JP2006237160A - Method for manufacturing solid-state image pickup element - Google Patents

Method for manufacturing solid-state image pickup element Download PDF

Info

Publication number
JP2006237160A
JP2006237160A JP2005047725A JP2005047725A JP2006237160A JP 2006237160 A JP2006237160 A JP 2006237160A JP 2005047725 A JP2005047725 A JP 2005047725A JP 2005047725 A JP2005047725 A JP 2005047725A JP 2006237160 A JP2006237160 A JP 2006237160A
Authority
JP
Japan
Prior art keywords
conductive film
electrode
solid
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005047725A
Other languages
Japanese (ja)
Inventor
Yasuo Nozaki
保夫 野崎
Takanori Sato
孝紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005047725A priority Critical patent/JP2006237160A/en
Publication of JP2006237160A publication Critical patent/JP2006237160A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid-state image pickup element capable of improving the insulating performance between charge transfer electrodes. <P>SOLUTION: In the method for manufacturing the solid-state image pickup element having a photodiode, and a charge transfer section including transfer electrodes (first and second electrodes 3a, 3b) for transferring charge generated in the photodiode, a recess generated in an insulating film (5a+5b) formed on the sidewall of a first conductive film 3a formed on a silicon substrate 1 is filled with a conductive film 3c once (Figs. (e), (f)), the conductive film 3c is thermally oxidized for forming an insulating film 5c at the recess (Fig. (g)), a second conductive film 3b is formed and patterned, and the second electrode 3b is formed (Fig. (h)). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光電変換部と、光電変換部で発生した電荷を転送する転送電極を含む電荷転送部とを有する固体撮像素子の製造方法に関する。   The present invention relates to a method for manufacturing a solid-state imaging device having a photoelectric conversion unit and a charge transfer unit including a transfer electrode that transfers charges generated in the photoelectric conversion unit.

エリアセンサ等に用いられるCCDを用いた固体撮像素子は、フォトダイオードなどの光電変換部と、この光電変換部で発生した信号電荷を転送するための電荷転送電極を含む電荷転送部とを有する。電荷転送電極は、半導体基板に形成された電荷転送路上に複数個隣接して配置され、順次駆動される。   A solid-state imaging device using a CCD used for an area sensor or the like has a photoelectric conversion unit such as a photodiode and a charge transfer unit including a charge transfer electrode for transferring a signal charge generated in the photoelectric conversion unit. A plurality of charge transfer electrodes are arranged adjacent to each other on a charge transfer path formed on the semiconductor substrate, and are sequentially driven.

近年、固体撮像素子においては、高解像度化、高感度化への要求は高まる一方であり、ギガピクセル以上まで撮像画素数の増加が進んでいる。固体撮像素子の作りこまれた基板(シリコン基板)は、フィルタやレンズを積層して、実装される。このため、レンズと光電変換部との位置精度が重要となり、またその距離すなわち高さ方向の距離も、製造工程における位置精度と、使用時における感度(光電変換効率)面での大きな問題となる。   In recent years, demands for higher resolution and higher sensitivity have been increasing in solid-state imaging devices, and the number of imaging pixels has been increasing to more than gigapixels. A substrate (silicon substrate) on which a solid-state image sensor is built is mounted by stacking filters and lenses. For this reason, the positional accuracy between the lens and the photoelectric conversion unit is important, and the distance, that is, the distance in the height direction, is a big problem in terms of positional accuracy in the manufacturing process and sensitivity (photoelectric conversion efficiency) in use. .

さらにまた、このような状況の中で、チップサイズを大型化することなく高解像度を得るためには、単位画素あたりの面積を縮小し、高集積化を図る必要がある。一方光電変換部を構成するフォトダイオードの開口面積を小さくすると感度が低下するため、フォトダイオードの開口面積は確保しなければならない。そこで、電荷転送部および周辺回路の配線の微細化をはかり、配線の面積比率を低減することにより、フォトダイオードの開口占有面積を確保しつつチップの微細化をはかるべく種々の研究がなされている。   Furthermore, in such a situation, in order to obtain high resolution without increasing the chip size, it is necessary to reduce the area per unit pixel and achieve high integration. On the other hand, if the opening area of the photodiode constituting the photoelectric conversion unit is reduced, the sensitivity is lowered, and therefore the opening area of the photodiode must be ensured. Therefore, various studies have been made to reduce the size of the chip while ensuring the area occupied by the opening of the photodiode by reducing the wiring area ratio by reducing the wiring area of the charge transfer portion and the peripheral circuit. .

このような状況の中で配線の微細化により、高集積化を実現するためには表面の平坦性に加え、電荷転送部と配線層間の層間絶縁膜の耐圧の向上と薄肉化は重要な技術課題となる。   In this situation, in order to realize high integration by miniaturization of wiring, in addition to surface flatness, improvement of the breakdown voltage and thinning of the interlayer insulating film between the charge transfer part and the wiring layer are important technologies. It becomes a problem.

図7は、従来のCCDの2層電極構造の電荷転送電極の製造方法を説明するための図である。
図7に示すように、n型シリコン基板11表面に、酸化シリコン膜12aと、窒化シリコン膜12bと、酸化シリコン膜12cを形成し、3層構造のゲート酸化膜12を形成する。続いて、このゲート酸化膜12上に、第1の電極13aを構成するドープトポリシリコン膜を形成し、これをフォトリソグラフィによりパターニングして第1の電極13aを形成後、熱酸化により電極間絶縁膜となる酸化シリコン膜15を形成する(図7(a))。そしてこの酸化シリコン膜15を電極間絶縁膜として、第2の電極13bを構成するドープトポリシリコン膜を形成し、フォトリソグラフィにより形成した所望のマスクを用いてパターニングして、第2の電極13bを形成する。
FIG. 7 is a diagram for explaining a method of manufacturing a charge transfer electrode having a two-layer electrode structure of a conventional CCD.
As shown in FIG. 7, a silicon oxide film 12a, a silicon nitride film 12b, and a silicon oxide film 12c are formed on the surface of the n-type silicon substrate 11, and a gate oxide film 12 having a three-layer structure is formed. Subsequently, a doped polysilicon film constituting the first electrode 13a is formed on the gate oxide film 12, and this is patterned by photolithography to form the first electrode 13a. A silicon oxide film 15 to be an insulating film is formed (FIG. 7A). Then, using the silicon oxide film 15 as an interelectrode insulating film, a doped polysilicon film constituting the second electrode 13b is formed, and patterned using a desired mask formed by photolithography, so that the second electrode 13b is formed. Form.

この方法では、酸化シリコン膜15を形成する際、ゲート酸化膜12の近傍程、酸素の供給が不足して膜の形成速度が低下するため、図中に示すように、第1の電極13aの側壁においては、ゲート酸化膜12の近傍程、酸化シリコン膜15の膜厚が小さくなり、側壁下端部において酸化シリコン膜15に凹部tが形成されてしまう。この状態で第2の電極13bを形成した場合、酸化シリコン膜15の凹部tに第2の電極13bを構成するドープトポリシリコン膜が埋まった状態で第2の電極が形成されてしまう(図7(b)参照)。この状態で各電極に電圧を印加すると、凹部tに電界が集中して第1の電極13aと第2の電極13bとの間で絶縁破壊を起こすことがあった。このような問題は、2層電極構造の電荷転送電極に限らず、単層電極構造の電荷転送電極についても同様に発生する。   In this method, when the silicon oxide film 15 is formed, the oxygen supply is insufficient in the vicinity of the gate oxide film 12 and the film formation speed is reduced. Therefore, as shown in the drawing, the first electrode 13a is formed as shown in FIG. On the side wall, the thickness of the silicon oxide film 15 decreases in the vicinity of the gate oxide film 12, and a recess t is formed in the silicon oxide film 15 at the lower end of the side wall. When the second electrode 13b is formed in this state, the second electrode is formed in a state where the recessed polysilicon film constituting the second electrode 13b is buried in the recess t of the silicon oxide film 15 (FIG. 7 (b)). When a voltage is applied to each electrode in this state, the electric field concentrates in the recess t, and dielectric breakdown may occur between the first electrode 13a and the second electrode 13b. Such a problem occurs not only in a charge transfer electrode having a two-layer electrode structure but also in a charge transfer electrode having a single-layer electrode structure.

上記のような絶縁破壊を防止するための技術として特許文献1記載のものがあげられる。   As a technique for preventing the dielectric breakdown as described above, there is a technique described in Patent Document 1.

特開2003−229440号公報JP 2003-229440 A

このように、従来の固体撮像素子では、熱酸化によって第1の電極の側壁に形成される絶縁膜に凹部が発生することに起因して、第1の電極と第2の電極との間即ち、隣接する2電極間の絶縁膜の膜質の低下、さらには電気的耐圧の低下という問題があった。さらには、ステップカバレッジの低下という問題があり、さらにはリークの発生確率が高くなってしまうという問題があった。   As described above, in the conventional solid-state imaging device, a recess is generated in the insulating film formed on the side wall of the first electrode due to thermal oxidation, that is, between the first electrode and the second electrode. There has been a problem that the film quality of the insulating film between two adjacent electrodes is lowered, and further, the electric withstand voltage is lowered. Furthermore, there is a problem that the step coverage is lowered, and further, there is a problem that the probability of occurrence of a leak is increased.

本発明は、上記事情に鑑みてなされたものであり、隣接する電荷転送電極間の絶縁性能を向上させることが可能な固体撮像素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a solid-state imaging device capable of improving the insulation performance between adjacent charge transfer electrodes.

本発明の固体撮像素子の製造方法は、光電変換部と、前記光電変換部で発生した電荷を転送する電荷転送電極を含む電荷転送部とを有する固体撮像素子の製造方法であって、前記電荷転送電極の形成工程が、ゲート酸化膜の形成された半導体基板表面に、第1導電性膜のパターンを形成して第1の電極を形成する工程と、前記第1の電極を熱酸化して、前記第1の電極の少なくとも側壁に第1の絶縁膜を形成する工程と、前記第1の電極及び前記第1の絶縁膜の形成された前記半導体基板表面に導電性膜を形成して、前記第1の電極の前記ゲート酸化膜近傍に発生した前記第1の絶縁膜の凹部に前記導電性膜を埋める工程と、前記導電性膜を、前記凹部に埋められた部分を残して除去する工程と、前記導電性膜の除去後、前記凹部に埋められている前記導電性膜を熱酸化して前記凹部に第2の絶縁膜を形成する工程と、前記第1の電極、前記第1の絶縁膜、及び前記第2の絶縁膜の形成された前記半導体基板表面に第2の電極を構成する第2導電性膜を形成する工程とを含む。   The method for manufacturing a solid-state imaging device according to the present invention is a method for manufacturing a solid-state imaging device, comprising: a photoelectric conversion unit; and a charge transfer unit including a charge transfer electrode that transfers a charge generated in the photoelectric conversion unit. The transfer electrode forming step includes forming a first conductive film pattern on the surface of the semiconductor substrate on which the gate oxide film is formed, forming the first electrode, and thermally oxidizing the first electrode. Forming a first insulating film on at least a side wall of the first electrode; and forming a conductive film on the semiconductor substrate surface on which the first electrode and the first insulating film are formed; Burying the conductive film in a recess of the first insulating film generated in the vicinity of the gate oxide film of the first electrode, and removing the conductive film leaving a portion buried in the recess. After the process and removal of the conductive film, the recess is buried. Forming the second insulating film in the recess by thermally oxidizing the conductive film, and the semiconductor on which the first electrode, the first insulating film, and the second insulating film are formed. Forming a second conductive film constituting the second electrode on the surface of the substrate.

この方法によれば、第1の電極の側壁に形成された第1の絶縁膜に発生した凹部を導電性膜で一旦埋め、この導電性膜を熱酸化して該凹部に絶縁膜を形成してから第2導電性膜を形成するため、第1の電極と第2の電極間の絶縁を良好に行うことができ、第1の電極と第2の電極間の電極間絶縁膜の膜質の向上を図ることができる。   According to this method, the concave portion generated in the first insulating film formed on the side wall of the first electrode is temporarily filled with the conductive film, and the conductive film is thermally oxidized to form the insulating film in the concave portion. Since the second conductive film is formed later, the insulation between the first electrode and the second electrode can be satisfactorily performed, and the film quality of the interelectrode insulating film between the first electrode and the second electrode can be improved. Improvements can be made.

本発明の固体撮像素子の製造方法は、前記第2導電性膜の形成後、前記第1の電極上方の前記第2導電性膜を除去する工程を含む。   The manufacturing method of the solid-state imaging device of the present invention includes a step of removing the second conductive film above the first electrode after the formation of the second conductive film.

この方法によれば、単層電極構造の電荷転送電極を電極間リークの虞もなく高歩留まりで得ることができる。   According to this method, a charge transfer electrode having a single-layer electrode structure can be obtained with a high yield without any risk of interelectrode leakage.

本発明の固体撮像素子の製造方法は、前記第2導電性膜の形成後、前記第1の電極上に重畳する領域を残して前記第2導電性膜をパターニングする工程を含む。   The method for manufacturing a solid-state imaging device of the present invention includes a step of patterning the second conductive film after forming the second conductive film, leaving a region overlapping on the first electrode.

この方法によれば、2層電極構造の電荷転送電極を電極間リークの虞もなく高歩留まりで得ることができる。   According to this method, a charge transfer electrode having a two-layer electrode structure can be obtained with a high yield without any risk of interelectrode leakage.

本発明の固体撮像素子の製造方法は、前記導電性膜が前記第1導電性膜又は前記第2導電性膜と同じ材料である。   In the solid-state imaging device manufacturing method of the present invention, the conductive film is made of the same material as the first conductive film or the second conductive film.

本発明の固体撮像素子の製造方法は、前記第1導電性膜又は前記第2導電性膜がシリコン系導電性膜を含む。   In the method for manufacturing a solid-state imaging device of the present invention, the first conductive film or the second conductive film includes a silicon-based conductive film.

本発明の固体撮像素子の製造方法は、前記シリコン系導電性膜がドープトアモルファスシリコン膜である。   In the method for manufacturing a solid-state imaging device according to the present invention, the silicon-based conductive film is a doped amorphous silicon film.

本発明の固体撮像素子の製造方法は、前記シリコン系導電性膜がドープトポリシリコン膜である。   In the method for manufacturing a solid-state imaging device according to the present invention, the silicon-based conductive film is a doped polysilicon film.

本発明によれば、隣接する電荷転送電極間の絶縁性能を向上させることが可能な固体撮像素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid-state image sensor which can improve the insulation performance between adjacent charge transfer electrodes can be provided.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第一実施形態)
図1は、本発明の第一実施形態を説明するための固体撮像素子の平面模式図である。図2は、図1のA−A線断面模式図である。
図1,2に示す固体撮像素子は、n型のシリコン基板1表面部に光電変換部であるフォトダイオード30が多数形成され、各フォトダイオード30で発生した信号電荷を列方向(図2中のY方向)に転送するための電荷転送部40が、列方向に配設された複数のフォトダイオード30からなる複数のフォトダイオード列の間を蛇行して形成される。
(First embodiment)
FIG. 1 is a schematic plan view of a solid-state image sensor for explaining a first embodiment of the present invention. 2 is a schematic cross-sectional view taken along line AA in FIG.
The solid-state imaging device shown in FIGS. 1 and 2 has a large number of photodiodes 30 as photoelectric conversion portions formed on the surface of an n-type silicon substrate 1, and the signal charges generated by each photodiode 30 are transferred in the column direction (in FIG. 2). A charge transfer section 40 for transferring in the Y direction is formed by meandering between a plurality of photodiode rows composed of a plurality of photodiodes 30 arranged in the column direction.

電荷転送部40は、複数のフォトダイオード列の各々に対応してシリコン基板1表面部の列方向に形成された複数本の電荷転送チャネル33と、電荷転送チャネル33の上層に形成された電荷転送電極3(第1の電極3a、第2の電極3b)と、フォトダイオード30で発生した電荷を電荷転送チャネル33に読み出すための電荷読み出し領域34とを含む。電荷転送電極3は、行方向に配設された複数のフォトダイオード30からなる複数のフォトダイオード行の間を全体として行方向(図2中のX方向)に延在する蛇行形状となっている。   The charge transfer unit 40 includes a plurality of charge transfer channels 33 formed in the column direction of the surface portion of the silicon substrate 1 corresponding to each of the plurality of photodiode columns, and a charge transfer formed in the upper layer of the charge transfer channel 33. It includes an electrode 3 (first electrode 3a, second electrode 3b) and a charge readout region 34 for reading out the charge generated in the photodiode 30 to the charge transfer channel 33. The charge transfer electrode 3 has a meandering shape extending in the row direction (X direction in FIG. 2) as a whole between a plurality of photodiode rows composed of a plurality of photodiodes 30 arranged in the row direction. .

図2に示すように、シリコン基板1の表面部にはpウェル層9が形成され、pウェル層9の表面部にはp領域30aが形成され、p領域30aの下にはn領域30bが形成され、p領域30aとn領域30bがフォトダイオード30を構成し、フォトダイオード30で発生した信号電荷は、n領域30bに蓄積される。   As shown in FIG. 2, a p well layer 9 is formed on the surface portion of the silicon substrate 1, a p region 30a is formed on the surface portion of the p well layer 9, and an n region 30b is formed below the p region 30a. The p region 30a and the n region 30b are formed, and the signal charge generated in the photodiode 30 is accumulated in the n region 30b.

p領域30aの右側には、少し離間してn領域からなる電荷転送チャネル33が形成される。n領域30bと電荷転送チャネル33の間のpウェル層9には電荷読み出し領域34が形成される。   On the right side of the p region 30a, a charge transfer channel 33 composed of an n region is formed with a slight distance. A charge readout region 34 is formed in the p well layer 9 between the n region 30 b and the charge transfer channel 33.

シリコン基板1表面にはゲート酸化膜2が形成され、電荷読み出し領域34と電荷転送チャネル33の上には、ゲート酸化膜2を介して、第1の電極3aと第2の電極3bが形成される。第1の電極3aと第2の電極3bの間は電極間絶縁膜5によって絶縁される。垂直転送チャネル33の右側にはp+領域からなるチャネルストップ32が設けられ、隣接するフォトダイオード30との分離が図られる。   A gate oxide film 2 is formed on the surface of the silicon substrate 1, and a first electrode 3 a and a second electrode 3 b are formed on the charge readout region 34 and the charge transfer channel 33 via the gate oxide film 2. The The first electrode 3a and the second electrode 3b are insulated by the interelectrode insulating film 5. A channel stop 32 made of a p + region is provided on the right side of the vertical transfer channel 33 so as to be separated from the adjacent photodiode 30.

電荷転送電極3の上には酸化シリコン膜6が形成され、更にその上に中間層70が形成される。中間層70のうち、71は遮光膜、72はBPSG(borophospho silicate glass)からなる絶縁膜、73はP−SiNからなる絶縁膜(パッシベーション膜)、74は透明樹脂膜からなる平坦化層である。遮光膜71は、フォトダイオード30の開口部分を除いて設けられる。中間層70上方には、カラーフィルタ50とマイクロレンズ60が設けられる。カラーフィルタ50とマイクロレンズ60との間は、絶縁性の透明樹脂等からなる平坦化層61が充填される。   A silicon oxide film 6 is formed on the charge transfer electrode 3, and an intermediate layer 70 is further formed thereon. Of the intermediate layer 70, 71 is a light shielding film, 72 is an insulating film made of BPSG (borophospho silicate glass), 73 is an insulating film (passivation film) made of P-SiN, and 74 is a flattening layer made of a transparent resin film. . The light shielding film 71 is provided except for the opening of the photodiode 30. Above the intermediate layer 70, the color filter 50 and the microlens 60 are provided. A space between the color filter 50 and the microlens 60 is filled with a planarizing layer 61 made of an insulating transparent resin or the like.

本実施形態の固体撮像素子は、フォトダイオード30で発生した信号電荷がn領域30bに蓄積され、ここに蓄積された信号電荷が、電荷転送チャネル33によって列方向に転送され、転送された信号電荷が図示しない電荷転送路(HCCD)によって行方向に転送され、転送された信号電荷に応じた色信号が図示しないアンプから出力される構成である。   In the solid-state imaging device of the present embodiment, the signal charges generated in the photodiode 30 are accumulated in the n region 30b, and the accumulated signal charges are transferred in the column direction by the charge transfer channel 33, and the transferred signal charges are transferred. Is transferred in the row direction by a charge transfer path (HCCD) (not shown), and a color signal corresponding to the transferred signal charge is output from an amplifier (not shown).

次に上述した固体撮像素子の製造工程のうち、電荷転送電極の形成工程について図3及び図4を参照して詳細に説明する。電荷転送電極の形成工程以外の製造工程は従来の固体撮像素子と同様である。
まず、n型のシリコン基板1表面に、酸化シリコン膜2aと、窒化シリコン膜2bと、酸化シリコン膜2cを形成し、3層構造のゲート酸化膜2を形成する。続いて、このゲート酸化膜2上に、減圧CVD法により、第1の電極3aを構成する第1導電性膜3aを形成する(図3(a))。第1導電性膜3aとしては、リンドープのドープトポリシリコン膜やドープトアモルファスシリコン膜等のシリコン系導電性膜を用いることができる。
Next, of the above-described manufacturing process of the solid-state imaging device, the charge transfer electrode forming process will be described in detail with reference to FIGS. Manufacturing processes other than the charge transfer electrode forming process are the same as those of the conventional solid-state imaging device.
First, a silicon oxide film 2a, a silicon nitride film 2b, and a silicon oxide film 2c are formed on the surface of the n-type silicon substrate 1, and a gate oxide film 2 having a three-layer structure is formed. Subsequently, a first conductive film 3a constituting the first electrode 3a is formed on the gate oxide film 2 by low pressure CVD (FIG. 3A). As the first conductive film 3a, a silicon-based conductive film such as a phosphorus-doped doped polysilicon film or a doped amorphous silicon film can be used.

次に、所望のマスクパターンを用い、ゲート酸化膜2の窒化シリコン膜2bをエッチングストッパとして第1導電性膜3aを選択的にエッチング除去し、第1の電極3a及び周辺回路(図示せず)の配線のパターニングを行う(図3(b))。ここではECR(電子サイクロトロン共鳴:Electron Cycrotoron Resonance)方式あるいはICP(誘導結合Inductively Coupled Plasma)方式などのエッチング装置を用いるのが望ましい。   Next, using the desired mask pattern, the first conductive film 3a is selectively removed by etching using the silicon nitride film 2b of the gate oxide film 2 as an etching stopper, and the first electrode 3a and a peripheral circuit (not shown). The wiring patterning is performed (FIG. 3B). Here, it is desirable to use an etching apparatus such as an ECR (Electron Cyclotoron Resonance) system or an ICP (Inductively Coupled Plasma) system.

次に、熱酸化法により第1の電極3aの表面に酸化シリコン膜からなる絶縁膜5aを形成する(図3(c))。ここでは熱酸化の温度は900℃程度とする。望ましくは850℃である。これにより拡散長の伸びを防ぐことができる。この工程により、第1の電極3aの側壁のゲート酸化膜2近傍に形成された絶縁膜5aには凹部Tが発生する。   Next, an insulating film 5a made of a silicon oxide film is formed on the surface of the first electrode 3a by thermal oxidation (FIG. 3C). Here, the temperature of thermal oxidation is about 900 ° C. Desirably, it is 850 degreeC. Thereby, the elongation of the diffusion length can be prevented. By this step, a recess T is generated in the insulating film 5a formed in the vicinity of the gate oxide film 2 on the side wall of the first electrode 3a.

次に、減圧CVD法により酸化シリコン膜(HTO)からなる絶縁膜5bを形成する(図3(d))。この工程により、凹部Tは絶縁膜5bによって埋められるが、第1の電極3aの側壁のゲート酸化膜2近傍に形成された絶縁膜5bには凹部T’が発生する。尚、絶縁膜5bを形成する工程は省略しても良い。又、絶縁膜5a又は絶縁膜5aと絶縁膜5bを合わせたものが、特許請求の範囲の第1の絶縁膜に相当する。   Next, an insulating film 5b made of a silicon oxide film (HTO) is formed by low pressure CVD (FIG. 3D). By this step, the recess T is filled with the insulating film 5b, but a recess T 'is generated in the insulating film 5b formed in the vicinity of the gate oxide film 2 on the side wall of the first electrode 3a. Note that the step of forming the insulating film 5b may be omitted. The insulating film 5a or the combination of the insulating film 5a and the insulating film 5b corresponds to the first insulating film in the claims.

次に、減圧CVD法により導電性膜3cを絶縁膜5bの上に形成する(図4(e))。この工程により、凹部T’は、導電性膜3cによって埋められた状態となる。尚、絶縁膜5bを形成する工程を省略した場合には、導電性膜3cが凹部Tに埋められた状態となる。導電性膜3cとしては、リンドープのドープトポリシリコン膜やドープトアモルファスシリコン膜等のシリコン系導電性膜を用いることができる。   Next, the conductive film 3c is formed on the insulating film 5b by low pressure CVD (FIG. 4E). By this step, the recess T ′ is filled with the conductive film 3 c. When the step of forming the insulating film 5b is omitted, the conductive film 3c is in a state where it is buried in the recess T. As the conductive film 3c, a silicon-based conductive film such as a phosphorus-doped doped polysilicon film or a doped amorphous silicon film can be used.

次に、凹部T’(又はT)に埋められた導電性膜3c以外の部分を例えばドライエッチングによって除去する(図4(f))。   Next, a portion other than the conductive film 3c buried in the concave portion T ′ (or T) is removed by, for example, dry etching (FIG. 4F).

次に、熱酸化法により、凹部T’(又はT)に埋められた導電性膜3cを熱酸化して、この導電性膜3cを絶縁膜5c(特許請求の範囲の第2の絶縁膜に該当)に変化させる(図4(g))。凹部T’(又はT)に埋められた導電性膜3cは非常に少ない量であるため、熱酸化によってその全てを短時間で絶縁膜5cに変化させることができる。上述した絶縁膜5a,5b,5cは、図1の電極間絶縁膜5を構成する。   Next, the conductive film 3c buried in the recess T ′ (or T) is thermally oxidized by a thermal oxidation method, and this conductive film 3c is converted into the insulating film 5c (the second insulating film in the claims). (Applicable) (FIG. 4 (g)). Since the amount of the conductive film 3c buried in the recess T ′ (or T) is very small, it can be changed to the insulating film 5c in a short time by thermal oxidation. The insulating films 5a, 5b and 5c described above constitute the interelectrode insulating film 5 of FIG.

次に、減圧CVD法により第2の電極3bを構成する第2導電性膜3bを形成する。第2導電性膜3bとしては、リンドープのドープトポリシリコン膜やドープトアモルファスシリコン膜等のシリコン系導電性膜を用いることができる。第2導電性膜3bの膜厚は、第1の電極3a及びその上層の絶縁膜5a,5bの膜厚の合計膜厚と同程度かそれよりも厚くなるように形成する必要がある。そして、レジスト(図示せず)を塗布し、このレジストと第2導電性膜3bのエッチング速度がほぼ同一となる条件で、全面エッチングを行って第1の電極上方の第2導電性膜3bを除去し、第2導電性膜3bの平坦化を行う。この後、アクティブ領域および周辺回路形成のためのレジストパターン(図示せず)を形成する。ここでは、固体撮像素子形成部及び周辺回路部の一部を覆うようにレジストパターンを形成する。そして、このレジストパターンをマスクとして、フォトダイオード30上の第2導電性膜3bをエッチング除去するとともに周辺回路の他のパターン(図示せず)を残留させる。そして、アッシングによりレジスト除去を行なうことにより、固体撮像素子形成部および周辺回路部の一部を覆うように第2導電性膜3bが形成される(図4(h))。   Next, a second conductive film 3b constituting the second electrode 3b is formed by a low pressure CVD method. As the second conductive film 3b, a silicon-based conductive film such as a phosphorus-doped doped polysilicon film or a doped amorphous silicon film can be used. The film thickness of the second conductive film 3b needs to be formed so as to be equal to or greater than the total film thickness of the first electrode 3a and the upper insulating films 5a and 5b. Then, a resist (not shown) is applied, and etching is performed on the entire surface under the condition that the etching rate of the resist and the second conductive film 3b is almost the same, so that the second conductive film 3b above the first electrode is formed. Then, the second conductive film 3b is planarized. Thereafter, a resist pattern (not shown) for forming the active region and the peripheral circuit is formed. Here, a resist pattern is formed so as to cover a part of the solid-state imaging element forming portion and the peripheral circuit portion. Then, using this resist pattern as a mask, the second conductive film 3b on the photodiode 30 is removed by etching, and another pattern (not shown) of the peripheral circuit is left. Then, by removing the resist by ashing, the second conductive film 3b is formed so as to cover a part of the solid-state imaging element forming portion and the peripheral circuit portion (FIG. 4 (h)).

このようにして、第2の電極3bを形成し、熱酸化により第2の電極3bの周りに酸化シリコン膜6を形成し、単層電極構造の電荷転送電極3が形成される。そしてこの上層に遮光膜のパターン71、BPSG膜72を形成し、リフローし平坦化する。そしてP−SiNからなる絶縁膜(パッシベーション膜)73、透明樹脂膜からなる平坦化層74を形成する。この後、カラーフィルタ50、平坦化層61、マイクロレンズ60などを形成して、図1および図2に示すような固体撮像素子を得る。   In this way, the second electrode 3b is formed, the silicon oxide film 6 is formed around the second electrode 3b by thermal oxidation, and the charge transfer electrode 3 having a single-layer electrode structure is formed. Then, a light-shielding film pattern 71 and a BPSG film 72 are formed on the upper layer and reflowed and flattened. Then, an insulating film (passivation film) 73 made of P-SiN and a planarization layer 74 made of a transparent resin film are formed. Thereafter, the color filter 50, the flattening layer 61, the microlens 60, and the like are formed to obtain a solid-state imaging device as shown in FIGS.

以上の製造方法によれば、第1の電極3aの側壁に形成された絶縁膜5bに発生した凹部T’(又は絶縁膜5aに発生した凹部T)を導電性膜3cで一旦埋め、この導電性膜3cを熱酸化して該凹部T’(又はT)に絶縁膜5cを形成してから第2導電性膜3bを形成するため、第1の電極3aと第2の電極3b間の絶縁を良好に行うことができ、第1の電極3aと第2の電極3b間の電極間絶縁膜の膜質や電気的耐圧の向上を図ることができる。又、ステップカバレッジの向上やリーク発生確率の低下を実現することができる。   According to the above manufacturing method, the recess T ′ generated in the insulating film 5b formed on the side wall of the first electrode 3a (or the recess T generated in the insulating film 5a) is once filled with the conductive film 3c, and this conductive In order to form the second conductive film 3b after the conductive film 3c is thermally oxidized to form the insulating film 5c in the recess T ′ (or T), the insulation between the first electrode 3a and the second electrode 3b is performed. Thus, it is possible to improve the film quality and electrical breakdown voltage of the interelectrode insulating film between the first electrode 3a and the second electrode 3b. In addition, step coverage can be improved and leakage probability can be reduced.

又、以上の製造方法によれば、凹部T’(又はT)を埋めるのに導電性膜3cを用いているため、ゲート酸化膜2と導電性膜3cの選択比を容易に決めることができ、導電性膜3cのエッチングを容易に行うことができる。   Further, according to the above manufacturing method, since the conductive film 3c is used to fill the recess T ′ (or T), the selection ratio between the gate oxide film 2 and the conductive film 3c can be easily determined. The conductive film 3c can be easily etched.

尚、本実施形態の固体撮像素子の電荷転送電極は単層電極構造であるため、図3(c)の工程で第1の電極3aの表面全てに絶縁膜5aを形成する必要はなく、第1の電極3aの側壁にのみ絶縁膜5aを形成すれば十分である。   In addition, since the charge transfer electrode of the solid-state imaging device of this embodiment has a single-layer electrode structure, it is not necessary to form the insulating film 5a on the entire surface of the first electrode 3a in the step of FIG. It is sufficient to form the insulating film 5a only on the side wall of one electrode 3a.

(第二実施形態)
本実施形態の固体撮像素子は、図2に示した固体撮像素子において、電荷転送電極3の電極構造を2層電極構造とした点のみが異なる。本実施形態の固体撮像素子の平面模式図は図1と同様である。
(Second embodiment)
The solid-state imaging device of this embodiment is different from the solid-state imaging device shown in FIG. 2 only in that the charge transfer electrode 3 has a two-layer electrode structure. A schematic plan view of the solid-state imaging device of the present embodiment is the same as FIG.

図5は、本発明の第二実施形態を説明するための固体撮像素子の断面模式図であり、図1のA−A線断面図である。図5において図2と同様の構成には同一符号を付してある。
図5に示す固体撮像素子の電荷転送電極3は、第1の電極3aと第2の電極3bが電極間絶縁膜5を介して隣接している点は図2と同じだが、第1の電極3aの上に第2の電極3bの一部が重畳している点が異なる。
FIG. 5 is a schematic cross-sectional view of a solid-state imaging device for explaining the second embodiment of the present invention, and is a cross-sectional view taken along line AA of FIG. In FIG. 5, the same components as those in FIG.
The charge transfer electrode 3 of the solid-state imaging device shown in FIG. 5 is the same as FIG. 2 in that the first electrode 3a and the second electrode 3b are adjacent to each other with the interelectrode insulating film 5 interposed therebetween. The difference is that a part of the second electrode 3b is superimposed on 3a.

以下、図5に示す固体撮像素子の製造工程のうち、電荷転送電極の形成工程について図3、図4、及び図6を参照して詳細に説明する。電荷転送電極の形成工程以外の製造工程は従来の固体撮像素子と同様である。
まず、図2に示す固体撮像素子と同様に、図3(a)〜図4(g)に示す工程を行う。次に、減圧CVD法により、第2導電性膜3bを形成する。第2導電性膜3bとしては、リンドープのドープトポリシリコン膜やドープトアモルファスシリコン膜等のシリコン系導電性膜を用いることができる。そして、レジスト(図示せず)を塗布し、第2導電性膜3bのパターニングを行なう(図6)。このとき本実施形態では、第2導電性膜3bが第1の電極3aの上層の一部に重畳するようにパターニングして第2の電極3bを形成する。
Hereinafter, of the manufacturing process of the solid-state imaging device shown in FIG. 5, the charge transfer electrode forming process will be described in detail with reference to FIGS. 3, 4, and 6. Manufacturing processes other than the charge transfer electrode forming process are the same as those of the conventional solid-state imaging device.
First, the steps shown in FIGS. 3A to 4G are performed in the same manner as the solid-state imaging device shown in FIG. Next, the second conductive film 3b is formed by a low pressure CVD method. As the second conductive film 3b, a silicon-based conductive film such as a phosphorus-doped doped polysilicon film or a doped amorphous silicon film can be used. Then, a resist (not shown) is applied and the second conductive film 3b is patterned (FIG. 6). At this time, in the present embodiment, the second electrode 3b is formed by patterning so that the second conductive film 3b overlaps a part of the upper layer of the first electrode 3a.

このようにして、第2の電極3bを形成し、熱酸化により第2の電極3bの周りに酸化シリコン膜6を形成して2層電極構造の電荷転送電極が形成される。後は第一実施形態と同様に、この上層に遮光膜のパターン71、BPSG膜72、P−SiNからなる絶縁膜(パッシベーション膜)73、透明樹脂膜からなる平坦化層74を形成する。この後、カラーフィルタ50、平坦化層61、マイクロレンズ60などを形成して、図5に示すような固体撮像素子を得る。   In this way, the second electrode 3b is formed, and the silicon oxide film 6 is formed around the second electrode 3b by thermal oxidation to form a charge transfer electrode having a two-layer electrode structure. Thereafter, as in the first embodiment, a light shielding film pattern 71, a BPSG film 72, an insulating film (passivation film) 73 made of P-SiN, and a planarizing layer 74 made of a transparent resin film are formed on the upper layer. Thereafter, the color filter 50, the flattening layer 61, the microlens 60, and the like are formed to obtain a solid-state imaging device as shown in FIG.

この方法によれば、2層電極構造の電荷転送電極を電極間リークの虞もなく高歩留まりで得ることができる。   According to this method, a charge transfer electrode having a two-layer electrode structure can be obtained with a high yield without any risk of interelectrode leakage.

尚、第一及び第二実施形態では、奇数行に配列された光電変換部と偶数行に配列された光電変換部とが、各行の光電変換部配列ピッチの略1/2行方向にずれたいわゆるハニカム構造の固体撮像素子を例示したが、本実施形態の製造方法は、光電変換部が正方格子状に配列された固体撮像素子にも適用可能である。   In the first and second embodiments, the photoelectric conversion units arranged in odd-numbered rows and the photoelectric conversion units arranged in even-numbered rows are displaced in the direction of approximately ½ rows of the photoelectric conversion unit arrangement pitch of each row. A so-called honeycomb-structured solid-state imaging device has been exemplified, but the manufacturing method of the present embodiment can also be applied to a solid-state imaging device in which photoelectric conversion portions are arranged in a square lattice pattern.

本発明の第一実施形態を説明するための固体撮像素子の平面模式図FIG. 1 is a schematic plan view of a solid-state imaging device for explaining a first embodiment of the present invention. 図1のA−A線断面模式図AA cross-sectional schematic diagram of FIG. 本発明の第一実施形態を説明するための固体撮像素子の製造工程を説明する図The figure explaining the manufacturing process of the solid-state image sensor for demonstrating 1st embodiment of this invention. 本発明の第一実施形態を説明するための固体撮像素子の製造工程を説明する図The figure explaining the manufacturing process of the solid-state image sensor for demonstrating 1st embodiment of this invention. 本発明の第二実施形態を説明するための固体撮像素子の断面模式図Sectional schematic diagram of the solid-state image sensor for demonstrating 2nd embodiment of this invention 本発明の第二実施形態を説明するための固体撮像素子の製造工程を説明する図The figure explaining the manufacturing process of the solid-state image sensor for demonstrating 2nd embodiment of this invention. 従来の固体撮像素子の製造工程を説明する図The figure explaining the manufacturing process of the conventional solid-state image sensor

符号の説明Explanation of symbols

1 n型シリコン基板
2 ゲート酸化膜
2a,2c 酸化シリコン膜
2b 窒化シリコン膜
3a 第1導電性膜
3b 第2導電性膜
3c 導電性膜
5 電極間絶縁膜
5a,5b,5c 絶縁膜
T,T’ 凹部
1 n-type silicon substrate 2 gate oxide film 2a, 2c silicon oxide film 2b silicon nitride film 3a first conductive film 3b second conductive film 3c conductive film 5 interelectrode insulating films 5a, 5b, 5c insulating films T, T 'Recess

Claims (7)

光電変換部と、前記光電変換部で発生した電荷を転送する電荷転送電極を含む電荷転送部とを有する固体撮像素子の製造方法であって、
前記電荷転送電極の形成工程が、
ゲート酸化膜の形成された半導体基板表面に、第1導電性膜のパターンを形成して第1の電極を形成する工程と、
前記第1の電極を熱酸化して、前記第1の電極の少なくとも側壁に第1の絶縁膜を形成する工程と、
前記第1の電極及び前記第1の絶縁膜の形成された前記半導体基板表面に導電性膜を形成して、前記第1の電極の前記ゲート酸化膜近傍に発生した前記第1の絶縁膜の凹部に前記導電性膜を埋める工程と、
前記導電性膜を、前記凹部に埋められた部分を残して除去する工程と、
前記導電性膜の除去後、前記凹部に埋められている前記導電性膜を熱酸化して前記凹部に第2の絶縁膜を形成する工程と、
前記第1の電極、前記第1の絶縁膜、及び前記第2の絶縁膜の形成された前記半導体基板表面に第2の電極を構成する第2導電性膜を形成する工程とを含む固体撮像素子の製造方法。
A method for manufacturing a solid-state imaging device, comprising: a photoelectric conversion unit; and a charge transfer unit including a charge transfer electrode that transfers charges generated in the photoelectric conversion unit,
The step of forming the charge transfer electrode comprises:
Forming a first conductive film pattern on the semiconductor substrate surface on which the gate oxide film is formed, and forming a first electrode;
Thermally oxidizing the first electrode to form a first insulating film on at least a side wall of the first electrode;
A conductive film is formed on the surface of the semiconductor substrate on which the first electrode and the first insulating film are formed, and the first insulating film generated near the gate oxide film of the first electrode is formed. Filling the recess with the conductive film;
Removing the conductive film leaving a portion buried in the recess;
After removing the conductive film, thermally oxidizing the conductive film buried in the concave portion to form a second insulating film in the concave portion;
Forming a second conductive film constituting a second electrode on the surface of the semiconductor substrate on which the first electrode, the first insulating film, and the second insulating film are formed. Device manufacturing method.
請求項1記載の固体撮像素子の製造方法であって、
前記第2導電性膜の形成後、前記第1の電極上方の前記第2導電性膜を除去する工程を含む固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1,
A method of manufacturing a solid-state imaging device, including a step of removing the second conductive film above the first electrode after forming the second conductive film.
請求項1記載の固体撮像素子の製造方法であって、
前記第2導電性膜の形成後、前記第1の電極上に重畳する領域を残して前記第2導電性膜をパターニングする工程を含む固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1,
A method of manufacturing a solid-state imaging device, comprising: forming a pattern of the second conductive film after forming the second conductive film, leaving a region overlapping on the first electrode.
請求項1〜3のいずれか記載の固体撮像素子の製造方法であって、
前記導電性膜は、前記第1導電性膜又は前記第2導電性膜と同じ材料である固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to any one of claims 1 to 3,
The method for manufacturing a solid-state imaging device, wherein the conductive film is the same material as the first conductive film or the second conductive film.
請求項1〜4のいずれか記載の固体撮像素子の製造方法であって、
前記第1導電性膜又は前記第2導電性膜は、シリコン系導電性膜を含む固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to any one of claims 1 to 4,
The first conductive film or the second conductive film is a method for manufacturing a solid-state imaging device including a silicon-based conductive film.
請求項5記載の固体撮像素子の製造方法であって、
前記シリコン系導電性膜は、ドープトアモルファスシリコン膜である固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 5,
The method for manufacturing a solid-state imaging device, wherein the silicon-based conductive film is a doped amorphous silicon film.
請求項5記載の固体撮像素子の製造方法であって、
前記シリコン系導電性膜は、ドープトポリシリコン膜である固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 5,
The silicon-based conductive film is a method for manufacturing a solid-state imaging device, which is a doped polysilicon film.
JP2005047725A 2005-02-23 2005-02-23 Method for manufacturing solid-state image pickup element Pending JP2006237160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047725A JP2006237160A (en) 2005-02-23 2005-02-23 Method for manufacturing solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047725A JP2006237160A (en) 2005-02-23 2005-02-23 Method for manufacturing solid-state image pickup element

Publications (1)

Publication Number Publication Date
JP2006237160A true JP2006237160A (en) 2006-09-07

Family

ID=37044501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047725A Pending JP2006237160A (en) 2005-02-23 2005-02-23 Method for manufacturing solid-state image pickup element

Country Status (1)

Country Link
JP (1) JP2006237160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004746T5 (en) 2016-09-21 2019-07-11 Denso Corporation Electronic control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004746T5 (en) 2016-09-21 2019-07-11 Denso Corporation Electronic control unit

Similar Documents

Publication Publication Date Title
US7233037B2 (en) Solid state imaging device and method of manufacturing the same
US20110233620A1 (en) Photoelectric conversion apparatus, image pickup system, and manufacturing method therefor
KR20150101681A (en) Image sensor and method of fabricating the same
JP2009252949A (en) Solid-state imaging device and manufacturing method thereof
KR102569811B1 (en) Image sensor and method for fabricating the same
JP4486043B2 (en) CMOS image sensor and manufacturing method thereof
JP2007080941A (en) Solid state imaging device and its manufacturing method
JP2009088140A (en) Alignment mark structure, semiconductor element manufacturing method, semiconductor element, charge coupled element, and solid image pick-up device
JP2006049834A (en) Solid-state image pickup device and manufacturing method of the same
JP2006013460A (en) Manufacturing method for solid-state image pickup element and the image pickup element
JP2006351759A (en) Solid-state imaging device and manufacturing method thereof
JP2006237160A (en) Method for manufacturing solid-state image pickup element
JP5700945B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2006351787A (en) Solid-state imaging device and manufacturing method thereof
JP4159306B2 (en) Solid-state imaging device and manufacturing method thereof
JP2008288504A (en) Semiconductor device and manufacturing method thereof
JP2007012677A (en) Solid state image sensor and its fabrication process
JP2006351788A (en) Solid-state image pickup element and manufacturing method thereof
JP2012253224A (en) Solid-state image pickup device and method of manufacturing the same
JP2006041484A (en) Solid-state image pickup device and manufacturing method of the same
JP2011171575A (en) Solid-state image pickup element and method of manufacturing the same
JP2006253465A (en) Manufacturing method of solid-state imaging element
JP2005209714A (en) Solid-state imaging device and manufacturing method thereof
JP2009060026A (en) Manufacturing method of solid-state imaging element
JP2008153486A (en) Semiconductor element, and manufacturing method of semiconductor element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124