-affected zone
JP4995111B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
KR101630096B1 (en) Ni-BASED HEAT-RESISTANT ALLOY
US10519533B2 (en) High Cr-based austenitic stainless steel
KR100933114B1 (en) Ferritic Heat Resistant Steel
JP4995131B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
Sireesha et al. Microstructure and mechanical properties of weld fusion zones in modified 9Cr-1Mo steel
Abe New martensitic steels
JP6562476B2 (en) Ferritic heat resistant steel and its manufacturing method
US20110017355A1 (en) Ferritic heat-resistant steel
CA2830155A1 (en) Carburization resistant metal material
JP4995130B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
JP5326339B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
EP2803741B1 (en) Method of post weld heat treatment of a low alloy steel pipe
KR102165755B1 (en) Ferritic heat-resistant steel welded structure manufacturing method and ferritic heat-resistant steel welded structure
Hasegawa Grade 92 creep-strength-enhanced ferritic steel
JP7485929B2 (en) Low alloy heat-resistant steel and manufacturing method thereof
KR102165756B1 (en) Ferritic heat-resistant steel welded structure manufacturing method and ferritic heat-resistant steel welded structure
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JP4262051B2 (en) Low alloy ferritic heat resistant steel with excellent high temperature creep strength of weld heat affected zone
Yu et al. Effect of Ni content on microstructure and mechanical properties evolutions of 9Cr high Si heat resistant steel deposited metals
WO2023058358A1 (en) Ferritic stainless steel pipe and method for producing same, and fuel cell
Baral et al. CREEP STRENGTH BEHAVIOR OF BORON ADDED P91 STEEL AND ITS WELD IN THE TEMPERATURE RANGE OF 600-650 C
MX2014008504A (en) Low alloy steel.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4995122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees