JP2006236561A - Glass substrate for magnetic recording medium, and magnetic recording medium - Google Patents

Glass substrate for magnetic recording medium, and magnetic recording medium Download PDF

Info

Publication number
JP2006236561A
JP2006236561A JP2006072239A JP2006072239A JP2006236561A JP 2006236561 A JP2006236561 A JP 2006236561A JP 2006072239 A JP2006072239 A JP 2006072239A JP 2006072239 A JP2006072239 A JP 2006072239A JP 2006236561 A JP2006236561 A JP 2006236561A
Authority
JP
Japan
Prior art keywords
glass substrate
polishing
recording medium
magnetic recording
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072239A
Other languages
Japanese (ja)
Other versions
JP4184384B2 (en
Inventor
Shozo Iwabuchi
省蔵 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006072239A priority Critical patent/JP4184384B2/en
Publication of JP2006236561A publication Critical patent/JP2006236561A/en
Application granted granted Critical
Publication of JP4184384B2 publication Critical patent/JP4184384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for a magnetic recording medium and the magnetic recording medium with high reliability in mounting free from errors and crashes of a magnetic head in recording and reproducing. <P>SOLUTION: A curved surface with a radius from 0.003 mm or more to less than 0.2 mm is made to interpose at least at one of gaps between sides 1a, 1a' and chamfers 1b, 1b' of the glass substrate for a magnetic recording medium, and between a main surface and the chamfers of the glass substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンピュータ等の情報機器の記録媒体として使用される磁気記録媒体、その磁気記録媒体用の基板として用いられるガラス基板等等に関する。   The present invention relates to a magnetic recording medium used as a recording medium of information equipment such as a computer, a glass substrate used as a substrate for the magnetic recording medium, and the like.

磁気ディスク等の磁気記録媒体用基板としては、アルミニウム基板が広く用いられてきたが、磁気ディスクの小型・薄板化と、高密度記録化に伴い、アルミニウム基板に比べ強度、平坦性、平滑性に優れたガラス基板に徐々に置き換わりつつある。
また、磁気ヘッドの方も高密度記録化に伴って、薄膜ヘッドから、磁気抵抗型ヘッド(MRヘッド)、巨大磁気抵抗型ヘッド(GMRヘッド)へと推移してきている。したがって、ガラス基板を用いた磁気記録媒体を磁気抵抗型ヘッドで再生することが、これからの大きな潮流となることが予想される。
Aluminum substrates have been widely used as substrates for magnetic recording media such as magnetic disks. However, as magnetic disks become smaller and thinner and with higher recording density, they have higher strength, flatness and smoothness than aluminum substrates. It is gradually being replaced by an excellent glass substrate.
In addition, the magnetic head is also changing from a thin film head to a magnetoresistive head (MR head) and a giant magnetoresistive head (GMR head) as the recording density increases. Therefore, it is expected that reproducing a magnetic recording medium using a glass substrate with a magnetoresistive head will be a major trend in the future.

ガラス基板を用いた磁気記録媒体を磁気抵抗型ヘッドで再生する際、記録密度の向上を求めてヘッドの浮上高さを下げると、サーマル・アスペリティによって再生の誤動作あるいは再生が不可能になるという問題があり、その解決策として特開平10−154321に記載の技術が提案されている。
この技術は、サーマル・アスペリティ発生の原因は、ガラス基板端面から発塵するパーティクルであるとして、そのパーティクルの発生を抑えるために、ガラス基板の側面と面取部との間、及びガラス基板の主表面と面取部との間のうちの少なくとも一方に、半径0.2〜10mmの曲面を介在させるものである。
特開平10−154321号公報
When reproducing magnetic recording media using a glass substrate with a magnetoresistive head, if the flying height of the head is lowered in order to improve the recording density, the malfunction of reproduction or reproduction becomes impossible due to thermal asperity. As a solution to this problem, a technique described in JP-A-10-154321 has been proposed.
In this technology, the cause of thermal asperity is particles generated from the end surface of the glass substrate, and in order to suppress the generation of the particles, between the side surface of the glass substrate and the chamfered portion and the main part of the glass substrate. A curved surface having a radius of 0.2 to 10 mm is interposed between at least one of the surface and the chamfered portion.
JP-A-10-154321

その一方で、高密度記録を達成するためのさまざまな試みがなされている。
その一つとして磁気記録媒体に対する磁気ヘッドの低浮上化がある。磁気ヘッドの低浮上化のために、今までの停止状態の磁気記録媒体上に磁気ヘッドを載置しておき、磁気記録媒体が高速回転することによって、磁気ヘッドを媒体に対し一定間隔をあけて浮上させ、この状態で記録再生を行うコンタクト・スタート・ストップ(CSS)方式の記録再生方式から、磁気記録媒体装置が停止状態において、磁気ヘッドが磁気記録媒体の外側のランプと呼ばれる傾斜台に退避しており、装置起動時に磁気ヘッドがランプから滑りだし、アームによって磁気ヘッドを媒体に対し一定間隔をあけて浮上させ、この状態でデータの記録再生を行うロード・アンロード方式(ランプロード方式)へと徐々に置き換わりつつある。このようなロード・アンロード方式に使用する磁気記録媒体においては、磁気ヘッドの吸着を防止するためのテクスチャーを設ける必要がないため、高い平滑性の基板を使用することができ、より磁気ヘッドの低浮上化が実現できる。
また、磁気記録媒体においては、線記録密度及びトラック記録密度が年々向上している。線記録密度及びトラック記録密度の向上に伴って、記録再生する際の磁気ヘッドの位置決め精度が重要な要素であり、基板の形状精度(特に内径の寸法精度、真円度等)がより厳しくなっている。これはトラック幅が狭くなり、サーボ信号によるヘッドの位置決め精度が厳しくなっているからである。一般に、磁気記録媒体装置における磁気記録媒体は、磁気記録媒体の中心孔を回転用スピンドルに装着し、固定用クランプによって固定されるが、上述した特開平10−154321で得られるガラス基板を使用した磁気記録媒体の場合、ガラス基板の内周端面部分における側面と面取部との間や主表面と面取部との間に形成された曲面の半径が大きいために、回転用スピンドルに対し磁気記録媒体が斜めに装着されたり、磁気記録媒体が回転用スピンドルにきちんと(規定の精度で)固定されず、これらが原因で記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュするなどの問題があった。
On the other hand, various attempts have been made to achieve high density recording.
One of them is a low flying height of the magnetic head with respect to the magnetic recording medium. In order to lower the flying height of the magnetic head, the magnetic head is placed on a magnetic recording medium that has been stopped so far, and the magnetic recording medium is rotated at a high speed so that the magnetic head is spaced apart from the medium at a certain interval. From the contact start / stop (CSS) recording / reproducing system in which the magnetic recording medium device is stopped, the magnetic head is moved to a ramp called a ramp outside the magnetic recording medium. The load / unload method (ramp load method), in which the magnetic head starts to slide out of the ramp when the device starts up, and the magnetic head is lifted with a certain distance from the medium by the arm and data is recorded and reproduced in this state. ) Is gradually being replaced. In the magnetic recording medium used for such a load / unload method, it is not necessary to provide a texture for preventing the magnetic head from being attracted, so that a highly smooth substrate can be used. Low levitation can be realized.
Further, in the magnetic recording medium, the linear recording density and the track recording density are improving year by year. As the linear recording density and track recording density improve, the magnetic head positioning accuracy during recording and reproduction is an important factor, and the substrate shape accuracy (particularly the dimensional accuracy of the inner diameter, roundness, etc.) becomes more severe. ing. This is because the track width is narrowed and the positioning accuracy of the head by the servo signal is severe. In general, the magnetic recording medium in the magnetic recording medium device is fixed by a fixing clamp with the center hole of the magnetic recording medium mounted on a rotation spindle, but the glass substrate obtained in the above-mentioned JP-A-10-154321 is used. In the case of a magnetic recording medium, the radius of the curved surface formed between the side surface and the chamfered portion or between the main surface and the chamfered portion at the inner peripheral end surface portion of the glass substrate is large. Problems such as recording media being mounted at an angle, magnetic recording media not being properly fixed to the spindle for rotation (with specified accuracy), errors during recording / reproduction, and magnetic head crashing during recording / reproduction was there.

本発明は上述した背景の下になされたものであり、記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュすることのない装着信頼性の高い磁気記録媒体用ガラス基板及び磁気記録媒体を提供することを目的とする。   The present invention has been made under the background described above, and provides a glass substrate and a magnetic recording medium for a magnetic recording medium with high mounting reliability that do not cause an error during recording / reproduction and the magnetic head does not crash during recording / reproduction. The purpose is to do.

上記目的を達成するために本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

(構成1) 磁性層を含む薄膜を形成するガラス基板の主表面とガラス基板の側面との間に面取りによる面取部を設けた磁気記録媒体用ガラス基板であって、
ガラス基板の側面と面取部との間、及びガラス基板の主表面と面取部との間のうちの少なくとも一方に、半径0.003mm以上0.2mm未満の曲面を介在させたことを特徴とする磁気記録媒体用ガラス基板。
(Configuration 1) A glass substrate for a magnetic recording medium provided with a chamfered portion by chamfering between a main surface of a glass substrate forming a thin film including a magnetic layer and a side surface of the glass substrate,
A curved surface having a radius of 0.003 mm or more and less than 0.2 mm is interposed between at least one of the side surface of the glass substrate and the chamfered portion and between the main surface of the glass substrate and the chamfered portion. A glass substrate for magnetic recording media.

(構成2) 前記ガラス基板の内周端面における、ガラス基板の側面と面取部との間、及びガラス基板の主表面と面取部との間のうちの少なくとも一方に、前記曲面を介在させたことを特徴とする構成1に記載の磁気記録媒体用ガラス基板。 (Configuration 2) The curved surface is interposed between at least one of the side surface and the chamfered portion of the glass substrate and the main surface and the chamfered portion of the glass substrate on the inner peripheral end surface of the glass substrate. The glass substrate for magnetic recording media according to Configuration 1, wherein the glass substrate is used.

(構成3) 前記曲面が、前記ガラス基板の側面と面取部との間に介在された曲面であることを特徴とする構成1又は2に記載の磁気記録媒体用ガラス基板。 (Configuration 3) The glass substrate for a magnetic recording medium according to Configuration 1 or 2, wherein the curved surface is a curved surface interposed between a side surface and a chamfered portion of the glass substrate.

(構成4) 前記ガラス基板は、中心部に円孔を有する円板状のガラス基板であって、該円孔の直径の寸法精度が±20μm以内であることを特徴とする構成1ないし3のいずれかに記載の磁気記録媒体用ガラス基板。 (Configuration 4) The glass substrate is a disk-shaped glass substrate having a circular hole in the center, and the dimensional accuracy of the diameter of the circular hole is within ± 20 μm. The glass substrate for magnetic recording media in any one.

(構成5) 前記側面、前記面取部の表面粗さを、Rmaxで1μm以下とすることを特徴とする構成1ないし4のいずれかに記載の磁気記録媒体用ガラス基板。 (Structure 5) The glass substrate for a magnetic recording medium according to any one of Structures 1 to 4, wherein the surface roughness of the side surface and the chamfered portion is 1 μm or less in Rmax.

(構成6) 前記基板の主表面の表面粗さが、Rmaxで10nm以下であることを特徴とする構成1ないし5のいずれかに記載の磁気記録媒体用ガラス基板。 (Structure 6) The glass substrate for a magnetic recording medium according to any one of Structures 1 to 5, wherein the surface roughness of the main surface of the substrate is 10 nm or less in Rmax.

(構成7) 構成1ないし6のいずれかに記載の磁気記録媒体用ガラス基板の主表面上に、少なくとも磁性層を形成したことを特徴とする磁気記録媒体。 (Configuration 7) A magnetic recording medium, wherein at least a magnetic layer is formed on the main surface of the glass substrate for a magnetic recording medium according to any one of Configurations 1 to 6.

(構成8) ロード・アンロード方式対応の磁気記録媒体であることを特徴とする構成7記載の磁気記録媒体。 (Configuration 8) The magnetic recording medium according to Configuration 7, wherein the magnetic recording medium is compatible with a load / unload method.

なお、本発明でいう内周端面及び外周端面には、図8及び図9に示すように、面取りした面取部1b、1b’と、側面1a、1a’とをそれぞれ含む。
(作用)
In addition, as shown in FIG.8 and FIG.9, the chamfering parts 1b and 1b 'and the side surfaces 1a and 1a' which chamfered are included in the inner peripheral end surface and outer peripheral end surface as used in this invention, respectively.
(Function)

構成1にあるように、ガラス基板の側面と面取部との間、及びガラス基板の主表面と面取部との間のうちの少なくとも一方に、半径0.003mm以上0.2mm未満の曲面を介在させることにより、回転用スピンドルに対し磁気記録媒体が斜めに装着されることがなく、磁気記録媒体が回転用スピンドルにきちんと(所定の装着角精度で)固定されるので、記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュすることがない。曲面の半径が0.003mm未満の場合、回転用スピンドル装着時等において端面に欠けが発生しやすくなるので好ましくない。また、曲面の半径が0.2mm以上の場合、回転用スピンドルに対し磁気記録媒体が斜めに装着されやすくなるので好ましくない。より好ましくは、これらの曲面の半径を0.01mm以上0.15mm以下とすることが好ましい。   As in Configuration 1, a curved surface having a radius of 0.003 mm or more and less than 0.2 mm is provided between at least one of the side surface of the glass substrate and the chamfered portion and between the main surface of the glass substrate and the chamfered portion. By interposing, the magnetic recording medium is not mounted obliquely to the rotating spindle, and the magnetic recording medium is properly fixed (with a predetermined mounting angle accuracy) to the rotating spindle. There is no error or the magnetic head crashes during recording and playback. When the radius of the curved surface is less than 0.003 mm, it is not preferable because the end face is likely to be chipped when the rotating spindle is mounted. Further, when the radius of the curved surface is 0.2 mm or more, it is not preferable because the magnetic recording medium is easily mounted obliquely with respect to the rotating spindle. More preferably, the radius of these curved surfaces is 0.01 mm or more and 0.15 mm or less.

また、構成2にあるように、上記構成1に記載の効果を確保するために、前記ガラス基板の内周端面における、ガラス基板の側面と面取部との間、及びガラス基板の主表面と面取部との間のうちの少なくとも一方に、前記曲面を介在させることが必要である。つまり、前記曲面は、磁気記録媒体が回転用スピンドルによって固定される少なくとも内周端面に形成された面を含むことが必要である。基板の外周端面については、上記構成1で規定する曲面としても良く、サーマル・アスペリティ防止のために、0.2mm以上10mm以下の曲面としても良い。   Moreover, in order to ensure the effect of the said structure 1 as it exists in the structure 2, between the side surface and chamfering part of a glass substrate in the inner peripheral end surface of the said glass substrate, and the main surface of a glass substrate, It is necessary to interpose the curved surface between at least one of the chamfered portions. That is, the curved surface needs to include at least a surface formed on the inner peripheral end surface on which the magnetic recording medium is fixed by the rotating spindle. The outer peripheral end surface of the substrate may be a curved surface defined in the above configuration 1, or may be a curved surface of 0.2 mm or more and 10 mm or less in order to prevent thermal asperity.

また、構成3にあるように、磁気記録媒体装置への磁気記録媒体の装着角精度を確保するために、前記曲面は、ガラス基板の側面と面取部との間に介在された曲面であることが必要である。   Further, as in Configuration 3, in order to ensure the mounting angle accuracy of the magnetic recording medium to the magnetic recording medium device, the curved surface is a curved surface interposed between the side surface of the glass substrate and the chamfered portion. It is necessary.

また、構成4にあるように、ガラス基板は、中心部に円孔を有する円板状のガラス基板であって、円孔の直径の寸法精度を±20μm以内とすることによって、磁気記録媒体装置への磁気記録媒体の装着位置精度がさらに向上するので好ましい。   Further, as in Configuration 4, the glass substrate is a disk-shaped glass substrate having a circular hole in the center, and the dimensional accuracy of the diameter of the circular hole is within ± 20 μm, whereby the magnetic recording medium device This is preferable because the accuracy of the mounting position of the magnetic recording medium on the head is further improved.

また、構成5にあるように、ガラス基板の側面、面取部の表面粗さを、Rmaxで1μm以下とすることにより、さらに磁気記録媒体装置への磁気記録媒体の装着位置精度が向上する。側面等の表面粗さを構成する突起によって磁気記録媒体が回転用スピンドルに対し斜めに装着される可能性があるからである。製造コストを考えると、好ましくは、Rmaxで0.01〜1μmとすることが好ましい。   Further, as in the configuration 5, by setting the surface roughness of the side surface and the chamfered portion of the glass substrate to Rmax of 1 μm or less, the mounting position accuracy of the magnetic recording medium to the magnetic recording medium device is further improved. This is because there is a possibility that the magnetic recording medium is mounted obliquely with respect to the rotating spindle by the projections constituting the surface roughness such as the side surfaces. Considering the manufacturing cost, it is preferable that Rmax is 0.01 to 1 μm.

また、構成6にあるように、本発明は、磁気ヘッドの低浮上走行が可能な、主表面の表面粗さがRmaxで10nm以下のガラス基板を用いる場合に特に有用である。好ましくは、磁気ヘッドのより低浮上走行が可能な、主表面の表面粗さがRmaxで5nm以下、さらに好ましくは、Rmaxで3nm以下のガラス基板が好ましい。   In addition, as described in Structure 6, the present invention is particularly useful when a glass substrate with a surface roughness Rmax of 10 nm or less that allows the magnetic head to travel at a low flying height is used. Preferably, a glass substrate with a surface roughness of Rmax of 5 nm or less, more preferably 3 nm or less of Rmax, capable of lower flying of the magnetic head is preferable.

また、構成7にあるように、上記構成1から6に記載の磁気記録媒体用ガラス基板の主表面上に少なくとも磁性層を形成することにより、記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュすることのない装着信頼性の高い気記録媒体が得られる。特に、構成8にあるように、本発明は、磁気ヘッドが低浮上走行し高密度記録再生が行われるロード・アンロード方式対応の磁気記録媒体に有用である。   Further, as in Configuration 7, by forming at least the magnetic layer on the main surface of the glass substrate for magnetic recording media described in Configurations 1 to 6, an error during recording / reproduction, a magnetic head during recording / reproduction, An air recording medium with high mounting reliability that does not crash can be obtained. In particular, as described in Configuration 8, the present invention is useful for a load / unload type magnetic recording medium in which a magnetic head travels with low flying and high-density recording / reproduction is performed.

(実施例)
以下、実施例にもとづき本発明を説明する。
(Example)
Hereinafter, the present invention will be described based on examples.

まず、実施例で使用する研磨装置について説明する。
図1は内周端面研磨に使用する研磨装置の一例を示す要部断面図である。図1において、1は研磨対象である磁気ディスク用ガラス基板(以下MD基板という)、2は多数のMD基板1を研磨液中に浸漬させつつ収納する基板ケース、3は基板ケース2を固定保持する回転保持台、4は多数積層されたMD基板1の中心孔に挿入された研磨ブラシ、5は研磨液を収容する研磨液収容部、6は各MD基板を離間するためのスペーサである。
First, the polishing apparatus used in the examples will be described.
FIG. 1 is a cross-sectional view of an essential part showing an example of a polishing apparatus used for inner peripheral end face polishing. In FIG. 1, 1 is a glass substrate for a magnetic disk (hereinafter referred to as MD substrate) to be polished, 2 is a substrate case for storing a large number of MD substrates 1 while being immersed in a polishing liquid, and 3 is a substrate case 2 fixedly held. A rotating holding base 4 is a polishing brush inserted into the central hole of the MD substrate 1 stacked in large numbers, 5 is a polishing liquid container for storing a polishing liquid, and 6 is a spacer for separating the MD substrates.

基板ケース2は、軸方向上部からカラー21を介して締め付けカバー22を締め込むことで、MD基板1とスペーサ6との主表面間の摩擦係数あるいは各MD基板1どうしの主表面間の摩擦係数(スペーサを設けない場合)により、基板ケース2や研磨ブラシ4の回転に影響されることなくMD基板1を保持する機構を有する。なお、この基板ケース2には、ケース内外部の研磨液が流通できるように適当な部位に研磨液流通孔23が設けてある。   The substrate case 2 has a friction coefficient between the main surfaces of the MD substrate 1 and the spacer 6 or a friction coefficient between the main surfaces of the MD substrates 1 by tightening the tightening cover 22 from the upper part in the axial direction via the collar 21. (When no spacer is provided), a mechanism for holding the MD substrate 1 without being affected by the rotation of the substrate case 2 or the polishing brush 4 is provided. The substrate case 2 is provided with a polishing liquid flow hole 23 at an appropriate position so that the polishing liquid inside and outside the case can flow.

回転保持台3は、研磨液収容部5の底板51の中心部に気密的に取り付けられた回転軸部31の回転軸32に結合され、その回転軸32を正逆の双方向に回転駆動する回転駆動装置34によって回転できるようになっている。なお、この回転駆動装置34はその回転数を可変できるようになっており、研磨目的に応じた適切な回転数を選定できるようになっている。また、回転軸部31における回転軸カバー33に設けられたエアー供給口35からエアー供給路36を通じてエアーを供給することにより、エアーシール層37を形成して、研磨液が回転軸32に流入するのを防ぐ。研磨液収容部5は、円板状の底板51の外周部に筒状の側壁52が気密的に取り付けられたもので、研磨液50を収容する。   The rotation holding table 3 is coupled to a rotation shaft 32 of a rotation shaft portion 31 that is airtightly attached to the center portion of the bottom plate 51 of the polishing liquid storage portion 5 and rotationally drives the rotation shaft 32 in both forward and reverse directions. It can be rotated by a rotation drive device 34. In addition, this rotation drive device 34 can change the rotation speed, and can select now an appropriate rotation speed according to the grinding | polishing objective. In addition, by supplying air from an air supply port 35 provided in the rotary shaft cover 33 in the rotary shaft portion 31 through the air supply path 36, an air seal layer 37 is formed, and the polishing liquid flows into the rotary shaft 32. To prevent. The polishing liquid storage unit 5 is a member in which a cylindrical side wall 52 is airtightly attached to the outer periphery of a disk-shaped bottom plate 51 and stores the polishing liquid 50.

研磨ブラシ4は、回転駆動装置41の回転軸42に接続されており、正逆の双方向に回転可能に構成されている。研磨ブラシ4は、初期状態においては研磨ブラシ4の回転中心の位置が、基板ケース2の回転中心と一致するように設定されている。また、回転ブラ4は、ブラシ毛43のMD基板1への接触長さを加減するため、エアシリンダ等を利用した機構(図示せず)によって、MD基板1の内周端面部分への押しつけ、つまりブラシの回転軸方向に対し垂直方向への押しつけ量が調整可能に構成されている。研磨ブラシ4は、カム機構(図示せず)によって、上記内周端面への押しつけと同時にブラシの回転軸方向に沿って往復しつつ揺動運動ができるように構成されている。なお、揺動運動によって、ブラシ先端の方向を変化させ、端面の表面状態をより向上させることができる。   The polishing brush 4 is connected to the rotation shaft 42 of the rotation drive device 41 and is configured to be rotatable in both forward and reverse directions. The polishing brush 4 is set so that the position of the rotation center of the polishing brush 4 coincides with the rotation center of the substrate case 2 in the initial state. Further, the rotating bra 4 is pressed against the inner peripheral end surface portion of the MD substrate 1 by a mechanism (not shown) using an air cylinder or the like in order to adjust the contact length of the brush bristles 43 to the MD substrate 1. That is, the amount of pressing in the direction perpendicular to the rotation axis direction of the brush can be adjusted. The polishing brush 4 is configured to be able to swing by a cam mechanism (not shown) while reciprocating along the rotation axis direction of the brush simultaneously with being pressed against the inner peripheral end face. In addition, the direction of the brush tip can be changed by the swinging motion, and the surface state of the end face can be further improved.

図2は外周端面研磨に使用する研磨装置の要部を正面から見た部分断面図、図3は要部の平面図である。   FIG. 2 is a partial cross-sectional view of the main part of a polishing apparatus used for polishing the outer peripheral end face as viewed from the front, and FIG. 3 is a plan view of the main part.

これらの図において、1は研磨対象である以下MD基板、200は多数のMD基板1を重ねて保持する保持手段、300は保持手段200を保持する回転保持台、4は多数枚重ねられたMD基板1の外周端面部分に接触する研磨ブラシ、500、500’は研磨液を供給する研磨液供給手段、600は研磨室である。なお、図2において、各MD基板を離間するためのスペーサは図示を省略した。   In these drawings, 1 is an MD substrate to be polished below, 200 is a holding means for holding a number of MD substrates 1 in an overlapping manner, 300 is a rotary holding table for holding the holding means 200, and 4 is a MD in which a number of sheets are stacked. A polishing brush in contact with the outer peripheral end surface portion of the substrate 1, 500 and 500 ′ are polishing liquid supply means for supplying a polishing liquid, and 600 is a polishing chamber. In FIG. 2, the spacers for separating the MD substrates are not shown.

基板保持手段200は、軸221に挿入したMD基板1を受け部材222で受け、軸方向上部からカラー223を介して締め付け治具224で積層MD基板を締め込むことで、MD基板1とスペーサとの主表面間の摩擦係数あるいは各MD基板1どうしの主表面間の摩擦係数(スペーサを設けない場合)により、基板保持手段200の回転や研磨ブラシ4の回転によってずれることなくMD基板1を保持する機構を有する。   The substrate holding means 200 receives the MD substrate 1 inserted into the shaft 221 with the receiving member 222, and tightens the laminated MD substrate with the tightening jig 224 through the collar 223 from the upper part in the axial direction. The MD substrate 1 is held without being displaced by the rotation of the substrate holding means 200 or the rotation of the polishing brush 4 due to the friction coefficient between the main surfaces of each other or the friction coefficient between the main surfaces of the MD substrates 1 (when no spacer is provided). It has a mechanism to do.

回転保持台300は、回転軸331に結合され、その回転軸331を回転駆動する回転駆動装置(図示せず)によって正逆の双方向に回転できるようになっている。なお、この回転駆動装置はその回転数を可変できるようになっており、研磨目的に応じた適切な回転数を選定できるようになっている。   The rotation holding base 300 is coupled to a rotation shaft 331 and can be rotated in both forward and reverse directions by a rotation drive device (not shown) that rotationally drives the rotation shaft 331. The rotation drive device can change the rotation speed, and can select an appropriate rotation speed according to the purpose of polishing.

研磨ブラシ4は、回転駆動装置(図示せず)の回転軸42に接続されており、正逆の双方向に回転可能に構成されている。研磨ブラシ4は、基板セッティング時に図示A方向に退避可能に構成されている。また、研磨ブラシ4は、ブラシ毛43のMD基板1への接触長さを加減するため、MD基板1の外周端面部分への押しつけ量を調整可能に構成されている。研磨ブラシ4は、カム機構(図示せず)によって、ブラシの回転軸方向(図示B方向)に沿って往復運動ができるように構成されている。この際、研磨ブラシ4の往復運動範囲は、セットされたMD基板1の最下部から最上部までの範囲が研磨ブラシ4のブラシ毛の植毛範囲内に収まる範囲内とする。   The polishing brush 4 is connected to a rotation shaft 42 of a rotation drive device (not shown), and is configured to be rotatable in both forward and reverse directions. The polishing brush 4 is configured to be retractable in the direction A in the figure when setting the substrate. Further, the polishing brush 4 is configured to be able to adjust the amount of pressing against the outer peripheral end surface portion of the MD substrate 1 in order to increase or decrease the contact length of the bristles 43 to the MD substrate 1. The polishing brush 4 is configured to reciprocate along the rotation axis direction (B direction in the drawing) of the brush by a cam mechanism (not shown). At this time, the range of reciprocating motion of the polishing brush 4 is set such that the range from the lowermost part to the uppermost part of the set MD substrate 1 is within the flocking range of the bristle of the polishing brush 4.

なお、研磨ブラシ4は、回転駆動装置側の回転軸42とは反対側(図示下側)に回転軸を有していないが、回転軸42の反対側にも回転軸及びこの回転軸を固定する軸受を設けることにより、外周端面部分の研磨時においても研磨ブラシ4の回転軸がずれることがなく研磨することができ、表面粗さ、サイズにばらつきがない高精度な研磨を行うことができるので好ましい。軸受としては、べアリング、ボ−ル軸受、ころ軸受、すべり軸受など公知の軸受を使用することができる。軸受は、研磨ブラシ4の回転軸の複数箇所に設けることができ、回転駆動装置側の回転軸42にも設けることができる。   The polishing brush 4 does not have a rotation shaft on the opposite side (the lower side in the drawing) to the rotation shaft 42 on the rotation drive device side, but the rotation shaft and the rotation shaft are also fixed on the opposite side of the rotation shaft 42. By providing such a bearing, it is possible to polish without rotating the rotating shaft of the polishing brush 4 even at the time of polishing the outer peripheral end surface portion, and it is possible to perform highly accurate polishing with no variation in surface roughness and size. Therefore, it is preferable. As the bearing, a known bearing such as a bearing, a ball bearing, a roller bearing, or a sliding bearing can be used. The bearings can be provided at a plurality of locations on the rotating shaft of the polishing brush 4, and can also be provided on the rotating shaft 42 on the rotary drive device side.

研磨液供給手段500は、研磨液供給ノズル551、研磨液供給管553等からなり、積層ガラス基板10に研磨液50を供給する。研磨液供給手段500’は、図3及び図4に示すように、研磨液供給ノズル551’から、積層ガラス基板10’に研磨液50を供給する。   The polishing liquid supply means 500 includes a polishing liquid supply nozzle 551, a polishing liquid supply pipe 553, and the like, and supplies the polishing liquid 50 to the laminated glass substrate 10. As shown in FIGS. 3 and 4, the polishing liquid supply unit 500 ′ supplies the polishing liquid 50 from the polishing liquid supply nozzle 551 ′ to the laminated glass substrate 10 ′.

上述した内外周端面研磨に使用する研磨ブラシ4は、図5に示すように、円筒又は円柱形の胴部44にブラシ毛43を帯状且つ螺旋状に植毛したものである。図6に示すように、螺旋状に植毛したブラシ毛43の傾斜角γは、内周端面研磨の場合にあっては0°〜90°であり、好ましくは2°〜5°であり、外周端面研磨の場合にあっては2°〜80°であり、好ましくは45°〜70°である。基板の内外周端面部分を研磨する場合、ブラシ毛の傾斜角が小さいと、効率良く研磨加工することができないからである。図5等に示す態様の研磨ブラシによれば、図8及び図9に示すMD基板の内周端面における面取り部1bと側面1aの双方、及び外周端面における面取り部1b’と側面1a’の双方、を同時に良好に研磨できる。研磨ブラシ4の他の態様としては、円筒形の胴部にブラシ毛を点在して植毛した部分植毛などの態様が挙げられる。
また、ブラシ毛43としては、図7に示す蛇行形にカールさせたナイロン繊維(直径0.05〜0.3mm、長さ1〜20mm(内周端面研磨の場合)、長さ10〜30mm(外周端面研磨の場合))が使用されているが、ナイロン繊維の代わりに塩化ビニル繊維、豚毛、ピアノ線、ステンレス製繊維などを用いてもよい。硬度が低い繊維、あるいは柔軟性の高い繊維を利用すれば、ブラシ毛の弾性変形によって擦る力が過大になることを防止でき、スクラッチなどのキズの発生をより良好に防止できる。また、カールさせた繊維は、窪み等に対する接触性がよく、例えば、図8及び図9に示すMD基板の内周端面における面取り部1b、及び外周端面における面取り部1b’、をより効率よく研磨することが可能になるが、面取り部1b、1b’の研磨の効率をそれ程考慮しなければカールのない直線状の繊維を利用してもよい。なお、ブラシ毛43として、樹脂に研磨剤を混入しこれを成形してブラシ毛に研磨剤を含有したものを用いれば、研磨速度をさらに高めることができる。
As shown in FIG. 5, the polishing brush 4 used for polishing the inner and outer peripheral end faces described above is obtained by flocking brush hairs 43 in a cylindrical or columnar body 44 in a band shape and a spiral shape. As shown in FIG. 6, the inclination angle γ of the brush bristles 43 implanted in a spiral shape is 0 ° to 90 °, preferably 2 ° to 5 ° in the case of inner peripheral end face polishing, In the case of end face polishing, the angle is 2 ° to 80 °, preferably 45 ° to 70 °. This is because when the inner and outer peripheral end surfaces of the substrate are polished, if the inclination angle of the brush bristles is small, the polishing process cannot be performed efficiently. 5 and the like, both the chamfered portion 1b and the side surface 1a on the inner peripheral end surface of the MD substrate shown in FIGS. 8 and 9 and both the chamfered portion 1b ′ and the side surface 1a ′ on the outer peripheral end surface are provided. Can be polished well at the same time. Examples of other modes of the polishing brush 4 include a mode of partial flocking in which brush hairs are planted in a cylindrical body portion.
Moreover, as the bristle 43, the nylon fiber curled into the meandering shape shown in FIG. 7 (diameter 0.05-0.3mm, length 1-20mm (in the case of inner peripheral end surface grinding | polishing)), length 10-30mm ( In the case of outer peripheral end surface polishing))) is used, but instead of nylon fiber, vinyl chloride fiber, pig hair, piano wire, stainless steel fiber or the like may be used. If fibers having low hardness or fibers having high flexibility are used, it is possible to prevent excessive rubbing force due to elastic deformation of the brush hairs, and it is possible to better prevent the occurrence of scratches such as scratches. Further, the curled fiber has good contact with the depression or the like. For example, the chamfered portion 1b on the inner peripheral end surface and the chamfered portion 1b ′ on the outer peripheral end surface of the MD substrate shown in FIGS. 8 and 9 are polished more efficiently. However, if the polishing efficiency of the chamfered portions 1b and 1b ′ is not considered so much, straight fibers without curling may be used. In addition, if the abrasive | polishing agent is mixed in resin, this is shape | molded and the brush hair 43 contains the abrasive | polishing agent is used as the bristle 43, a grinding | polishing rate can be raised further.

上述した内外周端面研磨に使用するスペーサ6は、MD基板の内周端面及び外周端面の面取部の研磨ブラシによる研磨残りを確実に防止するため、及び、研磨時におけるガラス基板等の破損を確実に防止するために設けられたもので、その形状は、MD基板と同じく中心部に円孔を有する円板状である。具体的には、装着した際、図10に示すように、スペーサの端部(側面)6a、6a’がMD基板の面取部1b、1b’の終端1c、1c’から0〜2mm程度内側(好ましくは0.5〜2mm程度内側)になるように、MD基板の大きさにしたがって調整される。なお、図10はMD基板の中心部の円孔から片側半分だけを部分的に示している。スペーサの端部6a、6a’をMD基板の面取部の終端1c、1c’から内側にした場合、スペーサの厚さとブラシ毛の線径にもよるが、ブラシ毛がMD基板の主表面の領域まで入り込むことによって、主表面と面取部の間の稜線部が丸味を帯びる傾向になる。また、スペーサの端部6a、6a’をMD基板の面取部の終端1c、1c’と一致させた場合、MD基板の主表面の領域までブラシ毛が入り込むことはなく、主表面と面取部の間の稜線部が丸味を帯びることはないが、それらの端部を一致させなければならないので、スペーサを装着することが難しくなる。なお、スペーサの端部がMD基板の面取部の終端から内側にある場合であっても、主表面は研磨工程によって除去されるので、上述の丸味は問題とならない。
また、スペーサの厚さは、使用するブラシ毛の線径によって適宜調整される。その厚さは、0.1〜0.3mm程度が好ましい。
また、スペーサの材質としては、ポリウレタン、アクリル、プラスチック、研磨工程で使用する研磨パッドと同じ材料などMD基板より軟質な材料からなることが好ましい。具体的には、研磨ブラシ又は研磨パッドからの圧力によって生じるMD基板の破壊を阻止しうる程度に軟質な材料からなることが望ましい。
The spacer 6 used for the inner and outer peripheral end surface polishing described above is to reliably prevent the polishing residue of the chamfered portions of the inner peripheral end surface and the outer peripheral end surface of the MD substrate from being polished by the polishing brush, and to damage the glass substrate or the like during polishing. It is provided for sure prevention, and its shape is a disk shape having a circular hole in the center as in the MD substrate. Specifically, as shown in FIG. 10, the end portions (side surfaces) 6a and 6a ′ of the spacers are about 0 to 2 mm inside from the terminal ends 1c and 1c ′ of the chamfered portions 1b and 1b ′ of the MD substrate, as shown in FIG. It is adjusted according to the size of the MD substrate so as to be (preferably about 0.5 to 2 mm inside). FIG. 10 partially shows only a half on one side from the circular hole at the center of the MD substrate. When the end portions 6a and 6a ′ of the spacer are located on the inner side from the end points 1c and 1c ′ of the chamfered portion of the MD substrate, the brush bristles of the main surface of the MD substrate depend on the thickness of the spacer and the wire diameter of the brush bristles. By entering into the region, the ridge line portion between the main surface and the chamfered portion tends to be rounded. Further, when the end portions 6a and 6a ′ of the spacer are made to coincide with the terminal ends 1c and 1c ′ of the chamfered portion of the MD substrate, the brush hair does not enter the region of the main surface of the MD substrate, and the main surface and the chamfered portion. Although the ridge line part between the parts is not rounded, it is difficult to mount the spacer because the end parts must be matched. Even if the end portion of the spacer is inside from the end of the chamfered portion of the MD substrate, the main surface is removed by the polishing process, so the above-described roundness is not a problem.
Further, the thickness of the spacer is appropriately adjusted depending on the wire diameter of the bristle used. The thickness is preferably about 0.1 to 0.3 mm.
The spacer is preferably made of a material softer than the MD substrate, such as polyurethane, acrylic, plastic, and the same material as the polishing pad used in the polishing process. Specifically, it is desirable to be made of a material that is soft enough to prevent destruction of the MD substrate caused by pressure from the polishing brush or polishing pad.

上述した内外周端面研磨に使用する研磨液の主成分である研磨剤としては、酸化セリウムが使用されているが、他にも酸化鉄、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化マンガン、コロイダルシリカ等の研磨剤を用いることもできる。好ましくは、被研磨物の材料(MD基板)に近い硬さのものが望ましく、ガラス基板の場合、酸化セリウム、酸化ジルコニウム、コロイダルシリカが望ましい。研磨剤が硬すぎるとガラス基板の内外周端面部分にキズを与えることになってしまい好ましくない。また、研磨剤が軟らかすぎるとガラス基板の内外周端面部分を鏡面にすることができなくなるので好ましくない。
研磨剤の平均粒径としては、1〜5μmが好ましい。1μm未満の場合、研磨剤がガラス基板を研削する力が弱く、研磨ブラシの先端が直接ガラス基板の内外周端面部分に接触した状態で研磨されることが多くなるので、MD基板の面取り形状を制御することが難しく、図8及び図9に示す、内周端面部分における側面1aと面取り部1bとの間の箇所、及び外周端面部分における側面1a’と面取り部1b’との間の箇所が、だれてしまうので好ましくない。また、5μmを超える場合、研磨剤の粒径が大きいので表面粗さが大きくなるので好ましくない。
As the polishing agent that is the main component of the polishing liquid used for the inner and outer peripheral end face polishing described above, cerium oxide is used, but iron oxide, aluminum oxide, magnesium oxide, zirconium oxide, manganese oxide, colloidal silica are also used. Abrasives such as these can also be used. Preferably, a material having a hardness close to that of the material to be polished (MD substrate) is desirable, and in the case of a glass substrate, cerium oxide, zirconium oxide, and colloidal silica are desirable. If the abrasive is too hard, it is not preferable because it scratches the inner and outer peripheral end surfaces of the glass substrate. Further, if the abrasive is too soft, the inner and outer peripheral end face portions of the glass substrate cannot be made into a mirror surface, which is not preferable.
As an average particle diameter of an abrasive | polishing agent, 1-5 micrometers is preferable. If it is less than 1 μm, the polishing agent has a weak force to grind the glass substrate and is often polished with the tip of the polishing brush in direct contact with the inner and outer peripheral end surfaces of the glass substrate. It is difficult to control, and the location between the side surface 1a and the chamfered portion 1b in the inner peripheral end surface portion and the location between the side surface 1a 'and the chamfered portion 1b' in the outer peripheral end surface portion shown in FIGS. It is not preferable because it will drool. On the other hand, when the thickness exceeds 5 μm, the particle size of the abrasive is large, so that the surface roughness becomes large, which is not preferable.

上述した内外周端面研磨では、研磨ブラシ4に替えて、研磨パッドを用いることができる。研磨パッドとしては、例えば、スウェード、ベロアを素材とする軟質ポリシャや、硬質ベロア、ウレタン発砲、ピッチ含浸スウェード等の硬質ポリシャなどが挙げられる。研磨パッドは、例えば、円筒形の胴部に研磨パッドを全周に巻き付けて配設したものが好ましい。   In the inner and outer peripheral end face polishing described above, a polishing pad can be used instead of the polishing brush 4. Examples of the polishing pad include a soft polisher made of suede and velor, and a hard polisher such as hard velor, urethane foam, and pitch-impregnated suede. For example, the polishing pad is preferably one in which a polishing pad is wound around the entire circumference of a cylindrical body.

上述した内周端面研磨装置は、研磨液をガラス基板に吹き掛ける方式のものを採用することができる。また、上述した外周端面研磨装置は、研磨液にガラス基板を浸漬する方式のものを採用することができる。   The inner peripheral end surface polishing apparatus described above can employ a system that sprays a polishing liquid onto a glass substrate. Moreover, the thing of the system which immerses a glass substrate in polishing liquid can be employ | adopted for the outer periphery end surface grinding | polishing apparatus mentioned above.

実施例1
以下の工程を経て磁気記録媒体用ガラス基板及び磁気記録媒体を製造した。
Example 1
The glass substrate for magnetic recording media and the magnetic recording medium were manufactured through the following steps.

(1)粗ラッピング工程
まず、溶融ガラスを、上型、下型、胴型を用いてダイレクト・プレスして、直径66mmφ、厚さ1.2mm(2.5インチ)、直径85mmφ、厚さ1.5mm(3.0インチ)、及び直径96mmφ、厚さ1.5mm(3.5インチ)の円板状のガラス体を成形した。
この場合、ダイレクト・プレス法の代わりに、ダウンドロー法やフロート法で形成したシートガラスから、研削砥石で切り出して円板状のガラス体を得てもよい。
なお、アルミノシリケートガラスとしては、SiO2:58〜75重量%、Al23:5〜23重量%、Li2O:3〜10重量%、Na2O:4〜13重量%を主成分として含有する化学強化用ガラスを使用した。
(1) Coarse lapping process First, the molten glass is directly pressed using an upper mold, a lower mold, and a body mold to obtain a diameter of 66 mmφ, a thickness of 1.2 mm (2.5 inches), a diameter of 85 mmφ, and a thickness of 1 A disk-shaped glass body having a diameter of 0.5 mm (3.0 inches), a diameter of 96 mmφ, and a thickness of 1.5 mm (3.5 inches) was formed.
In this case, instead of the direct press method, a disk-shaped glass body may be obtained by cutting out from a sheet glass formed by a downdraw method or a float method with a grinding wheel.
As the aluminosilicate glass, SiO 2: 58~75 wt%, Al 2 O 3: 5~23 wt%, Li 2 O: 3 to 10 wt%, Na 2 O: 4 to 13 principal component weight% The glass for chemical strengthening contained as was used.

次いで、ガラス基板にラッピング加工を施した。このラッピング工程は、寸法精度及び形状精度の向上を目的としている。ラッピング加工は、ラッピング装置を用いて行い、砥粒の粒度を#400として行った。
詳しくは、粒度#400のアルミナ砥粒を用い、荷重Lを100kg程度に設定して、内転ギアと外転ギアを回転させることによって、キャリア内に収納したガラス基板の両面を面精度0〜1μm、表面粗さ(Rmax)(JISB0601で測定)6μm程度にラッピングした。
Next, the glass substrate was lapped. This lapping process aims to improve dimensional accuracy and shape accuracy. The lapping process was performed using a lapping apparatus, and the grain size of the abrasive grains was # 400.
Specifically, by using alumina abrasive grains having a particle size of # 400, the load L is set to about 100 kg, and the inner rotation gear and the outer rotation gear are rotated, so that both surfaces of the glass substrate housed in the carrier have surface accuracy of 0 to 0. Wrapping to about 1 μm and surface roughness (Rmax) (measured by JISB0601) of about 6 μm.

(2)形状加工工程
次に、円筒状の砥石を用いてガラス基板の中心部に円孔(直径19mmφ(2.5インチ)、24mmφ(3.0インチ、3.5インチ))を開けるとともに、内周部を研削加工して直径を20mmφ(2.5インチ)、25mmφ(3.0インチ、3.5インチ)とし、外周部も研削して直径を65mmφ(2.5インチ)、84mmφ(3.0インチ)、95mmφ(3.5インチ)とした後、外周部及び内周部に所定の面取り加工を施した。このときのガラス基板の内外周端面の表面粗さは、Rmaxで4μm程度であった。
(2) Shape processing step Next, a circular hole (diameter: 19 mmφ (2.5 inches), 24 mmφ (3.0 inches, 3.5 inches)) is opened in the center of the glass substrate using a cylindrical grindstone. The inner periphery is ground to a diameter of 20 mmφ (2.5 inches) and 25 mmφ (3.0 inches, 3.5 inches), and the outer periphery is also ground to a diameter of 65 mmφ (2.5 inches) and 84 mmφ. (3.0 inches) and 95 mmφ (3.5 inches), and then a predetermined chamfering process was performed on the outer peripheral portion and the inner peripheral portion. The surface roughness of the inner and outer peripheral end faces of the glass substrate at this time was about 4 μm in Rmax.

(3)端面研磨工程
上述した図1に示す研磨装置を用いてガラス基板の内周端面を研磨した。
まず、研磨ブラシ4を基板ケース2の上から適当量退避させておき、基板ケース2にMD基板1とスペーサ6(材質:ポリウレタン、厚さ:0.1mm)とを交互に多数配置した後、カラー21を上下に配置して締め付けカバー22を締め込むことによりクランプする。このとき、MD基板1の内周穴部の芯ずれは、基板ケース2の内周部とMD基板1の外周部との寸法差によるクリアランスで決定される。このクリアランスについては、作業性、基板ケース内周部の真円度により調整が必要だが、JIS B 0401(1986)における、はめあいのすきまばめから中間ばめの範囲が適正である。スペーサ6の内周穴部の芯ずれは、装着時の作業方法によって決定される。
次に、上記MD基板1を多数セットした基板ケース2を、回転保持台3にセットする。
次いで、基板ケース2の回転中心と同一線上にある研磨ブラシ4を図1のようにMD基板1の内周部に挿入する。研磨ブラシ4の停止位置はセットされたMD基板1の最下部1’から最上部1”までの範囲が研磨ブラシ4のブラシ毛43の植毛範囲内に収まる位置とする。
続いて、研磨液収容部5に研磨液50を適当量だけ満たす。ここで、適当量とは、MD基板1の締め付けカバー22の上端面が僅かに液面下に位置するようになる量である。この量は研磨目的に応じて適宜決定される。研磨液を満たす時期は、研磨ブラシ4をMD基板1の内周穴部に挿入する前、あるいは挿入と同時期でもよい。
次に、研磨ブラシ4(ブラシ毛43を含めた直径5〜25mmφ、ブラシ毛43の毛足1〜20mm、ブラシ毛43の線径0.05〜0.3mmφ、螺旋状に植毛されたブラシ毛43の傾斜角γ=3°)のブラシ毛43がMD基板1の内周端面に当接するように、研磨ブラシ4の押し付け量を調整する。この調整は、ブラシ毛43がカールしたナイロン繊維の場合にあっては、ブラシ毛43の先端位置がMD基板1の被研磨面に1〜2mm程度押しつけられた位置とする。
次に、回転保持台3と研磨ブラシ4とを互いに逆方向に回転させた状態で、研磨を行う。この場合、好ましい研磨ブラシの回転数は空転時で1000〜20000rpmである。本実施例では、回転保持台3の回転数は60rpmとし、研磨ブラシ4の研磨液中での回転数は6000rpm(空転時は10000rpm)とし、研磨時間は約10分とした。
(3) End face polishing process The inner peripheral end face of the glass substrate was polished using the polishing apparatus shown in FIG.
First, an appropriate amount of the polishing brush 4 is retreated from the top of the substrate case 2, and a number of MD substrates 1 and spacers 6 (material: polyurethane, thickness: 0.1 mm) are alternately arranged on the substrate case 2; The collar 21 is clamped by placing it vertically and tightening the fastening cover 22. At this time, the misalignment of the inner peripheral hole portion of the MD substrate 1 is determined by the clearance due to the dimensional difference between the inner peripheral portion of the substrate case 2 and the outer peripheral portion of the MD substrate 1. This clearance needs to be adjusted depending on workability and the roundness of the inner periphery of the substrate case. However, the range from the clearance fit to the intermediate fit in JIS B 0401 (1986) is appropriate. The misalignment of the inner peripheral hole portion of the spacer 6 is determined by the working method at the time of mounting.
Next, the substrate case 2 on which a large number of the MD substrates 1 are set is set on the rotation holding table 3.
Next, the polishing brush 4 that is on the same line as the rotation center of the substrate case 2 is inserted into the inner peripheral portion of the MD substrate 1 as shown in FIG. The stopping position of the polishing brush 4 is a position where the range from the lowermost part 1 ′ to the uppermost part 1 ″ of the set MD substrate 1 falls within the flocking range of the brush bristles 43 of the polishing brush 4.
Subsequently, the polishing liquid container 5 is filled with an appropriate amount of the polishing liquid 50. Here, the appropriate amount is an amount such that the upper end surface of the tightening cover 22 of the MD substrate 1 is positioned slightly below the liquid level. This amount is appropriately determined according to the purpose of polishing. The time when the polishing liquid is filled may be before the polishing brush 4 is inserted into the inner peripheral hole of the MD substrate 1 or at the same time as the insertion.
Next, the polishing brush 4 (the diameter of the brush hair 43 including the hair bristles 43 is 5 to 25 mmφ, the hair bristles 43 are 1 to 20 mm in diameter, the brush hair 43 has a wire diameter of 0.05 to 0.3 mmφ, and the brush hairs are spirally planted. The pressing amount of the polishing brush 4 is adjusted so that the brush bristles 43 having an inclination angle γ = 3 ° of 43 come into contact with the inner peripheral end surface of the MD substrate 1. In the case where the brush hairs 43 are curled nylon fibers, this adjustment is performed so that the tip position of the brush hairs 43 is pressed against the surface to be polished of the MD substrate 1 by about 1 to 2 mm.
Next, polishing is performed in a state where the rotation holding table 3 and the polishing brush 4 are rotated in opposite directions. In this case, the preferable rotation speed of the polishing brush is 1000 to 20000 rpm when idling. In this example, the rotation number of the rotation holding table 3 was 60 rpm, the rotation number of the polishing brush 4 in the polishing liquid was 6000 rpm (10000 rpm when idling), and the polishing time was about 10 minutes.

上記内周端面の研磨後に、上述した図2、図3、図4に示す研磨装置を用いてガラス基板の外周端面を研磨した。
まず、内外周の面取り加工等が済んだMD基板1を図2に示す基板保持手段200にスペーサを介してセットする。詳しくは、1つの基板保持手段に対し500枚、本実施例では2つの基板保持手段があるので合計1000枚のMD基板をセットした。
次に、図5に示す研磨ブラシ4(ブラシ毛43を含めた直径200〜500mmφ、ブラシ毛43の毛足1〜30mm、ブラシ毛43の線径0.05〜0.3mmφ、螺旋状に植毛されたブラシ毛43の傾斜角γ=65°)を図3に示すようにMD基板1の外周端面部分に押し付ける。この際、研磨ブラシ4のブラシ毛43のMD基板1の外周端面部分への押し付け量を調整する。この調整は、ブラシ毛43がカールしたナイロン繊維の場合にあっては、ブラシ毛43の先端位置がMD基板1の被研磨面に1〜5mm程度押しつけられた位置とする。
After polishing the inner peripheral end face, the outer peripheral end face of the glass substrate was polished using the polishing apparatus shown in FIG. 2, FIG. 3, and FIG.
First, the MD substrate 1 that has been chamfered on the inner and outer periphery is set on the substrate holding means 200 shown in FIG. 2 via a spacer. Specifically, since there are two substrate holding means in the present embodiment, 500 sheets for one substrate holding means, a total of 1000 MD substrates were set.
Next, the polishing brush 4 shown in FIG. 5 (diameter 200 to 500 mmφ including brush bristles 43, bristles 43 1 to 30 mm, brush bristles 43 wire diameter 0.05 to 0.3 mmφ, and flocking spirally The inclination angle γ = 65 ° of the brush bristles 43 is pressed against the outer peripheral end face portion of the MD substrate 1 as shown in FIG. At this time, the pressing amount of the bristles 43 of the polishing brush 4 to the outer peripheral end surface portion of the MD substrate 1 is adjusted. In the case of the nylon fiber in which the brush bristles 43 are curled, this adjustment is performed at a position where the tip position of the brush bristles 43 is pressed to the polished surface of the MD substrate 1 by about 1 to 5 mm.

次に、図2〜図4に示すように、研磨液供給手段500、500’の研磨液供給ノズル551、551’研磨液供給口52からMD基板1の外周端面部分に向けて、2.5インチ基板100枚当たり5000ml/min、3.0インチ基板100枚当たり6500ml/min、3.5インチ基板100枚当たり6500ml/min、の流量の研磨液(研磨剤:酸化セリウム、研磨液の粘度:2cps)50を供給する。なお、単位枚数(100枚)当たりの研磨液の流量は、MD基板総数に対する研磨装置に供給される研磨液の総供給量から計算し求めた。
次に、積層したMD基板1と研磨ブラシ4とを互いに逆方向に回転させた状態で、研磨を行う。具体的には、研磨ブラシ4を700〜1000rpmで回転させ、積層したMD基板1を60rpmで回転させ、基板外周端面部分に研磨液を供給して15分間研磨を行った。
上記内外周端面研磨の際、MD基板の破損はなく、特に、2.5インチ用の薄いMD基板についても破損は生じなかった。
なお、これらの端面研磨工程は、ガラス基板を重ね合わせて端面研磨する際にガラス基板の主表面にキズ等が付くことをより以上に避けるため、端面研磨工程で使用する砥粒の粒径が後述する第一ポリッシング工程又は第二ポリッシング工程で使用する砥粒の粒径よりも小さい場合は、第一ポリッシング工程の後、あるいは、第二ポリッシング工程の後に行ってもよい。なお、後工程にいくほど仕上板厚に近くなり、表面キズが問題となる。
上記端面研磨を終えたガラス基板を水洗浄した。
Next, as shown in FIGS. 2 to 4, the polishing liquid supply means 500, 500 ′ have a polishing liquid supply nozzle 551, 551 ′ from the polishing liquid supply port 52 toward the outer peripheral end surface portion of the MD substrate 1. Polishing liquids with a flow rate of 5000 ml / min per 100 inch substrates, 6500 ml / min per 100 3.0 inch substrates, and 6500 ml / min per 100 3.5 inch substrates (polishing agent: cerium oxide, viscosity of polishing liquid: 2 cps) 50. The flow rate of the polishing liquid per unit number (100 sheets) was calculated from the total amount of polishing liquid supplied to the polishing apparatus with respect to the total number of MD substrates.
Next, polishing is performed in a state where the stacked MD substrate 1 and the polishing brush 4 are rotated in opposite directions. Specifically, the polishing brush 4 was rotated at 700 to 1000 rpm, the stacked MD substrate 1 was rotated at 60 rpm, and the polishing liquid was supplied to the outer peripheral end surface portion of the substrate to perform polishing for 15 minutes.
When polishing the inner and outer peripheral end faces, there was no damage to the MD substrate, and in particular, the thin MD substrate for 2.5 inches was not damaged.
In addition, in order to further prevent the main surface of the glass substrate from being scratched when the end surfaces are polished by overlapping the glass substrates, these end surface polishing steps have a grain size of abrasive grains used in the end surface polishing step. When it is smaller than the grain size of the abrasive grains used in the first polishing step or the second polishing step described later, it may be performed after the first polishing step or after the second polishing step. In addition, as it goes to the post-process, it becomes closer to the finished plate thickness, and surface scratches become a problem.
The glass substrate after the end face polishing was washed with water.

(4)第二ラッピング工程
次に、砥粒の粒度を#1000に変え、ガラス基板表面をラッピングすることにより、平坦度3μm、主表面の表面粗さをRmaxで2μm程度、Raが0.2μm程度とした。Rmax、RaはAFM(原子間力顕微鏡)で測定した。
なお、ラッピング工程によって得られた2.5インチ用MD基板、3.0インチ用MD基板、3.5インチ用MD基板の厚さは、それぞれ0.68mm、1.03mm又は1.29mm、1.03mmであった。
上記のラッピング工程を終えたガラス基板を、中性洗剤、水の各洗浄槽に順次浸漬して、洗浄した。
(4) Second lapping step Next, by changing the grain size of the abrasive grains to # 1000 and lapping the glass substrate surface, the flatness is 3 μm, the surface roughness of the main surface is about 2 μm in Rmax, and Ra is 0.2 μm. The degree. Rmax and Ra were measured with an AFM (atomic force microscope).
The thicknesses of the 2.5-inch MD substrate, 3.0-inch MD substrate, and 3.5-inch MD substrate obtained by the lapping process are 0.68 mm, 1.03 mm, or 1.29 mm, respectively. 0.03 mm.
The glass substrate after the lapping step was washed by sequentially immersing it in each washing tank of neutral detergent and water.

(6)第一ポリッシング工程
次に、第一ポリッシング工程を施した。このポリッシング工程は、上述した砂掛け工程で残留したキズや歪みの除去を目的とするもので、研磨装置を用いて行った。
許しくは、ポリシャ(研磨パッド)として硬質ポリシャ(セリウムパッドMHC15:ローデルニッタ社製)を用い、以下の研磨条件で第一ポリッシング工程を実施した。
研磨液:酸化セリウム+水
荷重:300g/cm2(L=238kg)
研磨時間;15分
除去量:30μm
下定盤回転数:40rpm
上定盤回転数:35rpm
内ギア回転数:14rpm
外ギア回転教:29rpm
上記第一ポリッシング工程を終えたガラス基板を、中性洗剤、純水、純水、IPA(イソプロピルアルコール)、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。
(6) First Polishing Step Next, a first polishing step was performed. This polishing process is intended to remove scratches and distortions remaining in the sanding process described above, and was performed using a polishing apparatus.
Allowably, a hard polisher (cerium pad MHC15: manufactured by Rodel Nitta Co., Ltd.) was used as the polisher (polishing pad), and the first polishing step was performed under the following polishing conditions.
Polishing fluid: Cerium oxide + water Load: 300 g / cm 2 (L = 238 kg)
Polishing time: 15 minutes Removal amount: 30 μm
Lower platen rotation speed: 40rpm
Upper platen rotation speed: 35rpm
Inner gear speed: 14rpm
Outer gear rotation: 29rpm
The glass substrate after the first polishing step was sequentially immersed in cleaning baths of neutral detergent, pure water, pure water, IPA (isopropyl alcohol), and IPA (steam drying) and cleaned.

(7)第二ポリッシング工程
次に、第一ポリッシング工程で使用した研磨装置を用い、ポリシャを硬質ポリシャから軟質ポリシャ(ポリテックス:スピードファム社製)に替えて、第二ポリッシング工程を実施した。研磨条件は、荷重を100g/cm2、研磨時間を5分、除去量を5μmとしたこと以外は、第一ポリッシング工程と同様とした。
上記第二ポリッシング工程を終えたガラス基板を、ケイフッ酸、中性洗剤、純水、純水、IPA(イソプロピルアルコール)、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。なお、各洗浄槽には超音波を印加した。
(7) Second Polishing Step Next, using the polishing apparatus used in the first polishing step, the polisher was changed from a hard polisher to a soft polisher (Polytex: manufactured by Speed Fam Co., Ltd.), and a second polishing step was performed. Polishing conditions were the same as those in the first polishing step except that the load was 100 g / cm 2 , the polishing time was 5 minutes, and the removal amount was 5 μm.
The glass substrate after the second polishing step was sequentially immersed in cleaning tanks of silicic acid, neutral detergent, pure water, pure water, IPA (isopropyl alcohol), and IPA (steam drying) and washed. In addition, ultrasonic waves were applied to each cleaning tank.

(8)化学強化工程
次に、洗浄工程を終えたガラス基板に化学強化を施した。化学強化は、化学強化処理槽に硝酸カリウム(60%)と硝酸ナトリウム(40%)を混合した化学強化溶液を用意し、この化学強化溶液を340℃に加熱し、300℃に予熱された洗浄済みのガラス基板を2時間浸漬して行った。
上記化学強化を終えたガラス基板を、20℃の水槽に浸漬して急冷し、約10分間維持した。これにより、微小クラックが入った不良品を除去することができる。
上記化学強化工程を終えたガラス基板を、濃度10重量%の硫酸、中性洗剤、純水、純水、IPAの各洗浄槽に順次浸漬して洗浄した。
(8) Chemical strengthening process Next, the glass substrate which finished the cleaning process was chemically strengthened. For chemical strengthening, a chemical strengthening solution prepared by mixing potassium nitrate (60%) and sodium nitrate (40%) in a chemical strengthening treatment tank is prepared, and this chemically strengthened solution is heated to 340 ° C. and preheated to 300 ° C. The glass substrate was immersed for 2 hours.
The glass substrate that had been subjected to the chemical strengthening was immersed in a 20 ° C. water bath for rapid cooling and maintained for about 10 minutes. Thereby, a defective product having micro cracks can be removed.
The glass substrate after the chemical strengthening step was washed by sequentially immersing it in each wash tank of sulfuric acid having a concentration of 10% by weight, neutral detergent, pure water, pure water, and IPA.

評価
上記の工程を経て得られた磁気記録媒体用ガラス基板について図11に丸囲みの数字で示す各測定部位1、2、3、4における曲面の半径(単位mm)を、コントレーサ CV−500(ミツトヨ社製)で測定した。なお、図11では曲面部分は誇張して描いてあり、実際の曲面状態を表すものではない。また、図11の丸囲みの数字及び’で示す1’、2’、3’、4’の部位は、端面研磨前の角張った部位を示す。測定結果を表1〜4に示す。
Evaluation Regarding the glass substrate for a magnetic recording medium obtained through the above steps, the radius (unit: mm) of the curved surface at each of the measurement sites 1, 2, 3, and 4 indicated by the circled numbers in FIG. (Measured by Mitutoyo Corporation). In FIG. 11, the curved surface portion is exaggerated and does not represent an actual curved surface state. Further, the portions 1 ', 2', 3 ', 4' indicated by the encircled numerals and 'in FIG. 11 indicate angular portions before end face polishing. The measurement results are shown in Tables 1 to 4.

Figure 2006236561
Figure 2006236561
Figure 2006236561
Figure 2006236561
Figure 2006236561
Figure 2006236561
Figure 2006236561
Figure 2006236561

表1〜4から、曲面の半径は内外径の1、2、3、4の部位で0.003mm以上0.2mm未満であり、内径の1、2、3、4の部位で0.01mm以上0.15mm以下であることがわかる。また、内外周端面内ともに1、3の部位の方が2、4の部位に比べ曲面の半径が同じか小さくなっていることがわかる。   From Tables 1 to 4, the radius of the curved surface is 0.003 mm or more and less than 0.2 mm at the inner, outer diameters 1, 2, 3, and 4 parts, and 0.01 mm or more at the inner diameters 1, 2, 3, and 4 parts. It turns out that it is 0.15 mm or less. Further, it can be seen that the radius of the curved surface is the same or smaller in the parts 1 and 3 in the inner and outer peripheral end faces as compared with the parts 2 and 4.

また、内外周端面の表面粗さをサーフテストSV−600(ミツトヨ社製)で測定したところ、外周端面の表面粗さはRmax:0.51μm、Ra:0.08μm、内周端面の表面粗さはRmax:0.69μm、Ra:0.08μmであった。
さらに、ガラス基板の主表面1dの表面粗さRaは0.3〜0.7nm(AFM(原子間力顕微鏡)で測定)であった。
Further, when the surface roughness of the inner and outer peripheral end faces was measured by Surf Test SV-600 (manufactured by Mitutoyo Corporation), the outer peripheral end faces had a surface roughness of Rmax: 0.51 μm, Ra: 0.08 μm, and the inner peripheral end face surface roughness. The thicknesses were Rmax: 0.69 μm and Ra: 0.08 μm.
Furthermore, the surface roughness Ra of the main surface 1d of the glass substrate was 0.3 to 0.7 nm (measured with an AFM (atomic force microscope)).

(8)磁気ディスク製造工程
上述した工程を経て得られた磁気ディスク用ガラス基板の両面に、インライン型スパッタリング装置を用いて、NiAlシード層、CrMo下地層、CoCrPtTa磁性層、水素化カーボン保護層を順次成膜し、ディップ法によってパーフルオロポリエーテル液体潤滑層を成膜してLUL(ロード・アンロード)方式用磁気ディスクを得た。
上記の方法で得られた磁気ディスク(100枚)をLUL方式のHDD(ハードディスクドライブ)に搭載したが、記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュすることはなかった。
(8) Magnetic disk manufacturing process A NiAl seed layer, a CrMo underlayer, a CoCrPtTa magnetic layer, and a hydrogenated carbon protective layer are formed on both surfaces of the magnetic disk glass substrate obtained through the above-described processes using an in-line sputtering apparatus. Films were sequentially formed, and a perfluoropolyether liquid lubricating layer was formed by a dip method to obtain a magnetic disk for LUL (load / unload) system.
The magnetic disk (100 sheets) obtained by the above method was mounted on an LUL type HDD (hard disk drive), but there was no error during recording / reproduction or the magnetic head crashed during recording / reproduction.

比較例
上述の端面研磨工程において、ガラス基板の内周端面における側面1aと面取部1bとの間に、半径0.2〜10mmの曲面2、4を形成したこと以外は実施例1等と同様にして磁気記録媒体用ガラス基板及び磁気記録媒体を得た。
上記の方法で得られた磁気ディスク(100枚)をLUL方式のHDD(ハードディスクドライブ)に搭載したが、記録再生時のエラーが13枚発生し、記録再生時に磁気ヘッドがクラッシュするものが3枚あった。
Comparative Example In the above-described end surface polishing step, Example 1 etc. except that curved surfaces 2 and 4 having a radius of 0.2 to 10 mm were formed between the side surface 1a and the chamfered portion 1b on the inner peripheral end surface of the glass substrate. Similarly, a glass substrate for a magnetic recording medium and a magnetic recording medium were obtained.
The magnetic disk (100 sheets) obtained by the above method was mounted on a LUL type HDD (hard disk drive), but 13 errors occurred during recording / reproduction and 3 magnetic heads crashed during recording / reproduction. there were.

実施例2〜3
アルミノシリケートガラスの代わりにソーダライムガラス(実施例2)、結晶化ガラス(実施例3)を用い、表に示すサイズ・厚さとしたこと以外は実施例1と同様にして、磁気ディスク用ガラス基板及び磁気ディスクを得た。
実施例1と同様にして曲面の半径を測定した結果を表5〜6に示す。
Examples 2-3
A glass substrate for a magnetic disk in the same manner as in Example 1 except that soda lime glass (Example 2) and crystallized glass (Example 3) were used instead of the aluminosilicate glass, and the sizes and thicknesses shown in the table were used. And a magnetic disk was obtained.
The results of measuring the radius of the curved surface in the same manner as in Example 1 are shown in Tables 5-6.

Figure 2006236561
Figure 2006236561
Figure 2006236561
Figure 2006236561

表5から、曲面の半径は内外径の1、2、3、4の部位で0.01mm以上0.15mm以下であり、内径の1、2、3、4の部位で0.015mm以上0.1mm以下であることがわかる。また、表6から、曲面の半径は内外径の1、2、3、4の部位で0.02mm以上0.2mm未満であり、内径の1、2、3、4の部位で0.06mm以上0.2mm未満であることがわかる。
実施例2〜3で得られた磁気ディスク(100枚)をLUL方式のHDD(ハードディスクドライブ)に搭載したが、記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュすることはなかった。
From Table 5, the radius of the curved surface is 0.01 mm or more and 0.15 mm or less at the 1, 2, 3, and 4 portions of the inner and outer diameters, and 0.015 mm or more and 0.1. It can be seen that it is 1 mm or less. Also, from Table 6, the radius of the curved surface is 0.02 mm or more and less than 0.2 mm at the inner and outer diameters of 1, 2, 3, and 4 and 0.06 mm or more at the inner diameter of 1, 2, 3, and 4 parts. It turns out that it is less than 0.2 mm.
The magnetic disks (100 sheets) obtained in Examples 2 to 3 were mounted on an LUL type HDD (Hard Disk Drive), but there was no error during recording / reproduction and the magnetic head did not crash during recording / reproduction.

以上好ましい実施例を挙げて本発明を説明したが、本発明は必ずしも上記実施例に限定されるものではない。   Although the present invention has been described with reference to the preferred embodiments, the present invention is not necessarily limited to the above embodiments.

例えば、ガラス基板の種類や磁性層の種類は実施例のものに限定されない。   For example, the type of glass substrate and the type of magnetic layer are not limited to those of the examples.

ガラス基板の材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は結晶化ガラス等のガラスセラミックや、セラミックなどが挙げられる。   Examples of the material of the glass substrate include glass ceramics such as aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or crystallized glass, and ceramics. Is mentioned.

アルミノシリケートガラスとしては、SiO2:62〜75重量%、Al23:5〜15重量%、LiO2:4〜10重量%、Na2O:4〜12重量%、ZrO2:5.5〜15重量%を主成分として含有するとともに、Na2O/ZrO2の重量比が0.5〜2.0、Al23/ZrO2の重量比が0.4〜2.5である化学強化用ガラス等が好ましい。
また、ZrO2の未溶解物が原因で生じるガラス基板表面の突起をなくすためには、モル%表示で、SiO2を57〜74%、ZrO2を0〜2.8%、Al23を3〜15%、LiO2を7〜16%、Na2Oを4〜14%含有する化学強化用ガラス等を使用することが好ましい。
このような組成のアルミノシリケートガラス等は、化学強化することによって、抗折強度が増加し、圧縮応力層の深さも深く、ヌープ硬度にも優れる。
The aluminosilicate glass, SiO 2: 62~75 wt%, Al 2 O 3: 5~15 wt%, LiO 2: 4~10 wt%, Na 2 O: 4~12 wt%, ZrO 2: 5. 5 to 15% by weight as a main component, the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, and the weight ratio of Al 2 O 3 / ZrO 2 is 0.4 to 2.5. Some chemical strengthening glass is preferred.
Further, in order to eliminate protrusions on the surface of the glass substrate caused by the undissolved material of ZrO 2 , SiO 2 is 57 to 74%, ZrO 2 is 0 to 2.8%, Al 2 O 3 in terms of mol%. 3-15% of LiO 2 7 to 16% it is preferred to use chemical strengthening glass containing Na 2 O 4~14%.
Aluminosilicate glass and the like having such a composition has an increased bending strength, a deep compressive stress layer, and an excellent Knoop hardness when chemically strengthened.

磁性層としては、例えば、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrTaPt、CoCrPtB、CoCrPtSiOなどの磁性薄膜が挙げられる。磁性層は、磁性膜を非磁性膜(例えば、Cr、CrMo、CrVなど)で分割してノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrTaPt/CrMo/CoCrTaPtなど)としてもよい。   Examples of the magnetic layer include magnetic thin films such as CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrTaPt, CoCrPtB, and CoCrPtSiO. The magnetic layer may be a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrTaPt / CrMo / CoCrTaPt, etc.) in which the magnetic film is divided by a non-magnetic film (for example, Cr, CrMo, CrV) to reduce noise. Good.

磁気抵抗型ヘッド(MRヘッド)又は巨大磁気抵抗型ヘッド(GMRヘッド)対応の磁性層としては、Co系合金に、Y、Si、希土類元素、Hf、Ge、Sn、Znから選択される不純物元素、又はこれらの不純物元素の酸化物を含有させたものなども含まれる。   As a magnetic layer corresponding to a magnetoresistive head (MR head) or a giant magnetoresistive head (GMR head), a Co-based alloy, an impurity element selected from Y, Si, rare earth elements, Hf, Ge, Sn, and Zn Or those containing oxides of these impurity elements.

また、磁性層としては、上記の他、フェライト系、鉄一希土類系や、SiO2、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子が分散された構造のグラニュラーなどであってもよい。また、磁性層は、内面型、垂直型のいずれの記録形式であってもよい。 In addition to the above, the magnetic layer has a granular structure in which magnetic particles such as Fe, Co, FeCo, CoNiPt are dispersed in a non-magnetic film made of ferrite, iron-rare earth, SiO 2 , BN, or the like. It may be. Further, the magnetic layer may be of an internal type or a vertical type.

(発明の効果)
以上説明したように本発明によれば、記録再生時のエラーや、記録再生時に磁気ヘッドがクラッシュすることのない装着信頼性の高い気記録媒体用ガラス基板及び磁気記録媒体が得られる。
本発明の磁気記録媒体用ガラス基板及び磁気記録媒体は、特に、磁気ヘッドが低浮上走行し高密度記録再生が行われるロード・アンロード方式対応の磁気記録媒体に有用である。
(The invention's effect)
As described above, according to the present invention, it is possible to obtain a glass substrate for a magnetic recording medium and a magnetic recording medium with high mounting reliability that do not cause an error during recording / reproduction and the magnetic head does not crash during recording / reproduction.
The glass substrate for a magnetic recording medium and the magnetic recording medium of the present invention are particularly useful for a load / unload type magnetic recording medium in which a magnetic head travels with low flying and high density recording / reproduction is performed.

実施例で使用した内周端面研磨装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the internal peripheral end surface grinding | polishing apparatus used in the Example. 実施例で使用した外周端面研磨装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the outer periphery end surface grinding | polishing apparatus used in the Example. 実施例で使用した外周端面研磨装置の要部を示す平面図である。It is a top view which shows the principal part of the outer periphery end surface grinding | polishing apparatus used in the Example. 実施例で使用した外周端面研磨装置の要部を示す側面図である。It is a side view which shows the principal part of the outer periphery end surface polishing apparatus used in the Example. 研磨ブラシの一態様を示す斜視図である。It is a perspective view which shows the one aspect | mode of an abrasive brush. 図5の部分拡大図である。It is the elements on larger scale of FIG. ブラシ毛の一態様を示す拡大図である。It is an enlarged view showing one mode of brush hair. 磁気ディスク用ガラス基板を切断して見たときの斜視図である。It is a perspective view when the glass substrate for magnetic disks is cut and seen. 磁気ディスク用ガラス基板を切断して見たときの断面図である。It is sectional drawing when the glass substrate for magnetic discs is cut | disconnected and seen. スペーサを介して積層された基板を示す部分断面図である。It is a fragmentary sectional view which shows the board | substrate laminated | stacked through the spacer. 実施例における測定部位を説明するための模式図である。It is a schematic diagram for demonstrating the measurement site | part in an Example.

符号の説明Explanation of symbols

1 基板
1a,1a’ 側面
1b,1b’ 面取部
2 基板ケース
3 回転保持台
4 研磨ブラシ
5 研磨液収容部
6 スペーサ
10 積層ガラス基板
31 回転軸部
43 ブラシ毛
50 研磨液
200 基板保持手段
300 回転保持台
500、500’ 研磨液供給手段
600 研磨室
331 回転軸
551 研磨液供給ノズル
DESCRIPTION OF SYMBOLS 1 Substrate 1a, 1a 'Side surface 1b, 1b' Chamfer part 2 Substrate case 3 Rotation holding stand 4 Polishing brush 5 Polishing liquid accommodating part 6 Spacer 10 Laminated glass substrate 31 Rotating shaft part 43 Brush hair 50 Polishing liquid 200 Substrate holding means 300 Rotation holding table 500, 500 ′ Polishing liquid supply means 600 Polishing chamber 331 Rotating shaft 551 Polishing liquid supply nozzle

Claims (6)

主表面と側面との間に面取りによる面取部が形成されているとともに、前記主表面と前記面取部との間及び前記側面と前記面取部との間のうち少なくとも一方に半径0.003mm以上0.2mm未満の曲面が形成された磁気記録媒体用ガラス基板の製造方法であって、
ガラス基板の主表面と側面との間に面取り加工を行なって前記主表面と前記側面との間に面取部を形成する形状加工工程と、
前記形状加工工程の後、前記ガラス基板の前記側面及び前記面取部をブラシで研磨する端面研磨工程と、
前記端面研磨工程の後、前記ガラス基板の前記主表面を研磨する主表面研磨工程とをそなえ、
前記端面研磨工程では、前記ガラス基板の前記主表面と前記面取部との間及び前記側面と前記面取部との間のうち少なくとも一方に半径0.003mm以上0.2mm未満の曲面が形成されるように前記ガラス基板の前記側面及び前記面取部をブラシで研磨する
ことを特徴とする、磁気記録媒体用ガラス基板の製造方法。
A chamfered portion by chamfering is formed between the main surface and the side surface, and at least one radius between the main surface and the chamfered portion and between the side surface and the chamfered portion is 0. A method for producing a glass substrate for a magnetic recording medium on which a curved surface of 003 mm or more and less than 0.2 mm is formed,
A shape processing step of forming a chamfered portion between the main surface and the side surface by chamfering between the main surface and the side surface of the glass substrate,
After the shape processing step, an end surface polishing step of polishing the side surface and the chamfered portion of the glass substrate with a brush,
A main surface polishing step for polishing the main surface of the glass substrate after the end face polishing step;
In the end surface polishing step, a curved surface having a radius of 0.003 mm or more and less than 0.2 mm is formed at least one of the main surface of the glass substrate and the chamfered portion and between the side surface and the chamfered portion. Thus, the method for producing a glass substrate for a magnetic recording medium, wherein the side surface and the chamfered portion of the glass substrate are polished with a brush.
前記ガラス基板の前記側面及び前記面取部が、前記ガラス基板の内周端面に設けられている
ことを特徴とする、請求項1記載の磁気記録媒体用ガラス基板の製造方法。
The method for manufacturing a glass substrate for a magnetic recording medium according to claim 1, wherein the side surface and the chamfered portion of the glass substrate are provided on an inner peripheral end surface of the glass substrate.
前記端面研磨工程では、前記ガラス基板とスペーサとを交互に複数配置した状態で前記ガラス基板の前記側面及び前記面取部を研磨するとともに、前記スペーサの端部が前記ガラス基板の前記面取部の終端よりも内側になるように前記スペーサを配置する
ことを特徴とする、請求項1又は2記載の磁気記録媒体用ガラス基板の製造方法。
In the end surface polishing step, the side surface and the chamfered portion of the glass substrate are polished in a state where a plurality of the glass substrates and spacers are alternately arranged, and the end portion of the spacer is the chamfered portion of the glass substrate. The method of manufacturing a glass substrate for a magnetic recording medium according to claim 1, wherein the spacer is disposed so as to be inside the terminal of the magnetic recording medium.
前記スペーサの厚さが、0.1〜0.3mmである
ことを特徴とする、請求項3記載の磁気記録媒体用ガラス基板の製造方法。
The method of manufacturing a glass substrate for a magnetic recording medium according to claim 3, wherein the spacer has a thickness of 0.1 to 0.3 mm.
前記スペーサは、前記ガラス基板よりも軟質な材料から形成されている
ことを特徴とする、請求項3又は4記載の磁気記録媒体用ガラス基板の製造方法。
5. The method of manufacturing a glass substrate for a magnetic recording medium according to claim 3, wherein the spacer is made of a softer material than the glass substrate.
請求項1〜5のいずれか1項に記載の製造方法により製造された磁気記録媒体用ガラス基板の主表面上に、磁性層を形成する
ことを特徴とする、磁気記録媒体の製造方法。
A method for producing a magnetic recording medium, comprising forming a magnetic layer on a main surface of a glass substrate for a magnetic recording medium produced by the production method according to claim 1.
JP2006072239A 2006-03-16 2006-03-16 Glass substrate for magnetic recording medium and magnetic recording medium Expired - Fee Related JP4184384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072239A JP4184384B2 (en) 2006-03-16 2006-03-16 Glass substrate for magnetic recording medium and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072239A JP4184384B2 (en) 2006-03-16 2006-03-16 Glass substrate for magnetic recording medium and magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000292329A Division JP2002100031A (en) 2000-09-26 2000-09-26 Glass substrate for magnetic recording medium and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2006236561A true JP2006236561A (en) 2006-09-07
JP4184384B2 JP4184384B2 (en) 2008-11-19

Family

ID=37043991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072239A Expired - Fee Related JP4184384B2 (en) 2006-03-16 2006-03-16 Glass substrate for magnetic recording medium and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4184384B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171532A (en) * 2007-01-15 2008-07-24 Hoya Corp Inner diameter measuring device of disk-shaped substrate, inner diameter measuring method, manufacturing method of disk-shaped substrate and manufacturing method of magnetic disk
JP2008273777A (en) * 2007-04-27 2008-11-13 Konica Minolta Opto Inc Method for polishing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium, and polishing device for glass substrate for magnetic recording medium
JP2010086632A (en) * 2008-10-02 2010-04-15 Konica Minolta Opto Inc Method for manufacturing glass substrate for magnetic recording medium
US7959492B2 (en) 2006-09-11 2011-06-14 Showa Denko K.K. Disk-shaped substrate inner circumference polishing method
JP2012074108A (en) * 2010-09-29 2012-04-12 Showa Denko Kk Manufacturing method of disk-like substrate, and spacer
WO2012090568A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing glass substrate for information recording medium, and information recording medium
US8231433B2 (en) 2007-02-20 2012-07-31 Showa Denko K.K. Polishing method and polishing apparatus
CN106392778A (en) * 2016-07-19 2017-02-15 广东鸿宝科技有限公司 Machining process for ceramic ring cutter used for slitting of lithium battery materials
US9697860B2 (en) 2012-09-28 2017-07-04 Hoya Corporation Magnetic-disk glass substrate, magnetic disk and method for manufacturing magnetic-disk glass substrate
WO2019131431A1 (en) * 2017-12-27 2019-07-04 Hoya株式会社 Disk-shaped glass substrate manufacturing method, sheet glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
JP2020124804A (en) * 2020-04-21 2020-08-20 Hoya株式会社 Manufacturing method of disk-shaped glass substrate, manufacturing method of thin sheet glass substrate, manufacturing method of light guide plate, and disk-shaped glass substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160445B (en) * 2011-12-28 2017-03-15 Hoya株式会社 Glass substrate for information recording medium and its manufacture method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959492B2 (en) 2006-09-11 2011-06-14 Showa Denko K.K. Disk-shaped substrate inner circumference polishing method
JP2008171532A (en) * 2007-01-15 2008-07-24 Hoya Corp Inner diameter measuring device of disk-shaped substrate, inner diameter measuring method, manufacturing method of disk-shaped substrate and manufacturing method of magnetic disk
US8231433B2 (en) 2007-02-20 2012-07-31 Showa Denko K.K. Polishing method and polishing apparatus
JP2008273777A (en) * 2007-04-27 2008-11-13 Konica Minolta Opto Inc Method for polishing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium, and polishing device for glass substrate for magnetic recording medium
JP2010086632A (en) * 2008-10-02 2010-04-15 Konica Minolta Opto Inc Method for manufacturing glass substrate for magnetic recording medium
JP2012074108A (en) * 2010-09-29 2012-04-12 Showa Denko Kk Manufacturing method of disk-like substrate, and spacer
WO2012090568A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing glass substrate for information recording medium, and information recording medium
JP5947221B2 (en) * 2010-12-28 2016-07-06 Hoya株式会社 Manufacturing method of glass substrate for information recording medium
US9697860B2 (en) 2012-09-28 2017-07-04 Hoya Corporation Magnetic-disk glass substrate, magnetic disk and method for manufacturing magnetic-disk glass substrate
US10580448B2 (en) 2012-09-28 2020-03-03 Hoya Corporation Magnetic-disk glass substrate, magnetic disk and method for manufacturing magnetic-disk glass substrate
CN106392778A (en) * 2016-07-19 2017-02-15 广东鸿宝科技有限公司 Machining process for ceramic ring cutter used for slitting of lithium battery materials
WO2019131431A1 (en) * 2017-12-27 2019-07-04 Hoya株式会社 Disk-shaped glass substrate manufacturing method, sheet glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
JP2019115952A (en) * 2017-12-27 2019-07-18 Hoya株式会社 Disk-shaped glass substrate manufacturing method, sheet glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
JP2020124804A (en) * 2020-04-21 2020-08-20 Hoya株式会社 Manufacturing method of disk-shaped glass substrate, manufacturing method of thin sheet glass substrate, manufacturing method of light guide plate, and disk-shaped glass substrate
JP7003178B2 (en) 2020-04-21 2022-01-20 Hoya株式会社 Manufacturing method of disk-shaped glass substrate, manufacturing method of thin glass substrate, manufacturing method of light guide plate and disk-shaped glass substrate

Also Published As

Publication number Publication date
JP4184384B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4184384B2 (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP4176735B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5593224B2 (en) Magnetic disk substrate, manufacturing method thereof, and magnetic disk
JP3527075B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and method for producing them
JP2006079800A (en) Silicon substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
JP2007118174A (en) Polishing brush, polishing member, polishing method, polishing device, manufacturing method for glass substrate for magnetic disk, and method for magnetic disk
WO2005096275A1 (en) Glass substrate for magnetic disk and magnetic disk
JP2001162510A (en) Method of polishing, method of manufacturing glass substrate for magnetic recording medium, and method of manufacturing magnetic recording medium
JP4780607B2 (en) A method for manufacturing a glass substrate for a magnetic disk, a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.
JP2002100031A (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP3619381B2 (en) Method for manufacturing glass substrate for magnetic disk and apparatus for manufacturing glass substrate for magnetic disk
JP2012142044A (en) Method for manufacturing glass substrate for information recording medium and information recording medium
JP2003346316A (en) Information-recording medium, manufacturing method of glass substrate for the information recording medium and the glass substrate for information recording medium manufactured by the method
JP3639277B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and manufacturing method thereof
JP5235118B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4156504B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP2004335081A (en) Cleaning method of magnetic disk glass substrate, manufacturing method of the substrate and manufacturing method of magnetic disk
JP2002046065A (en) Polishing apparatus and method and method of manufacturing glass substrate for magnetic storage medium and magnetic storage medium
JP4347146B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5781845B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP4600938B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4698546B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees