JP2006237228A - Substrate processing equipment and its method - Google Patents

Substrate processing equipment and its method Download PDF

Info

Publication number
JP2006237228A
JP2006237228A JP2005049045A JP2005049045A JP2006237228A JP 2006237228 A JP2006237228 A JP 2006237228A JP 2005049045 A JP2005049045 A JP 2005049045A JP 2005049045 A JP2005049045 A JP 2005049045A JP 2006237228 A JP2006237228 A JP 2006237228A
Authority
JP
Japan
Prior art keywords
specific gravity
processing
concentration
temperature
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049045A
Other languages
Japanese (ja)
Other versions
JP4429189B2 (en
Inventor
Hiroaki Takahashi
弘明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2005049045A priority Critical patent/JP4429189B2/en
Priority to US11/360,946 priority patent/US20060188412A1/en
Publication of JP2006237228A publication Critical patent/JP2006237228A/en
Priority to US12/401,697 priority patent/US7883635B2/en
Application granted granted Critical
Publication of JP4429189B2 publication Critical patent/JP4429189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Weting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a converted concentration as an absolute value and to reduce the manhour required for adjustment by setting references. <P>SOLUTION: Processing liquid is stored in a processing tank 1, a reference voltage is stored in a storage section 26 under that state, processing liquid stored in the processing tank 1 is heated to processing temperature, a processing voltage is detected under that state, and then actual specific gravity of the processing liquid is determined based on them at a concentration calculating section 27. The concentration calculating section 27 expresses the actual specific gravity in terms of specific gravity to obtain a converted actual specific gravity and then determine a converted concentration based on the specific gravity-concentration characteristics. Since the actual specific gravity represents a ratio to the reference voltage of the equipment, the converted concentration expressed in terms of temperature also becomes an absolute value. When the converted concentration is obtained for each equipment, it can be utilized for comparing the equipments and an absolute value understandable for the user can be obtained. Furthermore, a common reference can be obtained for respective equipments and manhour required for adjusting each equipment can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウエハ、液晶表示装置用ガラス基板、フォトマスク用ガラス基板等の基板(以下、単に「基板」と称する)を処理液で処理する基板処理装置及びその方法に関する。   The present invention relates to a substrate processing apparatus and a method for processing a substrate (hereinafter simply referred to as “substrate”) such as a semiconductor wafer, a glass substrate for a liquid crystal display device, and a glass substrate for a photomask with a processing liquid.

従来、燐酸を含む処理液を高温に加熱し(例えば、160℃)、その処理液で基板を処理する際に濃度を確認するためには燐酸濃度計を使う必要があるが、その濃度計自体が高価であるという問題や、濃度計で測定するには、その仕様で定められた測定温度(例えば、25℃)にまで処理液を冷ます必要があってリアルタイムでの計測ができないという問題がある。   Conventionally, it is necessary to use a phosphoric acid concentration meter in order to check the concentration when a processing solution containing phosphoric acid is heated to a high temperature (for example, 160 ° C.) and the substrate is processed with the processing solution. The problem is that it is expensive, and in order to measure with a densitometer, it is necessary to cool the processing liquid to the measurement temperature (for example, 25 ° C.) determined by the specification, and real-time measurement cannot be performed. is there.

上記の問題を解決する装置として、濃度測定のために、窒素ガス供給部と、レギュレータと、供給管と、圧力検出部とを備えているものが挙げられる(例えば、特許文献1参照)。この装置は、処理槽の所定深さに供給管の検出端を配置した状態で、窒素ガス供給部から窒素ガスを一定流量で供給し、このときの圧力を圧力検出部で検出し、圧力に応じた出力信号(電圧)として出力する。このようにして検出された圧力は、処理槽内における所定深さの圧力であり、この圧力と処理液の比重との間には相関関係がある。そして、検出した比重に基づいて処理液の濃度を求め、濃度を制御する等の処理を行っている。
特開平11−219931号公報(段落番号「0040」〜「0050」、図2)
As an apparatus that solves the above-described problem, there is an apparatus that includes a nitrogen gas supply unit, a regulator, a supply pipe, and a pressure detection unit for concentration measurement (see, for example, Patent Document 1). This apparatus supplies nitrogen gas at a constant flow rate from the nitrogen gas supply unit with the detection end of the supply pipe arranged at a predetermined depth in the treatment tank, and detects the pressure at this time by the pressure detection unit. Output as a corresponding output signal (voltage). The pressure detected in this way is a pressure at a predetermined depth in the treatment tank, and there is a correlation between this pressure and the specific gravity of the treatment liquid. And the process of calculating | requiring the density | concentration of a process liquid based on the detected specific gravity, and controlling a density | concentration is performed.
Japanese Patent Laid-Open No. 11-219931 (paragraph numbers “0040” to “0050”, FIG. 2)

しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
従来の装置は、供給管の検出端位置が僅かに変動しても検出される圧力が変動する。したがって、供給管の高さを調整するごとに圧力が変わり、また、その圧力も、同じ構造の装置であっても装置間で差異があるので、検出された圧力が装置だけの固有の意味合いしか持たない。そのため、同じ構造の他の装置との比較等に圧力を利用することができず、またユーザにとっても検出された圧力、つまり電圧の意味が分かりにくいものとなっている。さらに、装置の処理条件を調整する際に、装置ごとに独自の調整を行う必要があって、工数が多くなるという問題もある。
However, the conventional example having such a configuration has the following problems.
In the conventional apparatus, the detected pressure fluctuates even if the detection end position of the supply pipe fluctuates slightly. Therefore, the pressure changes each time the height of the supply pipe is adjusted, and there is a difference between the devices even if the devices have the same structure. do not have. Therefore, the pressure cannot be used for comparison with other devices having the same structure, and the detected pressure, that is, the meaning of the voltage is difficult to understand for the user. Furthermore, when adjusting the processing conditions of the apparatus, it is necessary to make an independent adjustment for each apparatus, resulting in a problem that man-hours increase.

本発明は、このような事情に鑑みてなされたものであって、基準を設定することにより、絶対的な値としての換算濃度を得ることができるとともに、調整工数を低減できる基板処理装置及びその方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and by setting a reference, it is possible to obtain a converted concentration as an absolute value, and a substrate processing apparatus capable of reducing adjustment man-hours and its It aims to provide a method.

本発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、薬液と希釈液とを混合してなる処理液によって基板に対して処理を行う基板処理装置において、処理液を貯留する処理槽と、処理液を加熱する加熱手段と、前記処理槽内の所定深さに検出端を有し、一定流量の気体を供給する供給管と、前記供給管内の圧力を検出し、圧力に応じた電圧を出力する圧力検出手段と、基準温度の基準液を前記処理槽に貯留した状態で、前記圧力検出手段からの電圧を基準電圧として記憶する記憶手段と、前記加熱手段により前記処理槽に貯留した処理液を処理温度にした状態で、前記圧力検出手段からの電圧を処理電圧とし、この処理電圧と前記記憶手段の基準電圧とに基づいて処理液の実比重を求める実比重算出手段と、前記実比重を、処理液の比重−濃度特性を測定した時の測定温度における比重に換算して換算実比重を求める換算手段と、前記換算実比重と比重−濃度特性とに基づいて処理液の換算濃度を求める演算手段と、を備えていることを特徴とするものである。
In order to achieve such an object, the present invention has the following configuration.
That is, the invention according to claim 1 is a substrate processing apparatus that performs processing on a substrate with a processing liquid obtained by mixing a chemical solution and a diluent, and heats the processing liquid that stores the processing liquid. A heating means, a supply pipe having a detection end at a predetermined depth in the processing tank, for supplying a gas at a constant flow rate, and a pressure detection means for detecting the pressure in the supply pipe and outputting a voltage corresponding to the pressure. And storage means for storing the voltage from the pressure detection means as a reference voltage in a state where the reference liquid at the reference temperature is stored in the processing tank, and the processing liquid stored in the processing tank by the heating means at the processing temperature. In this state, the voltage from the pressure detection means is used as a processing voltage, the actual specific gravity calculating means for obtaining the actual specific gravity of the processing liquid based on the processing voltage and the reference voltage of the storage means, and the actual specific gravity is used as the processing liquid. Specific gravity-concentration characteristics of Conversion means for obtaining a converted actual specific gravity by converting to a specific gravity at the measurement temperature at the time, and a calculation means for obtaining an converted concentration of the treatment liquid based on the converted actual specific gravity and the specific gravity-concentration characteristic. It is what.

[作用・効果]請求項1に記載の発明によれば、処理に先立って、基準温度の基準液を処理槽に貯留し、この状態で圧力検出手段から出力される電圧を基準電圧として記憶手段に記憶する。次に、処理槽に貯留した処理液を加熱手段で加熱し、この状態での電圧を処理電圧とし、この処理電圧と基準電圧とに基づいて実比重算出手段が処理液の実比重を求める。実比重は、この装置における基準電圧に対する比率を表すので、絶対的な意味をもち、各装置で基準電圧を測定すれば装置間における比較に利用できる。換算手段は、この実比重を、測定温度における比重に換算して換算実比重を求める。換算実比重は、比重−濃度特性を測定した時の処理液の測定温度に実比重を換算した場合の値を換算値である。演算手段は、換算実比重と比重−濃度特性とに基づき、処理液を測定温度にまで冷却したと想定した場合の換算濃度を求める。したがって、実比重が装置の基準電圧に対する比率を表すので、これに基づき温度換算されて得られた換算濃度も絶対的な値となる。その結果、各装置で換算濃度を求めれば装置間の比較に利用できるとともに、ユーザにとっても理解しやすい絶対的なものとすることができる。また、各装置で共通の基準を得ることができるので、各装置の調整工数を低減することができる。   [Operation / Effect] According to the first aspect of the present invention, prior to the treatment, the reference liquid at the reference temperature is stored in the treatment tank, and the voltage output from the pressure detection means in this state is stored as the reference voltage. To remember. Next, the processing liquid stored in the processing tank is heated by the heating means, and the voltage in this state is used as the processing voltage, and the actual specific gravity calculating means obtains the actual specific gravity of the processing liquid based on the processing voltage and the reference voltage. Since the actual specific gravity represents a ratio to the reference voltage in this device, it has an absolute meaning and can be used for comparison between devices if the reference voltage is measured in each device. The conversion means converts the actual specific gravity into the specific gravity at the measurement temperature to obtain the converted actual specific gravity. The converted actual specific gravity is a converted value obtained by converting the actual specific gravity into the measurement temperature of the treatment liquid when the specific gravity-concentration characteristic is measured. The computing means obtains the converted concentration when it is assumed that the processing liquid has been cooled to the measurement temperature based on the converted actual specific gravity and the specific gravity-concentration characteristics. Accordingly, since the actual specific gravity represents the ratio of the device to the reference voltage, the converted concentration obtained by converting the temperature based on this is also an absolute value. As a result, if the converted concentration is obtained by each device, it can be used for comparison between devices and can be made absolute for the user to easily understand. In addition, since a common reference can be obtained for each device, the number of adjustment steps for each device can be reduced.

因みに、処理液の比重−濃度特性は、一般的にある測定温度でのデータが収集されているだけで、必ずしも処理液の処理温度におけるデータが存在しているわけではない。したがって、処理温度における処理液の実比重を測定温度における比重に換算することが必要となる。   Incidentally, the specific gravity-concentration characteristic of the processing liquid generally collects data at a certain measurement temperature, and does not necessarily have data on the processing temperature of the processing liquid. Therefore, it is necessary to convert the actual specific gravity of the treatment liquid at the treatment temperature into the specific gravity at the measurement temperature.

なお、上記基準液とは、例えば純水や蒸留水であり、上記基準温度とは、例えば25℃や25〜30℃である。また、処理液とは、例えば、燐酸を純水で希釈したものや、フッ化水素酸を純水で希釈したもの等が挙げられる。   The reference liquid is, for example, pure water or distilled water, and the reference temperature is, for example, 25 ° C. or 25-30 ° C. Examples of the treatment liquid include a solution obtained by diluting phosphoric acid with pure water, a solution obtained by diluting hydrofluoric acid with pure water, and the like.

また、本発明において、実比重算出手段により求められた実比重に対して、処理温度における処理液の実比重と、前記処理液を測定温度とした状態で比重計により測定して得られた測定比重との比率に応じて予め設定した係数を乗じることにより処理温度における換算実比重を求めることが好ましい(請求項2、請求項5)。処理温度の処理液の比重を測定した実比重と、この処理液を密閉容器に収容して測定温度にまで冷却し、このときに比重計で得られた測定比重との比率はほぼ一定になることが発明者による種々の実験により判明した。そこで、実比重を求めれば、予め設定した係数を乗ずることで換算実比重を求めることができる。   Further, in the present invention, with respect to the actual specific gravity obtained by the actual specific gravity calculating means, the actual specific gravity of the treatment liquid at the treatment temperature and the measurement obtained by measuring with a hydrometer in the state where the treatment liquid is at the measurement temperature. It is preferable to obtain the converted actual specific gravity at the processing temperature by multiplying a coefficient set in advance according to the ratio with the specific gravity (claims 2 and 5). The ratio between the actual specific gravity obtained by measuring the specific gravity of the treatment liquid at the treatment temperature and the measurement specific gravity obtained by the hydrometer at this time is almost constant, while the treatment liquid is contained in a sealed container and cooled to the measurement temperature. This has been found by various experiments by the inventors. Therefore, if the actual specific gravity is obtained, the converted actual specific gravity can be obtained by multiplying by a preset coefficient.

また、本発明において、前記処理温度は、140〜170℃の範囲であることが好ましい(請求項3)。この温度範囲では、処理温度における処理液の比重(実比重)と、処理液を測定温度にしたときの比重(測定比重)の比率がほぼ一定の値となるので、これらの温度範囲では一つの係数で換算ができる。   Moreover, in this invention, it is preferable that the said processing temperature is the range of 140-170 degreeC (Claim 3). In this temperature range, the ratio of the specific gravity (actual specific gravity) of the treatment liquid at the treatment temperature and the specific gravity (measurement specific gravity) when the treatment liquid is brought to the measurement temperature is a substantially constant value. Conversion is possible with a coefficient.

なお、上記の温度範囲外であれば、その範囲内における係数を予め求めておき、処理液の温度に応じた係数を用いてもよい。   If it is outside the above temperature range, a coefficient within the range may be obtained in advance, and a coefficient corresponding to the temperature of the treatment liquid may be used.

また、請求項4に記載の発明は、薬液と希釈液とを混合してなる処理液によって基板に対して処理を行う基板処理方法において、処理に先立って基準温度の基準液を処理槽に貯留した状態で、処理槽内の所定深さにおける圧力に応じて圧力検出手段から得られた基準電圧と、処理槽に貯留した処理液を処理温度にした状態で、圧力検出手段から得られた処理電圧とに基づいて処理液の実比重を求める過程と、前記実比重を、処理液の比重−濃度特性を測定した時の測定温度における比重に換算して換算実比重を求める過程と、前記換算実比重と比重−濃度特性とに基づいて処理液の換算濃度を求める過程とを備え、前記換算濃度に基づいて処理液の調整を行うことを特徴とするものである。   According to a fourth aspect of the present invention, in the substrate processing method for processing a substrate with a processing liquid obtained by mixing a chemical solution and a diluting solution, a reference liquid at a reference temperature is stored in a processing tank prior to the processing. The processing obtained from the pressure detection means with the reference voltage obtained from the pressure detection means according to the pressure at a predetermined depth in the treatment tank and the treatment liquid stored in the treatment tank at the treatment temperature. The process of obtaining the actual specific gravity of the treatment liquid based on the voltage, the process of obtaining the converted actual specific gravity by converting the actual specific gravity into the specific gravity at the measurement temperature when the specific gravity-concentration characteristic of the treatment liquid is measured, and the conversion And a process of obtaining a converted concentration of the processing liquid based on the actual specific gravity and the specific gravity-concentration characteristic, and adjusting the processing liquid based on the converted concentration.

[作用・効果]請求項4に記載の発明によれば、処理に先立って、基準温度の基準液を処理槽に貯留した状態で圧力検出手段から出力された基準電圧と、処理液を処理温度に加熱した状態で圧力検出手段から出力される電圧を処理電圧とに基づいて処理液の実比重を求める。実比重は、この装置における基準電圧に対する比率を表すので、絶対的な意味をもち、装置間で基準電圧を測定すれば装置間における比較に利用できる。この実比重を、測定温度における比重に換算して換算実比重を求める、換算実比重と比重−濃度特性とに基づき、処理液を測定温度にまで冷却したと想定した場合の換算濃度を求め、この換算濃度に基づいて処理液の調整を行う。したがって、実比重が装置の基準電圧に対する比率を表すので、これに基づき温度換算されて得られた換算濃度も絶対的な値となる。その結果、各装置で換算濃度を求めれば装置間の比較に利用できるとともに、ユーザにとっても理解しやすい絶対的な値とすることができる。また、各装置で共通の基準を得ることができるので、各装置の調整工数を低減できる。   [Operation / Effect] According to the invention described in claim 4, prior to processing, the reference voltage output from the pressure detecting means in a state where the reference liquid at the reference temperature is stored in the processing tank, and the processing liquid is processed at the processing temperature. The actual specific gravity of the processing liquid is obtained based on the voltage output from the pressure detection means in the state heated to the processing voltage. Since the actual specific gravity represents the ratio of the device to the reference voltage, it has an absolute meaning and can be used for comparison between devices if the reference voltage is measured between devices. This actual specific gravity is converted into the specific gravity at the measurement temperature to obtain the converted actual specific gravity. Based on the converted actual specific gravity and the specific gravity-concentration characteristics, the converted concentration when the processing liquid is assumed to be cooled to the measurement temperature is obtained. The treatment liquid is adjusted based on the converted concentration. Accordingly, since the actual specific gravity represents the ratio of the device to the reference voltage, the converted concentration obtained by converting the temperature based on this is also an absolute value. As a result, if the converted concentration is obtained for each device, it can be used for comparison between devices and can be an absolute value that is easy for the user to understand. In addition, since a common reference can be obtained for each device, the number of adjustment steps for each device can be reduced.

本発明に係る基板処理装置によれば、処理電圧と基準電圧とに基づいて実比重算出手段が処理液の実比重を求め、この実比重を、測定温度における比重に換算して換算実比重を求める。換算実比重は、比重−濃度特性を測定した時の処理液の測定温度に実比重を換算した場合の値を換算値であり、演算手段は換算実比重と比重−濃度特性とに基づき、処理液を測定温度にまで冷却したと想定した場合の換算濃度を求める。したがって、実比重が装置の基準電圧に対する比率を表すので、これに基づき温度換算されて得られた換算濃度も絶対的な値となる。その結果、各装置で換算濃度を求めれば装置間の比較に利用できるとともに、ユーザにとっても理解しやすい絶対的な値とすることができる。また、各装置で共通の基準を得られるので、各装置の調整工数を低減できる。   According to the substrate processing apparatus of the present invention, the actual specific gravity calculating means obtains the actual specific gravity of the processing liquid based on the processing voltage and the reference voltage, and the actual specific gravity is converted into the specific gravity at the measurement temperature to obtain the converted actual specific gravity. Ask. The converted actual specific gravity is a value obtained by converting the actual specific gravity to the measured temperature of the treatment liquid when the specific gravity-concentration characteristic is measured, and the calculation means is based on the converted actual specific gravity and the specific gravity-concentration characteristic. Calculate the equivalent concentration when the liquid is assumed to be cooled to the measurement temperature. Accordingly, since the actual specific gravity represents the ratio of the device to the reference voltage, the converted concentration obtained by converting the temperature based on this is also an absolute value. As a result, if the converted concentration is obtained by each device, it can be used for comparison between devices and can be an absolute value that is easy for the user to understand. In addition, since a common standard can be obtained for each device, the number of adjustment steps for each device can be reduced.

以下、図面を参照して本発明の一実施例を説明する。
図1は本発明の実施例に係る基板処理装置の概略構成を示すブロック図である。ここでは薬液としての燐酸(H3PO4)と、希釈液としての純水とを混合して得られた処理液を加熱し、この処理液中に基板(例えば半導体ウエハ)を浸漬してエッチング処理する装置を例に採って説明する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a substrate processing apparatus according to an embodiment of the present invention. Here, a processing solution obtained by mixing phosphoric acid (H 3 PO 4 ) as a chemical solution and pure water as a diluting solution is heated, and a substrate (for example, a semiconductor wafer) is immersed in the processing solution for etching. The processing apparatus will be described as an example.

この基板処理装置は、処理液を貯留する処理槽1を備えている。この処理槽1の周囲には、処理槽1から溢れ出た処理液を回収するための回収槽2が設けられている。回収槽2で回収された処理液は循環系3を介して処理槽1に戻される。この循環系3は、回収槽2と処理槽1の底部に設けられた噴出管1aとを連通接続する配管4に、送液用のポンプ5、インラインヒータ6、およびフィルタ7を介在して構成されている。インラインヒータ6は、処理槽1に戻される処理液を循環系3において加熱するためのものである。フィルタ7は、処理槽1に戻される処理液からパーティクルを除去するために設けられている。処理槽1と回収槽2の外周囲には、各槽内の処理液を加熱するための槽用加熱器8が設けられている。インラインヒータ6および槽用加熱器8は、本発明における加熱手段に相当する。   The substrate processing apparatus includes a processing tank 1 for storing a processing liquid. Around the processing tank 1, a recovery tank 2 for recovering the processing liquid overflowing from the processing tank 1 is provided. The treatment liquid collected in the collection tank 2 is returned to the treatment tank 1 through the circulation system 3. The circulation system 3 is configured by interposing a pump 4 for feeding a liquid, an in-line heater 6 and a filter 7 in a pipe 4 that communicates and connects a recovery tank 2 and an ejection pipe 1 a provided at the bottom of the processing tank 1. Has been. The in-line heater 6 is for heating the processing liquid returned to the processing tank 1 in the circulation system 3. The filter 7 is provided to remove particles from the processing liquid returned to the processing tank 1. A tank heater 8 for heating the processing liquid in each tank is provided around the outer periphery of the processing tank 1 and the recovery tank 2. The in-line heater 6 and the tank heater 8 correspond to the heating means in the present invention.

処理槽1の上部には開閉自在のカバー9が設けられている。複数枚の基板Wは昇降自在の保持アーム10に等間隔に直立姿勢で保持されている。保持アーム10が槽外にあるとき、カバー9は閉じられている。基板W群を保持アーム10に保持して処理槽1内に投入するとき、カバー9が開けられる。基板W群が処理槽1内に投入されてエッチング処理を施している間、カバー9は再び閉じられる。   An openable / closable cover 9 is provided on the upper portion of the processing tank 1. The plurality of substrates W are held in an upright posture at equal intervals on a vertically movable holding arm 10. When the holding arm 10 is outside the tank, the cover 9 is closed. When the substrate W group is held by the holding arm 10 and put into the processing tank 1, the cover 9 is opened. The cover 9 is closed again while the substrate W group is put into the processing tank 1 and is subjected to the etching process.

回収槽2には燐酸を供給する燐酸供給部11が配設されている。燐酸供給部11は、回収槽2の上部に配設されたノズル12と、このノズル12を燐酸供給源に連通接続する配管13と、この配管13に介在する流量調整弁14とを備えている。また、処理槽1には純水を補充するための純水補充部15が配設されている。純水補充部15は、処理槽1の縁近傍に配設されたノズル16と、このノズル16を純水供給源に連通接続する配管17と、この配管17に介在する流量調整弁18とを備えている。   The collection tank 2 is provided with a phosphoric acid supply unit 11 for supplying phosphoric acid. The phosphoric acid supply unit 11 includes a nozzle 12 disposed in the upper part of the recovery tank 2, a pipe 13 that connects the nozzle 12 to a phosphoric acid supply source, and a flow rate adjustment valve 14 that is interposed in the pipe 13. . The processing tank 1 is provided with a pure water replenishment unit 15 for replenishing pure water. The pure water replenishing unit 15 includes a nozzle 16 disposed in the vicinity of the edge of the processing tank 1, a pipe 17 that connects the nozzle 16 to a pure water supply source, and a flow rate adjustment valve 18 that is interposed in the pipe 17. I have.

処理槽1内には、処理液の温度を検出する温度センサ19が設けられている。この温度センサ19の検出信号は温度制御部20に与えられる。温度制御部20は、この検出信号に基づいてインラインヒータ6をPID(比例・積分・微分)制御するとともに、槽用加熱器8をON/OFF制御する。   A temperature sensor 19 for detecting the temperature of the processing liquid is provided in the processing tank 1. The detection signal of the temperature sensor 19 is given to the temperature control unit 20. The temperature control unit 20 performs PID (proportional / integral / differential) control of the in-line heater 6 based on this detection signal, and ON / OFF control of the tank heater 8.

さらに処理槽1には処理液の濃度を検出する濃度検出装置21が付設されている。この濃度検出装置21は、処理液中の燐酸濃度と燐酸溶液の比重との間に相関関係があることに着目して、燐酸を含む処理液の比重を実質的に検出することにより、燐酸を含む処理液の濃度を検出するものである。また、燐酸を含む処理液の比重は、処理槽1内の所定深さにおける圧力と相関関係をもつので、濃度検出装置21は、処理槽1内の所定深さに検出端を有し、この検出端に付与される処理液の圧力を検出することによって、燐酸溶液の濃度を検出している。以下に、濃度検出装置21について具体的な構成を説明する。   Further, the treatment tank 1 is provided with a concentration detection device 21 for detecting the concentration of the treatment liquid. This concentration detection device 21 pays attention to the fact that there is a correlation between the concentration of phosphoric acid in the treatment liquid and the specific gravity of the phosphoric acid solution, and substantially detects the specific gravity of the treatment liquid containing phosphoric acid to thereby remove phosphoric acid. The concentration of the processing liquid contained is detected. Further, since the specific gravity of the treatment liquid containing phosphoric acid has a correlation with the pressure at a predetermined depth in the treatment tank 1, the concentration detection device 21 has a detection end at a predetermined depth in the treatment tank 1. The concentration of the phosphoric acid solution is detected by detecting the pressure of the treatment liquid applied to the detection end. Hereinafter, a specific configuration of the concentration detection device 21 will be described.

濃度検出装置21は、供給管22と、レギュレータ23と、圧力検出部24と、記憶部26と、濃度算出部27と、表示部28と、濃度制御部29を備えている。供給管22は、処理液に耐性を有するフッ素樹脂等で形成されており、その下端部である検出端は処理槽1内の所定深さに位置するように設けられている。レギュレータ23は、窒素ガス供給源からの窒素ガスを一定流量にして供給管22に供給する。すると、定常状態においては、窒素ガスの放出圧力は、処理槽1の液面から所定深さにおける液圧にほぼ等しいものとみなすことができる。圧力検出部24は、この供給管22内の窒素ガス圧力を測定する圧力センサを備えている。この圧力検出部24からは、例えば、0〜2.5[V]の電圧が出力される。この電圧は、処理槽1の液面からの所定深さにおける液圧であるとみなすことができる。   The concentration detection device 21 includes a supply pipe 22, a regulator 23, a pressure detection unit 24, a storage unit 26, a concentration calculation unit 27, a display unit 28, and a concentration control unit 29. The supply pipe 22 is formed of a fluororesin or the like that is resistant to the processing liquid, and a detection end that is a lower end portion thereof is provided at a predetermined depth in the processing tank 1. The regulator 23 supplies nitrogen gas from a nitrogen gas supply source to the supply pipe 22 at a constant flow rate. Then, in a steady state, the discharge pressure of nitrogen gas can be regarded as substantially equal to the liquid pressure at a predetermined depth from the liquid surface of the processing tank 1. The pressure detection unit 24 includes a pressure sensor that measures the nitrogen gas pressure in the supply pipe 22. For example, a voltage of 0 to 2.5 [V] is output from the pressure detection unit 24. This voltage can be regarded as a liquid pressure at a predetermined depth from the liquid surface of the treatment tank 1.

なお、圧力検出部24が本発明における圧力検出手段に相当する。   The pressure detector 24 corresponds to the pressure detector in the present invention.

濃度算出部27は、圧力検出部24からの圧力に応じた電圧を、後述する基準電圧VDIWとして予め記憶部26に記憶させるとともに、処理時に基準電圧VDIWと処理電圧VSOLとに基づいて処理液の実比重を求める。さらに、この実比重に「係数」を乗じて換算実比重を求める。そして、予め記憶部26に記憶してある比重−濃度特性を表した検量線データを参照して、換算実比重に基づいて処理槽1内の処理液の燐酸濃度(換算濃度)を求める。表示部28は、濃度算出部27の制御の下、実比重、換算実比重、換算濃度等を逐次表示する。詳細は後述するが、換算実比重は、比重−濃度特性を測定した時の処理液の測定温度に実比重を換算した場合の値を換算値であり、換算濃度は、比重−濃度特性が収集された時の測定温度における処理温度の濃度換算値である。比重−濃度特性としては、検量線データに代えて、その特性を表す数式であってもよい。 The concentration calculation unit 27 stores a voltage corresponding to the pressure from the pressure detection unit 24 in the storage unit 26 in advance as a reference voltage V DIW described later, and based on the reference voltage V DIW and the processing voltage V SOL during processing. Obtain the actual specific gravity of the processing solution. Further, the actual specific gravity is multiplied by a “coefficient” to obtain a converted actual specific gravity. Then, referring to the calibration curve data representing the specific gravity-concentration characteristics stored in advance in the storage unit 26, the phosphoric acid concentration (converted concentration) of the processing liquid in the processing tank 1 is obtained based on the converted actual specific gravity. The display unit 28 sequentially displays the actual specific gravity, the converted actual specific gravity, the converted concentration, and the like under the control of the concentration calculating unit 27. Although the details will be described later, the converted actual specific gravity is a value obtained by converting the actual specific gravity to the measured temperature of the treatment liquid when the specific gravity-concentration characteristic is measured, and the converted concentration is collected by the specific gravity-concentration characteristic. It is the concentration conversion value of the processing temperature at the measured temperature when The specific gravity-concentration characteristic may be a mathematical expression representing the characteristic instead of the calibration curve data.

なお、記憶部26が本発明における記憶手段に相当し、濃度演算部27が本発明における実比重算出手段及び換算手段並びに演算手段に相当する。   The storage unit 26 corresponds to the storage unit in the present invention, and the concentration calculation unit 27 corresponds to the actual specific gravity calculation unit, the conversion unit, and the calculation unit in the present invention.

具体的な濃度算出手法は、特開平11−219931号公報に詳述されているが、簡単に説明すると以下のようなものである。
すなわち、圧力検出部24からの検出信号(電圧)と液圧とは所定の関数関係を有し、液圧は、液面から供給管22の検出端までの距離(深さ)と、処理液の比重との積に比例する値に大気圧を加えたものとしても表すことができる。したがって、検出端における液圧は、処理液の燐酸濃度と、検出端の深さとを変数とする関数で表現することができる。このため濃度及び深さは、圧力検出部24が出力した電圧との間に一定の関係が成り立つ。この関係から、所定深さに対して濃度と電圧との関係を予め求めておくことにより、圧力検出部24からの電圧に基づいて処理液の燐酸濃度を求めることができる。
A specific concentration calculation method is described in detail in Japanese Patent Application Laid-Open No. 11-219931. The following is a brief description.
That is, the detection signal (voltage) from the pressure detection unit 24 and the fluid pressure have a predetermined functional relationship, and the fluid pressure is the distance (depth) from the fluid surface to the detection end of the supply pipe 22 and the processing liquid. It can also be expressed as a value obtained by adding atmospheric pressure to a value proportional to the product of the specific gravity of. Therefore, the liquid pressure at the detection end can be expressed by a function having the phosphoric acid concentration of the treatment liquid and the depth of the detection end as variables. For this reason, the concentration and depth have a certain relationship with the voltage output from the pressure detection unit 24. From this relationship, the phosphoric acid concentration of the treatment liquid can be obtained based on the voltage from the pressure detection unit 24 by obtaining the relationship between the concentration and the voltage in advance with respect to the predetermined depth.

濃度検出装置21で得られた処理液の濃度データ(後述する換算濃度)は濃度算出部27から濃度制御部29に与えられる。濃度制御部29は、処理液の燐酸検出濃度が処理液の設定温度に対応した沸点濃度よりも少し高くなるように、純水の流量調整弁18を操作して純水の補充量を調整する。具体的には、濃度制御部29は、処理液の燐酸検出濃度に基づいてPID(比例・積分・微分)制御によって流量調整弁18を操作する。   Concentration data (converted concentration, which will be described later) of the processing liquid obtained by the concentration detection device 21 is given from the concentration calculation unit 27 to the concentration control unit 29. The concentration control unit 29 operates the pure water flow rate adjustment valve 18 to adjust the replenishment amount of pure water so that the phosphoric acid detection concentration of the processing liquid is slightly higher than the boiling point concentration corresponding to the set temperature of the processing liquid. . Specifically, the concentration control unit 29 operates the flow rate adjustment valve 18 by PID (proportional / integral / derivative) control based on the detected phosphoric acid concentration of the processing liquid.

主制御部31は、本基板処理装置の全体を管理するために設けられている。具体的には、主制御部31は、温度制御部20に対する処理液の設定温度の指令、濃度制御部29に対する処理液の目標濃度の指令、および燐酸の流量調整弁14の操作指令などを与える。   The main controller 31 is provided to manage the entire substrate processing apparatus. Specifically, the main control unit 31 gives a command for the set temperature of the processing liquid to the temperature control unit 20, a command for the target concentration of the processing liquid to the concentration control unit 29, an operation command for the flow rate adjustment valve 14 of phosphoric acid, and the like. .

上述した「基準電圧」及び「処理電圧」等について、図2〜図6を参照して説明する。なお、図2は基準電圧の測定を模式的に示した図であり、図3は処理電圧の測定を模式的に示した図である。また、図4は基準電圧の測定手順を示すフローチャートであり、図5は処理時の測定手順を示すフローチャートである。また、図6は、換算濃度を求める手順を模式的に示した図である。   The above-described “reference voltage” and “processing voltage” will be described with reference to FIGS. 2 is a diagram schematically showing measurement of the reference voltage, and FIG. 3 is a diagram schematically showing measurement of the processing voltage. 4 is a flowchart showing a procedure for measuring a reference voltage, and FIG. 5 is a flowchart showing a procedure for measuring at the time of processing. FIG. 6 is a diagram schematically showing a procedure for obtaining the converted concentration.

「基準電圧の測定」
実際に基板Wを処理する前に、次のようにして予め基準電圧を測定する。
まず、図2に示すように、処理槽1に基準温度の基準液を貯留する。基準温度とは、例えば、25℃であり、基準液とは、例えば、純水である。そして、後述する処理時における流量と同じ流量で純水が循環するように、ポンプ5を制御する(ステップS1)。なお、基準液として例えば蒸留水を採用してもよく、基準温度として例えば25〜30℃の範囲としてもよい。
“Measurement of Reference Voltage”
Before actually processing the substrate W, the reference voltage is measured in advance as follows.
First, as shown in FIG. 2, a reference solution having a reference temperature is stored in the processing tank 1. The reference temperature is, for example, 25 ° C., and the reference liquid is, for example, pure water. Then, the pump 5 is controlled so that pure water circulates at the same flow rate as that at the time of processing described later (step S1). For example, distilled water may be employed as the reference liquid, and the reference temperature may be in the range of 25 to 30 ° C., for example.

そして、圧力検出部24からの出力信号である電圧が安定するのを濃度算出部27が監視し(ステップS2)、安定したときの電圧を基準電圧VDIWとして記憶部26に書き込んで記憶する(ステップS3)。 Then, the concentration calculation unit 27 monitors that the voltage that is an output signal from the pressure detection unit 24 is stabilized (step S2), and the voltage at the time of stabilization is written and stored in the storage unit 26 as the reference voltage V DIW ( Step S3).

なお、処理槽1の構造上、純水を単に貯留しているだけでは、純水が僅かずつ排出されてしまい、液面が徐々に低下する。供給管22の検出端における圧力は、液面が変動すると変動することになるので、循環系3により上記のように純水を循環させることが好ましい。このようにすることにより、液面を一定に維持して供給管22の検出端が位置する深さを一定にできるので、基準液と処理液について同じ条件で圧力検出を行うことができる。したがって、両圧力の検出条件を揃えて後述する実比重の精度を高めることができる。   In addition, on the structure of the processing tank 1, if pure water is simply stored, pure water is discharged little by little, and the liquid level gradually decreases. Since the pressure at the detection end of the supply pipe 22 fluctuates when the liquid level fluctuates, it is preferable to circulate pure water through the circulation system 3 as described above. By doing so, the depth at which the detection end of the supply pipe 22 is positioned can be made constant while maintaining the liquid level constant, so that pressure detection can be performed under the same conditions for the reference liquid and the processing liquid. Therefore, it is possible to improve the accuracy of the actual specific gravity described later by aligning the detection conditions for both pressures.

「処理時」
まず、図3に示すように、処理槽1に処理温度の処理液を貯留する。例えば、処理温度が160℃であり、処理液が燐酸と純水の混合液である。そして、処理時の循環流量で処理液が循環するようにポンプ5を制御する(ステップS10)。
"When processing"
First, as shown in FIG. 3, a treatment liquid having a treatment temperature is stored in the treatment tank 1. For example, the processing temperature is 160 ° C., and the processing liquid is a mixed liquid of phosphoric acid and pure water. Then, the pump 5 is controlled so that the treatment liquid circulates at the circulation flow rate during the treatment (step S10).

このとき、圧力検出部24からの電圧(処理電圧VSOL)を測定し(ステップS11)、記憶部26に記憶されている基準電圧VDIWで処理電圧VSOLを除する演算を行う(ステップS12)。この結果(=VSOL/VDIW)は、純水の比重が1[g/cm3]であることから実比重を表す。 At this time, the voltage (process voltage V SOL ) from the pressure detection unit 24 is measured (step S11), and an operation for dividing the process voltage V SOL by the reference voltage V DIW stored in the storage unit 26 is performed (step S12). ). This result (= V SOL / V DIW ) represents the actual specific gravity since the specific gravity of pure water is 1 [g / cm 3 ].

なお、異なる装置や同一装置の異なる処理槽1について、基準電圧VDIWを求めておくことにより、各装置や処理槽1における基準として利用できる。つまり、A槽において基準電圧VDIW=0.845[V]であり、B槽において基準電圧VDIW=0.830[V]であったとする。さらに、処理時における処理液の濃度に応じた比重が1.55[g/cm3]であったとする。このような場合には、A槽及びB槽では、処理時に調整の目標となる電圧は次のようになる。 In addition, it can utilize as a reference | standard in each apparatus and the processing tank 1 by calculating | requiring the reference voltage VDIW about the different processing tank 1 of a different apparatus or the same apparatus. That is, a reference voltage V DIW = 0.845 [V] in the tank A, and was the reference voltage V DIW = 0.830 [V] in the B tank. Furthermore, suppose that the specific gravity according to the density | concentration of the process liquid at the time of a process was 1.55 [g / cm < 3 >]. In such a case, in the tank A and the tank B, the voltage to be adjusted during processing is as follows.

A槽 1.55×0.845=1.309[V]
B槽 1.55×0.830=1.286[V]
Tank A 1.55 x 0.845 = 1.309 [V]
Tank B 1.55 × 0.830 = 1.286 [V]

上述したようにして求めた実比重は、処理液が処理温度の場合の比重に相当するものであるが、一般的に、処理液の比重−濃度特性は、所定の測定温度(例えば25℃)の条件でしかデータが収集されていない。したがって、処理温度の実比重と比重−濃度特性からでは正確な濃度を求めることができない。   The actual specific gravity obtained as described above corresponds to the specific gravity when the processing liquid is at the processing temperature. In general, the specific gravity-concentration characteristic of the processing liquid has a predetermined measurement temperature (for example, 25 ° C.). Data is collected only under the conditions. Therefore, an accurate concentration cannot be obtained from the actual specific gravity of the processing temperature and the specific gravity-concentration characteristics.

発明者は、処理液の温度を150℃、155℃、160℃とし、各温度における処理電圧VSOLを測定した。そして、各処理液を密閉容器に入れて測定温度(例えば25℃)にまで冷却し、単体の比重計を用いて測定温度における比重(測定比重)を測定した。すると、以下の表1に示すように、各温度における実比重(m1)と各測定比重(m2)の間には約1.084という共通の比率(k)があることを見出した。この比率(k)は、熱膨張によって生じるものである。したがって、上記の温度範囲を含む140〜170℃では、上記の比率(k)がほぼ成り立つ。 The inventor measured the treatment voltage V SOL at each temperature with the temperature of the treatment liquid being 150 ° C., 155 ° C., and 160 ° C. Then, each processing solution was put in a sealed container and cooled to a measurement temperature (for example, 25 ° C.), and the specific gravity (measurement specific gravity) at the measurement temperature was measured using a single specific gravity meter. Then, as shown in Table 1 below, it was found that there is a common ratio (k) of about 1.084 between the actual specific gravity (m1) and the measured specific gravity (m2) at each temperature. This ratio (k) is caused by thermal expansion. Therefore, the above ratio (k) is substantially established at 140 to 170 ° C. including the above temperature range.

Figure 2006237228
Figure 2006237228

そこで、上記の温度範囲においては、上述したようにステップS12で求められた実比重(m1)に対して比率k=1.084を乗ずることにより、処理温度の処理液を、測定温度における比重に換算して換算実比重を求める(ステップS13)。この換算実比重が求められると、図6のグラフに示すように、測定温度(25℃)で収集された比重−濃度特性から換算濃度を求める(ステップS14)。上述した濃度算出部27は、上述したステップS10〜S14の各処理によって換算濃度を求め、これを表示部28及び濃度制御部29に出力する。   Therefore, in the above temperature range, the processing liquid at the processing temperature is made to have a specific gravity at the measurement temperature by multiplying the actual specific gravity (m1) obtained in step S12 as described above by the ratio k = 1.084. The converted actual specific gravity is calculated (step S13). When the converted actual specific gravity is obtained, the converted concentration is obtained from the specific gravity-concentration characteristics collected at the measurement temperature (25 ° C.) as shown in the graph of FIG. 6 (step S14). The density calculation unit 27 described above obtains the converted density by the above-described processes of steps S <b> 10 to S <b> 14 and outputs this to the display unit 28 and the density control unit 29.

次に、図7を参照して、実際の処理時における動作について説明する。なお、図7は、処理時の手順を示すフローチャートである。   Next, operations during actual processing will be described with reference to FIG. FIG. 7 is a flowchart showing a procedure during processing.

ステップS20,S21
まず、燐酸の流量調整弁14が開けられて、回収槽2に燐酸が供給される。回収槽2に供給された燐酸は、循環系3を介して処理槽1に送られる間にインラインヒータ6によって加熱される。処理槽1に導入された燐酸は槽用加熱器8によっても加熱される。
Steps S20 and S21
First, the flow control valve 14 of phosphoric acid is opened, and phosphoric acid is supplied to the recovery tank 2. The phosphoric acid supplied to the recovery tank 2 is heated by the in-line heater 6 while being sent to the treatment tank 1 via the circulation system 3. The phosphoric acid introduced into the treatment tank 1 is also heated by the tank heater 8.

ステップS22,S23,S24
処理槽1内の燐酸の温度は、温度センサ19によって検出されて温度制御部20に与えられる。温度制御部20は、設定温度160°Cに対して±0.3°Cの範囲内で温度管理している。具体的には、液温度が159.7°C未満のときは、インラインヒータ6および槽用加熱器8による加熱を継続する。液温度が160.3°Cを超えるときは、インラインヒータ6および槽用加熱器8による加熱を停止して自然冷却によって液温度を下げる。液温度が159.7°Cから160.3°Cの範囲内に入ると次のステップS25に進む。
Steps S22, S23, S24
The temperature of phosphoric acid in the treatment tank 1 is detected by the temperature sensor 19 and given to the temperature control unit 20. The temperature control unit 20 performs temperature management within a range of ± 0.3 ° C. with respect to a set temperature of 160 ° C. Specifically, when the liquid temperature is less than 159.7 ° C., heating by the in-line heater 6 and the tank heater 8 is continued. When the liquid temperature exceeds 160.3 ° C., the heating by the in-line heater 6 and the tank heater 8 is stopped and the liquid temperature is lowered by natural cooling. When the liquid temperature falls within the range of 159.7 ° C. to 160.3 ° C., the process proceeds to the next step S25.

ステップS25
上述したステップS10〜S14のようにして、濃度検出装置21により処理槽1内の処理液の換算濃度が算出される。
Step S25
The converted concentration of the processing liquid in the processing tank 1 is calculated by the concentration detection device 21 as in steps S10 to S14 described above.

ステップS26
上記ステップS25のようにして換算濃度が濃度検出装置21によって逐次検出される。濃度制御部29は、この検出された換算濃度が予め設定された目標濃度になるように、PID制御により流量調整弁18を操作して処理槽1に純水を補充する。この目標濃度は、処理液の設定温度に対応した沸点濃度よりも少し高くなるよう設定されるのが好ましい。処理槽1内の処理液の検出濃度が目標濃度範囲を超える場合は純水の補充が継続される。一方、検出濃度が目標濃度範囲を下回る場合は、純水の補充が停止される。純水の補充が停止されると、処理液の加熱により処理液中の純水が蒸発して、処理液の濃度は自然に上昇する。
Step S26
The converted concentration is sequentially detected by the concentration detecting device 21 as in step S25. The concentration control unit 29 replenishes the processing tank 1 with pure water by operating the flow rate adjusting valve 18 by PID control so that the detected converted concentration becomes a preset target concentration. This target concentration is preferably set to be slightly higher than the boiling point concentration corresponding to the set temperature of the treatment liquid. When the detected concentration of the processing liquid in the processing tank 1 exceeds the target concentration range, the replenishment of pure water is continued. On the other hand, when the detected concentration falls below the target concentration range, the replenishment of pure water is stopped. When the replenishment of pure water is stopped, the pure water in the processing liquid evaporates due to the heating of the processing liquid, and the concentration of the processing liquid naturally increases.

ステップS27,S28,S29
処理槽1内の処理液が目標濃度範囲に入って安定すると、保持アーム10に保持された基板W群が処理槽1内に投入されて、基板W群のエッチング処理が始まる。予め定められた処理時間が経過するまで、ステップS21〜S26の温度制御および濃度制御が繰り返し行なわれる。処理時間が経過すると基板W群が処理槽1内から引き上げられて、次の処理槽へ移送される。
Steps S27, S28, S29
When the processing liquid in the processing tank 1 enters the target concentration range and is stabilized, the substrate W group held by the holding arm 10 is put into the processing tank 1 and the etching process of the substrate W group starts. Until the predetermined processing time elapses, the temperature control and concentration control in steps S21 to S26 are repeated. When the processing time elapses, the substrate W group is pulled up from the processing tank 1 and transferred to the next processing tank.

上述したように、処理に先立って、基準温度の基準液を処理槽1に貯留し、この状態で圧力検出部24から出力される電圧を基準電圧VDIWとして記憶部26に記憶する。次に、処理槽1に貯留した処理液を処理温度に加熱し、この状態での電圧を処理電圧VSOLとし、この処理電圧VSOLと基準電圧VDIWとに基づいて濃度算出部27が処理液の実比重(m1)を求める。実比重(m1)は、この装置における基準電圧VDIWに対する比率を表すので、絶対的な意味をもち、各装置で基準電圧を測定すれば装置間における比較に利用できる。濃度算出部27は、この実比重(m1)を、測定温度における比重に換算して換算実比重を求める。換算実比重は、比重−濃度特性を測定した時の処理液の測定温度に実比重を換算した場合の値を換算値である。濃度算出部27は、換算実比重と比重−濃度特性とに基づき、処理液を測定温度にまで冷却したと想定した場合の換算濃度を求める。したがって、実比重(m1)が装置の基準電圧VDIWに対する比率を表すので、これに基づき温度換算されて得られた換算濃度も絶対的な値となる。その結果、各装置で換算濃度を求めれば装置間の比較に利用できるとともに、ユーザにとっても理解しやすい絶対的なものにできる。また、各装置で共通の基準を得ることができるので、各装置の調整工数を低減できる。 As described above, prior to the treatment, the reference solution at the reference temperature is stored in the treatment tank 1, and the voltage output from the pressure detection unit 24 in this state is stored in the storage unit 26 as the reference voltage V DIW . Next, heat the process liquid stored in a treating tank 1 to the processing temperature, the voltage in this state as a treatment voltage V SOL, concentration calculator 27 based on the the treatment voltage V SOL and the reference voltage V DIW processing The actual specific gravity (m1) of the liquid is determined. The actual specific gravity (m1) represents a ratio with respect to the reference voltage V DIW in this device, and therefore has an absolute meaning. If the reference voltage is measured in each device, it can be used for comparison between devices. The concentration calculation unit 27 converts the actual specific gravity (m1) into a specific gravity at the measurement temperature to obtain a converted actual specific gravity. The converted actual specific gravity is a converted value obtained by converting the actual specific gravity into the measurement temperature of the treatment liquid when the specific gravity-concentration characteristic is measured. Based on the converted actual specific gravity and specific gravity-concentration characteristics, the concentration calculation unit 27 obtains a converted concentration when it is assumed that the processing liquid has been cooled to the measurement temperature. Therefore, since the actual specific gravity (m1) represents the ratio to the reference voltage V DIW of the apparatus, the converted concentration obtained by temperature conversion based on this is also an absolute value. As a result, if the converted concentration is obtained by each device, it can be used for comparison between devices and can be made absolute for the user to easily understand. In addition, since a common reference can be obtained for each device, the number of adjustment steps for each device can be reduced.

本発明は、上述した実施形態にのみ限定されるものではなく、以下のように変形実施が可能である。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上記の実施例では、燐酸を含む処理液を例に採って説明したが、硫酸溶液等の他の処理液であっても本発明を適用することができる。   (1) In the above embodiment, the treatment liquid containing phosphoric acid has been described as an example, but the present invention can be applied to other treatment liquids such as a sulfuric acid solution.

(2)上記の装置では、処理液の燐酸検出濃度が処理液の設定温度に対応した沸点濃度よりも少し高くなるように制御しているが、本発明はこのような制御に限定されるものではない。   (2) In the above apparatus, the phosphoric acid detection concentration of the treatment liquid is controlled to be slightly higher than the boiling point concentration corresponding to the set temperature of the treatment liquid, but the present invention is limited to such control. is not.

本発明の実施例に係る基板処理装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the substrate processing apparatus which concerns on the Example of this invention. 基準電圧の測定を模式的に示した図である。It is the figure which showed the measurement of the reference voltage typically. 処理電圧の測定を模式的に示した図である。It is the figure which showed the measurement of the process voltage typically. 基準電圧の測定手順を示すフローチャートである。It is a flowchart which shows the measurement procedure of a reference voltage. 処理電圧の測定手順を示すフローチャートである。It is a flowchart which shows the measurement procedure of a process voltage. 換算濃度を求める手順を模式的に示した図である。It is the figure which showed typically the procedure which calculates | requires conversion density | concentration. 処理時の手順を示すフローチャートである。It is a flowchart which shows the procedure at the time of a process.

符号の説明Explanation of symbols

1 … 処理槽
2 … 回収槽
6 … インラインヒータ(加熱手段)
8 … 槽用加熱器(加熱手段)
22 … 供給管
24 … 圧力検出部(圧力検出手段)
26 … 記憶部(記憶手段)
27 … 濃度演算部(実比重算出手段、換算手段、演算手段)
29 … 濃度制御部
DIW … 基準電圧
SOL … 処理電圧
(m1) … 実比重
(m2) … 測定比重
(k) … 比率
DESCRIPTION OF SYMBOLS 1 ... Processing tank 2 ... Collection tank 6 ... In-line heater (heating means)
8 ... Tank heater (heating means)
22 ... Supply pipe 24 ... Pressure detector (pressure detector)
26: Storage unit (storage means)
27 ... Concentration calculation unit (actual specific gravity calculation means, conversion means, calculation means)
29… Concentration control unit V DIW … Reference voltage V SOL … Processing voltage (m1)… Actual specific gravity (m2)… Measurement specific gravity (k)… Ratio

Claims (5)

薬液と希釈液とを混合してなる処理液によって基板に対して処理を行う基板処理装置において、
処理液を貯留する処理槽と、
処理液を加熱する加熱手段と、
前記処理槽内の所定深さに検出端を有し、一定流量の気体を供給する供給管と、
前記供給管内の圧力を検出し、圧力に応じた電圧を出力する圧力検出手段と、
基準温度の基準液を前記処理槽に貯留した状態で、前記圧力検出手段からの電圧を基準電圧として記憶する記憶手段と、
前記加熱手段により前記処理槽に貯留した処理液を処理温度にした状態で、前記圧力検出手段からの電圧を処理電圧とし、この処理電圧と前記記憶手段の基準電圧とに基づいて処理液の実比重を求める実比重算出手段と、
前記実比重を、処理液の比重−濃度特性を測定した時の測定温度における比重に換算して換算実比重を求める換算手段と、
前記換算実比重と比重−濃度特性とに基づいて処理液の換算濃度を求める演算手段と、
を備えていることを特徴とする基板処理装置。
In a substrate processing apparatus for processing a substrate with a processing liquid obtained by mixing a chemical and a diluent,
A treatment tank for storing the treatment liquid;
Heating means for heating the treatment liquid;
A supply pipe having a detection end at a predetermined depth in the processing tank and supplying a gas at a constant flow rate;
Pressure detecting means for detecting the pressure in the supply pipe and outputting a voltage corresponding to the pressure;
Storage means for storing a voltage from the pressure detection means as a reference voltage in a state in which a reference liquid at a reference temperature is stored in the processing tank;
In a state where the processing liquid stored in the processing tank by the heating means is at a processing temperature, the voltage from the pressure detecting means is used as a processing voltage, and the actual processing liquid is measured based on the processing voltage and the reference voltage of the storage means. An actual specific gravity calculating means for obtaining a specific gravity;
A conversion means for converting the actual specific gravity into a specific gravity at a measurement temperature when the specific gravity-concentration characteristic of the treatment liquid is measured to obtain a converted actual specific gravity;
A computing means for obtaining a converted concentration of the treatment liquid based on the converted actual specific gravity and specific gravity-concentration characteristics;
A substrate processing apparatus comprising:
請求項1に記載の基板処理装置において、
前記換算手段は、前記実比重算出手段により求められた実比重に対して、処理温度における処理液の実比重と、前記処理液を測定温度とした状態で比重計により測定して得られた測定比重との比率に応じて予め設定した係数を乗じることにより処理温度における換算実比重を求めることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1,
The conversion means measures the actual specific gravity obtained by the actual specific gravity calculation means by measuring the actual specific gravity of the treatment liquid at the treatment temperature and a hydrometer with the treatment liquid at the measurement temperature. A substrate processing apparatus characterized in that a converted actual specific gravity at a processing temperature is obtained by multiplying a coefficient set in advance according to a ratio to specific gravity.
請求項1または2に記載の基板処理装置において、
前記処理温度は、140〜170℃の範囲であることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1 or 2,
The substrate processing apparatus, wherein the processing temperature is in a range of 140 to 170 ° C.
薬液と希釈液とを混合してなる処理液によって基板に対して処理を行う基板処理方法において、
処理に先立って基準温度の基準液を処理槽に貯留した状態で、処理槽内の所定深さにおける圧力に応じて圧力検出手段から得られた基準電圧と、処理槽に貯留した処理液を処理温度にした状態で、圧力検出手段から得られた処理電圧とに基づいて処理液の実比重を求める過程と、
前記実比重を、処理液の比重−濃度特性を測定した時の測定温度における比重に換算して換算実比重を求める過程と、
前記換算実比重と比重−濃度特性とに基づいて処理液の換算濃度を求める過程とを備え、
前記換算濃度に基づいて処理液の調整を行うことを特徴とする基板処理方法。
In a substrate processing method for processing a substrate with a processing liquid obtained by mixing a chemical and a diluent,
Prior to processing, the reference voltage at the reference temperature is stored in the processing tank, and the reference voltage obtained from the pressure detecting means according to the pressure at a predetermined depth in the processing tank and the processing liquid stored in the processing tank are processed. In the state of temperature, a process of obtaining the actual specific gravity of the processing liquid based on the processing voltage obtained from the pressure detection means,
The actual specific gravity is converted into the specific gravity at the measurement temperature when the specific gravity-concentration characteristic of the treatment liquid is measured, and the converted actual specific gravity is obtained.
A process of obtaining a converted concentration of the treatment liquid based on the converted actual specific gravity and specific gravity-concentration characteristics,
A substrate processing method comprising adjusting a processing solution based on the converted concentration.
請求項4に記載の基板処理方法において、
前記換算実比重を求める過程は、処理液の実比重に対して、処理温度における処理液の実比重と、前記処理液を基準温度とした状態で比重計により測定して得られた測定比重との比率に応じて予め設定した係数を乗じることにより処理温度における換算実比重を求めることを特徴とする基板処理方法。
The substrate processing method according to claim 4,
The process of obtaining the converted actual specific gravity includes the actual specific gravity of the treatment liquid at the treatment temperature with respect to the actual specific gravity of the treatment liquid, and the measurement specific gravity obtained by measuring with a hydrometer in a state where the treatment liquid is at a reference temperature. A substrate processing method characterized in that a converted actual specific gravity at a processing temperature is obtained by multiplying a coefficient set in advance according to the ratio.
JP2005049045A 2005-02-24 2005-02-24 Substrate processing apparatus and method Expired - Fee Related JP4429189B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005049045A JP4429189B2 (en) 2005-02-24 2005-02-24 Substrate processing apparatus and method
US11/360,946 US20060188412A1 (en) 2005-02-24 2006-02-23 Substrate treating apparatus and method
US12/401,697 US7883635B2 (en) 2005-02-24 2009-03-11 Substrate treating apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049045A JP4429189B2 (en) 2005-02-24 2005-02-24 Substrate processing apparatus and method

Publications (2)

Publication Number Publication Date
JP2006237228A true JP2006237228A (en) 2006-09-07
JP4429189B2 JP4429189B2 (en) 2010-03-10

Family

ID=37044559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049045A Expired - Fee Related JP4429189B2 (en) 2005-02-24 2005-02-24 Substrate processing apparatus and method

Country Status (1)

Country Link
JP (1) JP4429189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190023045A (en) 2017-02-28 2019-03-07 가부시키가이샤 스크린 홀딩스 Substrate treatment apparatus and substrate treatment method
US10312115B2 (en) 2014-09-30 2019-06-04 SCREEN Holdings Co., Ltd. Substrate processing apparatus
US10580668B2 (en) 2014-03-17 2020-03-03 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method using substrate processing apparatus
WO2023223716A1 (en) * 2022-05-17 2023-11-23 日本電気硝子株式会社 Method for manufacturing glass plate, and device for manufacturing glass plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580668B2 (en) 2014-03-17 2020-03-03 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method using substrate processing apparatus
US10312115B2 (en) 2014-09-30 2019-06-04 SCREEN Holdings Co., Ltd. Substrate processing apparatus
KR20190023045A (en) 2017-02-28 2019-03-07 가부시키가이샤 스크린 홀딩스 Substrate treatment apparatus and substrate treatment method
TWI666066B (en) * 2017-02-28 2019-07-21 日商斯庫林集團股份有限公司 Substrate treatment apparatus and substrate treatment method
US10559480B2 (en) 2017-02-28 2020-02-11 SCREEN Holdings Co., Ltd. Substrate treatment apparatus and substrate treatment method
WO2023223716A1 (en) * 2022-05-17 2023-11-23 日本電気硝子株式会社 Method for manufacturing glass plate, and device for manufacturing glass plate

Also Published As

Publication number Publication date
JP4429189B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US8153017B2 (en) Substrate treating method
TWI647007B (en) Substrate processing apparatus and substrate processing method
CN105121376B (en) For the processing system and method for the etching solution for providing heating
US8409997B2 (en) Apparatus and method for controlling silicon nitride etching tank
US11410861B2 (en) Substrate liquid processing apparatus
JPH11317374A (en) Apparatus and method for continuous gas saturation
JP2007258405A (en) Method and apparatus for substrate treatment
JP4001575B2 (en) Substrate processing equipment
JP4429189B2 (en) Substrate processing apparatus and method
US7883635B2 (en) Substrate treating apparatus and method
KR20180094492A (en) Substrate liquid processing apparatus
CN110660708B (en) Substrate processing apparatus and substrate processing method
US6921193B2 (en) Chemical concentration control device for semiconductor processing apparatus
JP2004052105A (en) Gaseous fluorine generator
JP2004153164A (en) Method for controlling boiled chemical
JPH11349397A (en) Feeding system and process for epitaxial deposition of silicon using continuously feeding single bubbler
JP2006237227A (en) Substrate processing equipment and its method
JP3719918B2 (en) Substrate processing equipment
JP6265289B1 (en) Oxidant concentration measuring device and oxidant concentration measuring method
JP4027288B2 (en) Substrate processing equipment
JP2004356409A (en) Substrate treatment device
JP2007316360A (en) Management method and management device for water-based photoresist stripping liquid
JP2003318172A (en) Film forming method, deducing method for film forming and processing time correction expression, film forming device, and program
KR20180099523A (en) Substrate liquid processing apparatus
JP2000221073A (en) In-tank liquid level detection device for substrate treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees