JP2006235010A - Electro-optical display device and method for manufacturing the same - Google Patents

Electro-optical display device and method for manufacturing the same Download PDF

Info

Publication number
JP2006235010A
JP2006235010A JP2005046691A JP2005046691A JP2006235010A JP 2006235010 A JP2006235010 A JP 2006235010A JP 2005046691 A JP2005046691 A JP 2005046691A JP 2005046691 A JP2005046691 A JP 2005046691A JP 2006235010 A JP2006235010 A JP 2006235010A
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
peripheral frame
region
counter substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005046691A
Other languages
Japanese (ja)
Inventor
Hideo Yamanaka
英雄 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005046691A priority Critical patent/JP2006235010A/en
Publication of JP2006235010A publication Critical patent/JP2006235010A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electro-optical display device of which the yield and the quality are improved by suppressing intrusion of a sealing material into a liquid crystal in a display region and reducing operational malfunction of the liquid crystal, and a method for manufacturing the same. <P>SOLUTION: The electro-optical display device is equipped with a TFT substrate 1, a counter substrate bonded to the TFT substrate via a predetermined liquid crystal gap with the sealing material 3 of which the pattern has no liquid crystal injection port, the liquid crystal 5 held in a gap between the TFT substrate and the counter substrate, a first peripheral frame 2b surrounding the display region, and a second peripheral frame 2a surrounding the first peripheral frame, wherein the sealing material is applied to the outside of the second peripheral frame, and at the same time, the liquid crystal is held inside the first peripheral frame. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電気光学表示装置及びその製造方法に関する。詳しくは、シール領域の内側に複数の周辺枠を形成し、最も内側に位置する周辺枠の内側領域に液晶を滴下すると共に、最も外側に位置する周辺枠の外側にシール材及びコモン材を塗布することによって、液晶領域へのシール材の浸入を抑制しようとした電気光学表示装置及びその製造方法に係るものである。   The present invention relates to an electro-optical display device and a manufacturing method thereof. Specifically, a plurality of peripheral frames are formed inside the seal area, liquid crystal is dropped on the inner area of the innermost peripheral frame, and a sealant and a common material are applied to the outer side of the outermost peripheral frame. Thus, the present invention relates to an electro-optic display device and a method for manufacturing the electro-optic display device which attempts to suppress the intrusion of the sealing material into the liquid crystal region.

従来の透過型液晶表示装置の製造方法には、図12のフローチャートで示す様に、ガラス系基体に複数の駆動基板(以後、TFT基板と称する)を形成し、このTFT基板の形成時にガラス系基体の裏面に成膜されたSiO、SiNx、WSi等の膜を裏面光学研磨によって除去した後に、例えばポリイミド配向膜形成、ラビング処理、所定の洗浄、コモン材塗布したものと、ガラス系基体に複数のカラーフィルタ、マイクロレンズアレイ、ブラックマスクなどの対向基板が複数形成された対向基体に、例えばポリイミド配向膜形成、ラビング処理、所定の洗浄、シール材塗布を行ったものとを面で重ね合わせて空セルを形成した後にスクライブブレークを行い液晶注入封止する、いわゆる面面液晶組立て方法と、図13のフローチャートで示す様に、ガラス系基体に複数のTFT基板を形成し、このTFT基板の形成時にガラス系基体の裏面に成膜されたSiO、SiNx、WSi等の膜を裏面光学研磨によって除去した後に、ダイシング、洗浄して単個状態のTFT基板を作成し、ガラス系基体に複数のカラーフィルタ、マイクロレンズアレイ、ブラックマスクなどの対向基板が複数形成された対向基体をダイシング、洗浄して単個状態の対向基板を作成し、個々の良品のTFT基板と対向基板とに例えばポリイミド配向膜形成、ラビング処理、所定の洗浄、コモン材塗布(TFT基板)、シール材塗布(対向基板)を行い、その後重ね合わせて空セル形成を行い液晶注入封止する、いわゆる単個液晶組立て方法とがある。 As shown in the flowchart of FIG. 12, the conventional transmissive liquid crystal display device is manufactured by forming a plurality of drive substrates (hereinafter referred to as TFT substrates) on a glass substrate and forming the glass substrate at the time of forming the TFT substrate. After removing the film of SiO 2 , SiNx, WSi, etc. formed on the back surface of the substrate by back surface optical polishing, for example, polyimide alignment film formation, rubbing treatment, predetermined cleaning, common material applied, and glass-based substrate A counter substrate on which a plurality of counter substrates such as a plurality of color filters, microlens arrays, and black masks are formed is superposed on a surface that has been subjected to, for example, polyimide alignment film formation, rubbing treatment, predetermined cleaning, and sealing material application. 13 is a so-called surface liquid crystal assembling method in which liquid crystal injection sealing is performed by scribe break after forming an empty cell, and the flowchart of FIG. As shown in, forming a plurality of TFT substrate to the glass-based substrate, SiO 2, which is formed on the back surface of the glass based substrate during the formation of the TFT substrate SiNx, after removal by the back surface optically polished film such as WSi , Dicing and cleaning to create a single TFT substrate, and dicing and cleaning the counter substrate on which a plurality of counter substrates such as a plurality of color filters, microlens arrays, and black masks are formed on a glass substrate. Create a counter substrate in a state, and perform, for example, polyimide alignment film formation, rubbing treatment, predetermined cleaning, common material application (TFT substrate), seal material application (counter substrate) on each non-defective TFT substrate and counter substrate, Then, there is a so-called single liquid crystal assembly method in which empty cells are formed by superposition and liquid crystal injection sealing is performed.

ところが、上記した面面液晶組立て方法では、重ね合わせ精度の低下、液晶ギャップむら、重ね合わせ後のスクライブブレークによるダメージ(シール部分の信頼性低下など)、基板欠けや割れ等の問題があると共に、TFT基板を形成したガラス系基体と対向基板を形成したガラス系基体との重ね合わせになり、各々の歩留りの掛け合わせとなるため片方のみに不良がある場合でも全体として不良品となってしまい歩留りの向上を図るのは困難である。   However, in the above-described surface liquid crystal assembly method, there are problems such as a decrease in overlay accuracy, liquid crystal gap unevenness, damage due to a scribe break after overlay (decrease in reliability of the seal portion, etc.), substrate chipping and cracking, Since the glass substrate on which the TFT substrate is formed and the glass substrate on which the counter substrate is formed are overlapped with each other, the yield will be reduced as a whole even if only one of them is defective. It is difficult to improve.

また、裏面光学研磨すると、TFT基板が形成されたガラス系基体表面の膜の圧縮応力により凹状に反りが発生しており、また、対向基板が形成されたガラス系基体も表面にITO(インジウム−錫系透明導電膜)等の透明導電膜が形成されると、膜の圧縮応力により凹状に反りが発生しており、面で重ね合わせを行う面面液晶組立て方法では、双方の凹状反りにより重ね合わせた液晶ギャップが凸状となり易く、液晶ギャップ均一性に問題がある。   Further, when the back surface is optically polished, a warp is generated in a concave shape due to the compressive stress of the film on the surface of the glass substrate on which the TFT substrate is formed, and the glass substrate on which the counter substrate is formed also has ITO (indium When a transparent conductive film such as a tin-based transparent conductive film is formed, a warp is generated in a concave shape due to the compressive stress of the film. The combined liquid crystal gap tends to be convex, and there is a problem in liquid crystal gap uniformity.

更に、TFT基板が形成されたガラス系基体が石英ガラス、ネオセラム材の場合には、ダイヤモンドカッター或いは超硬カッター切断が困難であり、ブレードダイシングすると切削水が空セルの液晶注入口から浸入してしまう問題がある。   Furthermore, when the glass substrate on which the TFT substrate is formed is quartz glass or neo-ceram material, it is difficult to cut a diamond cutter or a carbide cutter. When blade dicing, cutting water enters from the liquid crystal inlet of the empty cell. There is a problem.

一方、上記した単個液晶組立て方法では、各々良品のTFT基板と対向基板との重ね合わせ時点での不良発生は防げるものの、各ガラス系基体をブレードダイシングした後に例えばポリイミド配向膜形成やラビング処理を施すため、ブレードダイシングに起因するごみの付着不良、TFT基板及び対向基板端のガラスチッピング付着不良、作業性の悪化や配向膜のむら、配向性のばらつきを生じさせることとなる。   On the other hand, in the single liquid crystal assembling method described above, it is possible to prevent defects at the time when the non-defective TFT substrate and the counter substrate are superimposed, but after each glass substrate is subjected to blade dicing, for example, polyimide alignment film formation or rubbing treatment is performed. For this reason, defective adhesion of dust due to blade dicing, defective glass chipping adhesion of the TFT substrate and the opposite substrate end, deterioration of workability, unevenness of the alignment film, and variation in alignment are caused.

そこで、図14のフローチャートで示す様に、ガラス系基体に複数のTFT基板を形成し、このTFT基板の形成時にガラス系基体の裏面に成膜されたSiO、SiNx、WSi等の膜を裏面光学研磨によって除去した後に、例えばポリイミド配向膜形成、ラビング処理、ブレードダイシング、洗浄して単個状態のTFT基板を作成し、複数のカラーフィルタ、マイクロレンズアレイ、ブラックマスクなどの対向基板を複数形成したガラス系基体に例えばポリイミド配向膜形成、ラビング処理、ブレードダイシング、洗浄して単個状態の対向基板を作成し、個々の良品のTFT基板にコモン材塗布を行うと共に個々の良品の対向基板にシール材塗布を行い、その後に重ね合わせを行って空セル形成して液晶注入封止する、いわゆる面単液晶組立て方法が提案されている(例えば、特許文献1参照。)。 Therefore, as shown in the flowchart of FIG. 14, a plurality of TFT substrates are formed on a glass substrate, and a film of SiO 2 , SiNx, WSi or the like formed on the back surface of the glass substrate at the time of forming the TFT substrate is formed on the back surface. After removal by optical polishing, for example, polyimide alignment film formation, rubbing treatment, blade dicing, and cleaning to create a single TFT substrate, and multiple counter substrates such as multiple color filters, microlens arrays, and black masks are formed For example, polyimide alignment film formation, rubbing treatment, blade dicing, and washing are performed on the glass substrate to create a single counter substrate, and a common material is applied to each non-defective TFT substrate. A so-called single-surface liquid that is applied with a sealing material and then superposed to form empty cells to seal liquid crystal injection. Assembly method has been proposed (e.g., see Patent Document 1.).

この方法は、ガラス系基体でのポリイミド配向膜形成、ラビング処理なので均一な配向特性が生産性良く得られ、しかも良品同士のTFT基板と対向基板の重ね合わせで空セルを形成するので液晶ギャップ制御がし易く、歩留り、品質が向上する。   Since this method forms a polyimide alignment film on a glass substrate and is rubbed, uniform alignment characteristics can be obtained with good productivity, and an empty cell is formed by superimposing a non-defective TFT substrate and a counter substrate. Easy to remove, yield and quality are improved.

更には、特許文献2に示す様に、ガラス系基体に複数のTFT基板を形成し、単体に分断した対向基板をそのTFT基板に貼り合せるいわゆるチップマウント液晶組立て方法が採用されることがある。このチップマウント方式は高い生産性、高度なセル厚制御及び高い貼り合わせ精度を得やすいとしている。   Furthermore, as shown in Patent Document 2, a so-called chip mount liquid crystal assembling method in which a plurality of TFT substrates are formed on a glass substrate and a counter substrate divided into a single body is bonded to the TFT substrate may be employed. This chip mount method is said to be easy to obtain high productivity, advanced cell thickness control and high bonding accuracy.

しかし、上記した様に、裏面光学研磨をするとTFT基板が形成されたガラス系基体表面の膜の圧縮応力により凹状に反りが発生しており、また、対向基板が形成されたガラス系基体も表面にITO等の透明導電膜やマイクロレンズアレイ、ブラックマスクなどが形成されると膜の圧縮応力により凹状に反りが発生しており、更にはTFT基板が形成されたガラス系基体及び対向基板が形成されたガラス系基体の裏面がポリイミドコーティング装置やバフラビング装置などで擦られ、特に基体中央部に擦りキズ、異物付着するので、LCDパネルクリーニングやLCDパネル裏面光学研磨加工が必要になっている。   However, as described above, when the back surface optical polishing is performed, a concave warpage occurs due to the compressive stress of the film on the surface of the glass substrate on which the TFT substrate is formed, and the glass substrate on which the counter substrate is formed is also on the surface. When a transparent conductive film such as ITO, a microlens array, or a black mask is formed on the substrate, a warp is generated in a concave shape due to the compressive stress of the film, and a glass-based substrate on which a TFT substrate is formed and a counter substrate are formed. Since the back surface of the glass-based substrate is rubbed by a polyimide coating device, a bubbling device, or the like, and particularly scratched or adhered to the center portion of the substrate, LCD panel cleaning or LCD panel back surface optical polishing is required.

また、LCDパネルに防塵ガラスを貼り合わせる場合には、単体のLCDパネルに防塵ガラスを貼り合わせるので、防塵ガラスのキズ、ゴミ付着やパネルクリーニング工数増加の問題がある。   Further, when the dust-proof glass is bonded to the LCD panel, the dust-proof glass is bonded to a single LCD panel, which causes problems such as scratches on the dust-proof glass, dust adhesion, and an increase in the number of panel cleaning steps.

更に、特に生産性向上を目的として、重ね合わせからLCDパネルを金属枠へ取り付けるモールド樹脂固着までインライン自動液晶組立装置が導入されている場合には、(1)単個状態のTFT基板及び対向基板の作業(洗浄、重ね合わせ等)、単個状態のLCDパネルの作業(液晶注入封止、防塵ガラス貼り合わせ、金属枠取り付け等)なので、インライン自動液晶組立装置のハンドリング機構が複雑であり、装置故障が発生し易く生産性を低下させている(2)単個状態のTFT基板、対向基板及びLCDパネルのハンドリングなので、真空吸着パッドによる表面キズ発生、異物付着の不良があり、歩留り及び品質を低下させている(3)多くの複雑な機構から構成されているインライン自動液晶組立装置は比較的故障率が高く、メンテナンス工数が大であり生産性が低い等の問題が生じている。   In addition, for the purpose of improving productivity in particular, when an in-line automatic liquid crystal assembly apparatus is introduced from overlaying to mold resin fixing for attaching an LCD panel to a metal frame, (1) a single TFT substrate and a counter substrate Work (cleaning, stacking, etc.) and single LCD panel work (liquid crystal injection sealing, dustproof glass bonding, metal frame attachment, etc.), the handling mechanism of the inline automatic liquid crystal assembly device is complicated, and the device (2) The handling of single TFT substrate, counter substrate, and LCD panel causes surface scratches due to vacuum suction pads and foreign matter adhesion failure, yield and quality. (3) The in-line automatic liquid crystal assembling apparatus composed of many complicated mechanisms has a relatively high failure rate, and maintenance Nsu man-hours is there is a problem of low productivity and the like is large.

また、チップマウント液晶組立て方法では、ガラス系基体をステージに保持固定すると共に、ステージ加熱してガラス系基体に発生する応力を低減し、アライメント時の反りを抑制する手段を採っているために、ガラス系基体のTFT基板に熱併用型紫外線照射硬化型シール材を塗布していると、ステージ加熱によるシール材の硬化促進により液晶ギャップムラが発生しやすい。このために単体状態の対向基板側にシール材を塗布する必要があり、ハンドリング問題、低生産性の問題などが発生する。更に、複数の開孔による真空吸着の石英ヘッドで対向基板はハンドリングされ、TFT基板に重ね合わせるが、この時に対向基板裏面にキズが発生し易く画質欠陥となり易い。   Further, in the chip mount liquid crystal assembly method, since the glass substrate is held and fixed to the stage, the stress generated in the glass substrate is reduced by heating the stage, and a means for suppressing warpage during alignment is adopted. When a heat combined ultraviolet irradiation curable sealing material is applied to a glass substrate TFT substrate, liquid crystal gap unevenness is likely to occur due to accelerated curing of the sealing material by stage heating. For this reason, it is necessary to apply a sealing material to the counter substrate in a single state, which causes handling problems and low productivity problems. Further, the counter substrate is handled by a vacuum suction quartz head with a plurality of apertures and is superposed on the TFT substrate. At this time, the back surface of the counter substrate is likely to be scratched and image quality defects are likely to occur.

なお、上記した面面液晶組立て方法、単個液晶組立て方法、面単液晶組立て方法及びチップマウント液晶組立て方法は、いずれもTFT基板と対向基板を重ね合わせて空セルを形成した後に、液晶注入口から液晶注入を行なう方法である。   The above-described surface liquid crystal assembling method, single liquid crystal assembling method, surface single liquid crystal assembling method and chip mount liquid crystal assembling method are all formed after the TFT substrate and the counter substrate are overlapped to form an empty cell, and then the liquid crystal injection port. In this method, liquid crystal is injected.

これに対して、最近、液晶ギャップ精度向上や生産性向上などのために、液晶滴下・真空貼り合わせ方法(ODF:One Drop Fill)が注目されている。これは、スペーサ散布、あるいは汎用のフォトリソグラフィ技術を用いて柱状のスペーサを形成したTFT基板上に直接液晶を滴下し、対向基板には熱併用型紫外線照射硬化型シール材及びコモン材を塗布し、静電吸着で基板を保持する静電チャックで両基板を保持して真空貼り合わせ装置に送り、貼り合わせ装置内を真空排気してチャンバー内が一定の真空圧になった状態で上下に配置したTFT基板及び対向基板の位置決めを行なって重ね合わせを行い、重ね合わせを行った基板を貼り合わせ装置内で位置ズレが生じない様にUV照射してシール材及びコモン材を仮止め硬化した後に大気圧まで戻して搬出し、大気圧加圧で散布したスペーサ径または柱状のスペーサ及び滴下した液晶量で決まるセルギャップまで均一に加圧し、その後に硬化炉でシール材及びコモン材を本硬化するというものであり、いわゆる面面液晶組立て方法のひとつを採用するものである。   On the other hand, recently, a liquid crystal dropping / vacuum bonding method (ODF: One Drop Fill) has attracted attention in order to improve liquid crystal gap accuracy and productivity. This is because liquid crystal is dropped directly on the TFT substrate on which columnar spacers are formed using spacer dispersion or general-purpose photolithography technology, and a heat combined ultraviolet irradiation curing sealant and a common material are applied to the opposite substrate. , Hold both substrates with electrostatic chuck that holds the substrates by electrostatic adsorption, send them to the vacuum bonding device, evacuate the bonding device and place it up and down with the chamber inside at a constant vacuum pressure After positioning and aligning the TFT substrate and the counter substrate, UV irradiation is performed so that positional displacement does not occur in the bonding apparatus, and the sealing material and the common material are temporarily fixed and cured. Return to atmospheric pressure, carry out, pressurize uniformly to the cell gap determined by the spacer diameter or columnar spacers and the amount of liquid crystal dropped by atmospheric pressure, and then A sealing material and a common material is intended that the present cured in furnace, is to adopt one of the so-called surface faces the liquid crystal assembly method.

しかし、かかる方法では、真空重ね合わせを行う際に、未硬化のシール材が液晶と接触するために液晶がシール材で汚染されやすく液晶動作不具合発生という問題がある。特にシール材中に液晶ギャップ相当のファイバーやコモン材にミクロパールを混合すると、このファイバーやミクロパールでの液晶汚染にも注意が必要となる。   However, such a method has a problem that the liquid crystal is easily contaminated with the sealing material because the uncured sealing material comes into contact with the liquid crystal when performing the vacuum superposition. In particular, when micropearls are mixed with a fiber corresponding to a liquid crystal gap or a common material in the sealing material, it is necessary to pay attention to liquid crystal contamination in the fibers and micropearls.

この様な問題に対して、反射型LCDの駆動基板に画素が形成される表示領域及び駆動回路領域を囲むように単一の周辺枠を形成し、更に、表示領域を含む周辺枠内に複数のOCS(On Chip Spacer;柱状のスペーサ)を設け、液晶を周辺枠内部に滴下して対向基板を貼り合わせることで、周辺枠内に液晶組成物を保持し、周辺枠外側に等しい幅でシール材を充填するという技術が提案されている(例えば、特許文献3参照。)。   To solve such a problem, a single peripheral frame is formed so as to surround the display area and the drive circuit area in which pixels are formed on the drive substrate of the reflective LCD, and a plurality of frames are included in the peripheral frame including the display area. OCS (On-Chip Spacer) is provided, liquid crystal is dropped inside the peripheral frame and the opposite substrate is bonded to hold the liquid crystal composition in the peripheral frame and seal with the same width outside the peripheral frame A technique of filling a material has been proposed (for example, see Patent Document 3).

また、周辺枠材料として同材料と液晶の液滴のなす接触角が35°以上であり、液晶に不溶のシリコン樹脂またはフッ素系樹脂混合物からなる有機物質を用い、周辺枠内部に液晶滴下し、周辺枠外に光硬化型接着剤のシール材を介在させて対向基板を対向させ、光照射して硬化させて両基板を貼り合せる技術が提案されている(例えば、特許文献4参照。)。   In addition, the contact angle between the liquid crystal droplets of the same material and the liquid crystal as the peripheral frame material is 35 ° or more, and an organic substance made of a silicon resin or a fluorine resin mixture insoluble in the liquid crystal is used, and the liquid crystal is dropped inside the peripheral frame. There has been proposed a technique in which a counter substrate is made to face with a sealant of a photo-curing adhesive outside the peripheral frame, and the both substrates are bonded by light irradiation and cured (see, for example, Patent Document 4).

特許第3250411号明細書Japanese Patent No. 3250411 特開2003−66401号公報JP 2003-66401 A 特開2003−177388号公報JP 2003-177388 A 特許第3020068号明細書Japanese Patent No. 3020068

しかしながら、上記した特許文献3に記載の周辺枠はシール材のストッパーとなって未硬化のシール材が液晶と接触して液晶がシール材で汚染されるのを抑制することを期待できるかもしれないが、対向基板貼り合わせ時の加圧で液晶及びシール材が周辺枠を介して互いに接触混合する場合があり汚染防止は完全であるとは言えない。また、表示領域に形成したOCSの配向膜形成及び配向処理は不充分であり、光漏れなどの液晶動作不具合を引き起こしやすく、画質低下をもたらしてしまう。   However, the peripheral frame described in Patent Document 3 described above may serve as a stopper for the sealing material and can be expected to prevent the uncured sealing material from coming into contact with the liquid crystal and contaminating the liquid crystal with the sealing material. However, the liquid crystal and the sealing material may be contacted and mixed with each other through the peripheral frame due to the pressurization at the time of bonding the counter substrate, so that it cannot be said that the prevention of contamination is perfect. In addition, the OCS alignment film formed in the display region and the alignment process are insufficient, and liquid crystal operation problems such as light leakage are likely to occur, resulting in a decrease in image quality.

また、上記した特許文献4に記載の技術では、液晶と周辺枠材料が混ざることを抑制しているものの、周辺枠材料は事前に硬化していないので、対向基板貼り合わせ時の加圧でシール材が周辺枠材料を介して液晶と接触する場合があり汚染防止は完全であるとは言えない。   Further, in the technique described in Patent Document 4 described above, the liquid crystal and the peripheral frame material are prevented from being mixed, but the peripheral frame material is not cured in advance. Since the material may come into contact with the liquid crystal through the peripheral frame material, the prevention of contamination is not perfect.

本発明は以上の点に鑑みて創案されたものであって、表示領域の液晶へのシール材の浸入を抑制し、液晶動作不具合を低減して品質向上を実現することができる電気光学表示装置及びその製造方法を提供することを目的とするものである。   The present invention has been devised in view of the above points, and is an electro-optical display device capable of suppressing the intrusion of the sealing material into the liquid crystal in the display region, reducing the malfunction of the liquid crystal, and realizing an improvement in quality. And it aims at providing the manufacturing method.

上記の目的を達成するために、本発明に係る電気光学表示装置は、表示領域と液晶駆動回路、映像信号制御及び処理回路等を含む周辺領域とを有するTFT基板と、該TFT基板と所定の間隙を介して液晶注入口無しパターンのシール材若しくはシール材及びコモン材により貼り合わせられた対向基板と、前記TFT基板及び対向基板の間隙に保持された液晶と、前記少なくとも表示領域を囲繞する第1の周辺枠と、該第1の周辺枠を囲繞する第2の周辺枠とを備える電気光学表示装置であって、前記シール材若しくはシール材及びコモン材が前記第2の周辺枠の外側領域に塗布され、前記液晶が前記第1の周辺枠の内側領域に保持されている。   In order to achieve the above object, an electro-optical display device according to the present invention includes a TFT substrate having a display region and a peripheral region including a liquid crystal driving circuit, a video signal control and processing circuit, and the TFT substrate and a predetermined region. A counter substrate bonded with a sealing material or a sealing material and a common material having a liquid crystal injection hole-less pattern through a gap, a liquid crystal held in the gap between the TFT substrate and the counter substrate, and at least a display area surrounding the display area An electro-optic display device comprising a peripheral frame of one and a second peripheral frame surrounding the first peripheral frame, wherein the sealing material or the sealing material and the common material are outside regions of the second peripheral frame And the liquid crystal is held in the inner region of the first peripheral frame.

ここで、少なくとも表示領域を囲繞する第1の周辺枠の内側領域に液晶が保持されると共に、第1の周辺枠を囲繞する第2の周辺枠の外側領域にシール材若しくはシール材及びコモン材が塗布されたことによって、即ち、シール材若しくはシール材及びコモン材の塗布領域と液晶の保持領域との間に少なくとも2重の周辺枠が形成されたことによって、第2の周辺枠の外側領域に塗布されたシール材若しくはシール材及びコモン材が第2の周辺枠及び第1の周辺枠を介して第1の周辺枠の内側に保持された液晶と接触することは非常に困難になり、シール材若しくはシール材及びコモン材による液晶汚染の悪影響が第1の周辺枠の内側領域の液晶に及ぶことを抑制することができる。   Here, the liquid crystal is held at least in the inner region of the first peripheral frame surrounding the display region, and the sealing material or the sealing material and the common material are disposed in the outer region of the second peripheral frame surrounding the first peripheral frame. That is, that is, an outer region of the second peripheral frame is formed by forming at least two peripheral frames between the application region of the sealing material or the sealing material and the common material and the liquid crystal holding region. It becomes very difficult for the sealing material or the sealing material and the common material applied to the liquid crystal held inside the first peripheral frame via the second peripheral frame and the first peripheral frame, It can suppress that the bad influence of the liquid-crystal contamination by a sealing material or a sealing material, and a common material reaches the liquid crystal of the inner side area | region of a 1st peripheral frame.

また、上記の目的を達成するために、本発明に係る電気光学表示装置の製造方法は、基体に複数のTFT基板を形成し、各TFT基板の少なくとも表示領域を囲繞する第1の周辺枠及び該第1の周辺枠を囲繞する第2の周辺枠を形成する工程と、各TFT基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、各対向基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、基体に形成されたTFT基板の第2の周辺枠の外側のシール領域或いはシール領域及びコモン領域に液晶注入口無しパターンのシール材或いはシール材及びコモン材を塗布すると共に、前記第1の周辺枠の内側領域に所定量の液晶を滴下した後に、前記TFT基板と前記対向基板とが所定の間隙を介して対面配置する様に、基体に形成された対向基板を相対して位置調整を行い、所定の間隙で所定の真空度の真空装置(例えば、真空貼り合わせ装置)内で重ね合わせる工程と、必要に応じて所定量のUV照射で仮止めシール硬化を行なう工程と、前記真空装置内を大気圧に戻して大気圧の均一加圧により貼り合わせを行い、シール材及びコモン材の硬化を行って所定の液晶ギャップのLCDパネルを形成する工程と、前記TFT基板が形成された基体及び前記対向基板が形成された基体を前記LCDパネル毎に分断する工程とを備える。   In order to achieve the above object, a method of manufacturing an electro-optical display device according to the present invention includes a first peripheral frame that forms a plurality of TFT substrates on a base and surrounds at least a display region of each TFT substrate; A step of forming a second peripheral frame surrounding the first peripheral frame, a step of forming a liquid crystal alignment film corresponding to each TFT substrate or a step of forming a liquid crystal alignment film and a liquid crystal alignment process, and a step corresponding to each counter substrate Liquid crystal alignment film formation or liquid crystal alignment film formation and liquid crystal alignment treatment, and sealing of liquid crystal inlet-less pattern in the seal area or seal area and common area outside the second peripheral frame of the TFT substrate formed on the substrate After applying a material or a seal material and a common material, and dropping a predetermined amount of liquid crystal on the inner region of the first peripheral frame, the TFT substrate and the counter substrate face each other with a predetermined gap To adjust the position of the counter substrate formed on the substrate relative to each other, and superimpose them in a vacuum device (for example, a vacuum bonding device) having a predetermined degree of vacuum with a predetermined gap, and if necessary A step of curing the temporary seal with a predetermined amount of UV irradiation, and returning the inside of the vacuum device to the atmospheric pressure to perform bonding with uniform pressurization of the atmospheric pressure, curing the sealing material and the common material, A step of forming a liquid crystal gap LCD panel, and a step of dividing the substrate on which the TFT substrate is formed and the substrate on which the counter substrate is formed for each LCD panel.

また、本発明に係る電気光学表示装置の製造方法は、基体に複数の対向基板を形成し、TFT基板の少なくとも表示領域を囲繞する領域に対応する各対向基板の領域に第1の周辺枠及び該第1の周辺枠を囲繞する第2の周辺枠を形成する工程と、各対向基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、各TFT基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、基体に形成された対向基板の第2の周辺枠の外側のシール領域或いはシール領域及びコモン領域に液晶注入口無しパターンのシール材或いはシール材及びコモン材を塗布すると共に、前記第1の周辺枠の内側領域に所定量の液晶を滴下した後に、前記TFT基板と前記対向基板とが所定の間隙を介して対面配置する様に、基体に形成されたTFT基板を相対して位置調整を行い、所定の間隙で所定の真空度の真空装置内で重ね合わせる工程と、必要に応じて所定量のUV照射で仮止めシール硬化を行なう工程と、前記真空装置内を大気圧に戻して大気圧の均一加圧により貼り合わせを行い、シール材及びコモン材の硬化を行って所定の液晶ギャップのLCDパネルを形成する工程と、前記TFT基板が形成された基体及び前記対向基板が形成された基体を前記LCDパネル毎に分断する工程とを備える。   In addition, the method for manufacturing an electro-optic display device according to the present invention includes forming a plurality of counter substrates on a base, and forming a first peripheral frame and an area on each counter substrate corresponding to a region surrounding at least the display region of the TFT substrate. A step of forming a second peripheral frame surrounding the first peripheral frame, a step of forming a liquid crystal alignment film corresponding to each counter substrate, a step of forming a liquid crystal alignment film and a liquid crystal alignment process, and a step corresponding to each TFT substrate Liquid crystal alignment film formation or liquid crystal alignment film formation and liquid crystal alignment treatment, and sealing of liquid crystal inlet-less pattern in the seal area or seal area and common area outside the second peripheral frame of the counter substrate formed on the substrate After applying a material or a seal material and a common material, and dropping a predetermined amount of liquid crystal on the inner region of the first peripheral frame, the TFT substrate and the counter substrate face each other through a predetermined gap. In this way, the TFT substrate formed on the substrate is adjusted relative to each other, and is superposed in a vacuum apparatus with a predetermined degree of vacuum at a predetermined gap, and temporarily fixed with a predetermined amount of UV irradiation as necessary. A step of curing the seal, and a step of returning the inside of the vacuum device to the atmospheric pressure to perform bonding by uniform pressurization of the atmospheric pressure, and curing the sealing material and the common material to form an LCD panel having a predetermined liquid crystal gap And a step of dividing the base on which the TFT substrate is formed and the base on which the counter substrate is formed for each LCD panel.

ここで、基体に形成されたTFT基板の第2の周辺枠の外側のシール領域及びコモン領域に液晶注入口無しパターンのシール材及びコモン材を塗布すると共に、第1の周辺枠の内側領域に所定量の液晶を滴下した後に、TFT基板と対向基板とが所定の間隙を介して対面配置する様に、基体に形成された対向基板を相対して位置調整して所定の間隙で所定の真空度の真空装置内で重ね合わせ、或いは、基体に複数の対向基板を形成し、TFT基板の少なくとも表示領域を囲繞する領域に対応する各対向基板の領域に第1の周辺枠及び第1の周辺枠を囲繞する第2の周辺枠を形成し、対向基板のシール領域及びコモン領域に液晶注入口無しパターンのシール材及びコモン材を塗布すると共に、第1の周辺枠の内側領域に所定量の液晶を滴下した後に、TFT基板と対向基板とが所定の間隙を介して対面配置する様に、基体に形成されたTFT基板を相対して位置調整して所定の間隙で所定の真空度の真空装置内で重ね合わせることによって、即ち、シール領域の内側に少なくとも2重の周辺枠を形成すると共に、内側の周辺枠の内側領域に液晶を滴下することによって、第2の周辺枠の外側領域に塗布されたシール材若しくはシール材及びコモン材が第2の周辺枠及び第1の周辺枠を介して第1の周辺枠の内側に滴下された液晶と接触することは非常に困難になり、シール材若しくはシール材及びコモン材による液晶汚染の悪影響が第1の周辺枠の内側領域の液晶に及ぶことを抑制することができる。   Here, a sealing material and a common material having a liquid crystal injection hole-less pattern are applied to the outer sealing region and the common region of the second peripheral frame of the TFT substrate formed on the substrate, and the inner region of the first peripheral frame is applied to the inner region of the first peripheral frame. After dropping a predetermined amount of liquid crystal, the counter substrate formed on the base is positioned relative to the TFT substrate and the counter substrate so that the TFT substrate and the counter substrate face each other with a predetermined gap. The first peripheral frame and the first peripheral are formed in each region of the counter substrate corresponding to the region surrounding at least the display region of the TFT substrate. Forming a second peripheral frame surrounding the frame, applying a sealant and a common material of a liquid crystal injection-free pattern to the seal region and the common region of the counter substrate, and applying a predetermined amount to the inner region of the first peripheral frame; Liquid crystal was dropped In addition, the TFT substrate formed on the base is positioned relative to each other so that the TFT substrate and the counter substrate face each other with a predetermined gap, and are stacked in a vacuum device having a predetermined vacuum degree with a predetermined gap. A seal applied to the outer region of the second peripheral frame by combining, ie, forming at least a double peripheral frame inside the seal region and dropping liquid crystal on the inner region of the inner peripheral frame It becomes very difficult for the material or the sealing material and the common material to come into contact with the liquid crystal dropped inside the first peripheral frame via the second peripheral frame and the first peripheral frame, and the sealing material or the sealing material In addition, it is possible to suppress the adverse effect of the liquid crystal contamination due to the common material on the liquid crystal in the inner region of the first peripheral frame.

本発明を適用した電気光学表示装置及びその製造方法では、少なくとも周辺枠を2重に形成することで、基板同士の真空重ね合わせ及び大気圧の貼り合わせなどの加圧等によってシール材及びコモン材が外側の周辺枠を超えたとしても、外側の周辺枠と内側の周辺枠の間にシール材層若しくは内側の周辺枠からオーバーフローした液晶とシール材の混合層が形成されることはあったとしても、シール材及びコモン材が内側の周辺枠を超えることがなく表示領域の液晶へのシール材及びコモン材の浸入汚染が阻止できるので、点欠陥、焼き付き、光抜け、応答性低下等の液晶動作不具合が防止されて電気光学表示装置の品質向上を図ることができる。   In the electro-optic display device to which the present invention is applied and the manufacturing method thereof, at least the peripheral frame is formed in a double layer so that the sealing material and the common material can be formed by applying pressure such as vacuum superposition of substrates and bonding of atmospheric pressure. Even if the outer peripheral frame exceeds the outer peripheral frame, a sealing material layer or a mixed layer of liquid crystal and sealing material overflowing from the inner peripheral frame may be formed between the outer peripheral frame and the inner peripheral frame. However, since the sealing material and common material do not exceed the inner peripheral frame, and the contamination of the sealing material and common material into the liquid crystal in the display area can be prevented, liquid crystals such as point defects, image sticking, light leakage, and responsiveness deterioration are observed. Operational problems are prevented and the quality of the electro-optic display device can be improved.

また、周辺枠を4重とすることによって、最も外側の周辺枠と外側から2番目に位置する周辺枠の間にオーバーフローしたシール材層が形成され、最も内側の周辺枠と内側から2番目に位置する周辺枠の間にオーバーフローした液晶層が形成され、外側から2番目に位置する周辺枠と内側から2番目に位置する周辺枠の間に略真空層、オーバーフローした液晶層、オーバーフローしたシール材層若しくはオーバーフローした液晶とオーバーフローしたシール材の混合層が形成された場合には、シール材の悪影響が最も内側に位置する周辺枠の内側領域の液晶に及ばないことに加えて、TFT基板と対向基板の間に多重のストッパーとして機能する周辺枠を形成しているので、点欠陥、焼き付き、光抜け、応答性低下等の液晶動作不具合防止のみならず、外部からの水分浸入を十分に抑制することができ、電気光学表示装置の機密性(シール性)向上を図ることができる。
この様に、周辺枠を4重、6重、8重などの多重とすることで、液晶へのシール材の混在防止、液晶への汚染物質及び水分浸入防止ができるために電気光学表示装置の品質、信頼性が向上する。
この時に、本発明の多重の周辺枠がある為に大気圧開放時のシールパス症状を防止できるので、TFT基体または対向基体の最外周のダミーシール材塗布が不要となり、生産性向上とコストダウンを図ることが出来る。
Also, by making the peripheral frame quadruple, an overflowing sealing material layer is formed between the outermost peripheral frame and the peripheral frame located second from the outside, and the innermost peripheral frame and second from the inner side. An overflowed liquid crystal layer is formed between the peripheral frames positioned, and a substantially vacuum layer, an overflowed liquid crystal layer, and an overflowing sealing material are provided between the peripheral frame positioned second from the outside and the peripheral frame positioned second from the inside. When a layer or a mixed layer of overflowing liquid crystal and overflowing sealing material is formed, the adverse effect of the sealing material does not reach the liquid crystal in the inner region of the peripheral frame located on the innermost side, and it faces the TFT substrate. A peripheral frame that functions as multiple stoppers is formed between the substrates, preventing liquid crystal operation problems such as point defects, burn-in, light loss, and poor response. Narazu, moisture infiltration from outside can be sufficiently suppressed, confidentiality of electro-optical display device (sealing property) can be improved.
In this way, by making the peripheral frame multiplex such as quadruple, sixfold, and eightfold, it is possible to prevent mixing of the sealing material into the liquid crystal, and to prevent contamination and moisture intrusion into the liquid crystal. Quality and reliability are improved.
At this time, since there are multiple peripheral frames according to the present invention, it is possible to prevent a seal pass symptom when the atmospheric pressure is released, so that it is not necessary to apply a dummy seal material on the outermost periphery of the TFT substrate or the counter substrate, thereby improving productivity and reducing costs. I can plan.

また、内側の周辺枠で囲まれた領域内にディスペンサーで所定量の液晶を滴下した直後に、滴下量の適正化、滴下有無の判定を例えばレーザー照射して反射光の変動でセンシングするレーザーセンサーなどの光センサーをディスペンサーに同期してステップアンドリピート方式で移動させて判定を行なった場合には、液晶滴下無しや液晶滴下量不足を防止し、歩留、品質及び生産性を向上することができる。   In addition, immediately after a predetermined amount of liquid crystal is dropped with a dispenser in the area surrounded by the inner peripheral frame, the laser sensor senses the amount of dripping and the presence / absence of dripping, for example, by irradiating with laser and sensing the fluctuation of reflected light If the determination is made by moving the optical sensor in a step-and-repeat manner in synchronization with the dispenser, it is possible to prevent liquid crystal dripping and liquid crystal dripping amount shortage and improve yield, quality and productivity. it can.

更に、TFT基板の外部取り出し電極部に対応する対向基板が形成された基体(以後、対向基体と称する)を例えばブレードダイシングまたはUVパルスレーザーダイシングにより50〜100μm残してディープカットダイシングを行い、スクライブラインをTFT基板が形成された基体(以後、TFT基体と称する)まで例えば200〜300μm切り込む凹部形成の対向基体のフルカットダイシングを行なった後に、ディープカットダイシングを行った部分をブレークして対向基体を対向基板毎に分断を行なうことによって、歩留り及び品質が向上する。   Further, the substrate on which the counter substrate corresponding to the external extraction electrode portion of the TFT substrate is formed (hereinafter referred to as the counter substrate) is left by 50 to 100 μm by, for example, blade dicing or UV pulse laser dicing, and deep cut dicing is performed. After performing full-cut dicing of the opposing substrate with a recess formed by cutting, for example, 200 to 300 μm up to the substrate on which the TFT substrate is formed (hereinafter referred to as TFT substrate), the portion subjected to deep-cut dicing is broken to form the opposing substrate. By dividing each counter substrate, yield and quality are improved.

また、メタルマスクを用いてSiOx斜方蒸着膜等の無機系配向膜を形成する場合には、メタルマスクの位置ズレ、ゴミ及びキズ付着、メタルマスク洗浄等の問題があるために、メタルマスクを用いることなく全面にSiOx斜方蒸着膜等の無機系配向膜を形成し、TFT基体内の各TFT基板のシール部、コモン部及び外部取り出し電極部などの上部及び対向基体内の各対向基板のシール部、コモン部などの上部に形成された30〜50nm厚程度のSiOx斜方蒸着膜を、例えば波長1064nmYAGレーザーの第3高調波変調による波長355nmUVパルスレーザーでエッチングすることによって、シール性及びコモン部の電気導通性が向上すると共に、メタルマスク代が不要、メタルマスク洗浄の不要となって電気光学表示装置の製造コストの低減が実現する。   In addition, when forming an inorganic alignment film such as a SiOx oblique deposition film using a metal mask, there are problems such as misalignment of the metal mask, adhesion of dust and scratches, cleaning of the metal mask, etc. An inorganic alignment film such as a SiOx oblique vapor deposition film is formed on the entire surface without using it, and the upper part of each TFT substrate in the TFT substrate, the common part, the external extraction electrode part, etc. and the opposite substrate in the opposite substrate By etching an SiOx oblique deposition film having a thickness of about 30 to 50 nm formed on the upper part of the seal part, the common part, etc. with, for example, a wavelength 355 nm UV pulse laser by third harmonic modulation of a wavelength 1064 nm YAG laser, the sealing property and common Electro-optical display device with improved electrical conductivity and no need for metal mask and metal mask cleaning Reduction of manufacturing cost can be realized.

また、液晶の滴下を行い、真空貼り合せを行って裏面光学研磨した後に、例えばUV接着剤をスピンコートまたはディスペンス塗布した対向基体裏面に低反射膜付き保護ガラス大板を重ね合わせ、所定の真空度で脱泡した後に大気圧に戻す直前または直後にUV照射硬化して貼り合わせた後に、低反射膜付き保護ガラス大板と対向基体、更に低反射膜付き保護ガラス大板と対向基体及びTFT基体を固体レーザーまたはガスレーザーまたは固体及びガスレーザーを組み合わせたレーザーダイシングまたはブレードダイシングすると、生産性が向上して製造コストの低減が実現する。   Also, after dropping the liquid crystal, applying vacuum bonding, and optically polishing the back surface, for example, a protective glass large plate with a low reflection film is superimposed on the back surface of the opposite substrate on which the UV adhesive is spin-coated or dispensed, and a predetermined vacuum is applied. After UV-curing and bonding immediately before or after returning to atmospheric pressure after defoaming at a degree, a protective glass large plate with a low reflection film and a counter substrate, and further a protective glass large plate with a low reflection film, a counter substrate and a TFT When the substrate is solid laser or gas laser or laser dicing or blade dicing combining solid and gas laser, the productivity is improved and the manufacturing cost is reduced.

また、例えば対向基体1.0mm厚と低反射膜付き保護ガラス大板1.0mm厚とを足し合わせた例えば2.0mm厚みの対向基体を用い、この対向基体の片面にITOやIZO等の透明導電膜を形成し、他の面に低反射膜を形成しておき、透明導電膜を形成した側に液晶配向膜を形成することで、低反射膜付き保護ガラスの貼り合わせ作業を廃止することができ、生産性が向上して製造コストの低減が実現する。   Further, for example, a counter substrate having a thickness of, for example, 2.0 mm, which is obtained by adding 1.0 mm thickness of the counter substrate and 1.0 mm thickness of the protective glass large plate with a low reflection film, transparent ITO or IZO or the like on one side of the counter substrate. Forming a conductive film, forming a low-reflection film on the other surface, and forming a liquid crystal alignment film on the side on which the transparent conductive film is formed eliminates the work of attaching protective glass with a low-reflection film. This improves productivity and reduces manufacturing costs.

また、TFT基体及び対向基体単位での液晶滴下・真空貼り合せ、入射及び出射側保護ガラス大板貼り合わせ、液晶ギャップ検査及び画像検査、更にシール材及びコモン材のUV照射硬化と固着アニール、液晶配向熱処理、光学裏面研磨などの一連の作業を行うことで、ハンドリングし易く生産性が良い。   Also, liquid crystal dropping and vacuum bonding in units of TFT substrate and counter substrate, bonding of large and small protective glass on the incident and exit sides, liquid crystal gap inspection and image inspection, UV irradiation curing and fixing annealing of sealing materials and common materials, liquid crystal By performing a series of operations such as orientation heat treatment and optical back surface polishing, the handling is easy and the productivity is good.

また、TFT基体裏面のTFT形成膜除去、更には対向基体裏面のキズ、汚れなどを光学研磨除去することによって、LCDパネルを構成するTFT基板及び対向基板裏面のクリーニング作業が不要となり、歩留り及び品質の向上、大幅な工数削減、生産性向上による製造コストの低減が実現する。   Also, by removing the TFT formation film on the back side of the TFT substrate and further optically removing scratches and dirt on the back side of the counter substrate, cleaning work for the TFT substrate constituting the LCD panel and the back surface of the counter substrate becomes unnecessary, yield and quality. Improvements in production, significant man-hour reduction, and reduction in manufacturing cost due to improved productivity.

また、両面光学研磨後にLCDパネル単位でのステップアンドリピート方式での液晶ギャップ検査及び画像検査を行い、合格したLCDパネルのみに入射及び出射側保護ガラスチップを透明接着剤で貼り合せることで、保護ガラスゴミ挟み込み不良、気泡不良がなくなりクリーニング作業が不要となり、歩留り及び品質の向上、大幅な工数削減、生産性向上による製造コストの低減が実現する。   Also, after double-sided optical polishing, LCD panel unit liquid crystal gap inspection and image inspection are performed in units of LCD panels, and only the LCD panel that has passed is bonded to the entrance and exit side protective glass chips with a transparent adhesive to protect There is no glass dust trapping defect and bubble defect, eliminating the need for cleaning work, improving yield and quality, drastically reducing man-hours, and reducing manufacturing costs by improving productivity.

また、対向基板に保護ガラスチップを貼り合せた状態のTFT基体のフルカットブレードダイシングを行う場合には、対向基板の保護ガラスチップにダイシングテープを貼ると、保護ガラスチップの高さがあたかもVカットまたはUカット溝に相当することとなり、TFT基体の裏面VカットまたはUカットダイシングが不要であり、しかもテープカットレスのフルカットブレードダイシングとなり、ダイシング時のテープ糊起因の付着ゴミ、汚れ不良が低減して歩留り及び品質が向上する。   When full cut blade dicing of the TFT substrate with the protective glass chip bonded to the counter substrate is performed, if the dicing tape is applied to the protective glass chip of the counter substrate, the height of the protective glass chip is as if V-cut. Or, it corresponds to a U-cut groove, and there is no need for V-cut or U-cut dicing on the back side of the TFT substrate, and full-cut blade dicing without tape cut, reducing adhesion dust and dirt defects caused by tape glue during dicing. Yield and quality are improved.

また、TFT基体のTFT基板及び対向基板にUVテープ保護の保護ガラスチップを貼り合せると、TFT基体のブレードダイシング時のテープ糊起因の付着ゴミ、汚れ不良が皆無となり、歩留り及び品質が向上する。更に、UVテープ保護の保護ガラスチップが貼合されたLCDパネルにフレキシブル基板を取り付け作業時の保護ガラスのキズ、ゴミ付着が皆無となり、歩留り及び品質が向上する。   Further, when a protective glass chip for UV tape protection is bonded to the TFT substrate of the TFT substrate and the counter substrate, there is no adhesion dust and dirt defects due to tape glue at the time of blade dicing of the TFT substrate, and the yield and quality are improved. Furthermore, the flexible glass is attached to the LCD panel on which the protective glass chip for protecting the UV tape is attached, so that the protective glass is not damaged and dust is not adhered, and the yield and quality are improved.

また、TFT基体または対向基体単位でのハンドリングなので、ハンドリング機構が簡略化できて安価な製造装置(例えば、液晶滴下・真空貼り合せ装置、保護ガラス大板貼り合わせ装置、画像検査装置、液晶ギャップ検査装置、画質検査装置など)が実現できる。更に、ハンドリング起因のTFT基板、対向基板及び保護ガラスチップなどの欠け、キズ、ゴミ付着などの問題が解消するので、歩留り及び品質が向上する。   In addition, since handling is performed in units of TFT substrates or opposing substrates, the handling mechanism can be simplified and inexpensive manufacturing devices (for example, liquid crystal dropping / vacuum bonding devices, protective glass large plate bonding devices, image inspection devices, liquid crystal gap inspections). Device, image quality inspection device, etc.). Further, problems such as chipping, scratches, and dust adhesion of the TFT substrate, the counter substrate and the protective glass chip due to handling are solved, so that yield and quality are improved.

以下、本発明の実施の形態について図面を参酌しながら説明し、本発明の理解に供する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings to provide an understanding of the present invention.

[A]TFT基板及び対向基板が石英ガラス材であるプロジェクタ用透過型LCDの場合
図1は本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法の工程フローである。
以下、図1に示す工程フローに沿ってプロジェクタ用透過型LCDの製造方法について説明する。
[A] Projector Transmission LCD with TFT Substrate and Opposite Substrate Made of Quartz Glass Material FIG. 1 shows the steps of a method for manufacturing a projector transmission LCD as an example of a method for manufacturing an electro-optic display device to which the present invention is applied. It is a flow.
Hereinafter, a method for manufacturing a projector-use transmissive LCD will be described along the process flow shown in FIG.

本発明を適用したプロジェクタ用透過型LCDの製造方法では、先ず、12インチφ、1.2mm厚の石英ガラス材からなるTFT基体に複数のTFT基板を形成し、このTFT基板形成時にTFT基体の裏面に成膜されたSiO、SiNx、遮光用の遷移金属シリサイド膜(タングステンシリサイド;WSi、モリブデンシリサイド;MoSi,チタンシリサイド;TiSi等)などを残して高い平坦性を維持したTFT基体に、図3(A)の(a)で示す様に、TFT基体10内の各TFT基板1に汎用のリソグラフィ技術を用いて、感光性樹脂のパターニングを行なって少なくとも2重の周辺枠2、例えば周辺枠幅が50μm、周辺枠間の距離が100μm、高さが液晶ギャップ2.5μm相当の2重の周辺枠を形成し、外側に形成された周辺枠を第1の周辺枠2a、内側に形成された周辺枠を第2の周辺枠2bとする。 In a method for manufacturing a transmissive LCD for a projector to which the present invention is applied, first, a plurality of TFT substrates are formed on a TFT substrate made of quartz glass material having a 12-inch diameter and a thickness of 1.2 mm. TFT substrate that maintains high flatness, leaving SiO 2 , SiNx, a light-shielding transition metal silicide film (tungsten silicide; WSi 2 , molybdenum silicide; MoSi 2 , titanium silicide; TiSi 2, etc.) formed on the back surface In addition, as shown in FIG. 3A, each TFT substrate 1 in the TFT substrate 10 is patterned on a photosensitive resin by using a general-purpose lithography technique to form at least a double peripheral frame 2, For example, a double peripheral frame having a peripheral frame width of 50 μm, a distance between the peripheral frames of 100 μm, and a height corresponding to a liquid crystal gap of 2.5 μm is formed. First peripheral frame 2a formed by the peripheral frame, the peripheral frame formed inside the second peripheral frame 2b to.

また、必要に応じて周辺枠形成と同時に、同じ感光性樹脂によりTFT基板の表示領域6と第2の周辺枠との間に液晶ギャップ相当の高さを有する複数のOCS7(例えば2〜3μmφ、液晶ギャップ2.5μm相当の高さ)を形成する。
尚、この時に、画質に悪影響を与えない範囲で、表示領域6内の複数の画素開口部周囲に液晶ギャップ相当の高さを有するOCS7を形成し、液晶ギャップ制御を高めてもよい。
このTFT基体の全面またはTFT基板毎に、ポリイミド、ポリアミド等の有機系液晶配向膜(以下、配向膜とも称す)を形成して所定の角度でバフラビング配向または直線偏光紫外線照射の光配向またはイオンビーム配向またはレーザー配向等の液晶配向処理(以下、配向処理とも称す)を行なったり、或いはSiOx等の所定の蒸着角での斜方蒸着膜形成またはSiOx等の所定のスパッタリング角での指向性スパッタリング膜形成または所定の角度でアルゴン等でのイオンビーム配向処理したDLC(Diamond Like Carbon)膜形成等の無機系液晶配向膜を形成した後に、必要に応じてIPA(イソプロピルアルコール)等を用いた有機洗浄を行なう。
尚、SiOx等の無機系液晶配向膜の場合には、UV照射洗浄、大気圧プラズマ洗浄を単独または有機洗浄と組み合わせで洗浄を行ってもよい。
Simultaneously with the formation of the peripheral frame as required, a plurality of OCSs 7 having a height corresponding to a liquid crystal gap between the display region 6 of the TFT substrate and the second peripheral frame (for example, 2 to 3 μmφ, A liquid crystal gap of a height corresponding to 2.5 μm).
At this time, the OCS 7 having a height corresponding to the liquid crystal gap may be formed around the plurality of pixel openings in the display area 6 within a range that does not adversely affect the image quality, thereby enhancing the liquid crystal gap control.
An organic liquid crystal alignment film (hereinafter also referred to as an alignment film) such as polyimide or polyamide is formed on the entire surface of the TFT substrate or for each TFT substrate, and photo-alignment or ion beam is applied by bubbling alignment or linearly polarized ultraviolet irradiation at a predetermined angle. Liquid crystal alignment treatment (hereinafter also referred to as alignment treatment) such as alignment or laser alignment, or oblique deposition film formation at a predetermined deposition angle such as SiOx or directional sputtering film at a predetermined sputtering angle such as SiOx After forming or forming an inorganic liquid crystal alignment film such as a DLC (Diamond Like Carbon) film formed by ion beam alignment treatment with argon or the like at a predetermined angle, organic cleaning using IPA (isopropyl alcohol) or the like as necessary To do.
In the case of an inorganic liquid crystal alignment film such as SiOx, UV irradiation cleaning and atmospheric pressure plasma cleaning may be performed alone or in combination with organic cleaning.

ここで、TFT基体は複数のTFT基板及びスクライブラインから構成される石英ガラス系基体であり、TFT基板は表示部、液晶駆動回路や映像信号制御及び処理回路などの周辺回路部、シール部(コモン部を含む)、外部取り出し電極部などからなり、TFTなどのスイッチング素子、ITO(Indium Tin Oxide;酸化インジウムと酸化錫の混合透明導電膜)、IZO(Indium Zinc Oxide;酸化インジウムと酸化亜鉛の混合透明導電膜)などの透明導電体からなる透明画素電極、配線、外部取り出し電極などが形成されている。   Here, the TFT substrate is a quartz glass substrate composed of a plurality of TFT substrates and scribe lines, and the TFT substrate is a peripheral circuit unit such as a display unit, a liquid crystal driving circuit and a video signal control and processing circuit, and a seal unit (common). Switching element such as TFT, ITO (Indium Tin Oxide: mixed transparent conductive film of indium oxide and tin oxide), IZO (Indium Zinc Oxide; mixed of indium oxide and zinc oxide) A transparent pixel electrode made of a transparent conductor such as a transparent conductive film, wiring, an external extraction electrode, and the like are formed.

ポリイミド、ポリアミド等の有機系配向膜を形成する場合には、TFT基体全面にポリイミド、ポリアミド等の溶液をスピンコーティング、バーコーティング、ディップコーティング等により塗布し、プレベーク(80℃、10分)で溶剤を揮発させた後に、180℃で1時間焼成し、ポリイミド、ポリアミド等の膜を5〜50nm好ましくは30〜50nm程度形成する。この時に、TFT基板のコモン領域にもポリイミド、ポリアミド等の有機系配向膜が形成されているが、コモン剤中の金メッキ樹脂のミクロパールが重ね合わせ時の加圧でポリイミド、ポリアミド等の有機系配向膜を突き破って対向基板の透明導電膜とTFT基板の透明導電膜を電気的に導通させる。更に、TFT基板の外部取り出し電極部にもポリイミド、ポリアミド等の有機系配向膜が形成されているが、フレキシブル基板の異方性導電膜中のフィラーが熱圧着でポリイミド、ポリアミド等の有機系配向膜を突き破って外部取り出し電極部とフレキシブル基板を電気的に導通させる。
この時に、画像検査での測定端子及びフレキシブル基板との電気抵抗低減の為に、シール及びコモン部、外部取り出し電極部の上記有機系配向膜をエキシマレーザーなどでのレーザーエッチングで除去してもよい。
更に、LCDパネルの状態で、外部取り出し電極部の上記有機系配向膜を大気圧プラズマエッチングで除去してもよい。
When forming an organic alignment film such as polyimide or polyamide, a solution of polyimide, polyamide or the like is applied to the entire surface of the TFT substrate by spin coating, bar coating, dip coating, etc., and a solvent is obtained by pre-baking (80 ° C., 10 minutes). Is volatilized and then baked at 180 ° C. for 1 hour to form a film of polyimide, polyamide or the like in the range of 5 to 50 nm, preferably about 30 to 50 nm. At this time, organic alignment films such as polyimide and polyamide are also formed in the common area of the TFT substrate. However, organic micro-pearls of the gold plating resin in the common agent are applied with pressure when superposed, such as polyimide and polyamide. The alignment film is pierced to electrically connect the transparent conductive film of the counter substrate and the transparent conductive film of the TFT substrate. Furthermore, an organic alignment film such as polyimide and polyamide is also formed on the external extraction electrode portion of the TFT substrate, but the filler in the anisotropic conductive film of the flexible substrate is thermocompression-bonded and organic alignment such as polyimide and polyamide is performed. The external lead electrode part and the flexible substrate are electrically connected by breaking through the film.
At this time, in order to reduce the electric resistance between the measurement terminal and the flexible substrate in the image inspection, the organic alignment film on the seal and the common part and the external extraction electrode part may be removed by laser etching using an excimer laser or the like. .
Further, in the state of the LCD panel, the organic alignment film of the external extraction electrode portion may be removed by atmospheric pressure plasma etching.

または、TFT基体内のTFT基板毎に印刷版によるロールコーティングにより塗布し、プレベーク(80℃、10分)で溶剤を揮発させた後に、180℃で1時間焼成し、ポリイミド、ポリアミド等の膜を5〜50nm好ましくは30〜50nm程度形成する。この時には、シール領域、コモン領域及び外部電極取り出し部にはポリイミド、ポリアミド等の有機系配向膜は形成されていないので、電気的な導通は容易である。   Alternatively, each TFT substrate in the TFT substrate is applied by roll coating with a printing plate, and the solvent is volatilized by pre-baking (80 ° C., 10 minutes), followed by baking at 180 ° C. for 1 hour to form a film of polyimide, polyamide, or the like. 5-50 nm, preferably about 30-50 nm. At this time, since an organic alignment film such as polyimide or polyamide is not formed in the seal region, common region, and external electrode lead-out portion, electrical conduction is easy.

なお、SiOx等の無機系配向膜厚によってはコモン剤中の金メッキ樹脂のミクロパールの圧着によるSiOx等の無機系配向膜の貫通が難しいので、図2に示すように、TFT基体内の各TFT基板のシール部及びコモン部の上部のSiOx等の無機系配向膜を例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザーでレーザーエッチングにより除去するのが好ましい。同様に、SiOx等の無機系配向膜厚によってはフレキシブル基板の異方性導電膜の熱圧着による電気的接続は難しいので、フレキシブル基板との電気的導通のために外部電極取り出し部の上部のSiOx等の無機系配向膜を例えば上記同様の波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザーでレーザーエッチングにより除去するのが好ましい。この時は、例えばビームスポットサイズ50〜200μmΦでレーザーパワー10〜100W(10KHz)の上記UVパルスレーザーをX−Y方向(図2中レーザービームAはX方向のスキャンニング照射を示し、図2中レーザービームBはY方向のスキャンニング照射を示している。)に複数回の往復スキャニング照射をして、TFT基板のシール部、コモン部及び外部取り出し電極部の上部の30〜50nm厚のSiOx等の無機系配向膜除去を行なう。なお、外部取り出し電極部上のエッチングでは、UVパルスレーザーパワー及び往復スキャニング回数などを調整して、外部取り出し電極部がエッチングされない様に注意する必要がある。
この時に、SiOx等の無機系配向膜エッチングと同時に、TFT基板のシール領域のガラスも少しエッチングされて表面凹凸となるが、シール材との密着性が向上し、シール性が高まる。
尚、必要に応じて、このレーザー溶融したSiOx等の無機成分が付着してダスト起因不良とならないように、例えばレーザー照射と同期して真空吸引口を追従させてレーザー溶融したSiOx等の無機成分除去するなどのダスト対策が必要である。
尚、コモン部及び外部取り出し電極部の上部のSiOx等の無機系配向膜のみを選択的なスポットレーザー照射によりエッチングしてもよい。
Depending on the inorganic alignment film thickness such as SiOx, it is difficult to penetrate the inorganic alignment film such as SiOx by pressure bonding of the gold plating resin micropearl in the common agent. Therefore, as shown in FIG. It is preferable to remove the inorganic alignment film such as SiOx on the sealing portion and the common portion of the substrate by laser etching with a UV pulse laser having a wavelength of 355 nm, which is the third harmonic modulation of a wavelength 1064 nm YAG laser. Similarly, depending on the inorganic orientation film thickness such as SiOx, it is difficult to electrically connect the anisotropic conductive film of the flexible substrate by thermocompression bonding. It is preferable to remove the inorganic alignment film by laser etching with a UV pulse laser having a wavelength of 355 nm, which is the third harmonic modulation of a 1064 nm YAG laser similar to the above. In this case, for example, the UV pulse laser having a beam spot size of 50 to 200 μmΦ and a laser power of 10 to 100 W (10 KHz) is applied in the X-Y direction (in FIG. 2, laser beam A indicates scanning irradiation in the X direction. Laser beam B indicates scanning irradiation in the Y direction.) Multiple reciprocating scanning irradiations are applied to the sealing portion of the TFT substrate, the common portion, the upper portion of the external extraction electrode portion, 30 to 50 nm thick SiOx, etc. The inorganic alignment film is removed. In the etching on the external extraction electrode portion, it is necessary to adjust the UV pulse laser power and the number of times of reciprocating scanning so that the external extraction electrode portion is not etched.
At this time, simultaneously with the etching of the inorganic alignment film such as SiOx, the glass in the sealing region of the TFT substrate is also slightly etched to form surface irregularities, but the adhesion with the sealing material is improved and the sealing performance is enhanced.
In addition, if necessary, the inorganic component such as SiOx or the like melted by causing the vacuum suction port to follow in synchronization with the laser irradiation so that the inorganic component such as SiOx or the like melted by the laser does not adhere and cause defects due to dust. Dust measures such as removal are necessary.
Note that only the inorganic alignment film such as SiOx on the common part and the external extraction electrode part may be etched by selective spot laser irradiation.

なお、TFT基板のシール材及びコモン材塗布領域及びTFT基板の外部取り出し電極部をマスキングしてSiOx等の無機系配向膜が形成されない様にしても良いが、マスキングの場合には、メタルマスクの位置ズレ、ゴミ及びキズ付着、メタルマスク洗浄等の課題がある。   It should be noted that the sealing material for the TFT substrate, the common material application region, and the external extraction electrode portion of the TFT substrate may be masked so that the inorganic alignment film such as SiOx is not formed. There are problems such as misalignment, adhesion of dust and scratches, and metal mask cleaning.

また、12インチ□、1.1mm厚の石英ガラス材や結晶化ガラス材の複数の対向基板からなる対向基体を形成し、上記TFT基体同様にポリイミド、ポリアミド等の有機系液晶配向膜を形成して所定の角度でバフラビング配向または直線偏光紫外線照射の光配向またはイオンビーム配向またはレーザー配向等の液晶配向を行なったり、或いはSiOx等の所定の蒸着角での斜方蒸着膜形成またはSiOx等の所定のスパッタリング角での指向性スパッタリング膜形成または所定の角度でアルゴン等でのイオンビーム配向処理したDLC膜形成等の無機系液晶配向膜を形成した後に、必要に応じてIPA等を用いた有機洗浄を行なう。
尚、SiOx等の無機系液晶配向膜の場合には、UV照射洗浄、大気圧プラズマ洗浄を単独または有機洗浄と組み合わせで洗浄を行ってもよい。
Also, a counter substrate composed of a plurality of counter substrates of quartz glass material or crystallized glass material having a thickness of 12 inches and a thickness of 1.1 mm is formed, and an organic liquid crystal alignment film such as polyimide or polyamide is formed in the same manner as the TFT substrate. Then, liquid alignment such as buffing alignment or linearly polarized ultraviolet light irradiation or ion beam alignment or laser alignment is performed at a predetermined angle, or oblique vapor deposition film formation at a predetermined deposition angle such as SiOx or SiOx is predetermined. After forming an inorganic liquid crystal alignment film such as a directional sputtering film formation at a sputtering angle or a DLC film formation by ion beam alignment treatment with argon or the like at a predetermined angle, organic cleaning using IPA or the like as necessary To do.
In the case of an inorganic liquid crystal alignment film such as SiOx, UV irradiation cleaning and atmospheric pressure plasma cleaning may be performed alone or in combination with organic cleaning.

ここで、対向基体は複数の対向基板及びスクライブラインから構成される石英ガラスまたは結晶化ガラス系基体であり、対向基板はマイクロレンズアレイ基板或いはブラックマスク基板(画素開口部以外に遮光膜形成し、その全面にパターン無しのITO、IZOなどの透明導電膜形成)或いはベタ透明導電膜基板(パターン無しのITO、IZOなどの透明導電膜体)などが形成されている。   Here, the counter substrate is a quartz glass or crystallized glass substrate composed of a plurality of counter substrates and scribe lines, and the counter substrate is a microlens array substrate or a black mask substrate (a light shielding film is formed in addition to the pixel openings, On the entire surface, a transparent conductive film such as ITO or IZO without pattern) or a solid transparent conductive film substrate (transparent conductive film such as ITO or IZO without pattern) is formed.

ポリイミド、ポリアミド等の有機系配向膜を形成する場合には、対向基体全面にポリイミド、ポリアミド等の溶剤をスピンコーティング、バーコーティング、ディップコーティング等により塗布し、プレベーク(80℃、10分)で溶剤を揮発させた後に、180℃で1時間焼成し、ポリイミド、ポリアミド等の膜を5〜50nm好ましくは30〜50nm程度形成する。この時に、対向基板のコモン領域にもポリイミド、ポリアミド等の有機系配向膜が形成されているが、コモン剤中の金メッキ樹脂したミクロパールが重ね合わせ時の加圧でポリイミド、ポリアミド等の有機系配向膜を突き破って対向基板の透明導電膜とTFT基板の透明導電膜を電気的に導通させる。
この時に、コモン部の電気抵抗低減の為に、コモン領域の有機系配向膜をエキシマレーザーなどでのレーザーエッチングで除去してもよい。
When forming an organic alignment film such as polyimide or polyamide, a solvent such as polyimide or polyamide is applied to the entire opposing substrate by spin coating, bar coating, dip coating, or the like, and the solvent is pre-baked (80 ° C., 10 minutes). Is volatilized and then baked at 180 ° C. for 1 hour to form a film of polyimide, polyamide or the like in the range of 5 to 50 nm, preferably about 30 to 50 nm. At this time, an organic alignment film such as polyimide or polyamide is also formed in the common area of the counter substrate, but the organic plating film such as polyimide and polyamide is applied by the pressure applied when the gold plating resin micropearl in the common agent is superposed. The alignment film is pierced to electrically connect the transparent conductive film of the counter substrate and the transparent conductive film of the TFT substrate.
At this time, in order to reduce the electric resistance of the common portion, the organic alignment film in the common region may be removed by laser etching using an excimer laser or the like.

または、対向基体内の対向基板毎に印刷版によるロールコーティングによりポリイミド、ポリアミド等の溶剤を塗布し、プレベーク(80℃、10分)で溶剤を揮発させた後に、180℃で1時間焼成し、ポリイミド、ポリアミド等の膜を5〜50nm好ましくは30〜50nm程度形成する。この時には、コモン領域にはポリイミド、ポリアミド等の有機系配向膜は形成されていないので、電気的導通は容易である。   Or after applying a solvent such as polyimide or polyamide by roll coating with a printing plate on each counter substrate in the counter substrate, volatilizing the solvent by pre-baking (80 ° C., 10 minutes), and baking at 180 ° C. for 1 hour, A film made of polyimide, polyamide or the like is formed to have a thickness of 5 to 50 nm, preferably about 30 to 50 nm. At this time, since the organic alignment film such as polyimide or polyamide is not formed in the common region, electrical conduction is easy.

なお、SiOx等の無機系配向膜厚によってはコモン材中の金メッキ樹脂したミクロパールの圧着によるSiOx等の無機系配向膜の貫通が難しいので、図2に示すように、上記TFT基板と同様に対向基体内の各対向基板のシール部及びコモン部の上部のSiOx等の無機系配向膜を例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザーでレーザーエッチングにより除去するのが好ましい。
尚、TFT基板及び対向基板に形成したSiOx斜方蒸着膜はガラス系基体に比べ粗な粒径で低密度であり気密性が低いので、上記のUVパルスレーザーなどでコモン部のみならずシール部の上部のSiOx斜方蒸着膜も同時にレーザーエッチングすると、シール性が高まり、品質及び信頼性が向上するので好ましい。
尚、必要に応じて、このレーザー溶融したSiOx等の無機成分が付着してダスト起因不良とならないように、例えばレーザー照射と同期して真空吸引口を追従させてレーザー溶融したSiOx等の無機成分除去するなどのダスト対策が必要である。
尚、コモン部の上部のSiOx等の無機系配向膜のみを選択的なスポットレーザー照射によりエッチングしてもよい。
Depending on the inorganic alignment film thickness such as SiOx, it is difficult to penetrate the inorganic alignment film such as SiOx by pressure bonding of the gold plated resin micropearl in the common material. The inorganic alignment film such as SiOx on the seal portion and the common portion of each counter substrate in the counter substrate is removed by laser etching using, for example, a UV pulse laser with a wavelength of 355 nm which is the third harmonic modulation of the wavelength 1064 nm YAG laser. preferable.
The SiOx oblique vapor deposition film formed on the TFT substrate and the counter substrate has a coarse particle size, low density and low hermeticity as compared with the glass-based substrate. It is preferable to perform laser etching on the upper SiOx oblique deposition film at the same time because the sealing property is improved and the quality and reliability are improved.
In addition, if necessary, the inorganic component such as SiOx that has been melted by laser by tracking the vacuum suction port in synchronization with the laser irradiation so that the inorganic component such as SiOx that has been melted by laser does not adhere and cause defects due to dust. Dust measures such as removal are necessary.
Note that only the inorganic alignment film such as SiOx above the common portion may be etched by selective spot laser irradiation.

なお、対向基板のシール材及びコモン剤塗布領域にマスキングしてSiOx等の無機系配向膜が形成されない様にしても良いが、マスキングの場合には、メタルマスクの位置ズレ、ゴミ及びキズ付着、メタルマスク洗浄等の課題がある。   In addition, it is possible to mask the sealing material and the common agent application region of the counter substrate so that an inorganic alignment film such as SiOx is not formed. However, in the case of masking, the metal mask is misaligned, dust and scratches are attached, There are problems such as metal mask cleaning.

次に、図3(A)の(b)で示す様に、TFT基板の外側に形成された周辺枠2aの外側に例えば熱併用型紫外線照射硬化型接着剤のシール材(以後 シール材とも呼ぶ)3をシール幅500μm内にディスペンス塗布し、同時に熱併用型紫外線照射硬化型接着剤のコモン材(以後 コモン材とも呼ぶ)4を約200μmの塗布径でディスペンス塗布し、内側に形成された周辺枠2bの内側に所定量の液晶5をディスペンス滴下する。
この時に、TFT基板の周辺枠2aの外側に例えばシール材3をシール幅500μm内にディスペンス塗布し、対向基板のコモン部相当領域にコモン材4を約200μmの塗布径で少なくとも2箇所以上をディスペンス塗布してもよい。
Next, as shown in (b) of FIG. 3A, for example, a seal material (hereinafter also referred to as a seal material) of a heat combined type ultraviolet irradiation curable adhesive is provided outside the peripheral frame 2a formed on the outside of the TFT substrate. ) 3 is dispensed within the seal width of 500 μm, and at the same time, a common material (hereinafter also referred to as “common material”) of heat combined ultraviolet irradiation curing adhesive is dispensed with a coating diameter of about 200 μm, and the periphery formed inside A predetermined amount of the liquid crystal 5 is dispensed inside the frame 2b.
At this time, for example, the sealing material 3 is dispensed on the outer side of the peripheral frame 2a of the TFT substrate within a seal width of 500 μm, and the common material 4 is dispensed in an area corresponding to the common portion of the counter substrate at a coating diameter of about 200 μm at least at two locations. It may be applied.

ここで、滴下する液晶量は例えば0.79型用TFT基板の表示領域中心付近に約0.1mgを8回繰り返えして約0.8mg程度をディスペンス塗布し、その高さが第2の周辺枠2bよりも表面張力で少し盛り上がる程度の液晶量として液晶不足とならない様にする必要がある。そして、シール材はシール部のセンター付近に1500〜1600μm程度をディスペンス塗布し、コモン材は少なくとも2個所以上に約200μmの塗布径でディスペンス塗布し、第1の周辺枠2aを飛び越えて第2の周辺枠2b内部に流動しない様にする必要がある。 Here, the amount of liquid crystal to be dropped is, for example, about 0.1 mg is repeated eight times in the vicinity of the center of the display area of the 0.79 type TFT substrate, and about 0.8 mg is dispensed, and the height is the second. It is necessary to prevent the liquid crystal from becoming insufficient as the amount of liquid crystal that is slightly raised by the surface tension of the peripheral frame 2b. Then, the seal material is dispensed at about 1500 to 1600 μm 2 near the center of the seal portion, the common material is dispensed at a coating diameter of about 200 μm at least at two locations, and the second material jumps over the first peripheral frame 2a. It is necessary not to flow inside the peripheral frame 2b.

また、図3(A)の(b)で示す様に、TFT基体は移動させずに液晶ディスペンサー8とレーザーセンサー9をステップアンドリピート方式で移動させ、所定量の液晶滴下の直後に同期してレーザー照射して反射光の変動でセンシングし、または、レーザーセンサー9及び液晶ディスペンサー8は移動させずに、TFT基体をステップアンドリピート方式で移動させて所定量の液晶滴下の直後に同期してレーザー照射して反射光の変動でセンシングして、第2の周辺枠内の液晶滴下有無及び液晶滴下量の適正化を行う方が望ましい。
なお、CCDで画像を取り込み、液晶の滴下有無及び液晶の滴下量の適正化を判断する方法であっても良い。
このように、例えば液晶ディスペンサーの不具合により液晶滴下無しまたは不足が発生した時に、直後にその不具合を検出して液晶滴下量を最適化させるので、液晶不足による液晶未充填不具合を防止できる。
尚、ここではTFT基板側にシール材及びコモン材塗布と液晶滴下を行ったが、TFT基板側にシール材塗布と液晶滴下を行い、対向基板側にコモン材塗布をしてもよい。
Further, as shown in FIG. 3A (b), the liquid crystal dispenser 8 and the laser sensor 9 are moved by a step-and-repeat method without moving the TFT substrate, and immediately after a predetermined amount of liquid crystal is dropped. Laser irradiation and sensing with fluctuation of reflected light, or without moving the laser sensor 9 and the liquid crystal dispenser 8, the TFT substrate is moved in a step-and-repeat manner, and the laser is synchronized immediately after a predetermined amount of liquid crystal is dropped. It is desirable to perform irradiation and sense by fluctuation of reflected light to optimize the presence / absence of liquid crystal dripping and the amount of liquid crystal dripping in the second peripheral frame.
Note that a method may be used in which an image is captured by a CCD and whether or not liquid crystal is dropped and whether the amount of liquid crystal is dropped is determined appropriately.
Thus, for example, when there is no liquid crystal dropping or shortage due to a liquid crystal dispenser failure, the liquid crystal dropping amount is optimized immediately after the failure is detected, so that the liquid crystal unfilling failure due to liquid crystal shortage can be prevented.
Here, the sealing material and common material application and liquid crystal dropping are performed on the TFT substrate side, but the sealing material application and liquid crystal dropping may be performed on the TFT substrate side and the common material application may be performed on the counter substrate side.

ところで、シール材塗布にはスクリーン印刷方式とディスペンサー方式があるが、前者のスクリーン印刷方式はスクリーンの生地が配向膜面に接触することで配向力ばらつきとなりメッシュ跡が発生し易いので後者のディスペンサー方式が望ましい。なお、ディスペンサー方式は圧縮空気によりシリンジ中のシール材を押し出しつつ、シール材を塗布するものである。   By the way, there are screen printing method and dispenser method for applying the sealing material, but the former screen printing method is the latter dispenser method because the screen fabric is in contact with the alignment film surface and the orientation force varies and mesh marks are easily generated. Is desirable. The dispenser method applies the sealing material while extruding the sealing material in the syringe with compressed air.

また、TFT基板と対向基板間の電気的導通をとるために、TFT基板の少なくとも2箇所のコモンパッド部に圧縮空気によりシリンジ中の金メッキ樹脂のミクロパールを混入したコモン材をディスペンサーで塗布する。   Further, in order to establish electrical continuity between the TFT substrate and the counter substrate, a common material mixed with micropearls of gold-plated resin in a syringe is applied by a dispenser to at least two common pad portions of the TFT substrate with a dispenser.

ここで、シール材とコモン材は、可視光照射硬化型接着剤、熱硬化併用の可視光照射硬化接着剤、若しくは紫外線照射硬化型接着剤、熱硬化併用の紫外線照射硬化型接着剤、熱硬化型接着剤のいずれでも良いが、特性及び作業面から同じタイプとするのが好ましい。   Here, the sealing material and the common material are a visible light irradiation curable adhesive, a visible light irradiation curable adhesive used in combination with heat curing, or an ultraviolet irradiation curable adhesive, an ultraviolet irradiation curable adhesive combined with heat curing, and a thermosetting. Any of the mold adhesives may be used, but the same type is preferable in view of characteristics and work surface.

具体的なシール材及びコモン材は、例えばシール材及びコモン材の主成分で硬化後の基本特性を出現する変性アクリレートオリゴマー、液の粘度調整するアクリレートモノマー、可視光硬化またはUV硬化部分を硬化する光開始剤、シール材及びコモン材の主成分で硬化後の基本特性を出現するエポキシ樹脂、エポキシ樹脂を硬化させる硬化剤などから構成され、シール材中には外気からの水分浸入を防ぐ充填フィラー(シリカ真球など)、液晶ギャップ相当のファイバー(ギャップ剤)などが含まれている。   Specific seal materials and common materials include, for example, modified acrylate oligomers that exhibit basic characteristics after curing with the main components of the seal materials and common materials, acrylate monomers that adjust the viscosity of the liquid, and curing visible light or UV cured portions. Filler composed of photoinitiator, sealant and common material, epoxy resin that shows basic characteristics after curing, curing agent that hardens epoxy resin, etc. (Silica spheres, etc.), fibers corresponding to liquid crystal gaps (gap agents), and the like are included.

また、TFT基板内のコモンパッド部に塗布されるコモン材中には液晶ギャップより若干大きい(例えば、液晶ギャップが2μmとすると、液晶ギャップより約1μm大きい約3μmφ)金メッキ樹脂のミクロパールを混入することで、TFT基板と対向基板の重ね合わせ時の加圧でミクロパールが破砕されて、破砕された金メッキ樹脂が双方の透明導電膜を電気的に導通させることができる。なお、シール領域にポリイミド、ポリアミド等の液晶配向膜がある場合には、その膜を破砕された金メッキ樹脂が貫通して双方の透明導電膜を電気的に導通させるように、ミクロパールの材料、大きさなどを工夫する必要がある。   In addition, the common material applied to the common pad portion in the TFT substrate is mixed with micropearl of gold plating resin that is slightly larger than the liquid crystal gap (for example, if the liquid crystal gap is 2 μm, about 3 μm φ, which is about 1 μm larger than the liquid crystal gap). Thus, the micro pearl is crushed by the pressure applied when the TFT substrate and the counter substrate are overlapped, and the crushed gold plating resin can electrically connect both transparent conductive films. In addition, when there is a liquid crystal alignment film such as polyimide or polyamide in the sealing region, the material of micropearl so that the gold plating resin crushed through the film and the both transparent conductive films are electrically connected, It is necessary to devise the size.

更に、スピンコーティングなどでTFT基板または/及び対向基板のシール領域にポリイミド、ポリアミド等の有機系液晶配向膜が形成されている場合は、シール材中への外気からの水分浸入を防ぐフィラーの充填は重要で、LCDパネルサイズによりフィラー充填率の最適化が必要であり、例えば1インチサイズ程度のプロジェクタ用LCDパネルでは10〜30%程度のフィラー充填率が好ましいが、ディスペンス塗布し易さと水分浸入率との兼ね合いで決定するのが好ましい。   Furthermore, when an organic liquid crystal alignment film such as polyimide or polyamide is formed in the sealing area of the TFT substrate or / and the counter substrate by spin coating or the like, filling with a filler to prevent moisture from entering into the sealing material from the outside air The filler filling rate needs to be optimized depending on the size of the LCD panel. For example, a filler filling rate of about 10 to 30% is preferable for an LCD panel for projectors of about 1 inch size. It is preferable to determine the balance with the rate.

次に、図3(B)の(c)で示す様に、所定の真空度(例えば、1〜3Pa)を有する真空貼り合せ装置内で、セラミック型またはポリマー型静電チャックステージ43で静電チャック保持したTFT基体10と、同じくセラミック型またはポリマー型静電チャック保持した対向基体11のX方向、Y方向及びθ方向の位置決めを行い所定の間隙で所定の加圧により重ね合わせた後に、必要に応じて両基板の位置ずれ防止の為に例えば仮止め遮光治具12を介して所定量のUV照射で仮止めシール硬化を行い、大気圧に戻した直後の均一な大気圧印加で貼り合わせを行うことで、シール材中の液晶ギャップ相当のファイバー及び滴下された液晶量、更に本発明の2重の周辺枠2a及び2bとOCS7の作用により高精度に制御された液晶ギャップのLCDパネルを得ることができる。
この時に、本発明の2重の周辺枠がある為に大気圧開放時のシールパス症状がなくなり、TFT基体または対向基体の最外周のダミーシール材塗布が不要となる。
またこの時に、TFT基体の裏面に成膜された遷移金属シリサイド膜(WSi、MoSi、TiSi等)を残したままの状態のために、静電チャックを行なったとしてもTFT素子が静電気ダメージを受けることは無く、高い平坦性を維持したTFT基体での貼り合せなので液晶ギャップムラ低減が可能となる。
そして、この大気圧または剛体プレス及び大気圧の均一加圧によりコモン材中のミクロパールが押し潰されて対向基板の透明電極とTFT基板の透明電極が電気的導通する。
Next, as shown in FIG. 3 (B) (c), in a vacuum laminating apparatus having a predetermined degree of vacuum (for example, 1 to 3 Pa), electrostatic is performed by a ceramic type or polymer type electrostatic chuck stage 43. Required after positioning the X-, Y-, and θ-directions of the TFT substrate 10 held by the chuck and the opposite substrate 11 held similarly by the ceramic type or polymer type electrostatic chuck and overlapping them with a predetermined pressure at a predetermined gap. In order to prevent the positional deviation between the two substrates, for example, the temporary fixing seal is cured by a predetermined amount of UV irradiation through the temporary fixing light-shielding jig 12, and the substrates are bonded together by applying a uniform atmospheric pressure immediately after returning to atmospheric pressure. By performing the above, the fiber corresponding to the liquid crystal gap in the sealing material and the amount of liquid crystal dropped, and the liquid crystal gas controlled with high accuracy by the action of the double peripheral frames 2a and 2b of the present invention and the OCS 7 are used. LCD panels flop can be obtained.
At this time, since there is a double peripheral frame of the present invention, there is no seal path symptom when the atmospheric pressure is released, and it becomes unnecessary to apply a dummy seal material on the outermost periphery of the TFT substrate or the counter substrate.
At this time, since the transition metal silicide film (WSi 2 , MoSi 2 , TiSi 2, etc.) formed on the back surface of the TFT substrate remains, the TFT element is static even if the electrostatic chuck is performed. The liquid crystal gap non-uniformity can be reduced because the bonding is performed on the TFT substrate that is not damaged and maintains high flatness.
Then, the micro pearl in the common material is crushed by the atmospheric pressure or the rigid body press and the uniform pressure of the atmospheric pressure, and the transparent electrode of the counter substrate and the transparent electrode of the TFT substrate are electrically connected.

次に、図3(B)の(d)で示す様に、液晶ギャップ(ニュートンリング;NRとも称する)検査用真空吸着ステージ13でTFT基体を保持し、対向基体側からナトリウムランプ照射を行い、NR検査用真空吸着ステージは移動させずにNR検査機14をステップアンドリピート方式で移動し、または、NR検査機は移動させずにTFT基体を保持しているNR検査用真空吸着ステージをステップアンドリピート方式で移動し、CCDカメラ搭載のNR検査機で各LCDパネルの液晶ギャップ検査(ニュートンリングの本数及び形状検査)を行い液晶ギャップの良否の選別を行なう。   Next, as shown in (d) of FIG. 3B, the TFT substrate is held by a vacuum suction stage 13 for inspecting a liquid crystal gap (also called Newton ring; NR), and sodium lamp irradiation is performed from the opposite substrate side. The NR inspection machine 14 is moved by the step-and-repeat method without moving the NR inspection vacuum suction stage, or the NR inspection vacuum suction stage holding the TFT substrate is moved without stepping the NR inspection machine. It moves by the repeat method, and the liquid crystal gap inspection (number of Newton rings and shape inspection) of each LCD panel is performed by an NR inspection machine equipped with a CCD camera to select the quality of the liquid crystal gap.

例えば、ナトリウムランプ(NaD線;589.3nm波長)照射下でLCDパネルを見ると、液晶ギャップが異なる部分で明るさ、コントラストに差が生じて光学的干渉縞のリング状の色ムラが発生する。このニュートンリングの本数及び形状をCCDカメラにより非接触でカウントして液晶ギャップの適正可否の判断を行い、不具合のLCDパネル部は加圧修正を行なう。
従って、加圧修正可能の為に、予め真空貼り合せ直後の液晶ギャップは規格内で規格センターよりも少し広目に設定しておくのが好ましい。
尚、シール材中のファイバーに加え、多重の周辺枠及びOCSの作用により高精度の液晶ギャップ制御が可能になるので、必要に応じて仮硬化と本硬化を一緒にして一括UV照射硬化とし、更に抜き取りのニュートンリング(干渉縞)の液晶ギャップ検査を行ってもよい。
For example, when an LCD panel is viewed under irradiation of a sodium lamp (NaD line; 589.3 nm wavelength), a difference in brightness and contrast occurs in a portion where the liquid crystal gap is different, resulting in ring-shaped color unevenness of optical interference fringes. . The number and shape of the Newton rings are counted by a CCD camera in a non-contact manner to determine whether the liquid crystal gap is appropriate, and the defective LCD panel unit corrects the pressure.
Therefore, it is preferable that the liquid crystal gap immediately after vacuum bonding is set a little wider than the standard center within the standard so that the pressure can be corrected.
In addition to the fibers in the seal material, the liquid crystal gap control with high precision is possible by the action of multiple peripheral frames and OCS. Therefore, if necessary, temporary curing and main curing can be combined into batch UV irradiation curing. Further, a liquid crystal gap inspection of the extracted Newton ring (interference fringe) may be performed.

次に、必要に応じてTFTダメージ低減の為にシール領域以外をマスクした状態で、全体を一括してUV照射してシール材及びコモン材を本硬化させた後に、液晶のNI点(Nematic Isotropic;相転移温度)以上である約115℃で約1時間の加熱でシール材及びコモン材の完全固着を行い、液晶のNI点以下例えば約95℃まで急冷却することによって液晶分子を液晶配向膜に完全配向させる熱処理を行う。   Next, the entire area of the sealing material and the common material is fully cured by UV irradiation in a state where the entire area other than the sealing region is masked to reduce TFT damage as necessary, and then the NI point (Nematic Isotropic) of the liquid crystal is used. A phase transition temperature) of about 115 ° C. for about 1 hour, the sealing material and the common material are completely fixed, and the liquid crystal molecules are liquid crystal alignment film by rapidly cooling to below the NI point of the liquid crystal, for example, about 95 ° C. A heat treatment for completely aligning is performed.

ここで、透過型LCDの時には、配向膜と配向処理及び液晶の関係は下記のような組み合わせが好ましい。
[1]5〜50nm厚のポリイミド、ポリアミド等の有機系配向膜の場合は、バフラビング処理して正の誘電異方性のTN(Twisted Nematic)モード液晶を用いる。
[2]5〜50nm厚のポリイミド、ポリアミド等の垂直配向剤添加した有機系配向膜の場合は、バフラビング処理が不要で負の誘電異方性のTNモード液晶{いわゆるVA(Vertical Alignment)モード液晶;垂直配向モード液晶}を用いる。
[3]5〜50nm厚のポリイミド、ポリアミド等の有機系配向膜の場合は、アルゴンイオンビームを基板に対して15〜20°の角度から300〜400eVの加速電圧でイオンビーム照射処理してイオンビーム配向処理を行い、正の誘電異方性のTNモード液晶を用いる。
[4]5〜50nm厚のポリイミド、ポリビニルシンナメート等の有機系配向膜の場合は、257nmの直線偏光した紫外線を基板に対して垂直に照射する光配向処理して正の誘電異方性のTNモード液晶を用いる。
[5]5〜50nm厚のポリイミド、ポリアミド等の有機系配向膜の場合は、266nmのYAGレーザーを基板に対して任意の角度(例えば45°)で照射するレーザー配向処理して正の誘電異方性のTNモード液晶を用いる。
[6]シリコン原子と酸素原子が錯体を形成したアルキル基がシリコン原子に結合しているシラン系配向膜の場合は、配向処理が不要であり、負の誘電異方性のTNモード(VAモード)液晶を用いる。
[7]アミノシラン系配向膜の場合は、ラビング処理して正の誘電異方性のTNモード液晶を用いる。
[8]10〜30nm厚のSiOxの斜方蒸着膜などの無機系配向膜の場合は、基板の垂直方向からの蒸着角を調整して配向処理を行い、正の誘電異方性のTNモード液晶を用いる。
[9]蒸着或いはスパッタによる10〜30nm厚のSiOx等の無機系配向膜の場合は、アルゴンイオンビームを基板に対して15〜20°の角度から300〜400eVの加速電圧でイオンビーム照射処理して正の誘電異方性のTNモード液晶を用いる。
[10]ミラートロンスパッタリング(指向性スパッタリング)による10〜30nm厚SiOxなどの無機系配向膜の場合は、基板に対するスパッタリング角度を調整して配向処理を行い、正の誘電異方性のTNモード液晶を用いる。
[11]CVD法による5〜20nm厚のDLC(Diamond Like Carbon)膜の無機系配向膜の場合は、基板に対して例えば45°の方向から300〜400eVの加速電圧でアルゴンイオンビーム照射してイオンビーム配向処理を行い、正の誘電異方性のTNモード液晶を用いる。
[12]上記1〜11の処理を行った第1配向膜の上に、イオン蒸着により約50nmのPTFE(ポリテトラフルオロエチレン)膜の第2配向膜を形成し、正の誘電異方性のTNモード液晶を用いる。
[13]上記1〜11の処理を行った第1配向膜の上に、イオン蒸着により約50nmのPE(ポリエチレン)膜の第2配向膜を形成し、正の誘電異方性のTNモード液晶を用いる。
[14]上記1〜11の処理を行った第1配向膜の上に、イオン蒸着により約50nmビフェニルー4,4'−ジメタクリレートのポリマー化した第2配向膜を形成し、正の誘電異方性のTNモード液晶を用いる。
[15]ポリイミド、ポリアミド等の有機系配向膜の場合は、バフラビング配向或いは257nm直線偏光UV照射の光配向或いはアルゴンイオンビーム照射のイオンビーム配向或いは266nmのYAGレーザー照射のレーザー配向処理などをして強誘電性(FLC)液晶を用いる。
[16]5〜50nm厚のポリイミド、ポリアミド等の有機系配向膜の場合は、バフラビング配向或いは257nm直線偏光UV照射の光配向或いはアルゴンイオンビーム照射のイオンビーム配向或いは266nmのYAGレーザー照射のレーザー配向処理などをして電界効果複屈折型(ECB)型液晶を用いる。
Here, in the case of a transmissive LCD, the relationship between the alignment film, the alignment treatment, and the liquid crystal is preferably the following combinations.
[1] In the case of an organic alignment film such as polyimide or polyamide having a thickness of 5 to 50 nm, a TN (Twisted Nematic) mode liquid crystal having a positive dielectric anisotropy is used after bubbling.
[2] In the case of an organic alignment film to which a vertical alignment agent such as polyimide or polyamide having a thickness of 5 to 50 nm is added, a TN mode liquid crystal having a negative dielectric anisotropy and so-called VA (vertical alignment) mode liquid crystal is not required. Vertical alignment mode liquid crystal}.
[3] In the case of an organic alignment film such as polyimide or polyamide having a thickness of 5 to 50 nm, an ion beam is irradiated with an argon ion beam at an acceleration voltage of 300 to 400 eV from an angle of 15 to 20 ° with respect to the substrate. Beam alignment treatment is performed, and TN mode liquid crystal having positive dielectric anisotropy is used.
[4] In the case of an organic alignment film such as polyimide or polyvinyl cinnamate having a thickness of 5 to 50 nm, a positive dielectric anisotropy is obtained by photo-alignment treatment by irradiating the substrate with 257 nm linearly polarized ultraviolet rays perpendicularly. A TN mode liquid crystal is used.
[5] In the case of an organic alignment film such as polyimide or polyamide having a thickness of 5 to 50 nm, a positive dielectric difference is obtained by laser alignment treatment by irradiating a 266 nm YAG laser at an arbitrary angle (for example, 45 °) with respect to the substrate. An isotropic TN mode liquid crystal is used.
[6] In the case of a silane-based alignment film in which an alkyl group in which a silicon atom and an oxygen atom form a complex is bonded to a silicon atom, no alignment treatment is required, and a negative dielectric anisotropy TN mode (VA mode) ) Use liquid crystal.
[7] In the case of an aminosilane-based alignment film, a TN mode liquid crystal having a positive dielectric anisotropy is used after rubbing.
[8] In the case of an inorganic alignment film such as an obliquely evaporated SiOx film having a thickness of 10 to 30 nm, the alignment treatment is performed by adjusting the evaporation angle from the vertical direction of the substrate, and a TN mode having positive dielectric anisotropy Use liquid crystal.
[9] In the case of an inorganic alignment film such as SiOx having a thickness of 10 to 30 nm by vapor deposition or sputtering, an argon ion beam is irradiated with an ion beam at an acceleration voltage of 300 to 400 eV from an angle of 15 to 20 ° with respect to the substrate. TN mode liquid crystal having positive dielectric anisotropy is used.
[10] In the case of an inorganic alignment film such as SiOx having a thickness of 10 to 30 nm by mirrortron sputtering (directional sputtering), a TN mode liquid crystal having positive dielectric anisotropy is adjusted by adjusting the sputtering angle with respect to the substrate. Is used.
[11] In the case of an inorganic alignment film of DLC (Diamond Like Carbon) film having a thickness of 5 to 20 nm by a CVD method, the substrate is irradiated with an argon ion beam at an acceleration voltage of 300 to 400 eV from a direction of 45 °, for example. An ion beam alignment process is performed, and a TN mode liquid crystal having positive dielectric anisotropy is used.
[12] A second alignment film of PTFE (polytetrafluoroethylene) film having a thickness of about 50 nm is formed on the first alignment film subjected to the above-described treatments 1 to 11 by ion deposition, and has a positive dielectric anisotropy. A TN mode liquid crystal is used.
[13] A second alignment film of PE (polyethylene) film having a thickness of about 50 nm is formed on the first alignment film subjected to the above treatments 1 to 11 by ion vapor deposition, so that a TN mode liquid crystal having positive dielectric anisotropy is formed. Is used.
[14] A second alignment film polymerized with about 50 nm biphenyl-4,4′-dimethacrylate is formed by ion deposition on the first alignment film subjected to the treatments 1 to 11 described above, and is positive dielectric anisotropic TN mode liquid crystal is used.
[15] In the case of organic alignment films such as polyimide and polyamide, buffing alignment, photo-alignment of 257 nm linearly polarized UV irradiation, ion beam alignment of argon ion beam irradiation, laser alignment treatment of 266 nm YAG laser irradiation, etc. Ferroelectric (FLC) liquid crystal is used.
[16] In the case of an organic alignment film such as polyimide or polyamide having a thickness of 5 to 50 nm, buffing alignment, 257 nm linearly polarized UV irradiation photo-alignment, argon ion beam irradiation ion beam alignment, or 266 nm YAG laser irradiation laser alignment A field effect birefringence (ECB) type liquid crystal is used after processing.

また反射型LCDの場合には、バフラビング等により水平配向(ホモジニアス配列)処理または傾斜配向処理したポリイミド、ポリアミド等の有機系配向膜には正の誘電異方性のTNモード液晶、垂直配向剤添加した垂直配向(ホメオトロピック配列)処理のポリイミド、ポリアミド等の有機系配向膜には負の誘電異方性のTNモードいわゆるVAモード液晶、クロム錯体の配向膜にはVAモード液晶の組み合わせが好ましい。
特にプロジェクタ用反射型LCDの配向膜は、例えばSiOxの斜方蒸着膜或いは指向性スパッタリングにより形成した耐光性の無機系配向膜とし、VAモード液晶の組み合わせで使用するのが好ましい。
尚、PDLC(高分子分散型液晶)、GH(ゲストホスト型液晶)を反射型LCDに使用する場合は、配向膜及び配向処理は不要である。
In the case of reflective LCDs, TN mode liquid crystals with positive dielectric anisotropy and vertical alignment agents are added to organic alignment films such as polyimide and polyamide that have been subjected to horizontal alignment (homogeneous alignment) or tilt alignment by bubbling. A combination of TN mode so-called VA mode liquid crystal having negative dielectric anisotropy is used for organic alignment films such as polyimide and polyamide that have been subjected to vertical alignment (homeotropic alignment) treatment, and VA mode liquid crystal is preferably used for alignment films of chromium complexes.
In particular, the alignment film of the reflective LCD for projectors is preferably a light-resistant inorganic alignment film formed by, for example, SiOx oblique deposition film or directional sputtering, and used in combination with a VA mode liquid crystal.
When PDLC (polymer dispersion type liquid crystal) or GH (guest host type liquid crystal) is used for the reflection type LCD, the alignment film and the alignment treatment are unnecessary.

次に、図3(B)の(e)で示す様に、支持ステージ15でTFT基体を真空吸着支持し、ブレードダイシングでTFT基板の外部取り出し電極部の形成領域と外部取り出し電極部の非形成領域の境界領域に対応する対向基板の領域(図中符合Aで示す領域)を50〜100μmが残存する対向基体のディープカットダイシングを行い、それ以外のTFT基板のスクライブライン領域(図中符合B、Cで示す領域)はTFT基体に200〜300μmの切込み凹部形成するように対向基体のフルカットダイシングを行なった後に、対向基体のディープカットダイシングを行った部分に衝撃を与えて端材除去を行い、対向基体を対向基板45毎に分断する。
ここで、対向基体が石英ガラスや結晶化ガラスであり、TFT基体が石英ガラスであるために、レーザーダイシングを行なうことは困難であるが、ブレードダイシングを行なうことが可能であり、また、液晶を既に封止済みであるためにブレードダイシングを行なう際の切削水が内部に浸入して悪影響を及ぼすことも無い。
Next, as shown in FIG. 3B (e), the TFT substrate is vacuum-supported by the support stage 15, and the formation region of the external extraction electrode portion of the TFT substrate and the formation of the external extraction electrode portion are not formed by blade dicing. Deep-cut dicing is performed on the counter substrate in which 50 to 100 μm remains in the area of the counter substrate corresponding to the boundary area between the areas (indicated by reference numeral A in the figure), and the scribe line area (reference numeral B in the figure) of the other TFT substrate. In the region indicated by C, after the full cut dicing of the counter substrate is performed so as to form a 200-300 μm cut recess in the TFT substrate, the edge material is removed by impacting the deep cut dicing portion of the counter substrate. Then, the counter substrate is divided for each counter substrate 45.
Here, since the opposing substrate is quartz glass or crystallized glass and the TFT substrate is quartz glass, it is difficult to perform laser dicing, but it is possible to perform blade dicing, and liquid crystal Since it has already been sealed, the cutting water when performing blade dicing does not enter the inside and adversely affect it.

続いて、図3(C)の(f)で示す様に、図中Dで示す酸化セリウムなどの超微粉末を含む研磨液を供給しながら、研磨バフ材16を擦りつけることによって対向基板の裏面及びTFT基体の裏面を例えば10μm程度を光学研磨し、TFT基板の形成時にTFT基体の裏面に成膜されたSiO、SiNx、遷移金属シリサイド(WSi、MoSi、TiSi等)のTFT形成膜17、更に配向膜形成及び配向処理時のキズ、汚れ、更には重ね合わせ時のハンドリングキズを除去する。ここで、対向基板の裏面及びTFT基体の裏面の光学研磨は、バフ研磨に限らずCMP等で行なっても良い。なお、この光学研磨の際には液晶ギャップに悪影響を及ぼさない様に、加圧調整する必要がある。 Subsequently, as shown in (f) of FIG. 3C, the polishing buff material 16 is rubbed against the counter substrate while being supplied with a polishing liquid containing ultrafine powder such as cerium oxide shown by D in the drawing. The back surface and the back surface of the TFT substrate are optically polished to a thickness of about 10 μm, for example, and the TFT of SiO 2 , SiNx, transition metal silicide (WSi 2 , MoSi 2 , TiSi 2, etc.) formed on the back surface of the TFT substrate when the TFT substrate is formed. The formation film 17, and further, scratches and dirt during alignment film formation and alignment treatment, and further handling scratches during superposition are removed. Here, the optical polishing of the back surface of the counter substrate and the back surface of the TFT substrate is not limited to buff polishing, and may be performed by CMP or the like. In this optical polishing, it is necessary to adjust the pressure so as not to adversely affect the liquid crystal gap.

なお、裏面光学研磨には、上記のように研磨水に酸化セリウム等の超微粉末を含むスラリー(研磨剤)を適量分散させた研磨液を適時供給して研磨バフを擦りつけるウェット光学研磨法と、酸化セリウム等の超微粉末を含む研磨布を擦りつけるドライ研磨法があるが、この場合にはいずれの光学研磨法でも良い。   For backside optical polishing, as described above, a wet optical polishing method in which a polishing liquid in which an appropriate amount of slurry (abrasive) containing ultrafine powder such as cerium oxide is dispersed in polishing water is supplied and the polishing buff is rubbed. In addition, there is a dry polishing method in which an abrasive cloth containing ultrafine powder such as cerium oxide is rubbed. In this case, any optical polishing method may be used.

次に、図3(C)の(g)で示す様に、画像検査用基体支持治具18でTFT基体を保持し、画像検査用基体支持治具は移動させずに照明筒19及び画像検査機20をステップアンドリピート方式で移動し、または、照明筒及び画像検査機は移動させずにTFT基体を保持している画像検査用基体支持治具をステップアンドリピート方式で移動し、LCDパネル単位毎に、その外部取り出し電極部に押し付ける電気信号入力端子付きの照明筒を対向基板側にセットし、照明筒からの入射光21をLCDパネルに照射し、出射光22を画像検査機で検出して画像を表示し、画像検査(DT;Display Test)を行い、TFT基体内のLCDパネルの良否を判別する。   Next, as shown in (g) of FIG. 3C, the TFT substrate is held by the image inspection substrate support jig 18, and the image inspection substrate support jig 18 is moved without moving the image inspection substrate support jig. Move the machine 20 in a step-and-repeat manner, or move the image-inspecting substrate support jig holding the TFT substrate in a step-and-repeat manner without moving the illumination tube and the image inspecting device. Each time, an illumination tube with an electrical signal input terminal pressed against the external extraction electrode is set on the counter substrate side, the incident light 21 from the illumination tube is irradiated onto the LCD panel, and the emitted light 22 is detected by an image inspection machine. Then, an image is displayed, and an image inspection (DT; Display Test) is performed to determine whether the LCD panel in the TFT substrate is good or bad.

ところで、プロジェクタ用透過型LCDの場合は、対向基板及びTFT基板裏面のキズや付着したゴミが画質欠陥となるので、対向基板及びTFT基板裏面に例えば1.1mm厚の保護ガラス(防塵ガラスとも言う)を貼り合わせて光学的焦点をぼかすことでキズ及びゴミの影響を防止している。更に、特に入射側の対向基板の保護ガラスとして高熱伝導性ガラスを用いることで、LCDパネルの熱放散を促進し、高輝度化、超寿命化を図っている。なお、入射光及び出射光の損失低減のために、この保護ガラスには少なくとも一方の表面に反射防止膜または反射防止膜及び紫外線カット膜が形成されている。   By the way, in the case of a transmissive LCD for a projector, scratches and attached dust on the back surface of the counter substrate and the TFT substrate cause image quality defects. ) To prevent the effect of scratches and dust. In addition, by using a highly heat conductive glass as a protective glass for the counter substrate on the incident side in particular, the heat dissipation of the LCD panel is promoted to increase the brightness and extend the lifetime. In order to reduce the loss of incident light and outgoing light, the protective glass has an antireflection film or an antireflection film and an ultraviolet cut film formed on at least one surface.

例えば、プロジェクタ用透過型LCDの場合は、保護ガラス材として光学特性を満足する熱伝導率が1(W/m・K)以上の高熱伝導性ガラス例えば石英ガラス、透明結晶化ガラス(ネオセラム、クリアセラム、ゼロデュアなど)、更に高い熱伝導性ガラス例えば高透光性セラミック多結晶体{透光性酸化物結晶体の電融MgO(立方晶、等軸六方晶)、焼結MgO(立方晶)、Y(イットリア)、CaO(カルシア)、単結晶サファイア(六方晶)、BeO(ベリリア)、ZrO(ジルコニア)、多結晶サファイアなど、または透光性複酸化物結晶体の単結晶又は多結晶YAG(Yttrium Aluminum Garnet)、単結晶又は多結晶MgAl(スピネル)、3Al・2SiO、Al・SiO、CaCO、ZrSiOなど}、フッ化物単結晶体{フッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、フッ化バリウム(BaF)など}、気相合成ダイヤモンド膜コートした高透光性セラミック多結晶体及び透明結晶化ガラス、水晶などの透明基板を耐光性の透明接着剤で対向基板及びTFT基板に貼り合せることで、強い入射光に対して高い熱放散効果を発揮して高輝度化、高精細化、長寿命化を実現し、品質及び信頼性を高めることができる。 For example, in the case of a transmissive LCD for a projector, a high thermal conductivity glass having a thermal conductivity of 1 (W / m · K) or more that satisfies optical characteristics as a protective glass material, for example, quartz glass, transparent crystallized glass (neoceram, clear) Serum, Zerodur, etc.) Higher heat conductive glass such as highly translucent ceramic polycrystal {translucent oxide crystal fused MgO (cubic, equiaxed hexagonal), sintered MgO (cubic) Y 2 O 3 (yttria), CaO (calcia), single crystal sapphire (hexagonal), BeO (beryllia), ZrO 2 (zirconia), polycrystalline sapphire, or the like, or a single crystal of a translucent double oxide crystal or polycrystalline YAG (Yttrium Aluminum Garnet), single crystal or polycrystalline MgAl 2 O 4 (spinel), 3Al 2 O 3 · 2SiO 2, Al 2 O 3 · SiO 2, CaCO 3 Such as ZrSiO 4}, fluoride single crystal {calcium fluoride (CaF 2), magnesium fluoride (MgF 2), barium fluoride (BaF 2), etc.}, CVD diamond film coated high light-ceramic multi By attaching a transparent substrate such as a crystal body, transparent crystallized glass, and crystal to a counter substrate and a TFT substrate with a light-resistant transparent adhesive, a high heat dissipation effect is exerted against strong incident light to increase brightness, High definition and long life can be realized, and quality and reliability can be improved.

尚、たとえば、入射側より反射防止膜形成の単結晶サファイア防塵ガラスと単結晶サファイアの対向基板と液晶層と石英ガラスのTFT基板と反射防止膜形成の単結晶サファイア防塵ガラスの構造とし、相互を耐光性の透明接着剤で貼り合せることで、更に高い熱放散効果を期待できる。   For example, from the incident side, the structure of single crystal sapphire dustproof glass with antireflection film formed, counter substrate of single crystal sapphire, liquid crystal layer, TFT substrate of quartz glass, and single crystal sapphire dustproof glass with antireflection film formed, A higher heat dissipation effect can be expected by bonding with a light-resistant transparent adhesive.

これらの保護ガラスの少なくとも一方の表面には、SiO膜、TiO膜、ZrO膜、MgF膜等の屈折率の異なる薄膜を1/4波長厚(0.1〜0.3μm)の厚みとして積層することにより反射防止膜を形成し、この反射防止膜の反射率は0.8%以下(波長450〜630nm範囲)が好ましい。 A thin film having a different refractive index, such as a SiO 2 film, a TiO 2 film, a ZrO 2 film, or an MgF 2 film, having a quarter wavelength thickness (0.1 to 0.3 μm) is formed on at least one surface of these protective glasses. An antireflection film is formed by laminating as a thickness, and the reflectance of the antireflection film is preferably 0.8% or less (wavelength range of 450 to 630 nm).

更に、保護ガラスチップ貼り合わせ時の真空吸着コレットでのキズ防止、ダイシング時のキズ、ゴミ付着防止のために、図4(a)で示す様に、透明保護テープ23付き保護ガラスチップ24としても良い。なお、透明保護テープとして紫外線を照射することによって粘着力が低下するテープが貼り合わせられた保護ガラスチップを採用すると、貼り合わせ時の真空吸着コレットによるゴミ、キズ付着の恐れがないと共に、真空脱泡作業時のゴミ、キズ付着の恐れも無い。   Furthermore, as shown in FIG. 4 (a), a protective glass chip 24 with a transparent protective tape 23 may be used to prevent scratches at the vacuum suction collet when the protective glass chip is bonded, scratches at the time of dicing, and dust adhesion. good. If a protective glass chip with a tape whose adhesive strength decreases when irradiated with ultraviolet rays is used as the transparent protective tape, there is no risk of dust and scratches from the vacuum suction collet at the time of bonding, and vacuum removal. There is no risk of dust and scratches during foaming.

しかも、保護ガラスチップ貼り合わせ時の中空型真空吸着コレットの真空吸着では剥れない程度の粘着力に予めUV照射により粘着力を低下させているので、保護ガラスチップ貼り合わせ作業上の問題はなく、更に金属枠取り付け前のTFT基板側保護ガラスチップのUVテープ剥離作業や見切り板取り付け前の対向基板側保護ガラスのUVテープ剥離作業には問題は無い。   Moreover, since the adhesive strength is reduced by UV irradiation in advance to the adhesive strength that cannot be removed by vacuum suction of the hollow vacuum suction collet when the protective glass chip is bonded, there is no problem in the protective glass chip bonding operation. Furthermore, there is no problem in the UV tape peeling work of the TFT substrate side protective glass chip before the metal frame is attached or the UV tape peeling work of the counter substrate side protective glass before the parting plate is attached.

さて、保護ガラスチップの具体的な貼り合わせ方法は、図3(C)の(h)、図3(C)の(i)で示す様に、防塵ガラスチップ貼り合わせ装置用の基体支持ステージ(図示せず)でTFT基体を保持し、この基体支持ステージは移動させずに中空型真空吸着コレット26を基体支持ステージとの間で相対移動自在に移動させる構成の製造装置において、中空型真空吸着コレットで保護ガラスチップ周辺部または端部を真空吸着させて、TFT基体内の上記した画像検査で合格となった良品のLCDパネルの対向基板裏面及びTFT基板裏面に透明接着剤(紫外線照射硬化型接着剤、熱硬化型接着剤、紫外線及び熱硬化型接着剤、可視光硬化型接着剤など)例えば紫外線照射硬化型接着剤を必要量(例えば、0.7型LCDパネルで5mg)だけディスペンス塗布し、中空型真空吸着コレットで真空吸着保持した保護ガラスチップ(例えば、石英ガラス材の反射防止膜付き保護ガラスチップ)の位置合わせ及び重ね合わせを行った後に真空装置内に配置し、この真空装置内を所定の真空度(例えば、133Pa以下)として透明接着剤を真空脱泡し、大気圧に戻す時の均一な圧力で接着剤の厚みを均一化して貼り合わせを行う。その後、外観検査及び/または画像検査して判明した透明接着層欠陥(例えば、透明接着剤中の挟み込みゴミ、光るゴミ、透明接着剤の広がり不足等の不良)を検出し、これら透明接着欠陥を有する保護ガラスチップに遮光性テープ(例えば、黒テープ)を貼り、TFT基板及び対向基板の両面から紫外線照射して各保護ガラスチップの透明接着剤を完全に硬化させる。
ここで、透明接着層欠陥の保護ガラスは黒色テープによりUV硬化させないことで、保護ガラスチップを剥がして再生することができる。
Now, as shown in (h) of FIG. 3 (C) and (i) of FIG. 3 (C), a specific method for laminating the protective glass chip is a substrate support stage for a dust-proof glass chip laminating apparatus ( In a manufacturing apparatus configured to hold a TFT substrate with a substrate support stage (not shown) and move the hollow vacuum suction collet 26 relative to the substrate support stage without moving the substrate support stage, the hollow vacuum suction is performed. Transparent adhesive (ultraviolet irradiation curable type) is applied to the back of the counter substrate and the back of the TFT substrate of a non-defective LCD panel that has passed the above-described image inspection in the TFT substrate by vacuum-adsorbing the periphery or end of the protective glass chip with a collet. Adhesives, thermosetting adhesives, ultraviolet and thermosetting adhesives, visible light curable adhesives, etc.) For example, ultraviolet irradiation curing adhesives are required (for example, 5 mg for 0.7 type LCD panels) After placing and overlaying a protective glass chip (for example, a protective glass chip with an antireflection film made of quartz glass material) that has been dispensed and then vacuum-adsorbed and held by a hollow vacuum adsorption collet, it is placed in a vacuum apparatus, The inside of the vacuum apparatus is set to a predetermined degree of vacuum (for example, 133 Pa or less), and the transparent adhesive is degassed by vacuum, and the thickness of the adhesive is equalized with a uniform pressure when returning to atmospheric pressure, and bonding is performed. Thereafter, defects in the transparent adhesive layer (for example, defects such as sandwiched dust in the transparent adhesive, shiny dust, insufficient spreading of the transparent adhesive, etc.) detected by visual inspection and / or image inspection are detected, and these transparent adhesive defects are detected. A light-shielding tape (for example, black tape) is attached to the protective glass chip, and the transparent adhesive of each protective glass chip is completely cured by irradiating ultraviolet rays from both surfaces of the TFT substrate and the counter substrate.
Here, the protective glass of the transparent adhesive layer defect can be reproduced by peeling off the protective glass chip by not UV curing with a black tape.

次に、図3(D)の(j)で示す様に、LCDパネルのTFT基板裏面に貼り合わせられた保護ガラスチップ表面を、紫外線を照射することによって粘着力が低下するダイシングテープ(以下、ダイシング用UVテープと言う。)27で固定した状態でTFT基体の表面からスクライブラインの凹部をテープカットレスのフルカットブレードダイシング加工を行う。
ここで、TFT基板裏面に貼り合せた保護ガラスチップの高さが、あたかもTFT基体裏面のVまたは凹部形成のダイシングに相当するので、テープカットレスダイシングが実現し、ダイシングテープ起因の異物付着及び汚れ防止、ダイシングブレードの長寿命化が実現する。また、凹部をブレードダイシングするために、チッピングを低減することができる。更に、ダイシングテープとしては必ずしもダイシング用UVテープを使用する必要は無く、低粘着性テープとすれば繰り返しの使用が可能である。なお、ダイシングブレードは従来よりも刃先が長いタイプを使用する必要がある。
また、LCDパネルの対向基板裏面に貼り合わせられた保護ガラスチップ表面を、ダイシング用UVテープ或いは低粘着性テープで固定した状態でTFT基体裏面からスクライブラインの凹部をテープカットレスのフルカットブレードダイシング加工を行っても良い。
Next, as shown in (j) of FIG. 3 (D), the surface of the protective glass chip bonded to the back surface of the TFT substrate of the LCD panel is dicing tape whose adhesive strength is reduced by irradiating ultraviolet rays (hereinafter, referred to as “dicing tape”). This is referred to as a dicing UV tape.) In the state of being fixed in step 27, a full cut blade dicing process is performed in which the concave portion of the scribe line is tape cut-less from the surface of the TFT substrate.
Here, since the height of the protective glass chip bonded to the back surface of the TFT substrate corresponds to dicing for forming a V or a recess on the back surface of the TFT substrate, tape cutless dicing is realized, and foreign matter adhesion and contamination caused by the dicing tape are realized. Prevents and extends the life of the dicing blade. Further, since the concave portion is blade-diced, chipping can be reduced. Further, it is not always necessary to use a UV tape for dicing as the dicing tape, and repeated use is possible if a low-adhesion tape is used. In addition, it is necessary to use a dicing blade having a longer cutting edge than in the past.
In addition, the protective glass chip surface bonded to the back side of the opposing substrate of the LCD panel is fixed with dicing UV tape or low adhesive tape, and the concave part of the scribe line is tape cutless from the back side of the TFT substrate. Processing may be performed.

ここで、TFT基板及び対向基板に貼り合せる保護ガラスチップとして、保護用UVテープが貼り合わせられた保護ガラスチップを採用している場合には、図4(b)で示す様に、LCDパネルの対向基板裏面に貼り合わせられたUVテープ付き保護ガラスチップ表面をダイシング用真空吸着治具28で固定した状態で、TFT基体の裏面からスクライブラインの凹部のフルカットブレードダイシング加工を行う。
ここで、保護用UVテープが貼り合わせられた保護ガラスチップを採用する場合には、ガラス切削屑付着がないので歩留り、品質が向上し、更にテープレスダイシングができるのでテープコストの削減ができる。また、スクライブラインの凹部を反対面からフルカットダイシングを行なうので、チッピングを低減することが可能である。
Here, when a protective glass chip to which a protective UV tape is bonded is used as a protective glass chip to be bonded to the TFT substrate and the counter substrate, as shown in FIG. With the surface of the protective glass chip with UV tape bonded to the back surface of the counter substrate fixed by the dicing vacuum suction jig 28, full cut blade dicing is performed from the back surface of the TFT substrate to the concave portion of the scribe line.
Here, when a protective glass chip to which a protective UV tape is bonded is employed, since there is no glass cutting dust adhesion, the yield and quality are improved, and further tapeless dicing can be performed, so that the tape cost can be reduced. Further, since full cut dicing is performed on the concave portion of the scribe line from the opposite surface, chipping can be reduced.

続いて、LCDパネルのTFT基板及び対向基板に貼り合せる保護ガラスチップとして、保護用UVテープが貼り合わせられた保護ガラスチップを採用している場合には、保護用UVテープを貼り合せた状態でTFT基板の外部取り出し電極部にフレキシブル基板29を取り付け、TFT基板側の保護ガラスチップに貼り合わせられた保護用UVテープを剥離してTFT基板及び対向基板を金属枠30に取り付け、TFT基板及び対向基板と金属枠との間を、高熱伝導性モールド樹脂31で固着する。その後、対向基板側の保護ガラスチップに貼り合わせられた保護用UVテープを剥離して見切り板32の取り付け、画質検査を行なうことによって図3(D)の(k)で示す様なプロジェクタ用透過型液晶表示装置を得ることができる。   Subsequently, when a protective glass chip to which a protective UV tape is bonded is adopted as a protective glass chip to be bonded to the TFT substrate and the counter substrate of the LCD panel, the protective UV tape is bonded. A flexible substrate 29 is attached to the external extraction electrode portion of the TFT substrate, the protective UV tape attached to the protective glass chip on the TFT substrate side is peeled off, and the TFT substrate and the counter substrate are attached to the metal frame 30, and the TFT substrate and the counter electrode are opposed to each other. The substrate and the metal frame are fixed with a high thermal conductive mold resin 31. Thereafter, the protective UV tape bonded to the protective glass chip on the counter substrate side is peeled off, the parting plate 32 is attached, and the image quality inspection is performed, so that the projector transmission as shown in (k) of FIG. Type liquid crystal display device can be obtained.

ところで、上記の本実施例では、個片化した保護ガラスチップをTFT基板及び対向基板裏面に貼り合わせるLCDパネルの場合を例に挙げて説明を行ったが、TFT基体及び対向基板裏面の光学裏面研磨を行った後に、図4(c)で示す様に全ての対向基板裏面に所定量のUV接着剤をディスペンス塗布して保護ガラス大板(1)50を重ね合わせると共に、TFT基体の裏面に所定量のUV接着剤をディスペンスまたはスピンコート塗布して保護ガラス大板(2)51を重ね合わせ、UV接着剤を真空脱泡した後に大気圧に戻す直前または直後の均一の加圧状態でUV照射硬化して貼り合わせを行い、その後に保護ガラス大板(1)をブレードダイシングして保護ガラスチップが貼り合わせられた対向基板と、保護ガラス大板(2)及びTFT基体をブレードダイシングして保護ガラスチップが貼り合わせられたTFT基板からなるLCDパネルを形成しても良い。
具体的には、対向基板と同じ寸法に保護ガラス大板(1)の領域(図中符合XとYとZで示す領域)をフルカットのブレードダイシングを行って保護ガラスチップを貼り合せた対向基板を形成し、連続してTFT基体及び保護ガラス大板(2)のスクライブライン領域(図中符合YとZで示す領域)をフルカットのブレードダイシングを行ない、保護ガラスチップが貼り合わせられたTFT基板からなるLCDパネルを形成しても良い。
By the way, in the above-described embodiment, the case of the LCD panel in which the individual protective glass chip is bonded to the back surface of the TFT substrate and the counter substrate has been described as an example, but the optical back surface of the TFT base and the back surface of the counter substrate is described. After polishing, as shown in FIG. 4 (c), a predetermined amount of UV adhesive is dispensed on the back surface of all the counter substrates, and the protective glass large plate (1) 50 is overlaid, and on the back surface of the TFT substrate. Dispense or spin coat a predetermined amount of UV adhesive and overlay the protective glass plate (2) 51, and after UV degassing of the UV adhesive, UV is applied in a uniform pressure state immediately before or after returning to atmospheric pressure. The opposite substrate on which the protective glass chip (1) is blade-diced and the protective glass chip is bonded, the protective glass large plate (2), Protective glass chip FT substrate by blade dicing may form a LCD panel comprising a TFT substrate that is bonded.
Specifically, the area of the protective glass large plate (1) (area indicated by reference signs X, Y, and Z in the figure) is subjected to full-cut blade dicing to the same dimensions as the counter substrate, and the counter glass chip is bonded. A substrate was formed, and a scribe line area (area indicated by symbols Y and Z in the figure) of the TFT substrate and the protective glass large plate (2) was continuously subjected to full-cut blade dicing, and the protective glass chip was bonded. An LCD panel made of a TFT substrate may be formed.

[B]TFT基板が石英ガラス材、対向基板が低歪点ガラス材であるEVF用透過型LCDの場合
図5は本発明を適用した電気光学表示装置の製造方法の他の一例であるEVF(Electric View Finder)用透過型LCDの製造方法の工程フローである。
以下、図5に示す工程フローに沿ってEVF用透過型LCDの製造方法について説明する。
[B] In the case of a transmissive LCD for EVF in which the TFT substrate is a quartz glass material and the counter substrate is a low strain point glass material FIG. 5 is an EVF (an example of a method for manufacturing an electro-optic display device to which the present invention is applied). It is a process flow of the manufacturing method of transmission type LCD for Electric View Finder).
Hereinafter, the manufacturing method of the transmissive LCD for EVF will be described along the process flow shown in FIG.

本発明を適用したEVF用透過型LCDの製造方法では、先ず、8インチφで厚みが0.8mmの石英ガラス材からなるTFT基体に複数のTFT基板を形成し、このTFT基板の形成時にTFT基体の裏面に成膜されたSiO、SiNx、遷移金属シリサイド(WSi、MoSi、TiSi等)等の膜を残したままの状態で、上記プロジェクタ用透過型LCDと同様に、TFT基体10内の各TFT基板1に汎用のリソグラフィ技術を用いて、感光性樹脂のパターニングを行なって少なくとも2重の周辺枠2、例えば周辺枠幅が50μm、周辺枠間の距離が100μm、液晶ギャップ2.5μm相当の高さの2重の周辺枠を形成し、外側に形成された周辺枠を第1の周辺枠2a、内側に形成された周辺枠を第2の周辺枠2bとする。
その後に、上記したプロジェクタ用透過型LCDと同様に、ポリイミド、ポリアミドなどの有機系配向膜の形成、液晶配向処理及び必要に応じてIPA等を用いた洗浄を行なう。
In the method for manufacturing an EVF transmissive LCD to which the present invention is applied, first, a plurality of TFT substrates are formed on a TFT substrate made of a quartz glass material having a thickness of 8 inches and a thickness of 0.8 mm. In the same manner as the above-mentioned transmissive LCD for a projector, the TFT substrate is left with a film of SiO 2 , SiNx, transition metal silicide (WSi 2 , MoSi 2 , TiSi 2, etc.) formed on the back surface of the substrate remaining. The TFT substrate 1 in each of the TFTs 10 is patterned with a photosensitive resin by using a general-purpose lithography technique to form at least a double peripheral frame 2, for example, the peripheral frame width is 50 μm, the distance between the peripheral frames is 100 μm, and the liquid crystal gap 2 A double peripheral frame having a height of about 5 μm is formed, the peripheral frame formed on the outside is defined as the first peripheral frame 2a, and the peripheral frame formed on the inside is defined as the second peripheral frame 2b. .
After that, as in the above-described transmissive LCD for projector, formation of an organic alignment film such as polyimide and polyamide, liquid crystal alignment treatment, and cleaning using IPA or the like as necessary are performed.

なお、このTFT基板は各画素に赤、青、緑の色フィルタ層が形成されたOCCF(On Chip Color Filter)構造とし、対向基体に形成された対向基板はパターン無しのベタITO膜の構造とする。これは、TFT基板内の各画素に対応した色フィルタ層形成の対向基板が形成された対向基体を用いても良いが、重ね合わせ位置精度ばらつきによる色ムラ及び輝度低下、生産性低下などの問題があるために、OCCF構造のTFT基板が好ましい。   This TFT substrate has an OCCF (On Chip Color Filter) structure in which red, blue, and green color filter layers are formed on each pixel, and the counter substrate formed on the counter substrate has a structure of a solid ITO film without a pattern. To do. This may be achieved by using a counter substrate on which a counter substrate having a color filter layer formed corresponding to each pixel in the TFT substrate is formed. However, there are problems such as color unevenness, luminance decrease, and productivity decrease due to variations in overlay position accuracy. Therefore, an OCCF TFT substrate is preferable.

また、8インチφで厚みが0.7mmの低歪点ガラス材(ほうけい酸ガラス、アルミノけい酸ガラスなど)からなる対向基体の全面にITO、IZO等のパターン無しのベタ透明導電膜を形成し、上記したプロジェクタ用透過型LCDと同様に、ポリイミド、ポリアミドなどの有機系配向膜の形成、液晶配向処理及び必要に応じてIPA等を用いた洗浄を行なう。   Also, a solid transparent conductive film with no pattern such as ITO or IZO is formed on the entire surface of the opposing substrate made of a low strain point glass material (e.g., borosilicate glass, aluminosilicate glass, etc.) having a thickness of 8 inches and a thickness of 0.7 mm. Then, similarly to the above-mentioned transmissive LCD for projector, formation of an organic alignment film such as polyimide and polyamide, liquid crystal alignment treatment, and cleaning using IPA or the like as necessary are performed.

なお、対向基体には必要に応じてブラックマスク基板(画素開口部以外に遮光膜形成した全面ベタ透明導電膜の基板)からなる対向基板(対向ブラックマスク基板とも言う)を用いても良い。   Note that a counter substrate (also referred to as a counter black mask substrate) made of a black mask substrate (a substrate with a full transparent conductive film formed with a light shielding film other than the pixel openings) may be used as the counter substrate, if necessary.

例えば0.5型TFT基板に形成された第1の周辺枠2aの外側に例えばシール幅500μm内に1200〜1300μmのシール材3及び少なくとも2箇所以上で約200μmの塗布径のコモン材4を塗布し、第2の周辺枠2bの内側に所定量の液晶5例えばTFT基板の表示領域中心に約0.1mgを5回繰り返して約0.5mg程度の液晶をディスペンス滴下する(図6(a)参照。)。
この時に、上記したプロジェクタ用透過型LCDと同様に、図3(A)の(b)で示す様に、TFT基体は移動させずに液晶ディスペンサー8とレーザーセンサー9をステップアンドリピート方式で移動させ、所定量の液晶滴下の直後にレーザー照射して反射光の変動でセンシングする、または、レーザーセンサー9及び液晶ディスペンサー8は移動させずに、TFT基体をステップアンドリピート方式で移動させて所定量の液晶滴下の直後にレーザー照射して反射光の変動でセンシングして、第2の周辺枠内の液晶滴下有無及び液晶滴下量の適正化を行う方が望ましい。
なお、CCDで画像を取り込み、液晶の滴下有無及び液晶の滴下量の適正化を判断する方法であっても良い。
このように、例えば液晶ディスペンサーの不具合により液晶滴下無しまたは不足が発生した時に、直後にその不具合を検出して再度液晶滴下して液晶量を最適化させるので、液晶不足による未充填不具合を防止できる。
尚、ここではTFT基板側にシール材及びコモン材塗布と液晶滴下を行ったが、TFT基板側にシール材塗布と液晶滴下を行い、対向基板側にコモン材塗布をしてもよい。
For example, a seal material 3 of 1200 to 1300 μm 2 within a seal width of 500 μm and a common material 4 having a coating diameter of about 200 μm at at least two locations are provided outside the first peripheral frame 2 a formed on the 0.5-type TFT substrate. It is applied, and about 0.1 mg is repeated five times in the center of the display area of the TFT substrate, and about 0.5 mg of liquid crystal is dispensed inside the second peripheral frame 2b (see FIG. 6 (a)). )reference.).
At this time, like the above-described transmissive LCD for a projector, the liquid crystal dispenser 8 and the laser sensor 9 are moved in a step-and-repeat manner without moving the TFT substrate, as shown in FIG. Immediately after dropping a predetermined amount of liquid crystal, laser irradiation is performed to sense the reflected light, or the TFT substrate is moved in a step-and-repeat manner without moving the laser sensor 9 and the liquid crystal dispenser 8, and the predetermined amount of liquid crystal is dispensed. It is desirable to optimize the presence / absence of liquid crystal dripping and the amount of liquid crystal dripping in the second peripheral frame by irradiating laser immediately after liquid crystal dripping and sensing by fluctuation of reflected light.
Note that a method may be used in which an image is captured by a CCD and whether or not liquid crystal is dropped and whether the amount of liquid crystal is dropped is determined appropriately.
In this way, for example, when there is no liquid crystal dripping or shortage due to a liquid crystal dispenser malfunction, the malfunction is detected immediately and the liquid crystal is dropped again to optimize the amount of liquid crystal. .
Here, the sealing material and common material application and liquid crystal dropping are performed on the TFT substrate side, but the sealing material application and liquid crystal dropping may be performed on the TFT substrate side and the common material application may be performed on the counter substrate side.

続いて、上記したプロジェクタ用透過型LCDと同様に、所定の真空度(例えば、1〜3Pa)を有する真空貼り合せ装置内でセラミック型またはポリマー型静電チャックステージで静電チャック保持したTFT基体10と、同じくセラミック型またはポリマー型静電チャック保持した対向基体11のX方向、Y方向及びθ方向の位置決めを行って所定の間隙で所定の加圧により重ね合わせた後に、必要に応じて両基板の位置ずれ防止の為に必要に応じて仮止め遮光治具12を介して所定量のUV照射で仮止めシール硬化を行い、大気圧に戻した直後の均一な大気圧の加圧で貼り合わせを行うことで、シール材中の液晶ギャップ相当のファイバー及び滴下された液晶量、更に本発明の2重の周辺枠及びOCSの作用により高精度に制御された液晶ギャップのLCDパネルを得ることができる。
この時に、本発明の2重の周辺枠がある為に大気圧開放時のシールパス症状がなくなり、TFT基体または対向基体の最外周のダミーシール材塗布が不要となる。
またこの時に、TFT基体の裏面に成膜された遷移金属シリサイド(WSi、MoSi、TiSi等)などの膜を残したままの状態のために、静電チャックを行なったとしてもTFT素子が静電気ダメージを受けることは無く、高い平坦性を維持したTFT基体での貼り合せなので液晶ギャップムラ低減が可能となる。
そして、この大気圧または剛体プレス及び大気圧の均一加圧によりコモン材中のミクロパールが押し潰されて対向基板の透明電極とTFT基板の透明電極が電気的導通する。
更に、上記したプロジェクタ用透過型LCDと同様に、ナトリウムランプを照射してLCDパネルのニュートンリング(干渉縞)による液晶ギャップ検査を行なった後に、必要に応じて加圧修正して所定量のUV照射による本硬化及びベーキングを行ってシール材及びコモン材を完全固着し、熱処理の急冷却で液晶配向させる。
従って、加圧修正可能の為に、予め真空貼り合せ直後の液晶ギャップは規格内で規格センターよりも少し広目に設定しておくのが好ましい。
尚、シール材中のファイバーに加え、多重の周辺枠及びOCSの作用により高精度の液晶ギャップ制御が可能になるので、必要に応じて仮硬化と本硬化を一緒にして一括UV照射硬化とし、更に抜き取りのニュートンリング(干渉縞)の液晶ギャップ検査を行ってもよい。
Subsequently, in the same manner as the above-mentioned transmissive LCD for projector, a TFT substrate held by an electrostatic chuck with a ceramic type or polymer type electrostatic chuck stage in a vacuum bonding apparatus having a predetermined degree of vacuum (for example, 1 to 3 Pa). 10 and the opposite substrate 11 similarly held by a ceramic type or polymer type electrostatic chuck are positioned in the X direction, Y direction, and θ direction and overlapped by a predetermined pressure at a predetermined gap, If necessary, temporarily fix seal curing is performed with a predetermined amount of UV irradiation through a temporary light-blocking light-shielding jig 12 to prevent displacement of the substrate, and then applied with uniform atmospheric pressure immediately after returning to atmospheric pressure. By combining, the fiber corresponding to the liquid crystal gap in the sealing material and the amount of liquid crystal dropped were controlled with high precision by the action of the double peripheral frame and OCS of the present invention. It is possible to obtain an LCD panel of crystal gap.
At this time, since there is a double peripheral frame of the present invention, there is no seal path symptom when the atmospheric pressure is released, and it becomes unnecessary to apply a dummy seal material on the outermost periphery of the TFT substrate or the counter substrate.
At this time, even if electrostatic chucking is performed for the state in which a film of transition metal silicide (WSi 2 , MoSi 2 , TiSi 2, etc.) formed on the back surface of the TFT substrate remains, the TFT element Is not damaged by static electricity, and it is possible to reduce the liquid crystal gap unevenness because the bonding is performed on the TFT substrate maintaining high flatness.
Then, the micro pearl in the common material is crushed by the atmospheric pressure or the rigid body press and the uniform pressure of the atmospheric pressure, and the transparent electrode of the counter substrate and the transparent electrode of the TFT substrate are electrically connected.
Further, similar to the above-mentioned transmissive LCD for projector, after a liquid crystal gap inspection is performed by irradiating a sodium lamp and performing a Newton ring (interference fringe) of the LCD panel, the pressure is corrected as necessary to obtain a predetermined amount of UV. Full curing and baking are performed by irradiation to completely fix the sealing material and the common material, and the liquid crystal is aligned by rapid cooling of the heat treatment.
Therefore, it is preferable that the liquid crystal gap immediately after vacuum bonding is set a little wider than the standard center within the standard so that the pressure can be corrected.
In addition to the fibers in the seal material, the liquid crystal gap control with high precision is possible by the action of multiple peripheral frames and OCS. Therefore, if necessary, temporary curing and main curing can be combined into batch UV irradiation curing. Further, a liquid crystal gap inspection of the extracted Newton ring (interference fringe) may be performed.

次に、図6(b)及び図7で示す様に、レーザー切断用真空吸着治具33でTFT基体を固定し、TFT基板の外部取り出し電極部の形成領域と外部電極取り出し部の非形成領域の境界領域に対応する領域(図中符合Aで示す領域)と、対向基体を透過して見えるTFT基体のスクライブライン領域(図中符合B、C示す領域)に沿ってレーザーダイシング、例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザー等の固体レーザーまたはCOレーザー等のガスレーザーまたは前記固体レーザー及び前記ガスレーザーを組み合わせた複合レーザーなどによって対向基体を切断して単個状態の対向基板にしてもよい。この時に、TFT基板の外部取り出し電極部の配線にダメージを与えないようにレーザー切り込み条件を適正化する必要がある。 Next, as shown in FIGS. 6B and 7, the TFT substrate is fixed by the laser cutting vacuum suction jig 33, and the formation region of the external extraction electrode portion of the TFT substrate and the non-formation region of the external electrode extraction portion are formed. Laser dicing, for example, a wavelength of 1064 nm YAG, along a region corresponding to the boundary region (region indicated by symbol A in the drawing) and a scribe line region (region indicated by symbols B and C in the drawing) of the TFT substrate that can be seen through the opposing substrate. A single substrate is cut by a solid laser such as a UV pulse laser having a wavelength of 355 nm, which is the third harmonic modulation of the laser, or a gas laser such as a CO 2 laser, or a combined laser combining the solid laser and the gas laser. The counter substrate may be in a state. At this time, it is necessary to optimize the laser cutting conditions so as not to damage the wiring of the external extraction electrode portion of the TFT substrate.

次に、上記したプロジェクタ用透過型LCDの製造方法と同様にして対向基板及びTFT基体の裏面光学研磨、画像検査を行った後に、LCDパネルの対向基板裏面をダイシング用UVテープで固定した状態で石英ガラスからなるTFT基体の裏面からテープカットレスのブレードダイシング加工を行う。   Next, in the same manner as in the above-described method for manufacturing a projector-use LCD, the back surface optical polishing and image inspection of the counter substrate and the TFT substrate are performed, and then the back surface of the counter substrate of the LCD panel is fixed with a UV tape for dicing. Tape-cutless blade dicing is performed from the back surface of the TFT substrate made of quartz glass.

ここで、対向基板の高さが、あたかもTFT基体表面のVカット溝または凹部のダイシングに相当するので、TFT基板表面のチッピングの少ないテープカットレスブレードダイシングが実現できる。なお、より一層TFT基板表面のチッピングを抑制するためには、TFT基体表面のスクライブラインにVカット溝または凹部を形成し、対向基板裏面をダイシング用UVテープで固定した状態でTFT基体の裏面からテープカットレスのフルカットダイシング加工を行うと良い。   Here, since the height of the counter substrate corresponds to dicing of the V-cut groove or recess on the surface of the TFT substrate, tape cutless blade dicing with less chipping on the surface of the TFT substrate can be realized. In order to further suppress chipping on the surface of the TFT substrate, a V-cut groove or a recess is formed in the scribe line on the surface of the TFT substrate, and the back surface of the counter substrate is fixed from the back surface of the TFT substrate with a UV tape for dicing. Tape cutless full cut dicing is recommended.

その後、LCDパネルのTTF基板の外部取り出し電極部にフレキシブル基板を異方性導電膜の熱圧着で取り付け、TFT基板及び対向基板裏面に偏光板35を貼り合せると共に、TFT基板及び対向基板を樹脂枠36に取り付け、TFT基板及び対向基板と樹脂枠との間をモールド樹脂37で固着し、画質検査することによって図6(c)で示す様なEVF用の透過型液晶表示装置を得ることができる。
なお、偏光板の異物欠陥、ゴミ付着等による画質低下を防止するために、TFT基板及び対向基板から離れた位置の別の透明支持体に偏光板を貼り合わせてフォーカスをぼかすモジュール構造としても良い。
Thereafter, a flexible substrate is attached to the external extraction electrode portion of the TTF substrate of the LCD panel by thermocompression bonding of an anisotropic conductive film, and a polarizing plate 35 is bonded to the back surface of the TFT substrate and the counter substrate, and the TFT substrate and the counter substrate are attached to the resin frame. The transmission substrate for the EVF as shown in FIG. 6 (c) can be obtained by attaching the TFT substrate and the counter substrate to the resin frame with a mold resin 37, and inspecting the image quality. .
In order to prevent deterioration of image quality due to foreign matter defects, dust adhesion, etc. on the polarizing plate, a module structure may be adopted in which the polarizing plate is attached to another transparent support at a position away from the TFT substrate and the counter substrate to blur the focus. .

また、裏面光学研磨した後に画像検査を行い、TFT基体内の良品のLCDパネルのTFT基板及び対向基板裏面のみに保護フィルム付き偏光板を貼り合せた後にTFT基体をLCDパネル毎にブレードダイシングで分断し、異方性導電膜の熱圧着でTFT基板にフレキシブル基板を取り付け、TFT基板及び対向基板と樹脂枠との間をモールド樹脂で固着し、偏光板の保護フィルムを剥離して画質検査を行なってもよい。
この時に、偏光板に保護フィルムがあるので、ブレードダイシングでの切削水での偏光板ダメージがなく、フレキシブル基板及び樹脂枠取り付け時の偏光板のキズ、汚れ付着防止ができるので、歩留、品質及び生産性が向上する。
In addition, after optically polishing the back surface, image inspection is performed, and a polarizing plate with a protective film is bonded only to the back surface of the TFT substrate and the counter substrate of a good LCD panel in the TFT substrate, and then the TFT substrate is divided for each LCD panel by blade dicing. Then, a flexible substrate is attached to the TFT substrate by thermocompression bonding of an anisotropic conductive film, the TFT substrate and the counter substrate, and the resin frame are fixed with a mold resin, and the protective film of the polarizing plate is peeled off to perform image quality inspection. May be.
At this time, since there is a protective film on the polarizing plate, there is no damage to the polarizing plate due to cutting water during blade dicing, and scratches and dirt on the polarizing plate can be prevented when the flexible substrate and resin frame are attached. And productivity is improved.

[C]TFT基体がシリコン材、対向基板が低歪点ガラス材であるプロジェクタ用反射型LCDの場合
図8は本発明を適用した電気光学表示装置の更に他の一例であるLCOS(Liquid Crystal On Silicon)タイプのプロジェクタ用反射型LCDの製造方法の工程フローである。
以下、図8に示す工程フローに沿ってLCOSタイプのプロジェクタ用反射型LCDの製造方法について説明する。
[C] In the case of a reflective LCD for a projector in which the TFT substrate is a silicon material and the counter substrate is a low strain point glass material FIG. 8 is a LCOS (Liquid Crystal On) which is still another example of an electro-optic display device to which the present invention is applied. It is a process flow of the manufacturing method of the reflection type LCD for projectors of a silicon type.
Hereinafter, a manufacturing method of a reflective LCD for an LCOS type projector will be described along the process flow shown in FIG.

本発明を適用したLCOSタイプのプロジェクタ用反射型LCDの製造方法では、先ず、8インチφで厚みが0.8mmのシリコンからなるTFT基体44に液晶駆動回路、映像信号制御及び処理回路などの周辺回路部及び表示部6などを有するBP(Back Plane)基板とスクライブラインを複数形成し、このBP基板の形成時にTFT基体の裏面に成膜されたSiO、SiNx等の膜を残したままの状態で、上記プロジェクタ用透過型LCDの製造方法と同様に、TFT基体内の各BP基板38に汎用のリソグラフィ技術を用いて、感光性樹脂のパターニングを行なって少なくとも2重の周辺枠2、例えば周辺枠幅が50μm、周辺枠間の距離が100μm、液晶ギャップ2.5μm相当の高さの2重の周辺枠を形成し、外側に形成された周辺枠を第1の周辺枠2a、内側に形成された周辺枠を第2の周辺枠2bとする。
また、必要に応じて周辺枠形成と同時に、同じ感光性樹脂によりBP基板の表示領域6と第2の周辺枠との間に複数の液晶ギャップ相当の高さのOCS7(2〜3μmφ、液晶ギャップ2.5μm相当の高さ)を形成する。
尚、この時に、画質に悪影響を与えない範囲で、表示領域6内の複数の画素開口部周囲に液晶ギャップ相当の高さを有するOCS7を形成し、液晶ギャップ制御を高めてもよい。
その後に、SiOx等の所定の蒸着角での斜方蒸着膜形成またはSiOx等の所定のスパッタリング角での指向性スパッタリング膜形成または所定の角度でアルゴン等でのイオンビーム配向処理したDLC(Diamond Like Carbon)膜形成等の無機系液晶配向膜を形成した後に、必要に応じてIPA(イソプロピルアルコール)等を用いた有機洗浄を行なう。
尚、SiOx等の無機系液晶配向膜の場合には、UV照射洗浄、大気圧プラズマ洗浄を単独または有機洗浄と組み合わせの洗浄を行ってもよい。
In the manufacturing method of a reflective LCD for projectors of the LCOS type to which the present invention is applied, first, peripherals such as a liquid crystal driving circuit, a video signal control and processing circuit are provided on a TFT substrate 44 made of silicon having a thickness of 8 inches and a thickness of 0.8 mm. A plurality of BP (Back Plane) substrates having a circuit unit and a display unit 6 and a scribe line are formed, and films such as SiO 2 and SiNx formed on the back surface of the TFT substrate are left while forming the BP substrate. In the state, similar to the above-described method for manufacturing a transmissive LCD for a projector, the BP substrate 38 in the TFT substrate is patterned with a photosensitive resin by using a general-purpose lithography technique to form at least a double peripheral frame 2, for example, A double peripheral frame having a peripheral frame width of 50 μm, a distance between the peripheral frames of 100 μm, and a height corresponding to a liquid crystal gap of 2.5 μm is formed on the outside. The made peripheral frame first peripheral frame 2a, a peripheral frame formed inside the second peripheral frame 2b.
Further, at the same time as forming the peripheral frame, if necessary, OCS 7 (2 to 3 μmφ, liquid crystal gap having a height corresponding to a plurality of liquid crystal gaps is formed between the display region 6 of the BP substrate and the second peripheral frame with the same photosensitive resin. A height corresponding to 2.5 μm).
At this time, the OCS 7 having a height corresponding to the liquid crystal gap may be formed around the plurality of pixel openings in the display area 6 within a range that does not adversely affect the image quality, thereby enhancing the liquid crystal gap control.
Thereafter, oblique deposition film formation at a predetermined deposition angle of SiOx or the like, directional sputtering film formation at a predetermined sputtering angle of SiOx or the like, or ion beam orientation treatment with argon or the like at a predetermined angle DLC (Diamond Like) After forming an inorganic liquid crystal alignment film such as a Carbon film, organic cleaning using IPA (isopropyl alcohol) or the like is performed as necessary.
In the case of an inorganic liquid crystal alignment film such as SiOx, UV irradiation cleaning and atmospheric pressure plasma cleaning may be performed alone or in combination with organic cleaning.

尚、シリコンのTFT基体は複数のBP基板及びスクライブラインから構成され、BP基板は液晶駆動回路、映像信号制御及び処理回路などの周辺回路部、表示部、シール部(コモン部を含む)、外部取り出し電極部などからなり、複数のTFT素子などのスイッチング素子、アルミニウム、アルミニウムーシリコン合金、銀、銀―ビスマス合金、銀―ビスマスーネオジウム合金などからなる反射画素電極、多層配線、外部取り出し電極部などが形成されている。   The silicon TFT substrate is composed of a plurality of BP substrates and scribe lines. The BP substrate is a peripheral circuit portion such as a liquid crystal driving circuit, a video signal control and processing circuit, a display portion, a seal portion (including a common portion), an external portion. Consisting of a take-out electrode part, etc., a switching element such as a plurality of TFT elements, a reflective pixel electrode made of aluminum, aluminum-silicon alloy, silver, silver-bismuth alloy, silver-bismuth-neodymium alloy, multilayer wiring, external take-out electrode part Etc. are formed.

ここで、上記プロジェクタ用透過型LCDの製造方法と同様に、SiOx等の無機系配向膜厚によってはコモン材中の金メッキ樹脂のミクロパールの圧着によるSiOx等の無機系配向膜の貫通が難しいので、TFT基体内の各BP基板のシール部及びコモン部の上部のSiOx等の無機系配向膜を例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザー或いはエキシマレーザーなどのレーザーエッチングにより除去するのが好ましい。同様に、SiOx等の無機系配向膜厚によっては、フレキシブル基板の異方性導電膜の熱圧着による電気的接続は難しいので、フレキシブル基板との電気的導通のために外部取り出し電極部の上部のSiOx等の無機系配向膜を例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmUVパルスレーザー或いはエキシマレーザーのレーザーエッチングにより除去するのが好ましい。
この時は上記プロジェクタ用透過型LCDの製造方法と同様に、図2に示すように、例えばビームスポットサイズ50〜200μmΦでレーザーパワー10〜100W(10KHz)の上記UVパルスレーザーをX−Y方向に複数回の往復スキャニング照射して、BP基板のシール部、コモン部及び外部取り出し電極部の上部の30〜50nm厚のSiOx等の無機系配向膜除去を行なう。なお、外部取り出し電極部上のエッチングでは、上記UVパルスレーザーパワー及び往復スキャニング回数などを調整して、外部取り出し電極部がエッチングされない様に注意する必要がある。
しかし、光透過する石英ガラスに比べてシリコンはいろいろな種類のレーザーに対して熱吸収での発熱作用が大きいので、比較的少ないレーザーパワーまたは少ない往復スキャニング回数でSiOx等の無機系配向膜のエッチングが出来る。
この時に、SiOx等の無機系配向膜エッチングと同時に、BP基板のシール領域のシリコンも少しエッチングされて表面凹凸となるが、シール材との密着性が向上し、シール性が高まる。
尚、必要に応じて、このレーザー溶融したSiOx等の無機成分が付着してダスト起因不良とならないように、例えばレーザー照射と同期して真空吸引口を追従させてレーザー溶融したSiOx等の無機成分除去するなどのダスト対策が必要である。
尚、コモン部及び外部取り出し電極部の上部のSiOx等の無機系配向膜のみを選択的なスポットレーザー照射によりエッチングしてもよい。
Here, as with the above-described method for manufacturing a projector-use transmissive LCD, depending on the inorganic alignment film thickness of SiOx or the like, it is difficult to penetrate the inorganic alignment film such as SiOx by pressure bonding of the gold plating resin micropearl in the common material. Etching the inorganic alignment film such as SiOx on the seal part and common part of each BP substrate in the TFT substrate with a laser pulse such as a UV pulse laser or excimer laser having a wavelength of 355 nm, which is the third harmonic modulation of a 1064 nm YAG laser. Is preferably removed. Similarly, depending on the inorganic orientation film thickness such as SiOx, it is difficult to electrically connect the anisotropic conductive film of the flexible substrate by thermocompression bonding. The inorganic alignment film such as SiOx is preferably removed by laser etching of a wavelength 355 nm UV pulse laser or excimer laser, which is the third harmonic modulation of a wavelength 1064 nm YAG laser, for example.
At this time, as shown in FIG. 2, for example, the UV pulse laser with a beam spot size of 50 to 200 μmΦ and a laser power of 10 to 100 W (10 KHz) is applied in the XY direction as in the method for manufacturing the projector-use transmissive LCD. A plurality of reciprocating scanning irradiations are performed to remove an inorganic alignment film such as SiOx having a thickness of 30 to 50 nm on the seal portion, common portion, and external extraction electrode portion of the BP substrate. In the etching on the external extraction electrode portion, it is necessary to adjust the UV pulse laser power and the number of reciprocating scanning so that the external extraction electrode portion is not etched.
However, compared to quartz glass, which transmits light, silicon has a large heat generation effect due to heat absorption for various types of lasers, so etching of inorganic alignment films such as SiOx with a relatively small laser power or a small number of reciprocating scans. I can do it.
At this time, simultaneously with the etching of the inorganic alignment film such as SiOx, the silicon in the sealing region of the BP substrate is also slightly etched to form surface irregularities, but the adhesion with the sealing material is improved and the sealing performance is enhanced.
In addition, if necessary, the inorganic component such as SiOx that has been melted by laser by tracking the vacuum suction port in synchronization with the laser irradiation so that the inorganic component such as SiOx that has been melted by laser does not adhere and cause defects due to dust. Dust measures such as removal are necessary.
Note that only the inorganic alignment film such as SiOx on the common part and the external extraction electrode part may be etched by selective spot laser irradiation.

なお、BP基板のシール材及びコモン材塗布領域及びBP基板の外部取り出し電極部をマスキングしてSiOx等の無機系配向膜が形成されない様にしても良いが、マスキングの場合には、メタルマスクの位置ズレ、ゴミ及びキズ付着、メタルマスク洗浄等の課題がある。   The sealing material and common material application region of the BP substrate and the external extraction electrode portion of the BP substrate may be masked so that the inorganic alignment film such as SiOx is not formed. There are problems such as misalignment, adhesion of dust and scratches, and metal mask cleaning.

また、8インチφで厚みが1.1mmのシリコンに近い熱膨張係数を有する低歪点光学ガラス、例えばほうけい酸ガラス、アルミノけい酸ガラスなどからなる対向基体に複数の対向基板及びスクライブラインを形成し、SiOx等の所定の蒸着角での斜方蒸着膜形成またはSiOx等の所定のスパッタリング角での指向性スパッタリング膜形成または所定の角度でアルゴン等でのイオンビーム配向処理したDLC膜形成等の無機系液晶配向膜を形成した後に、必要に応じてIPA等を用いた有機洗浄を行なう。
尚、SiOx等の無機系液晶配向膜の場合には、UV照射洗浄、大気圧プラズマ洗浄を単独または有機洗浄と組み合わせの洗浄を行ってもよい。
Also, a plurality of counter substrates and scribe lines are formed on a counter substrate made of a low strain point optical glass having a thermal expansion coefficient close to that of silicon having a thickness of 8 mm and a thickness of 1.1 mm, such as borosilicate glass or aluminosilicate glass. Forming an obliquely deposited film at a predetermined deposition angle such as SiOx, or forming a directional sputtering film at a predetermined sputtering angle such as SiOx, or forming a DLC film by ion beam orientation treatment with argon or the like at a predetermined angle, etc. After forming the inorganic liquid crystal alignment film, organic cleaning using IPA or the like is performed as necessary.
In the case of an inorganic liquid crystal alignment film such as SiOx, UV irradiation cleaning and atmospheric pressure plasma cleaning may be performed alone or in combination with organic cleaning.

なお、対向基体には複数の対向基板及びスクライブラインから構成され、対向基板にはBP基板に対応する全面にITOやIZOなどの透明導電膜が形成されている。   The counter substrate is composed of a plurality of counter substrates and scribe lines, and a transparent conductive film such as ITO or IZO is formed on the entire surface of the counter substrate corresponding to the BP substrate.

ここで、SiOx等の無機系配向膜厚によってはコモン剤中の金メッキ樹脂したミクロパールの圧着によるSiOx等の無機系配向膜の貫通が難しいので、対向基体内の各対向基板のシール部及びコモン部の上部のSiOx等の無機系配向膜を例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmUVパルスレーザーのレーザーエッチングにより除去するのが好ましい。
この時も上記プロジェクタ用透過型LCDの製造方法と同様に、図2のように例えばビームスポットサイズ50〜200μmΦでレーザーパワー10〜100W(10KHz)のUVパルスレーザーをX−Y方向に複数回のスキャニング照射して、対向基板のITOやIZOなどの透明導電膜のシール部、コモン部の上部の例えば30〜50nm厚のSiOx等の無機系配向膜のエッチング除去を行なう。
尚、BP基板及び対向基板に形成したSiOx斜方蒸着膜はガラス系基体に比べ粗な粒径で低密度であり気密性が低いので、上記のUVパルスレーザーなどでコモン部のみならずシール部の上部のSiOx斜方蒸着膜も同時にレーザーエッチングすると、シール性が高まり、品質及び信頼性が向上するので好ましい。
尚、コモン部の上部のSiOx等の無機系配向膜のみを選択的なスポットレーザー照射によりエッチングしてもよい。
Here, depending on the inorganic alignment film thickness such as SiOx, it is difficult to penetrate the inorganic alignment film such as SiOx by pressure bonding of gold-plated resin micropearl in the common agent. It is preferable to remove the inorganic alignment film such as SiOx on the upper portion of the part by laser etching of a wavelength 355 nm UV pulse laser which is the third harmonic modulation of a wavelength 1064 nm YAG laser, for example.
At this time, similarly to the method for manufacturing the projector-use transmissive LCD, as shown in FIG. 2, a UV pulse laser having a beam spot size of 50 to 200 μmΦ and a laser power of 10 to 100 W (10 KHz) is applied a plurality of times in the XY direction. Scanning irradiation is performed to remove the seal portion of the transparent conductive film such as ITO or IZO of the counter substrate and the inorganic alignment film such as SiOx having a thickness of 30 to 50 nm on the common portion.
Since the SiOx oblique deposition film formed on the BP substrate and the counter substrate has a coarse particle size, low density and low airtightness compared to the glass substrate, not only the common portion but also the seal portion with the UV pulse laser described above. It is preferable to perform laser etching on the upper SiOx oblique deposition film at the same time because the sealing property is improved and the quality and reliability are improved.
Note that only the inorganic alignment film such as SiOx above the common portion may be etched by selective spot laser irradiation.

なお、対向基板のシール及びコモン材塗布領域にマスキングしてSiOx等の無機系配向膜が形成されない様にしても良いが、マスキングの場合には、メタルマスクの位置ズレ、ゴミ及びキズ付着、メタルマスク洗浄等の課題がある。   It should be noted that the seal of the counter substrate and the common material application region may be masked so that an inorganic alignment film such as SiOx is not formed. However, in the case of masking, the metal mask is misaligned, dust and scratches adhere, metal There are problems such as mask cleaning.

次に、例えば0.79型BP基板に形成された第1の周辺枠2aの外側のシール幅500μm内にシール材3及びコモン材4をディスペンス塗布し、その内側に形成された第2の周辺枠2bの内側に所定量の液晶5をディスペンス滴下する(図9(A)の(a)参照。)。
ここで、滴下する液晶量はBP基板内の表示領域中心付近に約0.1mgを8回繰り返えして約0.8mg程度の液晶をディスペンス滴下させ、その高さが第2の周辺枠2bよりも表面張力で少し盛り上がる程度の液晶量として液晶不足とならない様にする必要がある。
同様に、塗布するシール材はシール幅500μm内のセンター付近に1500〜1600μm程度をディスペンス塗布し,塗布するコモン材は少なくとも2箇所以上で約200μmの塗布径をディスペンス塗布するが、いずれも第1の周辺枠2aを飛び越えて第2の周辺枠2b内部に流動しない様にする必要がある。
また、図3(A)の(b)で示す様に、TFT基体は移動させずに液晶ディスペンサー8とレーザーセンサー9をステップアンドリピート方式で移動させ、所定量の液晶滴下の直後にレーザー照射して反射光の変動でセンシングする、または、レーザーセンサー9及び液晶ディスペンサー8は移動させずに、TFT基体をステップアンドリピート方式で移動させて所定量の液晶滴下の直後にレーザー照射して反射光の変動でセンシングして、第2の周辺枠内の液晶滴下有無及び液晶滴下量の適正化を行う方が望ましい。
尚、CCDで画像を取り込み、液晶の滴下有無及び液晶の滴下量の適正化を判断する方法であっても良い。
このように、例えば液晶ディスペンサーの不具合により液晶滴下無しまたは不足が発生した時に、直後にその不具合を検出して再度液晶滴下して液晶量を最適化させるので、液晶不足による未充填不具合を防止できる。
尚、ここではTFT基板側にシール材及びコモン材塗布と液晶滴下を行ったが、TFT基板側にシール材塗布と液晶滴下を行い、対向基板側にコモン材塗布をしてもよい。
Next, for example, the seal material 3 and the common material 4 are dispensed within the seal width 500 μm outside the first peripheral frame 2a formed on the 0.79 type BP substrate, and the second periphery formed inside the seal material 3 and the common material 4 is applied. A predetermined amount of the liquid crystal 5 is dispensed inside the frame 2b (see (a) of FIG. 9A).
Here, the amount of liquid crystal to be dropped is about 0.1 mg repeated around the center of the display area in the BP substrate eight times, and about 0.8 mg of liquid crystal is dropped and the height is the second peripheral frame. It is necessary to prevent the liquid crystal from becoming insufficient as the amount of liquid crystal that is slightly raised by the surface tension than 2b.
Similarly, about 1500 to 1600 μm 2 is dispensed in the vicinity of the center within the seal width of 500 μm, and the common material to be coated is dispensed with a coating diameter of about 200 μm at at least two locations. It is necessary not to jump over one peripheral frame 2a and flow into the second peripheral frame 2b.
Further, as shown in FIG. 3A (b), the liquid crystal dispenser 8 and the laser sensor 9 are moved in a step-and-repeat manner without moving the TFT substrate, and laser irradiation is performed immediately after a predetermined amount of liquid crystal is dropped. The sensing is performed by fluctuation of reflected light, or the laser sensor 9 and the liquid crystal dispenser 8 are not moved, but the TFT substrate is moved by a step-and-repeat method, and laser irradiation is performed immediately after a predetermined amount of liquid crystal is dropped. It is desirable to sense by fluctuation and optimize the presence / absence of liquid crystal dripping and the amount of liquid crystal dripping in the second peripheral frame.
Note that a method may be used in which an image is captured by a CCD and whether or not the liquid crystal is dropped and whether the liquid crystal is dropped appropriately is determined.
In this way, for example, when there is no liquid crystal dripping or shortage due to a liquid crystal dispenser malfunction, the malfunction is detected immediately and the liquid crystal is dropped again to optimize the amount of liquid crystal. .
Here, the sealing material and common material application and liquid crystal dropping are performed on the TFT substrate side, but the sealing material application and liquid crystal dropping may be performed on the TFT substrate side and the common material application may be performed on the counter substrate side.

続いて、上記したプロジェクタ用透過型LCDと同様に、所定の真空度(例えば、1〜3Pa)を有する真空貼り合せ装置内でセラミック型またはポリマー型静電チャックステージで静電チャック保持したTFT基体と、同じくセラミック型またはポリマー型静電チャック保持した対向基体のX方向、Y方向及びθ方向の位置決めを行って所定の間隙で所定の加圧により重ね合わせた後に、必要に応じて両基板の位置ずれ防止の為に、必要に応じて仮止め遮光治具12を介して所定量のUV照射で仮止めシール硬化を行い、大気圧に戻した直後の均一な大気圧の加圧で貼り合わせを行うことで、シール材中の液晶ギャップ相当のファイバー及び滴下された液晶量、更に本発明の2重の周辺枠及びOCSの作用により高精度に制御された液晶ギャップのLCDパネルを得ることができる。
この時に、本発明の2重の周辺枠がある為に大気圧開放時のシールパス症状がなくなり、TFT基体または対向基体の最外周のダミーシール材塗布が不要となる。
またこの時に、TFT基体裏面にBP基板形成時に成膜されたSiO、SiNx等の膜を残したままの状態で重ね合わせするために、静電チャックを行なったとしてもシリコンからなるBP基板のTFT素子が静電気ダメージを受けることは無く、高い平坦性を維持した状態のTFT基体での貼り合せなので液晶ギャップムラ低減が可能となる。
そして、この大気圧または剛体プレス及び大気圧の加圧によりコモン材中のミクロパールが押し潰されて対向基板の透明電極とBP基板の電極が電気的導通する。
更に、ナトリウムランプを照射してLCDパネルのニュートンリング(干渉縞)で液晶ギャップ検査を行ない、必要に応じて加圧修正を行った後に所定量のUV照射でシール材及びコモン材の本硬化を行い、更にベーキングを行ってシール材及びコモン材を完全固着し、熱処理で液晶配向させる。
従って、加圧修正可能の為に、予め真空貼り合せ直後の液晶ギャップは規格内で規格センターよりも少し広目に設定しておくのが好ましい。
尚、シール材中のファイバー及び滴下された液晶量に加え、多重の周辺枠及びOCSの作用により高精度な液晶ギャップ制御が可能になるので、その品質仕様に応じて仮硬化と本硬化を一緒にして一括UV照射硬化とし、更に抜き取りのニュートンリング(干渉縞)の液晶ギャップ検査を行ってもよい。
Subsequently, in the same manner as the above-mentioned transmissive LCD for projector, a TFT substrate held by an electrostatic chuck with a ceramic type or polymer type electrostatic chuck stage in a vacuum bonding apparatus having a predetermined degree of vacuum (for example, 1 to 3 Pa). After positioning the X-, Y-, and θ-directions of the opposite substrate held in the same ceramic-type or polymer-type electrostatic chuck and superimposing them with a predetermined pressure in a predetermined gap, In order to prevent misalignment, the temporary fixing seal is cured by a predetermined amount of UV irradiation through the temporary fixing light-shielding jig 12 as necessary, and then bonded by applying a uniform atmospheric pressure immediately after returning to atmospheric pressure. The liquid crystal gap is controlled with high accuracy by the action of the fiber corresponding to the liquid crystal gap in the sealing material and the amount of dropped liquid crystal, and the double peripheral frame and OCS of the present invention. LCD panels-up can be obtained.
At this time, since there is a double peripheral frame of the present invention, there is no seal path symptom when the atmospheric pressure is released, and it becomes unnecessary to apply a dummy seal material on the outermost periphery of the TFT substrate or the counter substrate.
Further, at this time, even if electrostatic chucking is performed in order to superimpose the film such as SiO 2 or SiNx formed when the BP substrate is formed on the back surface of the TFT substrate, the BP substrate made of silicon is used. The TFT element is not damaged by static electricity, and the liquid crystal gap unevenness can be reduced because the bonding is performed on the TFT substrate while maintaining high flatness.
The micro pearl in the common material is crushed by the atmospheric pressure or the rigid body press and the atmospheric pressure, and the transparent electrode of the counter substrate and the electrode of the BP substrate are electrically connected.
In addition, the liquid crystal gap is inspected with a Newton ring (interference fringe) on the LCD panel by irradiating with a sodium lamp. After correcting the pressure as necessary, the seal material and the common material are fully cured by a predetermined amount of UV irradiation. Further, baking is performed to completely fix the sealing material and the common material, and the liquid crystal is aligned by heat treatment.
Therefore, it is preferable that the liquid crystal gap immediately after vacuum bonding is set a little wider than the standard center within the standard so that the pressure can be corrected.
In addition to the fiber in the sealant and the amount of liquid crystal dropped, the multiple peripheral frames and OCS enable high-precision liquid crystal gap control, so that temporary curing and main curing are performed together according to the quality specifications. Then, it is possible to carry out collective UV irradiation curing, and further to perform a liquid crystal gap inspection of a drawn Newton ring (interference fringe).

次に、上記したプロジェクタ用透過型LCDと同様に、支持ステージ15でTFT基体を真空吸着支持し、外部取り出し電極部の配線をキズつけないように、ブレードダイシングでBP基板の外部取り出し電極部の形成領域と外部取り出し電極部の非形成領域の境界領域に対応する領域(図中符合Aで示す領域)を50〜100μmが残存する対向基体のディープカットダイシングを行い、それ以外のBP基板のスクライブライン領域(図中符合B、Cで示す領域)はTFT基体に200〜300μmの切り込み凹部形成する対向基体のフルカットダイシングを行なった後に、ディープカットダイシングを行った部分に衝撃を与えて端材除去を行い、対向基体を対向基板毎に分断する(図9(A)の(b)参照。)。   Next, like the above-described transmissive LCD for projector, the TFT substrate is vacuum-supported by the support stage 15, and the external extraction electrode portion of the BP substrate is removed by blade dicing so that the wiring of the external extraction electrode portion is not damaged. Deep cut dicing is performed on the counter substrate where 50 to 100 μm remains in the region corresponding to the boundary region between the formation region and the non-formation region of the external extraction electrode portion (the region indicated by reference symbol A in the figure), and the other BP substrate is scribed. The line region (regions indicated by symbols B and C in the figure) is an end material by impacting the portion subjected to deep cut dicing after performing full cut dicing of the opposing substrate forming a 200 to 300 μm cut recess in the TFT substrate. Removal is performed, and the opposing substrate is divided into opposing substrates (see FIG. 9A, (b)).

或いは、図10(a)で示す様に、ダイシング用真空吸着治具でTFT基体を固定した状態で、外部取り出し電極部の配線をキズつけないように、例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザーでBP基板の外部取り出し電極部の形成領域と外部取り出し電極部の非形成領域の境界領域に対応する領域(図中符合Aで示す領域)を50〜100μmが残存する対向基体のディープカットダイシングを行い、それ以外のBP基板のスクライブライン領域(図中符合B、C示す領域)はTFT基体に200〜300μmの切込み凹部形成の対向基体のフルカットダイシングを行なった後に、ディープカットダイシングを行った部分に衝撃を与えて端材除去を行い、対向基体を対向基板毎に分断する。   Alternatively, as shown in FIG. 10A, for example, the third harmonic modulation of a YAG laser with a wavelength of 1064 nm so that the wiring of the external extraction electrode portion is not damaged when the TFT substrate is fixed with a dicing vacuum suction jig. 50 to 100 μm remains in the region corresponding to the boundary region between the formation region of the external extraction electrode portion of the BP substrate and the non-formation region of the external extraction electrode portion (region indicated by symbol A in the figure) with a UV pulse laser having a wavelength of 355 nm Deep cut dicing was performed on the opposing substrate, and the scribe line region (regions indicated by symbols B and C in the figure) of the other BP substrate was subjected to full cut dicing of the opposing substrate having a 200 to 300 μm cut recess formed in the TFT substrate. Later, the cut material is removed by impacting the deep cut dicing part, and the counter substrate is divided into counter substrates. To do.

尚、上記のEVF用透過型LCDの図6(b)及び図7で示す様に、レーザー切断用真空吸着治具でTFT基体を固定し、BP基板の外部取り出し電極部の形成領域と外部電極取り出し部の非形成領域の境界領域に対応する領域(図中符合Aで示す領域)と、対向基体を透過して見えるTFT基体のスクライブライン領域(図中符合B、C示す領域)に沿って、YAGレーザー等の固体レーザーまたはCOレーザー等のガスレーザーまたは固体レーザー及びガスレーザーを組み合わせた複合レーザーなどによって対向基体を切断して単個状態の対向基板にしてもよい。この時に、外部取り出し電極部の配線にダメージを与えないようにレーザー切り込み条件を適正化する必要がある。 As shown in FIGS. 6B and 7 of the above-mentioned EVF transmissive LCD, the TFT substrate is fixed with a vacuum cutting jig for laser cutting, and the external extraction electrode portion forming area of the BP substrate and the external electrode Along the area corresponding to the boundary area of the non-formation area of the extraction portion (area indicated by symbol A in the figure) and the scribe line area (area indicated by signs B and C in the figure) of the TFT substrate that can be seen through the counter substrate. Alternatively, the counter substrate may be cut into a single counter substrate by a solid laser such as a YAG laser, a gas laser such as a CO 2 laser, or a combined laser combining a solid laser and a gas laser. At this time, it is necessary to optimize the laser cutting conditions so as not to damage the wiring of the external extraction electrode portion.

続いて、図9(B)の(c)で示す様に、図中Dで示す酸化セリウムなどの超微粉末を含む研磨剤を供給しながら、研磨バフ材16によって少なくとも対向基板の裏面を例えば10μm程度を光学研磨し、配向膜形成及び配向処理時のキズ、汚れ、ダイシング時のキズ、汚れ、更にはハンドリングキズを除去する。
尚、透過型LCDと違って反射型LCDでは、BP基板形成時のSiO、SiNx等の膜、配向膜形成及び配向処理のキズ、汚れ、更にハンドリングキズは存在しても画像、画質には無関係なので、TFT基体裏面の光学研磨は必ずしも必要ではない。
Subsequently, as shown in (c) of FIG. 9B, while supplying an abrasive containing ultrafine powder such as cerium oxide shown by D in the figure, at least the back surface of the counter substrate is made, for example, by the polishing buff material 16. About 10 μm is optically polished to remove scratches and dirt during alignment film formation and alignment treatment, scratches and dirt during dicing, and handling scratches.
Unlike a transmissive LCD, a reflective LCD has a film such as SiO 2 or SiNx during formation of a BP substrate, alignment film formation and alignment processing flaws, dirt, and handling flaws. Since it is irrelevant, optical polishing of the back surface of the TFT substrate is not always necessary.

ここで、光学裏面研磨の際には液晶ギャップに悪影響を及ぼさない様に、加圧調整する必要がある。また、対向基体の裏面に保護テープを貼り合わせた状態で液晶滴下・真空貼り合せを行うなどのキズ、ゴミ対策を行なった場合には、対向基板裏面の光学研磨は不要である。   Here, it is necessary to adjust the pressure so that the liquid crystal gap is not adversely affected during the optical back surface polishing. Further, when taking measures against scratches and dust such as liquid crystal dropping and vacuum bonding with the protective tape attached to the back surface of the counter substrate, optical polishing of the back surface of the counter substrate is not necessary.

続いて、上記したプロジェクタ用透過型LCDと同様にして、画像検査、保護ガラスチップ貼り合わせ(対向基板側のみ)、TFT基体の切断を行なった後に、BP基板及び対向基板を金属枠に取り付け、BP基板及び対向基板と金属枠との間を、高熱伝導性モールド樹脂で固着する。その後、見切り板の取り付け、画質検査を行なうことによって図9(B)の(d)で示す様なLCOSタイプのプロジェクタ用反射型液晶表示装置を得ることができる。   Subsequently, in the same manner as the above-mentioned transmissive LCD for projector, after image inspection, protective glass chip bonding (on the opposite substrate side only), and cutting the TFT substrate, the BP substrate and the opposite substrate are attached to the metal frame, The BP substrate and the counter substrate are fixed to the metal frame with a high thermal conductive mold resin. After that, by attaching a parting plate and performing an image quality inspection, an LCOS type reflective liquid crystal display device for a projector as shown in (d) of FIG. 9B can be obtained.

プロジェクタ用反射型LCDの場合は、入射側の反射防止膜形成の防塵ガラス材として、光学特性を満足する熱伝導率が1(W/m・K)以上の高熱伝導性ガラス例えば石英ガラス、透明結晶化ガラス(ネオセラム、クリアセラム、ゼロデュアなど)、ほうけい酸/アルミノけい酸ガラス(例えばコーニング製#1737及びイーグル2000、HOYA製NA−35及びNA−32など)、更に高い熱伝導性ガラス例えば高透光性セラミック多結晶体{透光性酸化物結晶体の電融MgO(立方晶、等軸六方晶)、焼結MgO(立方晶)、Y(イットリア)、CaO(カルシア)、単結晶サファイア(六方晶)、BeO(ベリリア)、ZrO(ジルコニア)、多結晶サファイアなど、或いは透光性複酸化物結晶体の単結晶又は多結晶YAG(Yttrium Aluminum Garnet)、単結晶又は多結晶MgAl(スピネル)、3Al・2SiO、Al・SiO、CaCO、ZrSiOなど}、フッ化物単結晶体{フッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、フッ化バリウム(BaF)など}、気相合成ダイヤモンド膜コートした高透光性セラミック多結晶体及び透明結晶化ガラス、水晶などの透明基板を耐光性の透明接着剤で貼り合せることで、強い入射光に対して高い熱放散効果を発揮して高輝度化、高精細化、長寿命化を実現し、品質及び信頼性を高めることが出来る。
尚、反射型LCDには複屈折のない防塵ガラスが好ましい。
In the case of a reflective LCD for a projector, as a dust-proof glass material for forming an antireflection film on the incident side, a high thermal conductivity glass having a thermal conductivity of 1 (W / m · K) or more that satisfies optical characteristics, such as quartz glass, transparent Crystallized glass (such as neo-serum, clear serum, zerodure), borosilicate / aluminosilicate glass (such as Corning # 1737 and Eagle 2000, HOYA NA-35 and NA-32), higher thermal conductivity glass such as Highly translucent ceramic polycrystal {transfused oxide crystal fused MgO (cubic, equiaxed hexagonal), sintered MgO (cubic), Y 2 O 3 (yttria), CaO (calcia) , single crystal sapphire (hexagonal), BeO (beryllia), ZrO 2 (zirconia), polycrystalline sapphire, etc., or a single or poly a translucent double oxide crystals Crystal YAG (Yttrium Aluminum Garnet), single crystal or polycrystalline MgAl 2 O 4 (spinel), and 3Al 2 O 3 · 2SiO 2, Al 2 O 3 · SiO 2, CaCO 3, ZrSiO 4}, fluoride monocrystal {Calcium fluoride (CaF 2 ), Magnesium fluoride (MgF 2 ), Barium fluoride (BaF 2 ), etc.} Highly translucent ceramic polycrystals and transparent crystallized glass, crystal, etc. coated with vapor phase synthetic diamond film Bonding a transparent substrate with a light-resistant transparent adhesive exhibits a high heat dissipation effect against strong incident light, realizing high brightness, high definition, and long life, and quality and reliability Can be increased.
Note that a dustproof glass having no birefringence is preferable for the reflective LCD.

たとえば、入射側より反射防止膜形成した単結晶又は多結晶YAGの防塵ガラスとシリコンの熱膨張係数に近い低歪み光学ガラス例えば上記のほうけい酸/アルミノけい酸ガラスの対向基板と液晶層とシリコンのBP基板と金属枠の構造とし、反射防止膜形成した単結晶又は多結晶YAGの防塵ガラスとほうけい酸/アルミノけい酸ガラスの対向基板を耐光性の低歪み透明接着剤で貼り合わせ、且つシリコンのBP基板と金属枠を低歪み高熱伝導性及び導電性接着剤で貼り合わせることで高い熱放散効果を期待できる。
尚、これらの防塵ガラスの少なくとも一方の表面には、SiO膜、TiO膜、ZrO膜、MgF膜等の屈折率の異なる薄膜を1/4波長厚(0.1〜0.3μm)の厚みとして積層することにより反射防止膜を形成し、この反射防止膜の反射率は0.8%以下(波長450〜630nm範囲)が好ましい。
For example, a single crystal or polycrystalline YAG dustproof glass formed with an antireflection film from the incident side, and a low strain optical glass close to the thermal expansion coefficient of silicon, such as the above-mentioned counter substrate of borosilicate / aluminosilicate glass, liquid crystal layer and silicon A single-crystal or polycrystalline YAG dust-proof glass and an anti-borosilicate / alumino-silicate glass counter substrate with an antireflection film bonded to each other with a light-resistant low-distortion transparent adhesive, and A high heat dissipation effect can be expected by bonding a silicon BP substrate and a metal frame together with a low distortion high thermal conductivity and a conductive adhesive.
A thin film having a different refractive index, such as a SiO 2 film, a TiO 2 film, a ZrO 2 film, or an MgF 2 film, is formed on at least one surface of the dustproof glass by a quarter wavelength thickness (0.1 to 0.3 μm). ) To form an antireflection film, and the reflectance of the antireflection film is preferably 0.8% or less (wavelength range of 450 to 630 nm).

ところで、上記の本実施例では、個片化した保護ガラスチップを対向基板に貼り合せる場合を例に挙げて説明を行ったが、図10(b)のように、対向基板の分断または裏面光学研磨を行った後に、所定量のUV接着剤をディスペンス塗布した対向基板裏面に保護ガラス大板(1)50を重ね合わせ、所定の真空度(例えば、133Pa以下)でUV接着剤を脱泡した後に大気圧に戻す直前または直後に均一な大気圧の加圧を加えてUV照射硬化して貼り合わせを行い、その後に保護ガラス大板(1)50をレーザーダイシングして保護ガラスチップが貼り合わせられた対向基板と、更にTFT基体をレーザーダイシングして形成したBP基板からなるLCOSの反射型LCDパネルを形成しても良い。
具体的には、対向基板と同じ寸法に保護ガラス大板(1)の領域(図中符合XとYとZで示す領域)を例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmのUVパルスレーザーでフルカットダイシングを行って保護ガラスチップを貼り合せた対向基板を形成し、連続してTFT基体のスクライブライン領域(図中符合YとZで示す領域)を上記のレーザーでフルカットダイシングを行なってBP基板を形成し、保護ガラスチップが貼り合わせられた対向基板とBP基板からなるLCOSの反射型LCDパネルを形成しても良い。
By the way, in the above-described embodiment, the case where the individual protective glass chip is bonded to the counter substrate has been described as an example. However, as shown in FIG. After polishing, the protective glass large plate (1) 50 was placed on the back of the counter substrate on which a predetermined amount of UV adhesive was dispensed, and the UV adhesive was defoamed at a predetermined degree of vacuum (eg, 133 Pa or less). Immediately after or after returning to atmospheric pressure, a uniform atmospheric pressure is applied and UV irradiation is cured and bonded, and then the protective glass large plate (1) 50 is laser diced to bond the protective glass chip. An LCOS reflective LCD panel comprising the counter substrate thus formed and a BP substrate formed by further laser dicing the TFT substrate may be formed.
Specifically, an area of the protective glass large plate (1) (area indicated by symbols X, Y, and Z in the figure) having the same dimensions as the counter substrate is, for example, UV having a wavelength of 355 nm which is the third harmonic modulation of a wavelength 1064 nm YAG laser. Full-cut dicing is performed with a pulse laser to form a counter substrate on which a protective glass chip is bonded, and the scribe line area (area indicated by symbols Y and Z in the figure) of the TFT substrate is continuously cut with the above laser. The BP substrate may be formed to form an LCOS reflective LCD panel composed of a counter substrate on which a protective glass chip is bonded and a BP substrate.

更に、上記の実施例では対向基板に保護ガラス大板を貼り合せたが、対向基体の厚さ1.0mmと保護ガラスの厚さ1.0mmを加算した2.0mm厚さの対向基体を用いることによって、対向基板の保護ガラスの貼り合わせ作業は不要となる。この場合には、対向基体の片面にはITOやIZO等の透明導電膜を形成し、他方の面に低反射膜を形成しておき、透明導電膜を形成した側の面にSiOx等の無機系配向膜を形成することとなる。
この場合には対向基体裏面に低反射膜形成されているので対向基板の裏面研磨は不可であり、キズ、汚れ防止の為に低反射膜形成面に保護テープを貼り合せて液晶滴下・真空重ね合わせ及び分断するのが好ましい。
この場合にはBP基板の外部取り出し電極部の形成領域と外部電極取り出し部の非形成領域の境界領域に対応する領域の対向基体を、例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmUVパルスレーザーダイシングで50〜100μm残しのディープカットダイシングを行い、更に対向基体を透過して見えるBP基板のスクライブライン領域に沿って、例えば波長1064nmYAGレーザーの第3高調波変調である波長355nmUVパルスレーザーで対向基体とTFT基体をフルカットダイシングし、ディープカットダイシングを行った部分に衝撃を与えて端材除去を行い、対向基体を対向基板毎に分断して保護ガラス兼対向基板とBP基板からなるLCOSのLCDパネルを形成してもよい。
Further, in the above embodiment, a large protective glass plate is bonded to the counter substrate, but a counter substrate having a thickness of 2.0 mm, which is the sum of the thickness of the counter substrate of 1.0 mm and the thickness of the protective glass of 1.0 mm, is used. As a result, the work of bonding the protective glass of the counter substrate becomes unnecessary. In this case, a transparent conductive film such as ITO or IZO is formed on one surface of the opposing substrate, a low reflection film is formed on the other surface, and an inorganic surface such as SiOx is formed on the surface on which the transparent conductive film is formed. A system alignment film will be formed.
In this case, since the low-reflection film is formed on the back surface of the counter substrate, it is not possible to polish the back surface of the counter substrate. It is preferable to combine and divide.
In this case, the counter substrate in the region corresponding to the boundary region between the formation region of the external extraction electrode portion of the BP substrate and the non-formation region of the external electrode extraction portion is subjected to, for example, a wavelength 355 nm UV pulse which is the third harmonic modulation of the wavelength 1064 nm YAG laser. Perform deep-cut dicing with 50 to 100 μm left by laser dicing, and further oppose along the scribe line region of the BP substrate that can be seen through the opposing substrate, for example, with a 355 nm wavelength UV pulse laser that is the third harmonic modulation of a 1064 nm YAG laser The substrate and the TFT substrate are fully cut dicing, the end material is removed by impacting the deep cut dicing portion, the opposing substrate is divided into each opposing substrate, and the LCOS composed of the protective glass / opposing substrate and the BP substrate is divided. An LCD panel may be formed.

上記した[A]、[B]及び[C]に記載の本発明を適用した電気光学表示装置の製造方法では、周辺枠を2重にすることで、図11(a)で示す様に、第1の周辺枠と第2の周辺枠の間にはオーバーフローした液晶とオーバーフローしたシール材の混在部39が形成され、シール材及びコモン材3の液晶汚染の悪影響が第2の周辺枠の内側の液晶5に及ばないので、光抜けなどの液晶動作不具合が発生しない。   In the method for manufacturing an electro-optical display device to which the present invention described in [A], [B], and [C] described above is applied, by double the peripheral frame, as shown in FIG. Between the first peripheral frame and the second peripheral frame, a mixed portion 39 of overflowed liquid crystal and overflowed sealing material is formed, and the adverse effect of liquid crystal contamination of the sealing material and the common material 3 is inside the second peripheral frame. Therefore, the liquid crystal operation failure such as light leakage does not occur.

なお、上記した実施例では2重の周辺枠を形成する場合を例に挙げて説明を行ったが、例えば図11(b)で示す様に4重の周辺枠を形成し(例えば、周辺枠幅が50μm、周辺枠間の距離が50μm、液晶ギャップ2.5μm相当の周辺枠高さの4重の周辺枠を形成し)、最も外側に形成された第1の周辺枠2aの外側に例えばシール幅500μm内にシール材及びコモン材3を塗布し、最も内側に形成された第2の周辺枠2bの内側に所定量の液晶をディスペンス滴下した場合には、第1の周辺枠と外側から2番目の第3の周辺枠2cの間にはオーバーフローしたシール材層40が形成され、第2の周辺枠と内側から2番目の第4の周辺枠2dの間にはオーバーフローした液晶層41が形成され、第3の周辺枠と第4の周辺枠の間には真空層または液晶とシール材の混合層42が形成されることになるので、上記の2重の周辺枠に比べてシール材及びコモン材3の液晶汚染の悪影響が第2の周辺枠の内側の液晶に更に及ばないので、2重の周辺枠を形成した場合よりも点欠陥、焼き付き、光抜け、応答性低下等の液晶動作不具合が発生しない。
ここで、TFT基板或いはBP基板と対向基板の間をシール材のみならずストッパーである多重の周辺枠を形成しているので、外部からの水分浸入や液晶汚染等の問題を抑制することができる。この時に、周辺枠を6重、8重、10重と多重にすればするほど液晶とシール材の混合を抑制でき、外部からの水分浸入や液晶汚染等の問題を抑制することができる。
尚、上記した実施例ではTFT基板或いはBP基板側に多重の周辺枠形成し、その最も外側の周辺枠の外側にシール材及びコモン材塗布と最も内側の周辺枠の内側に液晶滴下を行い、またはTFT基板或いはBP基板側に多重の周辺枠形成し、その最も外側の周辺枠の外側にシール材塗布と最も内側の周辺枠の内側に液晶滴下を行い対向基板側にコモン材塗布し、真空貼り合せ装置内でTFT基板或いはBP基板側と対向基板側を貼り合せする方法であるが、逆に、対向基板側に多重の周辺枠形成し、その最も外側の周辺枠の外側にシール材及びコモン材塗布と最も内側の周辺枠の内側に液晶滴下を行い、または対向基板側に多重の周辺枠形成し、その最も外側の周辺枠の外側にシール材塗布と最も内側の周辺枠の内側に液晶滴下を行いTFT基板或いはBP基板側にコモン材塗布し、真空貼り合せ装置内で対向基板側とTFT基板或いはBP基板側を貼り合せする方法でもよいことは言うまでもない。
In the above-described embodiment, the case where a double peripheral frame is formed has been described as an example. However, for example, a quadruple peripheral frame is formed as shown in FIG. A quadruple peripheral frame having a width of 50 μm, a distance between the peripheral frames of 50 μm, and a height of the peripheral frame corresponding to the liquid crystal gap of 2.5 μm) is formed outside the first peripheral frame 2a formed on the outermost side. When the seal material and the common material 3 are applied within a seal width of 500 μm, and a predetermined amount of liquid crystal is dispensed inside the second peripheral frame 2b formed on the innermost side, the first peripheral frame and the outside An overflowing sealing material layer 40 is formed between the second third peripheral frame 2c, and an overflowed liquid crystal layer 41 is formed between the second peripheral frame and the second fourth peripheral frame 2d from the inside. A vacuum is formed between the third peripheral frame and the fourth peripheral frame. Alternatively, since the mixed layer 42 of the liquid crystal and the sealing material is formed, the adverse effect of the liquid crystal contamination of the sealing material and the common material 3 on the liquid crystal inside the second peripheral frame is larger than that of the double peripheral frame. Since it does not reach further, liquid crystal operation defects such as point defects, image sticking, light loss, and responsiveness deterioration do not occur as compared with the case where double peripheral frames are formed.
Here, since multiple peripheral frames, which are stoppers as well as the sealing material, are formed between the TFT substrate or the BP substrate and the counter substrate, problems such as moisture intrusion from outside and liquid crystal contamination can be suppressed. . At this time, as the peripheral frame is multiplexed with 6, 8 or 10 layers, the mixing of the liquid crystal and the sealing material can be suppressed, and problems such as moisture intrusion from outside and liquid crystal contamination can be suppressed.
In the embodiment described above, multiple peripheral frames are formed on the TFT substrate or BP substrate side, sealing material and common material are applied outside the outermost peripheral frame, and liquid crystal is dropped inside the innermost peripheral frame. Alternatively, multiple peripheral frames are formed on the TFT substrate or BP substrate side, a sealing material is applied to the outside of the outermost peripheral frame, a liquid crystal is dropped inside the innermost peripheral frame, and a common material is applied to the opposite substrate side. In the bonding apparatus, the TFT substrate or BP substrate side and the counter substrate side are bonded to each other, but conversely, a plurality of peripheral frames are formed on the counter substrate side, and a sealing material and an outer periphery of the outermost peripheral frame are formed. Apply common material and drop liquid crystal inside the innermost peripheral frame, or form multiple peripheral frames on the counter substrate side, apply sealant outside the outermost peripheral frame and inside the innermost peripheral frame TF with liquid crystal dripping And common material applied to the substrate or the BP substrate side, it goes without saying that may be a method of bonding the opposing substrate and the TFT substrate or the BP substrate side vacuum bonding the device.

本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法の工程フローである。6 is a process flow of a manufacturing method of a transmissive LCD for a projector, which is an example of a manufacturing method of an electro-optic display device to which the present invention is applied. 本発明を適用した電気光学表示装置の製造方法の一例であるSiOx等の無機系配向膜のレーザーエッチングを説明するための模式図である。It is a schematic diagram for demonstrating the laser etching of inorganic type alignment films, such as SiOx which is an example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法を説明するための模式図(1)である。It is a schematic diagram (1) for demonstrating the manufacturing method of the transmissive LCD for projectors which is an example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法を説明するための模式図(2)である。It is a schematic diagram (2) for demonstrating the manufacturing method of the transmissive LCD for projectors which is an example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法を説明するための模式図(3)である。It is a schematic diagram (3) for demonstrating the manufacturing method of the transmissive LCD for projectors which is an example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法を説明するための模式図(4)である。It is a schematic diagram (4) for demonstrating the manufacturing method of the transmissive LCD for projectors which is an example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の一例であるプロジェクタ用透過型LCDの製造方法の変形例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the modification of the manufacturing method of the transmissive LCD for projectors which is an example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の他の一例であるEVF用透過型LCDの製造方法の工程フローである。It is a process flow of the manufacturing method of the transmissive LCD for EVF which is another example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の製造方法の他の一例であるEVF用透過型LCDの製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the transmissive LCD for EVF which is another example of the manufacturing method of the electro-optical display apparatus to which this invention is applied. レーザー切断を説明するための模式図である。It is a schematic diagram for demonstrating laser cutting. 本発明を適用した電気光学表示装置の更に他の一例であるLCOSタイプのプロジェクタ用反射型LCDの製造方法の工程フローである。It is a process flow of the manufacturing method of the reflection type LCD for LCOS type projectors which is still another example of the electro-optic display device to which the present invention is applied. 本発明を適用した電気光学表示装置の更に他の一例であるLCOSタイプのプロジェクタ用反射型LCDの製造方法を説明するための模式図(1)である。It is a schematic diagram (1) for demonstrating the manufacturing method of the reflection type LCD for LCOS type projectors which is another example of the electro-optical display apparatus to which this invention is applied. 本発明を適用した電気光学表示装置の更に他の一例であるLCOSタイプのプロジェクタ用反射型LCDの製造方法を説明するための模式図(2)である。It is a schematic diagram (2) for demonstrating the manufacturing method of LCOS type reflective LCD for projectors which is another example of the electro-optical display apparatus to which this invention is applied. レーザー切断を説明するための模式図である。It is a schematic diagram for demonstrating laser cutting. 本発明を適用した電気光学表示装置の多重の周辺枠効果を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the multiple periphery frame effect of the electro-optical display apparatus to which this invention is applied. 面面液晶組立ての例を順に説明するフローチャートである。It is a flowchart explaining the example of a surface liquid crystal assembly in order. 単個液晶組立ての例を順に説明するフローチャートである。It is a flowchart explaining the example of a single liquid crystal assembly in order. 面単液晶組立ての例を順に説明するフローチャートである。It is a flowchart explaining the example of a plane single liquid crystal assembly in order.

符号の説明Explanation of symbols

1 TFT基板(石英)
2 周辺枠
2a 第1の周辺枠
2b 第2の周辺枠
2c 第3の周辺枠
2d 第4の周辺枠
3 シール材
4 コモン材
5 液晶
6 表示領域
7 OCS
8 液晶ディスペンサー
9 レーザーセンサー
10 TFT基体(石英)
11 対向基体(石英)
12 仮止め遮光治具
13 液晶ギャップ検査用真空吸着ステージ
14 NR検査機
15 真空吸着支持ステージ
16 研磨バフ材
17 TFT形成膜(またはBP形成膜)
18 画像検査用基体支持治具
19 照明筒
20 画像検査機
21 入射光
22 出射光
23 透明保護テープ
24 保護ガラスチップ
26 中空型真空吸着コレット
27 ダイシングテープ
28 ダイシング用真空吸着治具
29 フレキシブル基板
30 金属枠
31 高熱伝導性モールド樹脂
32 見切り板
33 レーザー切断用真空吸着治具
35 偏光板
36 樹脂枠
37 モールド樹脂
38 BP基板(シリコン)
39 オーバーフローした液晶とオーバーフローしたシール材の混在部
40 オーバーフローしたシール材層
41 オーバーフローした液晶層
42 真空層または液晶とシール材の混合層
43 静電チャックステージ
44 TFT基体(シリコン)
45 対向基体(低歪点ガラス)
50 保護ガラス大板(1)
51 保護ガラス大板(2)
1 TFT substrate (quartz)
2 peripheral frame 2a first peripheral frame 2b second peripheral frame 2c third peripheral frame 2d fourth peripheral frame 3 sealing material 4 common material 5 liquid crystal 6 display area 7 OCS
8 Liquid crystal dispenser 9 Laser sensor 10 TFT substrate (quartz)
11 Opposing substrate (quartz)
12 Temporary fixing light shielding jig 13 Vacuum suction stage for liquid crystal gap inspection 14 NR inspection machine 15 Vacuum suction support stage 16 Polishing buff material 17 TFT formation film (or BP formation film)
DESCRIPTION OF SYMBOLS 18 Substrate support jig for image inspection 19 Illumination cylinder 20 Image inspection machine 21 Incident light 22 Emission light 23 Transparent protective tape 24 Protective glass chip 26 Hollow vacuum suction collet 27 Dicing tape 28 Dicing vacuum suction jig 29 Flexible substrate 30 Metal Frame 31 High thermal conductive mold resin 32 Parting plate 33 Vacuum suction jig for laser cutting 35 Polarizing plate 36 Resin frame 37 Mold resin 38 BP substrate (silicon)
39 Mixed portion of overflowed liquid crystal and overflowed sealing material 40 Overflowed sealing material layer 41 Overflowed liquid crystal layer 42 Vacuum layer or mixed layer of liquid crystal and sealing material 43 Electrostatic chuck stage 44 TFT substrate (silicon)
45 Opposing substrate (low strain point glass)
50 Protection glass large plate (1)
51 Protective glass plate (2)

Claims (17)

表示領域と周辺領域とを有する駆動基板と、
該駆動基板と所定の間隙を介して液晶注入口無しパターンのシール材により貼り合わせられた対向基板と、
前記駆動基板及び対向基板の間隙に保持された液晶と、
前記少なくとも表示領域を囲繞する第1の周辺枠と、
該第1の周辺枠を囲繞する第2の周辺枠とを備える電気光学表示装置であって、
前記シール材が前記第2の周辺枠の外側領域に塗布され、
前記液晶が前記第1の周辺枠の内側領域に保持された
電気光学表示装置。
A drive substrate having a display area and a peripheral area;
A counter substrate bonded to the drive substrate with a sealant having a liquid crystal injection hole-free pattern through a predetermined gap;
Liquid crystal held in the gap between the drive substrate and the counter substrate;
A first peripheral frame surrounding at least the display area;
An electro-optic display device comprising a second peripheral frame surrounding the first peripheral frame,
The sealing material is applied to an outer region of the second peripheral frame;
An electro-optic display device in which the liquid crystal is held in an inner region of the first peripheral frame.
前記第1の周辺枠若しくは前記第2の周辺枠の少なくとも一方は、液晶ギャップ高さを有する
請求項1に記載の電気光学表示装置。
The electro-optical display device according to claim 1, wherein at least one of the first peripheral frame or the second peripheral frame has a liquid crystal gap height.
前記第1の周辺枠と前記第2の周辺枠の間に、液晶とシール材の混在層、液晶若しくはシール材のオーバーフロー層あるいは真空層が形成された
請求項1に記載の電気光学表示装置。
The electro-optical display device according to claim 1, wherein a mixed layer of liquid crystal and a sealing material, an overflow layer of a liquid crystal or a sealing material, or a vacuum layer is formed between the first peripheral frame and the second peripheral frame.
基体に複数の駆動基板を形成し、各駆動基板の少なくとも表示領域を囲繞する第1の周辺枠及び該第1の周辺枠を囲繞する第2の周辺枠を形成する工程と、
各駆動基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、
各対向基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、
基体に形成された駆動基板の第2の周辺枠の外側のシール領域に液晶注入口無しパターンのシール材を塗布すると共に、前記第1の周辺枠の内側領域に所定量の液晶を滴下した後に、前記駆動基板と前記対向基板とが所定の間隙を介して対面配置する様に、基体に形成された対向基板を相対して位置調整を行い、所定の間隙で所定の真空度の真空装置内で重ね合わせる工程と、
前記真空装置内を大気圧に戻して大気圧の均一加圧により貼り合せを行い、シール材の硬化を行って所定の液晶ギャップのLCDパネルを形成する工程と、
前記駆動基板が形成された基体及び前記対向基板が形成された基体を前記LCDパネル毎に分断する工程とを備える
ことを特徴とする電気光学表示装置の製造方法。
Forming a plurality of driving substrates on a base, and forming a first peripheral frame surrounding at least a display region of each driving substrate and a second peripheral frame surrounding the first peripheral frame;
Forming a liquid crystal alignment film corresponding to each drive substrate or performing a liquid crystal alignment film formation and a liquid crystal alignment treatment;
A step of performing liquid crystal alignment film formation or liquid crystal alignment film formation and liquid crystal alignment treatment corresponding to each counter substrate;
After applying a sealing material having a pattern without a liquid crystal injection hole to a seal region outside the second peripheral frame of the driving substrate formed on the base, and dropping a predetermined amount of liquid crystal on the inner region of the first peripheral frame The position of the counter substrate formed on the base is adjusted relative to each other so that the drive substrate and the counter substrate face each other with a predetermined gap therebetween, and the vacuum substrate having a predetermined vacuum degree is set in the predetermined gap. And the process of superimposing
A step of returning the inside of the vacuum device to atmospheric pressure and performing bonding by uniform pressure of atmospheric pressure, curing the sealing material to form an LCD panel with a predetermined liquid crystal gap;
And a step of dividing the base body on which the driving substrate is formed and the base body on which the counter substrate is formed for each LCD panel.
前記LCDパネルを形成した後に、少なくとも前記対向基板の裏面光学研磨若しくは少なくとも前記駆動基板が形成された基体の裏面光学研磨を行う工程を備える
ことを特徴とする請求項4に記載の電気光学表示装置の製造方法。
5. The electro-optical display device according to claim 4, further comprising a step of performing at least back optical polishing of the counter substrate or at least back optical polishing of the base on which the driving substrate is formed after forming the LCD panel. Manufacturing method.
前記第1の周辺枠の内側領域に所定量の液晶を滴下した直後に、前記駆動基板が形成された基体或いは前記対向基板が形成された基体は移動させずに光センサーをステップアンドリピート方式で移動させ、または光センサーは移動させずに前記駆動基板が形成された基体或いは前記対向基板が形成された基体をステップアンドリピート方式で移動させ、前記光センサーによって第1の周辺枠の内側領域に滴下された液晶の滴下有無及び液晶滴下量の適正化を判定する工程を備える
ことを特徴とする請求項4に記載の電気光学表示装置の製造方法。
Immediately after dropping a predetermined amount of liquid crystal on the inner region of the first peripheral frame, the base on which the driving substrate is formed or the base on which the counter substrate is formed is not moved, and the optical sensor is moved in a step-and-repeat manner. Move the substrate on which the driving substrate is formed or the substrate on which the counter substrate is formed without moving the optical sensor in a step-and-repeat manner, and move the substrate to the inner region of the first peripheral frame by the optical sensor. The method for manufacturing an electro-optic display device according to claim 4, further comprising a step of determining whether or not the dropped liquid crystal is dropped and optimizing the amount of dropped liquid crystal.
前記第1の周辺枠の内側領域に所定量の液晶を滴下した直後に、前記駆動基板が形成された基体或いは前記対向基板が形成された基体は移動させずに液晶ディスペンサーと光センサーを同期してステップアンドリピート方式で移動させ、または光センサー及び液晶ディスペンサーは移動させずに前記駆動基板が形成された基体或いは前記対向基板が形成された基体をステップアンドリピート方式で移動させ、所定量の液晶滴下に同期した光センサーによって第1の周辺枠の内側領域に滴下された液晶の滴下有無及び液晶滴下量の適正化を判定する工程を備える
ことを特徴とする請求項4に記載の電気光学表示装置の製造方法。
Immediately after dropping a predetermined amount of liquid crystal on the inner area of the first peripheral frame, the substrate on which the driving substrate is formed or the substrate on which the counter substrate is formed is not moved and the liquid crystal dispenser and the optical sensor are synchronized. The substrate on which the driving substrate is formed or the substrate on which the counter substrate is formed is moved in a step-and-repeat manner without moving the optical sensor and the liquid crystal dispenser. The electro-optic display according to claim 4, further comprising a step of determining whether or not the liquid crystal is dropped on the inner region of the first peripheral frame and optimizing the liquid crystal drop amount by an optical sensor synchronized with the dropping. Device manufacturing method.
前記駆動基板の外部取り出し電極部の形成領域と外部取り出し電極部の非形成領域の境界領域に対応する対向基体の領域に有底の凹部を形成し、前記駆動基板が形成された基体のスクライブラインに沿って前記対向基体側から前記駆動基板が形成された基体に所定深さの切り込み凹部形成するまで対向基体のフルカットダイシングを行った後に前記凹部を形成した領域に衝撃を与えることにより駆動基板の外部取り出し電極部に対応する対向基体の領域を除去することによって対向基板が形成された基体を対向基板毎に分断する工程を備える
ことを特徴とする請求項4に記載の電気光学表示装置の製造方法。
A bottom scribe line is formed in a region of the opposing substrate corresponding to a boundary region between a region where the external extraction electrode portion is formed and a region where the external extraction electrode portion is not formed on the drive substrate, and the scribe line of the substrate on which the drive substrate is formed The drive substrate is subjected to an impact on the region where the recess is formed after full-cut dicing of the counter substrate until a cut recess having a predetermined depth is formed in the substrate on which the drive substrate is formed from the side of the counter substrate along The electro-optic display device according to claim 4, further comprising: a step of dividing the base on which the counter substrate is formed by removing a region of the counter substrate corresponding to the external extraction electrode portion of each of the counter substrates. Manufacturing method.
前記駆動基板の表面または裏面側から前記切り込みの凹部形成領域をダイシングすることによって、駆動基板が形成された基体を駆動基板毎に分断する工程を備える
ことを特徴とする請求項8に記載の電気光学表示装置の製造方法。
The electric circuit according to claim 8, further comprising: a step of dividing the base on which the drive substrate is formed for each drive substrate by dicing the recess formation region of the cut from the front surface or the back surface side of the drive substrate. Manufacturing method of optical display device.
駆動基板が形成された基体内の各駆動基板のシール領域、コモン領域及び外部取り出し電極部上に形成された無機系配向膜または有機系配向膜、及び対向基板が形成された基体内の各対向基板のシール領域及びコモン領域上に形成された無機系配向膜または有機系配向膜をレーザーエッチングする工程を備える
ことを特徴とする請求項4に記載の電気光学表示装置の製造方法。
Each of the opposing surfaces in the substrate on which the sealing region of each driving substrate in the substrate on which the driving substrate is formed, the inorganic alignment film or the organic alignment film formed on the common region and the external extraction electrode portion, and the counter substrate are formed The method of manufacturing an electro-optic display device according to claim 4, further comprising a step of laser etching an inorganic alignment film or an organic alignment film formed on the seal region and the common region of the substrate.
基体に複数の対向基板を形成し、駆動基板の少なくとも表示領域を囲繞する領域に対応する各対向基板の領域に第1の周辺枠及び該第1の周辺枠を囲繞する第2の周辺枠を形成する工程と、
各対向基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、
各駆動基板に対応する液晶配向膜形成或いは液晶配向膜形成及び液晶配向処理を行う工程と、
基体に形成された対向基板の第2の周辺枠の外側のシール領域に液晶注入口無しパターンのシール材を塗布すると共に、前記第1の周辺枠の内側領域に所定量の液晶を滴下した後に、前記駆動基板と前記対向基板とが所定の間隙を介して対面配置する様に、基体に形成された駆動基板を相対して位置調整を行い、所定の間隙で所定の真空度の真空装置内で重ね合わせる工程と、
前記真空装置内を大気圧に戻して大気圧の均一加圧により貼り合せを行い、シール材の硬化を行って所定の液晶ギャップのLCDパネルを形成する工程と、
前記駆動基板が形成された基体及び前記対向基板が形成された基体を前記LCDパネル毎に分断する工程とを備える
ことを特徴とする電気光学表示装置の製造方法。
A plurality of counter substrates are formed on the base, and a first peripheral frame and a second peripheral frame surrounding the first peripheral frame are formed in each counter substrate region corresponding to a region surrounding at least the display region of the drive substrate. Forming, and
A step of performing liquid crystal alignment film formation or liquid crystal alignment film formation and liquid crystal alignment treatment corresponding to each counter substrate;
Forming a liquid crystal alignment film corresponding to each drive substrate or performing a liquid crystal alignment film formation and a liquid crystal alignment treatment;
After applying a sealing material having a liquid crystal injection hole-less pattern to a seal region outside the second peripheral frame of the counter substrate formed on the substrate, and dropping a predetermined amount of liquid crystal on the inner region of the first peripheral frame The position of the drive substrate formed on the base is adjusted relative to each other so that the drive substrate and the counter substrate face each other with a predetermined gap, and the inside of the vacuum apparatus having a predetermined degree of vacuum at the predetermined gap is adjusted. And the process of superimposing
A step of returning the inside of the vacuum device to atmospheric pressure and performing bonding by uniform pressure of atmospheric pressure, curing the sealing material to form an LCD panel with a predetermined liquid crystal gap;
And a step of dividing the base body on which the driving substrate is formed and the base body on which the counter substrate is formed for each LCD panel.
前記LCDパネルを形成した後に、少なくとも前記対向基板の裏面光学研磨若しくは少なくとも前記駆動基板が形成された基体の裏面光学研磨を行う工程を備える
ことを特徴とする請求項11に記載の電気光学表示装置の製造方法。
The electro-optical display device according to claim 11, further comprising a step of performing at least back optical polishing of the counter substrate or at least back optical polishing of a base on which the driving substrate is formed after forming the LCD panel. Manufacturing method.
前記第1の周辺枠の内側領域に所定量の液晶を滴下した直後に、前記対向基板が形成された基体は移動させずに光センサーをステップアンドリピート方式で移動させ、または光センサーは移動させずに前記対向基板が形成された基体をステップアンドリピート方式で移動させ、前記光センサーによって第1の周辺枠の内側領域に滴下された液晶の滴下有無及び液晶滴下量の適正化を判定する工程を備える
ことを特徴とする請求項11に記載の電気光学表示装置の製造方法。
Immediately after dropping a predetermined amount of liquid crystal on the inner region of the first peripheral frame, the optical sensor is moved in a step-and-repeat manner without moving the substrate on which the counter substrate is formed, or the optical sensor is moved. Without moving the substrate on which the counter substrate is formed in a step-and-repeat manner, and determining whether or not the liquid crystal dropped on the inner region of the first peripheral frame by the optical sensor and the optimization of the liquid crystal dropping amount are determined. The method of manufacturing an electro-optical display device according to claim 11.
前記第1の周辺枠の内側領域に所定量の液晶を滴下した直後に、前記対向基板が形成された基体は移動させずに液晶ディスペンサーと光センサーを同期してステップアンドリピート方式で移動させ、または光センサー及び液晶ディスペンサーは移動させずに前記対向基板が形成された基体をステップアンドリピート方式で移動させ、所定量の液晶滴下に同期した光センサーによって第1の周辺枠の内側領域に滴下された液晶の滴下有無及び液晶滴下量の適正化を判定する工程を備える
ことを特徴とする請求項11に記載の電気光学表示装置の製造方法。
Immediately after dropping a predetermined amount of liquid crystal on the inner area of the first peripheral frame, the substrate on which the counter substrate is formed is moved in a step-and-repeat manner in synchronization with the liquid crystal dispenser and the optical sensor, Alternatively, the substrate on which the counter substrate is formed is moved by a step-and-repeat method without moving the optical sensor and the liquid crystal dispenser, and is dropped onto the inner region of the first peripheral frame by the optical sensor synchronized with a predetermined amount of liquid crystal dropping. The method for manufacturing an electro-optical display device according to claim 11, further comprising a step of determining whether or not the liquid crystal is dropped and optimizing the liquid crystal dropping amount.
前記駆動基板の外部取り出し電極部の形成領域と外部取り出し電極部の非形成領域の境界領域に対応する対向基体の領域に有底の凹部を形成し、前記駆動基板が形成された基体のスクライブラインに沿って前記対向基体側から前記駆動基板が形成された基体に所定深さの切り込み凹部形成するまで対向基体のフルカットダイシングを行った後に前記凹部を形成した領域に衝撃を与えることにより駆動基板の外部取り出し電極部に対応する対向基体の領域を除去することによって対向基板が形成された基体を対向基板毎に分断する工程を備える
ことを特徴とする請求項11に記載の電気光学表示装置の製造方法。
A bottom scribe line is formed in a region of the opposing substrate corresponding to a boundary region between a region where the external extraction electrode portion is formed and a region where the external extraction electrode portion is not formed on the drive substrate, and the scribe line of the substrate on which the drive substrate is formed The drive substrate is subjected to an impact on the region where the recess is formed after full-cut dicing of the counter substrate until a cut recess having a predetermined depth is formed in the substrate on which the drive substrate is formed from the side of the counter substrate along The electro-optic display device according to claim 11, further comprising: a step of dividing the base on which the counter substrate is formed by removing the region of the counter base corresponding to the external extraction electrode portion of each counter substrate. Manufacturing method.
前記駆動基板の表面または裏面側から前記切り込みの凹部形成領域をダイシングすることによって、駆動基板が形成された基体を駆動基板毎に分断する工程を備える
ことを特徴とする請求項15に記載の電気光学表示装置の製造方法。
16. The electric device according to claim 15, further comprising a step of dividing the base on which the drive substrate is formed for each drive substrate by dicing the recess formation region of the cut from the front surface or the back surface side of the drive substrate. Manufacturing method of optical display device.
駆動基板が形成された基体内の各駆動基板のシール領域、コモン領域及び外部取り出し電極部上に形成された無機系配向膜または有機系配向膜、及び対向基板が形成された基体内の各対向基板のシール領域及びコモン領域上に形成された無機系配向膜または有機系配向膜をレーザーエッチングする工程を備える
ことを特徴とする請求項11に記載の電気光学表示装置の製造方法。
Each of the opposing surfaces in the substrate on which the sealing region of each driving substrate in the substrate on which the driving substrate is formed, the inorganic alignment film or the organic alignment film formed on the common region and the external extraction electrode portion, and the counter substrate are formed The method for manufacturing an electro-optic display device according to claim 11, comprising a step of laser etching an inorganic alignment film or an organic alignment film formed on the sealing region and the common region of the substrate.
JP2005046691A 2005-02-23 2005-02-23 Electro-optical display device and method for manufacturing the same Pending JP2006235010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046691A JP2006235010A (en) 2005-02-23 2005-02-23 Electro-optical display device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046691A JP2006235010A (en) 2005-02-23 2005-02-23 Electro-optical display device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006235010A true JP2006235010A (en) 2006-09-07

Family

ID=37042758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046691A Pending JP2006235010A (en) 2005-02-23 2005-02-23 Electro-optical display device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006235010A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139736A1 (en) * 2007-05-14 2008-11-20 Mitsui Chemicals, Inc. Liquid crystal panel mounting substrate, and method for producing the same
WO2009072538A1 (en) * 2007-12-07 2009-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Protective film for laser processing and processing method using the same
US7741137B2 (en) 2008-02-01 2010-06-22 Seiko Epson Corporation Method of manufacturing electro-optical device
JP2011113047A (en) * 2009-11-30 2011-06-09 Casio Computer Co Ltd Protective plate integrated liquid crystal display panel and method for producing the same
US8390748B2 (en) 2009-06-05 2013-03-05 Seiko Epson Corporation Electro-optical display device and projector
US8395748B2 (en) 2009-06-05 2013-03-12 Seiko Epson Corporation Electro-optical display device and projector
JP5522938B2 (en) * 2006-09-22 2014-06-18 ヘンケル コーポレイション Manufacturing method of liquid crystal display panel
JP2017116949A (en) * 2017-02-08 2017-06-29 株式会社ジャパンディスプレイ Display panel
CN111562693A (en) * 2020-06-02 2020-08-21 京东方科技集团股份有限公司 Method for preparing liquid crystal display
US10782578B2 (en) 2016-12-27 2020-09-22 Lg Chem, Ltd. Method for forming wire portion of liquid crystal chromic device and liquid crystal chromic device
CN113409690A (en) * 2021-06-08 2021-09-17 深圳全息界科技有限公司 Large-size display screen laminating process
CN113906336A (en) * 2020-03-17 2022-01-07 京东方科技集团股份有限公司 Display panel, display device and manufacturing method of display panel
JP7287637B2 (en) 2018-10-04 2023-06-06 株式会社Nsc Liquid crystal panel manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522938B2 (en) * 2006-09-22 2014-06-18 ヘンケル コーポレイション Manufacturing method of liquid crystal display panel
JP5055362B2 (en) * 2007-05-14 2012-10-24 三井化学株式会社 Liquid crystal display panel mounting substrate and manufacturing method thereof
WO2008139736A1 (en) * 2007-05-14 2008-11-20 Mitsui Chemicals, Inc. Liquid crystal panel mounting substrate, and method for producing the same
WO2009072538A1 (en) * 2007-12-07 2009-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Protective film for laser processing and processing method using the same
US7741137B2 (en) 2008-02-01 2010-06-22 Seiko Epson Corporation Method of manufacturing electro-optical device
US8390748B2 (en) 2009-06-05 2013-03-05 Seiko Epson Corporation Electro-optical display device and projector
US8395748B2 (en) 2009-06-05 2013-03-12 Seiko Epson Corporation Electro-optical display device and projector
JP2011113047A (en) * 2009-11-30 2011-06-09 Casio Computer Co Ltd Protective plate integrated liquid crystal display panel and method for producing the same
US10782578B2 (en) 2016-12-27 2020-09-22 Lg Chem, Ltd. Method for forming wire portion of liquid crystal chromic device and liquid crystal chromic device
JP2017116949A (en) * 2017-02-08 2017-06-29 株式会社ジャパンディスプレイ Display panel
JP7287637B2 (en) 2018-10-04 2023-06-06 株式会社Nsc Liquid crystal panel manufacturing method
CN113906336A (en) * 2020-03-17 2022-01-07 京东方科技集团股份有限公司 Display panel, display device and manufacturing method of display panel
CN113906336B (en) * 2020-03-17 2023-11-14 京东方科技集团股份有限公司 Display panel, display device and manufacturing method of display panel
CN111562693A (en) * 2020-06-02 2020-08-21 京东方科技集团股份有限公司 Method for preparing liquid crystal display
CN111562693B (en) * 2020-06-02 2023-04-14 京东方科技集团股份有限公司 Method for preparing liquid crystal display
CN113409690A (en) * 2021-06-08 2021-09-17 深圳全息界科技有限公司 Large-size display screen laminating process
CN113409690B (en) * 2021-06-08 2024-01-30 深圳全息界科技有限公司 Large-size display screen laminating process

Similar Documents

Publication Publication Date Title
JP2006235010A (en) Electro-optical display device and method for manufacturing the same
US7733457B2 (en) Liquid crystal display and method of fabricating the same
US6890786B2 (en) Wafer scale processing
US6469832B2 (en) Method for manufacturing microlens substrate, microlens substrate, opposing substrate for liquid crystal panel, liquid crystal panel, and projection display apparatus
US6628353B2 (en) Flat display device having a display panel including a plurality pixels and a microlens substrate including a plurality of microlens
KR100234896B1 (en) Lcd substrate planing method
KR100746681B1 (en) A method of manufacturing a microlens substrate, a microlens substrate, an opposed substrate for a liquid crystal panel, a liquid crystal panel and a projection type display apparatus
US7491580B2 (en) Method of manufacturing electro-optical device
US20160131944A1 (en) Display device and manufacturing method thereof
US7741137B2 (en) Method of manufacturing electro-optical device
KR100795148B1 (en) A method of manufacturing a microlens substrate
JP2001318384A (en) Liquid crystal display device
KR20070060810A (en) Method for manufacturing liquid crystal display panel
JP2005249886A (en) Manufacturing method and apparatus of electrooptical display
JP2001013489A (en) Production of liquid crystal display device
JP2010113377A (en) Liquid crystal display and method of fabricating the same
JP2003295144A (en) Processing line for liquid crystal display device and method of manufacturing liquid crystal display device using the same
JP2007041625A (en) Liquid crystal display and method of fabricating the same
JP2005215419A (en) Reflection-type liquid crystal display and transmission-type liquid crystal display
JP3425747B2 (en) Manufacturing method of liquid crystal display element
JP2005234309A (en) Method for manufacturing optical component and optical component
KR101451742B1 (en) Liquid crystal display panel and method of fabricating the same
KR100360160B1 (en) Flat panel display device
JP2022190311A (en) Electro-optical device, method for manufacturing electro-optical device, and electronic apparatus
JP2005173422A (en) Electro-optic display apparatus and its manufacturing method