JP2006237428A - Photoelectric converter and its manufacturing method, optical waveguide module, and optical information processor - Google Patents

Photoelectric converter and its manufacturing method, optical waveguide module, and optical information processor Download PDF

Info

Publication number
JP2006237428A
JP2006237428A JP2005052373A JP2005052373A JP2006237428A JP 2006237428 A JP2006237428 A JP 2006237428A JP 2005052373 A JP2005052373 A JP 2005052373A JP 2005052373 A JP2005052373 A JP 2005052373A JP 2006237428 A JP2006237428 A JP 2006237428A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
base
lens
light
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005052373A
Other languages
Japanese (ja)
Other versions
JP4655674B2 (en
Inventor
Suguru Otorii
英 大鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005052373A priority Critical patent/JP4655674B2/en
Publication of JP2006237428A publication Critical patent/JP2006237428A/en
Application granted granted Critical
Publication of JP4655674B2 publication Critical patent/JP4655674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter capable of miniaturization and thinning along with improving the alignment accuracy of a photoelectric conversion element and a lens, and to provide an optical waveguide module and an optical information processor. <P>SOLUTION: A photoelectric converter 10 comprises a photoelectric conversion element 2 (for example, a light emitting element or a light receiving element) provided in an element substrate 1 so that a light outgoing side or a light incident beveled side 5 may be exposed; and a single lens base 7 provided with a lens 6 corresponding to the photoelectric conversion element 2, wherein the single lens base 7 is directly joined to the element substrate 1 in the side of a light outgoing side or a light incident beveled side 5, and its manufacturing method is provided. The optical waveguide module consists of the photoelectric convertor, and an optical waveguide part (for example, optical waveguide). The optical information processor consists of the photoelectric converter, the optical waveguide part, and a drive element for driving the photoelectric conversion element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光電変換装置及びその製造方法、並びに光導波モジュール及び光情報処理装置に関するものである。   The present invention relates to a photoelectric conversion device, a manufacturing method thereof, an optical waveguide module, and an optical information processing device.

現在、LSI(大規模集積回路)等の半導体チップ間の信号伝搬は、全て基板配線を介した電気信号によりなされている。しかし、昨今のMPU高機能化に伴い、チップ間にて必要とされるデータ授受量は著しく増大し、結果として様々な高周波問題が浮上している。それらの代表的なものとして、RC信号遅延、インピーダンスミスマッチ、EMC/EMI、クロストーク等が挙げられる。   Currently, signal propagation between semiconductor chips such as LSI (Large Scale Integrated Circuit) is all done by electrical signals via substrate wiring. However, with the recent increase in MPU functionality, the amount of data exchanged between chips has increased remarkably, and as a result, various high frequency problems have emerged. Typical examples thereof include RC signal delay, impedance mismatch, EMC / EMI, crosstalk, and the like.

上記の問題を解決するため、これまで実装業界などが中心となり、配線配置の最適化や新素材開発などの様々な手法を駆使し、解決に当たってきた。   In order to solve the above problems, the mounting industry and others have so far taken the lead in solving various problems such as optimization of wiring layout and development of new materials.

しかし近年、上記の配線配置の最適化や新素材開発等の効果も物性的限界に阻まれつつあり、今後システムの更なる高機能化を実現するためには、単純な半導体チップの実装を前提としたプリント配線板の構造そのものを見直す必要が生じてきている。近年、これら諸問題を解決すべく様々な抜本対策が提案されているが、以下にその代表的なものを記す。   However, in recent years, the effects of optimization of the wiring layout and development of new materials have been hampered by physical limitations, and it is assumed that simple semiconductor chips will be mounted in order to realize further advanced system functionality in the future. It has become necessary to review the structure of the printed wiring board itself. In recent years, various drastic measures have been proposed to solve these problems, but the following are representative examples.

・マルチチップモジュール(MCM)化による微細配線結合
高機能チップを、セラミック・シリコンなどの精密実装基板上に実装し、マザーボード(多層プリント基板)上では形成不可能である微細配線結合を実現する。これによって配線の狭ピッチ化が可能となり、バス幅を広げることでデータ授受量が飛躍的に増大する。
-Fine wiring bonding by multi-chip module (MCM) High-performance chip is mounted on a precision mounting substrate such as ceramic and silicon, and fine wiring bonding that cannot be formed on a motherboard (multilayer printed circuit board) is realized. As a result, the pitch of the wiring can be narrowed, and the amount of data exchange increases dramatically by widening the bus width.

・各種半導体チップの封止、一体化による電気配線結合
各種半導体チップをポリイミド樹脂などを用いて二次元的に封止、一体化し、その一体化された基板上にて微細配線結合を行う。これによって配線の狭ピッチ化が可能となり、バス幅を広げることでデータ授受量が飛躍的に増大する。
-Sealing and integration of various semiconductor chips and electrical wiring bonding by integration Various semiconductor chips are two-dimensionally sealed and integrated using polyimide resin or the like, and fine wiring bonding is performed on the integrated substrate. As a result, the pitch of the wiring can be narrowed, and the amount of data exchange increases dramatically by widening the bus width.

・半導体チップの三次元結合
各種半導体チップに貫通電極を設け、それぞれを貼り合わせることで積層構造とする。これにより、異種半導体チップ間の結線が物理的に短絡化され、結果として信号遅延などの問題が回避される。但しその一方、積層化による発熱量増加、半導体チップ間の熱応力などの問題が生じる。
-Three-dimensional bonding of semiconductor chips A through electrode is provided in various semiconductor chips, and each is bonded to form a laminated structure. Thereby, the connection between the different types of semiconductor chips is physically short-circuited, and as a result, problems such as signal delay are avoided. On the other hand, however, problems such as an increase in the amount of heat generated due to lamination and thermal stress between semiconductor chips occur.

さらに、上記のように信号授受の高速化及び大容量化を実現するために、光配線による光伝送結合技術が開発されている(例えば、後記の非特許文献1及び非特許文献2参照。)。光配線は、電子機器間、電子機器内のボード間又はボード内のチップ間など、種々の個所に適用可能である。例えば図4に示すように、チップ間のような短距離間の信号の伝送には、チップが搭載されているプリント配線板50上に光導波路51を形成し、発光素子(例えば面発光レーザー)52によって信号変調された光を光導波路51へ入射させ、入射した光は光導波路51を導波し、光導波路51から出射された光は、受光素子(例えばフォトダイオード)53によって受光される。このように、光導波路51を信号変調されたレーザー光等の伝送路とした光伝送・通信システムを構築することができる。   Furthermore, in order to realize high speed and large capacity of signal transmission / reception as described above, an optical transmission coupling technique using optical wiring has been developed (for example, see Non-Patent Document 1 and Non-Patent Document 2 described later). . The optical wiring can be applied to various places such as between electronic devices, between boards in an electronic device, or between chips in a board. For example, as shown in FIG. 4, for transmission of signals over a short distance such as between chips, an optical waveguide 51 is formed on a printed wiring board 50 on which the chips are mounted, and a light emitting element (for example, a surface emitting laser) is formed. The light signal-modulated by 52 is made incident on the optical waveguide 51, the incident light is guided through the optical waveguide 51, and the light emitted from the optical waveguide 51 is received by a light receiving element (for example, a photodiode) 53. In this way, an optical transmission / communication system using the optical waveguide 51 as a transmission path for signal-modulated laser light or the like can be constructed.

また、発光素子52や受光素子53には、レンズ部58が設けられたレンズ基体59が接合されており、これにより、発光素子52からの発光光を平行光化して効果的に光導波路51へ入射させることができ、或いは、光導波路51から出射された光を集光して効果的に受光素子53へ受光させることができる。   Further, a lens base 59 provided with a lens portion 58 is joined to the light emitting element 52 and the light receiving element 53, whereby the emitted light from the light emitting element 52 is collimated and effectively supplied to the optical waveguide 51. The light emitted from the optical waveguide 51 can be collected and effectively received by the light receiving element 53.

以下に、発光素子52と、レンズ部58が設けられたレンズ基体59とからなる光電変換装置の製造方法を説明する。まず、図5(a)及び図5(b)に示すように、GaAs等の基体54に発光素子52を形成し、この基体54に補強材55を貼り付ける。次いで、図5(c)に示すように、発光素子52の光出射面56が露出するように、基体54を研削又はエッチング等により薄板化する。次に、図5(d)に示すように、発光素子52の光出射面56の側において、補強のための透明支持基体57を接合し、補強材55を剥離する。次に、図5(e)に示すように、発光素子52からの信号光を平行光化して効果的に光導波路へ入射させるために、基体54に透明支持基体57を介して、発光素子52に対応する位置にそれぞれレンズ部58が設けられたレンズ基体59を接合する。なお、図4の受光素子53についても上述した発光素子52と同様にして、光導波路51から出射された光を集光して効果的に受光素子53へ受光させるために、受光素子53を形成した基体に、レンズ部が設けられたレンズ基体を透明支持基体を介して接合する(図示省略)。以上のようにして、従来例による光電変換装置60は作製される。   Hereinafter, a method for manufacturing a photoelectric conversion device including the light emitting element 52 and the lens base 59 provided with the lens portion 58 will be described. First, as shown in FIGS. 5A and 5B, a light emitting element 52 is formed on a base 54 made of GaAs or the like, and a reinforcing material 55 is attached to the base 54. Next, as shown in FIG. 5C, the base 54 is thinned by grinding or etching so that the light emitting surface 56 of the light emitting element 52 is exposed. Next, as shown in FIG. 5D, a transparent support base 57 for reinforcement is bonded on the light emitting surface 56 side of the light emitting element 52, and the reinforcing material 55 is peeled off. Next, as shown in FIG. 5E, in order to make the signal light from the light emitting element 52 parallel and effectively enter the optical waveguide, the light emitting element 52 is inserted into the base 54 via a transparent support base 57. The lens base 59 provided with the lens portion 58 is joined at a position corresponding to the above. Note that the light receiving element 53 of FIG. 4 is formed in the same manner as the light emitting element 52 described above in order to collect the light emitted from the optical waveguide 51 and cause the light receiving element 53 to receive the light effectively. A lens base provided with a lens portion is joined to the base through a transparent support base (not shown). As described above, the photoelectric conversion device 60 according to the conventional example is manufactured.

日経エレクトロニクス、“光配線との遭遇”2001年12月3日の122頁、123頁、124頁、125頁、図4、図5、図6、図7Nikkei Electronics, “Encounter with Optical Wiring”, December 3, 2001, pages 122, 123, 124, 125, FIG. 4, FIG. 5, FIG. 6, FIG. NTT R&D, vol.48, no.3, pp.271-280 (1999)NTT R & D, vol.48, no.3, pp.271-280 (1999)

しかしながら、上記した従来例では、レンズ基体59を透明支持基体57を介して基体54に貼り付けるので、発光素子52又は受光素子53と、レンズ部58とのアライメント精度が低下することがある。   However, in the above-described conventional example, since the lens base 59 is attached to the base 54 via the transparent support base 57, the alignment accuracy between the light emitting element 52 or the light receiving element 53 and the lens portion 58 may be lowered.

また、光電変換装置60の厚さが、基体54、透明支持基体57及びレンズ基体59の厚みの合計となるため、小型化、薄型化が難しい。さらに、透明支持基体57とレンズ基体59とを有するため、発光素子52からの発光光のビーム径をより小径化するには限界がある。   Further, since the thickness of the photoelectric conversion device 60 is the sum of the thicknesses of the base 54, the transparent support base 57, and the lens base 59, it is difficult to reduce the size and thickness. Further, since the transparent support base 57 and the lens base 59 are provided, there is a limit to further reducing the beam diameter of the emitted light from the light emitting element 52.

本発明は、上述したような問題点を解決するためになされたものであって、その目的は、光電変換素子と、レンズ部とのアライメント精度を向上することができ、小型化及び薄型化が可能な光電変換装置及びその製造方法、並びに光導波モジュール及び光情報処理装置を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to improve the alignment accuracy between the photoelectric conversion element and the lens unit, and to reduce the size and thickness. An object of the present invention is to provide a possible photoelectric conversion device, a method for manufacturing the same, an optical waveguide module, and an optical information processing device.

即ち、本発明は、光出射面又は光入斜面が露出するように素子基体に設けられた光電変換素子と、前記光電変換素子に対応したレンズ部が設けられた単一のレンズ基体とからなり、前記光出射面又は光入斜面の側において前記素子基体に前記レンズ基体が直接接合されている、光電変換装置に係るものである。   That is, the present invention comprises a photoelectric conversion element provided on an element base so that a light emitting surface or a light incident slope is exposed, and a single lens base provided with a lens portion corresponding to the photoelectric conversion element. Further, the present invention relates to a photoelectric conversion device in which the lens base is directly bonded to the element base on the light exit surface or the light incident slope side.

また、光出射面又は光入斜面が露出するように光電変換素子を素子基体に形成する工程と、単一のレンズ基体に前記光電変換素子に対応したレンズ部を設ける工程と、前記光出射面又は光入斜面の側において前記素子基体に前記レンズ基体を直接接合する工程とを有する、光電変換装置の製造方法に係るものである。   A step of forming the photoelectric conversion element on the element base so that the light emission surface or the light incident slope is exposed; a step of providing a lens portion corresponding to the photoelectric conversion element on a single lens base; and the light emission surface Alternatively, the present invention relates to a method for manufacturing a photoelectric conversion device including a step of directly bonding the lens base to the element base on the light incident slope side.

また、本発明の光電変換装置と、光導波部とからなる、光導波モジュールに係るものである。   The present invention also relates to an optical waveguide module comprising the photoelectric conversion device of the present invention and an optical waveguide section.

さらに、本発明の光電変換装置と、光導波部と、前記光電変換素子を駆動する駆動素子とからなる、光情報処理装置に係るものである。   Furthermore, the present invention relates to an optical information processing apparatus including the photoelectric conversion device according to the present invention, an optical waveguide unit, and a drive element that drives the photoelectric conversion element.

本発明によれば、前記光電変換素子の前記光出射面又は光入斜面の側において前記素子基体に、前記レンズ部が設けられた前記単一のレンズ基体を直接接合するので、上記の従来例のように、透明支持基体を介して素子基体とレンズ基体とを接合するのに比べ、前記光電変換素子と前記レンズ部とのアライメント精度の向上を図ることができる。   According to the present invention, the single lens base provided with the lens portion is directly bonded to the element base on the light emitting surface or light incident slope side of the photoelectric conversion element. As described above, the alignment accuracy between the photoelectric conversion element and the lens portion can be improved as compared with the case where the element base and the lens base are bonded via the transparent support base.

また、本発明の光電変換装置の厚さは、前記素子基体及び前記レンズ基体の厚みの合計となるため、従来例に比べて小型化、薄型化を容易に実現することができる。さらに、薄型化することができるので、例えば、前記光電変換素子としての発光素子からの発光光のビーム径をより小径化することができるなど、光学設計の自由度が増す。   Moreover, since the thickness of the photoelectric conversion device of the present invention is the sum of the thicknesses of the element base and the lens base, it can be easily reduced in size and thickness as compared with the conventional example. Furthermore, since the thickness can be reduced, the degree of freedom in optical design increases, for example, the beam diameter of the emitted light from the light emitting element as the photoelectric conversion element can be further reduced.

また、従来例における透明支持基体を接合する工程を削減することができるので、作製プロセスをより簡素化することができ、またコストダウンが可能となる。   Moreover, since the process of joining the transparent support base in the conventional example can be reduced, the manufacturing process can be further simplified and the cost can be reduced.

本発明において、前記光電変換素子は発光素子(例えば面発光レーザー)や受光素子(例えばフォトダイオード)であることが望ましく、前記レンズ部によって前記発光素子からの信号光を平行光化して効果的に前記光導波部へ入射させることができ、或いは、前記光導波部から出射された光を集光して効果的に前記受光素子へ受光させることができる。   In the present invention, the photoelectric conversion element is preferably a light emitting element (for example, a surface emitting laser) or a light receiving element (for example, a photodiode), and the lens unit effectively converts the signal light from the light emitting element into parallel light. The light can be incident on the optical waveguide, or the light emitted from the optical waveguide can be condensed and effectively received by the light receiving element.

また、透明基体に予め前記レンズ部を形成し、この透明基体を前記レンズ基体として前記素子基体に直接貼り付けることが好ましい。   Preferably, the lens portion is formed in advance on a transparent substrate, and the transparent substrate is directly attached to the element substrate as the lens substrate.

また、前記素子基体に前記レンズ基体としての透明基体を直接貼り付けた後、前記光電変換素子に対応した位置において前記透明基体に前記レンズ部を形成することも可能である。   It is also possible to form the lens portion on the transparent substrate at a position corresponding to the photoelectric conversion element after directly attaching a transparent substrate as the lens substrate to the element substrate.

また、前記光電変換素子を設けた前記素子基体を素子形成面とは反対側から部分的に除去して前記光出射面又は光入斜面を露出させることが好ましい。   Moreover, it is preferable that the light emitting surface or the light incident slope is exposed by partially removing the element base provided with the photoelectric conversion element from the side opposite to the element forming surface.

また、前記レンズ基体において前記レンズ部以外の領域に、前記レンズ部の最上面位置より高いランド面を形成するのが好ましい。これにより、前記レンズ部等の光電変換装置構成部位を破壊することなく、一般的な装置でのハンドリングが可能となる。   Further, it is preferable that a land surface higher than the uppermost surface position of the lens portion is formed in a region other than the lens portion in the lens base. As a result, handling with a general device is possible without destroying the components of the photoelectric conversion device such as the lens unit.

さらに、前記素子基体及び前記レンズ基体のうち少なくとも前記素子基体に、前記光電変換素子と前記レンズ部との光軸合わせ用のアライメントマークを設けることが好ましい。これにより、ウエハーレベルでのより高精度かつ容易なアライメントが可能となる。   Furthermore, it is preferable that an alignment mark for aligning the optical axis between the photoelectric conversion element and the lens portion is provided on at least the element base of the element base and the lens base. As a result, higher-precision and easier alignment at the wafer level becomes possible.

以下、本発明の好ましい実施の形態を図面を参照して説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

第1の実施の形態
図1は、本発明に基づく光電変換装置の製造方法の一例を工程順に示す概略断面図である。
First Embodiment FIG. 1 is a schematic sectional view showing an example of a method for manufacturing a photoelectric conversion device according to the present invention in the order of steps.

まず、図1(a)及び図1(b)に示すように、GaAs等の素子基体1に発光素子(例えば面発光レーザー)や受光素子(例えばフォトダイオード)等の光電変換素子2を形成し、この素子基体1に補強材3を貼り付ける。このとき、光電変換素子2の形成と同時に、素子基体1に光電変換素子2と後述する前記レンズ部との光軸合わせ用のアライメントマーク4を設けることが好ましい。これにより、ウエハーレベルでのより高精度かつ容易なアライメントが可能となる。光電変換素子2の作製方法は、従来公知の方法がいずれも適用可能である。   First, as shown in FIGS. 1A and 1B, a photoelectric conversion element 2 such as a light emitting element (for example, a surface emitting laser) or a light receiving element (for example, a photodiode) is formed on an element base 1 such as GaAs. The reinforcing material 3 is affixed to the element substrate 1. At this time, it is preferable that an alignment mark 4 for aligning the optical axis between the photoelectric conversion element 2 and the lens unit described later is provided on the element base 1 simultaneously with the formation of the photoelectric conversion element 2. As a result, higher-precision and easier alignment at the wafer level becomes possible. Any conventionally known method can be applied to the method for producing the photoelectric conversion element 2.

次に、図1(c)に示すように、光電変換素子2を設けた素子基体1を素子形成面とは反対側から研削又はエッチング等により部分的に除去して、光電変換素子2の光出射面又は光入斜面5を露出させ、素子基体1を薄板化する。   Next, as shown in FIG. 1C, the element substrate 1 provided with the photoelectric conversion element 2 is partially removed from the side opposite to the element formation surface by grinding or etching, so that the light of the photoelectric conversion element 2 is obtained. The exit surface or the light incident slope 5 is exposed, and the element substrate 1 is thinned.

次に、図1(d)に示すように、予めレンズ部6を形成した透明基体(例えばガラス基体)7を前記レンズ基体として用い、この透明基体7を接着剤(図示省略)等により素子基体1に直接貼り付ける。透明基体7へのレンズ部6の形成は、従来公知の方法がいずれも適用可能である。   Next, as shown in FIG. 1 (d), a transparent substrate (for example, a glass substrate) 7 on which a lens portion 6 is formed in advance is used as the lens substrate, and the transparent substrate 7 is bonded to an element substrate with an adhesive (not shown). Paste directly on 1. For the formation of the lens portion 6 on the transparent substrate 7, any conventionally known method can be applied.

ここで、予めレンズ部6を形成した透明基体7を素子基体1に直接貼り付けるのに代えて、図示省略したが、素子基体1に透明基体7を直接貼り付けた後、光電変換素子2に対応した位置において透明基体7にレンズ部6を形成することも可能である。   Here, instead of directly attaching the transparent substrate 7 on which the lens portion 6 is formed in advance to the element substrate 1, illustration is omitted, but after the transparent substrate 7 is directly attached to the element substrate 1, the photoelectric conversion element 2 is attached. It is also possible to form the lens portion 6 on the transparent substrate 7 at the corresponding position.

また、レンズ部6を有する透明基体7においてレンズ部6以外の領域に、レンズ部6の最上面位置より高いランド面8を形成するのが好ましい。これにより、本発明に基づく光電変換装置をハンドリングするに際し、レンズ部6等の光電変換装置構成部位を破壊することなく、一般的な装置でのハンドリングが可能となる。   Moreover, it is preferable to form a land surface 8 higher than the uppermost surface position of the lens unit 6 in a region other than the lens unit 6 in the transparent substrate 7 having the lens unit 6. Thereby, when handling the photoelectric conversion device according to the present invention, it is possible to handle it with a general device without destroying the photoelectric conversion device components such as the lens unit 6.

さらに、図1(d)及び図2に示すように、素子基体1と同様にして透明基体7にも、光電変換素子2とレンズ部6との光軸合わせ用のアライメントマーク9を設けることが好ましい。これにより、ウエハーレベルでのより高精度かつ容易なアライメントが可能となる。   Further, as shown in FIG. 1D and FIG. 2, an alignment mark 9 for aligning the optical axis between the photoelectric conversion element 2 and the lens unit 6 may be provided on the transparent base 7 in the same manner as the element base 1. preferable. As a result, higher-precision and easier alignment at the wafer level becomes possible.

レンズ部6によって光電変換素子2としての前記発光素子からの信号光を平行光化して効果的に前記光導波部(図示省略)へ入射させることができ、或いは、前記光導波部から出射された光を集光して効果的に光電変換素子2としての前記受光素子へ受光させることができる。   The signal light from the light emitting element as the photoelectric conversion element 2 can be collimated by the lens unit 6 and can be effectively incident on the optical waveguide unit (not shown), or emitted from the optical waveguide unit. The light can be condensed and effectively received by the light receiving element as the photoelectric conversion element 2.

そして、素子基体1にレンズ部6を有する透明基体7を直接貼り付けた後、補強材3を剥離する。   Then, after the transparent substrate 7 having the lens portion 6 is directly attached to the element substrate 1, the reinforcing material 3 is peeled off.

上記のようにして、本発明に基づく光電変換装置10を作製することができる。   As described above, the photoelectric conversion device 10 according to the present invention can be manufactured.

本実施の形態によれば、光電変換素子2の光出射面又は光入斜面5の側において素子基体1に、レンズ部6が設けられた単一の透明基体7を直接接合するので、上記の従来例のように、透明支持基体を介して素子基体とレンズ基体とを接合するのに比べ、光電変換素子2とレンズ部6とのアライメント精度の向上を図ることができる。   According to the present embodiment, since the single transparent substrate 7 provided with the lens portion 6 is directly bonded to the element substrate 1 on the light emitting surface or the light incident slope 5 side of the photoelectric conversion element 2, As in the conventional example, the alignment accuracy between the photoelectric conversion element 2 and the lens unit 6 can be improved as compared with the case where the element base and the lens base are bonded via the transparent support base.

また、本発明に基づく光電変換装置10の厚さは、素子基体1及び透明基体7の厚みの合計となるため、従来例に比べて小型化、薄型化を容易に実現することができる。   Moreover, since the thickness of the photoelectric conversion device 10 according to the present invention is the sum of the thicknesses of the element substrate 1 and the transparent substrate 7, it is possible to easily realize a reduction in size and thickness as compared with the conventional example.

さらに、薄型化することができるので、例えば、光電変換素子2としての前記発光素子からの発光光のビーム径をより小径化することができるなど、光学設計の自由度が増す。具体的には、発光径Φ10μm、放射角全角90°の面発光レーザーから、できるだけ小径の平行ビームを取り出したい場合、図5に示すような従来例において、透明支持基体57の厚さを100μm、レンズ基体59の厚さを100μmとすると、ビーム径の制御に関与する厚さが200μmとなるため、最小ビーム径はΦ410μmとなる。これに対し、本発明に基づく光電変換装置10は、透明基体7の厚さを100μmとすると、ビーム径の制御に関与する厚さが透明基体7の厚さ100μmのみと薄くなるので、最小ビーム径は210μmとなり、ビーム径のより小径化が可能となる。   Furthermore, since the thickness can be reduced, for example, the beam diameter of the emitted light from the light emitting element as the photoelectric conversion element 2 can be further reduced, and the degree of freedom in optical design is increased. Specifically, when it is desired to extract a parallel beam having a small diameter as much as possible from a surface emitting laser having an emission diameter of Φ10 μm and a radiation angle of 90 °, in the conventional example as shown in FIG. If the thickness of the lens base 59 is 100 μm, the thickness involved in the control of the beam diameter is 200 μm, so the minimum beam diameter is Φ410 μm. On the other hand, in the photoelectric conversion device 10 according to the present invention, when the thickness of the transparent substrate 7 is 100 μm, the thickness involved in the control of the beam diameter is as thin as only the thickness of the transparent substrate 7 is 100 μm. The diameter becomes 210 μm, and the beam diameter can be further reduced.

また、従来例における透明支持基体を接合する工程を削減することができるので、作製プロセスをより簡素化することができ、またコストダウンが可能となる。   Moreover, since the process of joining the transparent support base in the conventional example can be reduced, the manufacturing process can be further simplified and the cost can be reduced.

第2の実施の形態
図3は、本発明に基づく光情報処理装置の一例の概略断面図である。図3に示すように、本発明に基づく光情報処理装置11は、本発明に基づく光電変換装置10と、前記光導波部としての例えば光導波路12と、光電変換素子2を駆動する駆動素子13とからなる。また、本発明に基づく光電変換装置10はインターポーザー14にはんだ15によって実装され、またインターポーザー14の光電変換装置10とは反対の面側において駆動素子13が実装されている。そして、光電変換素子2a、2bと駆動素子13とがインターポーザー14の貫通電極16を介して電気的に接続されている。さらに、光導波路12はプリント配線板17に実装されている。
Second Embodiment FIG. 3 is a schematic sectional view of an example of an optical information processing apparatus according to the present invention. As shown in FIG. 3, an optical information processing apparatus 11 according to the present invention includes a photoelectric conversion apparatus 10 according to the present invention, an optical waveguide 12 as the optical waveguide unit, and a drive element 13 that drives the photoelectric conversion element 2. It consists of. In addition, the photoelectric conversion device 10 according to the present invention is mounted on the interposer 14 with solder 15, and the driving element 13 is mounted on the surface of the interposer 14 opposite to the photoelectric conversion device 10. The photoelectric conversion elements 2 a and 2 b and the drive element 13 are electrically connected via the through electrode 16 of the interposer 14. Further, the optical waveguide 12 is mounted on the printed wiring board 17.

前記光導波部としての光導波路12は特に限定されず、従来公知のものが使用可能であるが、例えば、クラッド18a、18bと、これらクラッド18a、18b間に挟持されたコア層19とを有し、また光入射部及び光出射部にそれぞれレンズ部材20を有する。更に、光導波路12の光入射端面及び光出射端面は、45°ミラー面に形成されている。   The optical waveguide 12 as the optical waveguide section is not particularly limited, and a conventionally known one can be used. For example, the optical waveguide 12 includes clads 18a and 18b and a core layer 19 sandwiched between the clads 18a and 18b. In addition, each of the light incident part and the light emission part has a lens member 20. Furthermore, the light incident end face and the light exit end face of the optical waveguide 12 are formed on a 45 ° mirror surface.

本発明に基づく光情報処理装置11のメカニズムは、前記光電変換素子としての発光素子2aによって信号変調された光(例えばレーザー光)がレンズ部6で平行光化される。この信号光は、更に光導波路12の光入射部に形成されたレンズ部材20によって集光され、光導波路12のコア層19へ効果的に入射される。入射した光は光導波路12を導波し、光導波路12の光出射部に形成されたレンズ部材20によって平行光化されて、光導波路12から出射される。そして、出射光はレンズ部6によって集光されて、前記光電変換素子としての受光素子2bに効果的に受光される。このように、光導波路12を信号変調されたレーザー光等の伝送路とした光伝送・通信システムを構築することができる。   The mechanism of the optical information processing apparatus 11 according to the present invention is such that light (for example, laser light) that has been signal-modulated by the light emitting element 2a serving as the photoelectric conversion element is collimated by the lens unit 6. This signal light is further condensed by the lens member 20 formed at the light incident portion of the optical waveguide 12 and is effectively incident on the core layer 19 of the optical waveguide 12. The incident light is guided through the optical waveguide 12, converted into parallel light by the lens member 20 formed at the light emitting portion of the optical waveguide 12, and then emitted from the optical waveguide 12. The emitted light is collected by the lens unit 6 and is effectively received by the light receiving element 2b as the photoelectric conversion element. In this way, it is possible to construct an optical transmission / communication system using the optical waveguide 12 as a transmission path for signal-modulated laser light or the like.

以上、本発明を実施の形態について説明したが、上述の例は、本発明の技術的思想に基づき種々に変形が可能である。   As mentioned above, although embodiment of this invention was described, the above-mentioned example can be variously modified based on the technical idea of this invention.

例えば、前記レンズ部の形状は特に限定されず、上記に凸レンズの例を挙げて説明したが、凹レンズであっても勿論構わない。   For example, the shape of the lens portion is not particularly limited, and the example of the convex lens has been described above. However, a concave lens may of course be used.

また、前記光導波部として前記光導波路を用いる例を挙げて説明したが、例えば光ファイバー等も適用可能である。   Moreover, although the example which uses the said optical waveguide as the said optical waveguide part was given and demonstrated, the optical fiber etc. are applicable, for example.

なお、本発明は、レーザー光に信号を乗せた上述した光配線システムに好適であるが、これ以外にも、光源等の選択によりディスプレイ用などにも適用可能である。   The present invention is suitable for the above-described optical wiring system in which a signal is placed on a laser beam. However, the present invention can also be applied to a display or the like by selecting a light source or the like.

第1の実施の形態による、本発明に基づく光電変換装置の製造方法の一例を工程順に示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the photoelectric conversion apparatus based on this invention by 1st Embodiment in process order. 同、本発明に基づく光電変換装置を構成する前記レンズ部が設けられた前記透明基体の一例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of the transparent substrate provided with the lens portion constituting the photoelectric conversion device according to the present invention. 第2の実施の形態による、本発明に基づく光情報処理装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the optical information processing apparatus based on this invention by 2nd Embodiment. 従来例による、光配線システムの一例の概略断面図である。It is a schematic sectional drawing of an example of the optical wiring system by a prior art example. 同、光電変換装置の製造方法を工程順に示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of a photoelectric conversion apparatus similarly to process order.

符号の説明Explanation of symbols

1…素子基体、2…光電変換素子、2a…発光素子、2b…受光素子、3…補強材、
4、9…アライメントマーク、5…光出射面又は光入斜面、6…レンズ部、
7…透明基体、8…ランド面、10…光電変換装置、11…光情報処理装置、
12…光導波路、13…駆動素子、14…インターポーザー、15…はんだ、
16…貫通電極、17…プリント配線板、18a、18b…クラッド、19…コア層、
20…レンズ部材
DESCRIPTION OF SYMBOLS 1 ... Element base | substrate, 2 ... Photoelectric conversion element, 2a ... Light emitting element, 2b ... Light receiving element, 3 ... Reinforcing material,
4, 9 ... alignment mark, 5 ... light exit surface or light incident slope, 6 ... lens part,
7 ... Transparent substrate, 8 ... Land surface, 10 ... Photoelectric conversion device, 11 ... Optical information processing device,
12 ... Optical waveguide, 13 ... Drive element, 14 ... Interposer, 15 ... Solder,
16 ... Penetration electrode, 17 ... Printed wiring board, 18a, 18b ... Cladding, 19 ... Core layer,
20 ... Lens member

Claims (11)

光出射面又は光入斜面が露出するように素子基体に設けられた光電変換素子と、前記光電変換素子に対応したレンズ部が設けられた単一のレンズ基体とからなり、前記光出射面又は光入斜面の側において前記素子基体に前記レンズ基体が直接接合されている、光電変換装置。   A photoelectric conversion element provided on the element base so that a light emission surface or a light incident slope is exposed, and a single lens base provided with a lens portion corresponding to the photoelectric conversion element, the light emission surface or A photoelectric conversion device in which the lens base is directly bonded to the element base on the light incident slope side. 前記レンズ基体において前記レンズ部以外に存在するランド面のレベル位置が、前記レンズ部の最上面位置より高い、請求項1に記載した光電変換装置。   The photoelectric conversion device according to claim 1, wherein a level position of a land surface other than the lens unit in the lens base is higher than a top surface position of the lens unit. 前記素子基体及び前記レンズ基体のうち少なくとも前記素子基体に、前記光電変換素子と前記レンズ部との光軸合わせ用のアライメントマークが設けられている、請求項1に記載した光電変換装置。   The photoelectric conversion apparatus according to claim 1, wherein an alignment mark for aligning an optical axis between the photoelectric conversion element and the lens unit is provided on at least the element base of the element base and the lens base. 光出射面又は光入斜面が露出するように光電変換素子を素子基体に形成する工程と、単一のレンズ基体に前記光電変換素子に対応したレンズ部を設ける工程と、前記光出射面又は光入斜面の側において前記素子基体に前記レンズ基体を直接接合する工程とを有する、光電変換装置の製造方法。   Forming a photoelectric conversion element on the element base so that the light exit surface or the light incident slope is exposed; providing a lens portion corresponding to the photoelectric conversion element on a single lens base; and the light exit surface or light And a step of directly bonding the lens base to the element base on the entrance slope side. 透明基体に予め前記レンズ部を形成し、この透明基体を前記レンズ基体として前記素子基体に直接貼り付ける、請求項4に記載した光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to claim 4, wherein the lens portion is formed in advance on a transparent substrate, and the transparent substrate is directly attached to the element substrate as the lens substrate. 前記素子基体に前記レンズ基体としての透明基体を直接貼り付けた後、前記光電変換素子に対応した位置において前記透明基体に前記レンズ部を形成する、請求項4に記載した光電変換装置の製造方法。   The manufacturing method of the photoelectric conversion device according to claim 4, wherein after the transparent base as the lens base is directly attached to the element base, the lens portion is formed on the transparent base at a position corresponding to the photoelectric conversion element. . 前記光電変換素子を設けた前記素子基体を素子形成面とは反対側から部分的に除去して前記光出射面又は光入斜面を露出させる、請求項4に記載した光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to claim 4, wherein the element base provided with the photoelectric conversion element is partially removed from a side opposite to an element formation surface to expose the light emitting surface or the light incident slope. 前記レンズ基体において前記レンズ部以外の領域に、前記レンズ部の最上面位置より高いランド面を形成する、請求項4に記載した光電変換装置の製造方法。   The manufacturing method of the photoelectric conversion device according to claim 4, wherein a land surface higher than an uppermost surface position of the lens portion is formed in a region other than the lens portion in the lens base. 前記素子基体及び前記レンズ基体のうち少なくとも前記素子基体に、前記光電変換素子と前記レンズ部との光軸合わせ用のアライメントマークを設ける、請求項4に記載した光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to claim 4, wherein an alignment mark for aligning an optical axis between the photoelectric conversion element and the lens portion is provided on at least the element base of the element base and the lens base. 請求項1〜3のいずれか1項に記載した光電変換装置と、光導波部とからなる、光導波モジュール。   An optical waveguide module comprising the photoelectric conversion device according to claim 1 and an optical waveguide unit. 請求項1〜3のいずれか1項に記載した光電変換装置と、光導波部と、前記光電変換素子を駆動する駆動素子とからなる、光情報処理装置。   An optical information processing apparatus comprising the photoelectric conversion device according to claim 1, an optical waveguide unit, and a drive element that drives the photoelectric conversion element.
JP2005052373A 2005-02-28 2005-02-28 PHOTOELECTRIC CONVERSION DEVICE AND ITS MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, AND OPTICAL INFORMATION PROCESSING DEVICE Expired - Fee Related JP4655674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005052373A JP4655674B2 (en) 2005-02-28 2005-02-28 PHOTOELECTRIC CONVERSION DEVICE AND ITS MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, AND OPTICAL INFORMATION PROCESSING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005052373A JP4655674B2 (en) 2005-02-28 2005-02-28 PHOTOELECTRIC CONVERSION DEVICE AND ITS MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, AND OPTICAL INFORMATION PROCESSING DEVICE

Publications (2)

Publication Number Publication Date
JP2006237428A true JP2006237428A (en) 2006-09-07
JP4655674B2 JP4655674B2 (en) 2011-03-23

Family

ID=37044722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052373A Expired - Fee Related JP4655674B2 (en) 2005-02-28 2005-02-28 PHOTOELECTRIC CONVERSION DEVICE AND ITS MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, AND OPTICAL INFORMATION PROCESSING DEVICE

Country Status (1)

Country Link
JP (1) JP4655674B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141087A (en) * 2008-12-11 2010-06-24 Sony Corp Method of transferring element, element disposition substrate, device and method of manufacturing same
JP2014102399A (en) * 2012-11-20 2014-06-05 Fujitsu Ltd Optical module and method for manufacturing the same
US20160043268A1 (en) * 2014-08-06 2016-02-11 The Boeing Company Fabrication of Sensor Chip Assemblies with Microoptics Elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026452A (en) * 2000-07-12 2002-01-25 Toyota Central Res & Dev Lab Inc Surface-emitting light source, method of manufacturing thereof, and light source for laser processing apparatus
JP2004361858A (en) * 2003-06-06 2004-12-24 Sharp Corp Optical waveguide with micro lens and its manufacturing method
JP2005043441A (en) * 2003-07-23 2005-02-17 Ricoh Co Ltd Method for manufacturing microlens, base plate with microlens, beam shaping optical element and optical pickup
JP2005286116A (en) * 2004-03-30 2005-10-13 Canon Inc Light emitting device, photoelectric fusion wiring board employing same and optical waveguiding unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026452A (en) * 2000-07-12 2002-01-25 Toyota Central Res & Dev Lab Inc Surface-emitting light source, method of manufacturing thereof, and light source for laser processing apparatus
JP2004361858A (en) * 2003-06-06 2004-12-24 Sharp Corp Optical waveguide with micro lens and its manufacturing method
JP2005043441A (en) * 2003-07-23 2005-02-17 Ricoh Co Ltd Method for manufacturing microlens, base plate with microlens, beam shaping optical element and optical pickup
JP2005286116A (en) * 2004-03-30 2005-10-13 Canon Inc Light emitting device, photoelectric fusion wiring board employing same and optical waveguiding unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141087A (en) * 2008-12-11 2010-06-24 Sony Corp Method of transferring element, element disposition substrate, device and method of manufacturing same
JP4640498B2 (en) * 2008-12-11 2011-03-02 ソニー株式会社 Element transfer method, element arrangement substrate, device and manufacturing method thereof
US8324029B2 (en) 2008-12-11 2012-12-04 Sony Corporation Method of transferring elements, element disposition substrate, device and method of manufacturing the same
JP2014102399A (en) * 2012-11-20 2014-06-05 Fujitsu Ltd Optical module and method for manufacturing the same
US20160043268A1 (en) * 2014-08-06 2016-02-11 The Boeing Company Fabrication of Sensor Chip Assemblies with Microoptics Elements
US10790407B2 (en) * 2014-08-06 2020-09-29 The Boeing Company Fabrication of sensor chip assemblies with microoptics elements

Also Published As

Publication number Publication date
JP4655674B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US7430127B2 (en) Electronic circuit board
KR100460703B1 (en) Electro-optical circuit board having unified optical transmission/receiving module and optical waveguide
JPWO2005045925A1 (en) Electronic device and manufacturing method thereof
JP5005168B2 (en) Optical waveguide device, manufacturing method thereof, optical information processing device, and electronic apparatus
JP2003215371A (en) Optical module and mounting method therefor
US10332937B2 (en) Semiconductor device having a protruding interposer edge face
TWI316617B (en)
JP2006258835A (en) Optical waveguide module, photoelectric converter and optical waveguide member
JP4246563B2 (en) Optical component support substrate and manufacturing method thereof, optical component support substrate with optical component and manufacturing method thereof
JP2005274962A (en) Optical waveguide wiring board, method for manufacturing same, original board for manufacturing same, and photoelectric hybrid substrate
JP2001166167A (en) Optical wiring layer and method for manufacturing the same as well as opto-electric wiring board and method for manufacturing the same as well as packaging substrate
JP2008041772A (en) Optical module
JP4655674B2 (en) PHOTOELECTRIC CONVERSION DEVICE AND ITS MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, AND OPTICAL INFORMATION PROCESSING DEVICE
JP2008158388A (en) Opto-electrical circuit board, optical module, and opto-electrical circuit system
JP4321267B2 (en) Photoelectric composite device, optical waveguide used in the device, and mounting structure of photoelectric composite device
JP2004198579A (en) Optical waveguide array and optical element surface mounted device
JP2006041004A (en) Device and element array for photoelectric conversion
JP2006310417A (en) Photoelectric converter, its manufacturing method and optical information processor
JP2007019133A (en) Photoelectric conversion device, its manufacturing method, and optical information process device
JP4476743B2 (en) Optical component support substrate and manufacturing method thereof
JP2005181610A (en) Electro-optical composite device, socket used therefor, and mounting structure thereof
JP2012088634A (en) Optical waveguide device and method for manufacturing the same
JP2006195197A (en) Manufacturing method of optical waveguide and die used in manufacturing the same
JP4349262B2 (en) Photoelectric composite device and electronic device using the same
JP2005099761A (en) Optical component supporting substrate, method of manufacturing the same, optical component supporting substrate with optical component, and method of manufacturing the same

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees