JP2006234744A - Granular material selector - Google Patents

Granular material selector Download PDF

Info

Publication number
JP2006234744A
JP2006234744A JP2005053123A JP2005053123A JP2006234744A JP 2006234744 A JP2006234744 A JP 2006234744A JP 2005053123 A JP2005053123 A JP 2005053123A JP 2005053123 A JP2005053123 A JP 2005053123A JP 2006234744 A JP2006234744 A JP 2006234744A
Authority
JP
Japan
Prior art keywords
light
light receiving
measurement target
granular material
target region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053123A
Other languages
Japanese (ja)
Other versions
JP4675120B2 (en
Inventor
Naoto Ikeda
直人 池田
Yuichi Yamazaki
祐一 山崎
Yuji Suzuki
祐二 鈴木
Koji Hashimoto
幸治 橋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005053123A priority Critical patent/JP4675120B2/en
Publication of JP2006234744A publication Critical patent/JP2006234744A/en
Application granted granted Critical
Publication of JP4675120B2 publication Critical patent/JP4675120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sorting Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular material selector capable of enlarging process capacity by widening the width size of the route width direction of the measurement region with a compact arrangement without enlarging the whole size of the device and also without widening the view angle of the light receiving means. <P>SOLUTION: The device comprises: the object matter transferring means TI for transferring the granular body group in a wide spreading state along the width direction while making pass through the measurement area; the light receiving means 5 for receiving light from the measurement area in a state of wide viewing angle spreading route width direction; the illumination means 4 for illuminating the measurement area; the evaluation means for evaluating the light receiving amount of every unit light receiving area of a plurality of unit light receiving areas equivalent to a plurality of unit light receiving area; and the light path formation means 9 for guiding light of light reflection type by folding back the light from the measurement area in the direction of a light axis so as to receive the contracted image of measurement area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば米粒や樹脂ペレット等の粒状体群を計測対象領域を通過させながら一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で移送する対象物移送手段と、粒状体の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で、且つ、前記経路横幅方向に広がる視野角を有する状態で、前記計測対象領域からの光を受光する受光手段と、前記計測対象領域の前記経路横幅方向の全幅又はほぼ全幅を照明する照明手段と、前記受光手段の受光情報に基づいて、前記計測対象領域における複数の単位受光対象範囲に相当する複数の単位受光範囲毎に受光量を評価する評価手段とが設けられた粒状体選別装置に関する。   The present invention includes, for example, an object transfer means for transferring a granular material group such as rice grains and resin pellets in a single layer while passing through a measurement target region and in a horizontally expanded state arranged in a plurality of rows along a path width direction, A light receiving means for receiving light from the measurement target region in a resolution state in which a range smaller than the size of the body is a unit light reception target range and having a viewing angle widening in the path width direction; and the measurement target Based on the light receiving information of the light receiving means and the illuminating means that illuminates the entire width or almost the full width of the area in the horizontal direction of the path, light is received for each of the plurality of unit light receiving ranges corresponding to the plurality of unit light receiving target ranges in the measurement target area. The present invention relates to a granular material sorting apparatus provided with an evaluation means for evaluating the amount.

上記構成の粒状体選別装置は、例えば、米粒等の粒状体群を計測対象領域を通過するように移送しながら、受光手段により、粒状体の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で計測対象領域からの光を受光して、その受光情報に基づいて、前記計測対象領域における複数の単位受光対象範囲に相当する複数の単位受光範囲毎に受光量を評価して、受光量が適正光量範囲を外れていると評価された不良物を計測対象領域よりも下手側の箇所において例えばエアー噴出装置等の分離手段によって正常物とは異なる経路に分離させる構成としたものがある。そして、このような粒状体選別装置において、従来では、前記経路横幅方向に広がる視野角を有する前記受光手段は、計測対象領域からの光が直接入射する状態で配置されて計測対象領域の像を受光する構成となっていた(例えば、特許文献1参照。)。尚、前記受光手段は、前記複数の単位受光範囲に相当する複数の単位受光範囲毎の受光量を得るために複数の受光素子をライン状に並ぶ状態で備えるCCDセンサと、計測対象領域からの光をCCDセンサに導く光学系(具体的には光学レンズ等)とを備える構成となっている。   The granular material sorting apparatus having the above-described configuration is, for example, a resolution in which a range smaller than the size of the granular material is set as a unit light receiving target range by the light receiving means while transferring a granular material group such as rice grains so as to pass through the measurement target region. Receiving light from the measurement target region in the state, and evaluating the received light amount for each of the plurality of unit light reception ranges corresponding to the plurality of unit light reception target ranges in the measurement target region based on the light reception information, However, there is a configuration in which a defective object evaluated as being out of the appropriate light amount range is separated into a path different from that of a normal object by a separating means such as an air ejection device at a position lower than the measurement target region. In such a granular material sorting apparatus, conventionally, the light receiving means having a viewing angle that spreads in the path width direction is arranged in a state where light from the measurement target area directly enters, and an image of the measurement target area is displayed. It was the structure which receives light (for example, refer patent document 1). The light receiving means includes a CCD sensor having a plurality of light receiving elements arranged in a line in order to obtain a light receiving amount for each of the plurality of unit light receiving ranges corresponding to the plurality of unit light receiving ranges, and a measurement target region. An optical system (specifically, an optical lens or the like) that guides light to the CCD sensor is provided.

特開2001−272353号公報JP 2001-272353 A

上記従来構成では、前記受光手段は計測対象領域からの光が直接入射する状態で配置されて計測対象領域の像を受光する構成となっているから、次のような不利があった。   In the above conventional configuration, the light receiving means is arranged in a state in which light from the measurement target region is directly incident and receives an image of the measurement target region, and thus has the following disadvantages.

すなわち、上記したような粒状体選別装置において、前記計測対象領域を移送する粒状体群の移送量を多くして単位時間当たりの処理量を多くして処理能力を向上させるためには、計測対象領域の経路横幅方向の横幅寸法を大きくする必要があるが、上記したような従来構成であれば、計測対象領域の経路横幅方向の横幅寸法を大きくするためには、受光手段における経路横幅方向に広がる視野角を広くさせる必要がある(図17参照)。   That is, in the granular material sorting apparatus as described above, in order to increase the transfer amount of the granular material group that transfers the measurement target region and increase the processing amount per unit time, Although it is necessary to increase the width dimension in the path width direction of the area, in the conventional configuration as described above, in order to increase the width dimension in the path width direction of the measurement target area, It is necessary to widen the wide viewing angle (see FIG. 17).

しかし、前記視野角を広くさせると、受光手段にて受光される計測対象領域の像において、経路横幅方向の端部付近では、対象物移送手段にて計測対象領域を通過するように移送される粒状体群が搬送の乱れに起因して受光手段に対する遠近方向に位置がずれることにより、前記受光手段の受光情報に基づいて前記評価手段が複数の単位受光対象範囲に相当する複数の単位受光範囲毎に受光量を評価する場合に、適切な評価を行うことができないおそれがあった。   However, when the viewing angle is widened, the image of the measurement target area received by the light receiving means is transferred so as to pass through the measurement target area by the object transfer means in the vicinity of the end in the path width direction. A plurality of unit light-receiving ranges corresponding to a plurality of unit light-receiving target ranges based on the light-receiving information of the light-receiving means when the granular material group is displaced in the perspective direction with respect to the light-receiving means due to disturbance of conveyance. When evaluating the amount of received light every time, there is a possibility that appropriate evaluation cannot be performed.

説明を加えると、受光手段は経路横幅方向に広がる視野角を有する状態で計測対象領域からの光を受光するものであるから、図17に示すように、受光手段5にて受光される計測対象領域からの光は、経路横幅方向の両端側になるほど受光手段5の光軸(図17のOL参照)に対する傾斜角αが大きくなるが、視野角を大にさせると、この傾斜角αが大きくなって粒状体を評価する場合に粒状体を誤って評価するおそれがある。   In other words, since the light receiving means receives light from the measurement target area with a viewing angle that extends in the width direction of the path, the measurement target received by the light receiving means 5 as shown in FIG. The light from the region has a larger inclination angle α with respect to the optical axis (see OL in FIG. 17) of the light receiving means 5 as it becomes closer to both ends in the lateral direction of the path, but when the viewing angle is increased, the inclination angle α increases. Therefore, when evaluating a granular material, the granular material may be erroneously evaluated.

この点について図18を参照しながら説明を加える。図18に示すように、粒状体群は一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で移送されることになる。この図18では、粒状体が移送される複数の列としてQ1,Q2,Q3‥で例示してあり、左端から2番目の列Q2に位置する粒状体の受光対象範囲に異常部qがある不良物が存在している場合を示している。そして、計測対象領域における経路横幅方向の両端側からの光の受光手段4の光軸方向に対する傾斜角を大きくすると(図18の傾斜角α1参照)、予め設定されている適正な位置を横並び状態で移送されているときは、各列の粒状体を適正に評価することができるが、左端から2番目の列Q2に位置する粒状体の受光対象範囲に異常部qがある不良物が受光手段5の光軸方向に沿って受光手段に近づく方向に位置ずれすると、受光手段の受光情報から左端から1番目の列Q1に不良物が存在しているものと誤って評価してしまうおそれがある。   This point will be described with reference to FIG. As shown in FIG. 18, the granular material group is transported in a single layer state and in a horizontally expanded state arranged in a plurality of rows along the path width direction. In FIG. 18, Q1, Q2, Q3... Are illustrated as a plurality of columns to which the granular material is transferred, and there is an abnormal portion q in the light receiving target range of the granular material located in the second column Q2 from the left end. The case where the thing exists is shown. When the inclination angle of the light receiving means 4 with respect to the optical axis direction of the light receiving means 4 from both ends in the path width direction in the measurement target region is increased (see the inclination angle α1 in FIG. 18), the appropriate positions set in advance are arranged side by side. In this case, it is possible to properly evaluate the granular material in each column, but the defective object having the abnormal portion q in the light receiving target range of the granular material located in the second column Q2 from the left end is the light receiving means. If the position is shifted in the direction of approaching the light receiving means along the optical axis direction 5, there is a risk of erroneously evaluating that there is a defect in the first column Q1 from the left end from the light receiving information of the light receiving means. .

そこで、このような不利を回避するための手段として、受光手段と計測対象領域とを大きく離間させることにより計測対象領域から受光手段に至るまでの光路長を長くさせることが考えられる。このようにすると、計測対象領域の経路横幅方向の横幅寸法を大きくしても、受光手段5による計測対象領域の像を受光するときの視野角を狭くさせることができ、計測対象領域における経路横幅方向の両端側からの光の受光手段4の光軸方向に対する傾斜角をできるだけ小さくして、粒状体が位置ずれしても上述したような誤った評価をするおそれを少なくさせることができる(図18の傾斜角α2参照)。しかしながら、このように構成する場合には、受光手段と計測対象領域との光軸方向に沿って大きく離間させた状態で配置しなければならず、大きな設置スペースが必要となって装置全体が大型化してしまう不利がある。   Therefore, as a means for avoiding such disadvantages, it is conceivable to increase the optical path length from the measurement target area to the light receiving means by largely separating the light receiving means and the measurement target area. In this way, even if the width dimension in the path width direction of the measurement target area is increased, the viewing angle when receiving the image of the measurement target area by the light receiving means 5 can be narrowed, and the path width in the measurement target area can be reduced. The inclination angle of the light receiving means 4 with respect to the optical axis direction of the light receiving means 4 from both ends in the direction can be made as small as possible to reduce the possibility of erroneous evaluation as described above even if the granular material is displaced (see FIG. 18 inclination angle α2). However, in the case of such a configuration, the light receiving means and the measurement target region must be arranged in a state of being largely separated along the optical axis direction, and a large installation space is required, resulting in a large size of the entire apparatus. There is a disadvantage that will become.

本発明の目的は、装置全体を大型化させることなくコンパクトな配置構成としながら、且つ、受光手段の視野角を広くさせることなく粒状体の評価を適正に行うことができ、計測対象領域の経路横幅方向の横幅寸法を大にして処理能力を増大させることが可能となる粒状体選別装置を提供する点にある。   An object of the present invention is to appropriately evaluate a granular material without making the entire apparatus large in size and having a compact arrangement configuration, and without widening the viewing angle of the light receiving means. The object is to provide a granular material sorting apparatus that can increase the processing capacity by increasing the width dimension in the width direction.

本発明に係る粒状体選別装置は、粒状体群を計測対象領域を通過させながら一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で移送する対象物移送手段と、粒状体の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で、且つ、前記経路横幅方向に広がる視野角を有する状態で、前記計測対象領域からの光を受光する受光手段と、前記計測対象領域の前記経路横幅方向の全幅又はほぼ全幅を照明する照明手段と、前記受光手段の受光情報に基づいて、前記計測対象領域における複数の単位受光対象範囲に相当する複数の単位受光範囲毎に受光量を評価する評価手段とが設けられたものであって、その第1特徴構成は、前記計測対象領域の像を縮小した像を前記受光手段が受光するように、前記計測対象領域からの光を前記受光手段における光軸方向に折り返して前記受光手段に導く光反射式の折り曲げ光路形成手段を備えている点にある。   The granular material sorting apparatus according to the present invention includes an object transporting means for transporting a granular material group in a single layer while passing through a measurement target region and in a horizontally expanded state arranged in a plurality of rows along a path width direction, and a granular material. A light receiving means for receiving light from the measurement target region in a resolution state in which the range smaller than the unit light reception target range and a viewing angle spreading in the lateral direction of the path, and the measurement target region The light receiving amount for each of the plurality of unit light receiving ranges corresponding to the plurality of unit light receiving target ranges in the measurement target region based on the light receiving information of the light receiving unit and the illuminating unit that illuminates the full width or almost the full width of the path width direction And an evaluation means for evaluating the measurement object, wherein the first characteristic configuration is such that the light receiving means receives the reduced image of the measurement target area from the measurement target area. The in that it includes a light reflection type optical path bending forming means for guiding the light receiving means is folded back in the optical axis direction in the light receiving means.

第1特徴構成によれば、前記対象物移送手段によって粒状体群が一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で計測対象領域を通過するように移送され、前記受光手段は、粒状体の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で、且つ、経路横幅方向に広がる視野角を有する状態で、計測対象領域からの光を受光することになる。そして、前記計測対象領域からの光は、前記折り曲げ光路形成手段によって、計測対象領域の像を縮小した像を受光手段が受光するように、前記計測対象領域からの光が受光手段における光軸方向に折り返した状態で受光手段に導かれることになる。   According to the first characteristic configuration, the target object transporting means transports the granular material group so as to pass through the measurement target region in a single layer state and in a horizontally expanded state arranged in a plurality of rows along the path lateral width direction. The means receives light from the measurement target region in a resolution state in which a range smaller than the size of the granular body is a unit light reception target range and has a viewing angle that extends in the path width direction. Then, the light from the measurement target region is transmitted in the optical axis direction of the light receiving unit so that the light receiving unit receives an image obtained by reducing the image of the measurement target region by the bending optical path forming unit. In this state, it is guided to the light receiving means.

前記折り曲げ光路形成手段について説明を加えると、この折り曲げ光路形成手段は、光反射式に構成されており、計測対象領域からの光を受光手段における光軸方向に折り返した状態で、言い換えると、計測対象領域からの光を反射させて受光手段における光軸方向に折り返して折り曲げた光路を形成する状態で受光手段に導くことになり、計測対象領域から受光手段に至るまでの光路長を長くすることができる。しかも、このとき、計測対象領域の像を縮小した像を受光手段が受光するように、計測対象領域からの光を受光手段に導くのである。そのための具体構成としては、例えば、光反射面を平面状に形成した反射体を用いて計測対象領域からの光を反射させるようにしたり、光反射面を凹面形状に形成した反射体を用いて計測対象領域からの光を反射させる構成等がある。   When the bending optical path forming means is described further, this bending optical path forming means is configured in a light reflection type, and in a state where the light from the measurement target area is folded back in the optical axis direction in the light receiving means, in other words, measurement The light from the target area is reflected and folded back in the optical axis direction of the light receiving means to form a bent optical path, leading to the light receiving means, and the optical path length from the measurement target area to the light receiving means is increased. Can do. In addition, at this time, the light from the measurement target area is guided to the light receiving means so that the light receiving means receives an image obtained by reducing the image of the measurement target area. As a specific configuration for that purpose, for example, a light reflecting surface formed in a planar shape is used to reflect light from the measurement target region, or a light reflecting surface formed in a concave shape is used. There is a configuration that reflects light from the measurement target region.

その結果、受光手段が設置される箇所と計測対象領域との間の離間距離を大きくさせなくても、計測対象領域から受光手段に至るまでの光路長を長くすることができるから、処理能力を向上させるために計測対象領域の経路横幅方向の横幅寸法を大にさせる場合であっても、受光手段の視野角を広くさせることがないので粒状体の評価を適正に行うことができる。しかも、受光手段が設置される箇所と計測対象領域との間の離間距離を小さくすることができ、装置全体を大型化させることなくコンパクトな配置構成とすることが可能となる。   As a result, it is possible to increase the optical path length from the measurement target area to the light receiving means without increasing the separation distance between the place where the light receiving means is installed and the measurement target area. Even when the width dimension in the path width direction of the measurement target region is increased in order to improve, the viewing angle of the light receiving means is not increased, so that the granular material can be properly evaluated. Moreover, the distance between the place where the light receiving means is installed and the measurement target region can be reduced, and a compact arrangement can be achieved without increasing the size of the entire apparatus.

従って、装置全体を大型化させることなくコンパクトな配置構成とすることができるものでありながら、且つ、受光手段の視野角を広くさせることがなく粒状体の評価を適正に行うことができ、計測対象領域の経路横幅方向の横幅寸法を大にして処理能力を増大させることが可能となる粒状体選別装置を提供できるに至った。   Therefore, it is possible to make a compact arrangement configuration without increasing the size of the entire apparatus, and it is possible to appropriately evaluate the granular material without widening the viewing angle of the light receiving means, and to perform measurement. It has become possible to provide a granular material sorting apparatus capable of increasing the processing capacity by increasing the width dimension of the target region in the path width direction.

本発明の第2特徴構成は、第1特徴構成に加えて、前記折り曲げ光路形成手段が、前記計測対象領域からの光を反射する第1の光反射体と、その第1の光反射体にて反射した光を反射して前記受光手段に導く第2の光反射体とを備えて構成され、且つ、前記第1の光反射体及び第2の光反射体の夫々が光反射面を平面状に形成して構成されている点にある。   According to a second characteristic configuration of the present invention, in addition to the first characteristic configuration, the bent optical path forming means includes a first light reflector that reflects light from the measurement target region, and the first light reflector. And a second light reflector that reflects the reflected light and guides it to the light receiving means, and each of the first light reflector and the second light reflector has a flat light reflecting surface. It is in the point formed and formed in the shape.

第2特徴構成によれば、計測対象領域からの光が、光反射面を平面状に形成して構成されている第1の光反射体にて反射され、その第1の光反射体にて反射した光が光反射面を平面状に形成して構成されている第2の光反射体にて反射されて、計測対象領域の像を縮小した像を受光手段が受光するように受光手段における光軸方向に折り返した状態で受光手段に導かれることになる。   According to the second characteristic configuration, the light from the measurement target region is reflected by the first light reflector that is configured by forming the light reflection surface in a planar shape, and the first light reflector reflects the light. In the light receiving means, the reflected light is reflected by a second light reflector configured by forming a light reflecting surface in a planar shape, and the light receiving means receives an image obtained by reducing the image of the measurement target region. The light is guided to the light receiving means while being folded back in the optical axis direction.

このように光反射面を平面状に形成して構成される簡単な構成の光反射体を一対備えるだけの簡単な構成で前記折り曲げ光路形成手段を構成することができ、大幅なコスト高を招く不利のない状態で、請求項1を好適に実施することが可能となる。   In this way, the bent optical path forming means can be configured with a simple configuration in which a pair of light reflectors each having a simple configuration configured by forming a light reflecting surface in a flat shape is provided, resulting in a significant increase in cost. It is possible to suitably implement claim 1 without any disadvantage.

本発明の第3特徴構成は、第1特徴構成に加えて、前記折り曲げ光路形成手段が、前記計測対象領域からの光を反射する第1の光反射体と、その第1の光反射体にて反射した光を反射して前記受光手段に導く第2の光反射体とを備えて構成され、且つ、前記第1の光反射体の光反射面を凹面形状に形成し、前記第2の光反射体の光反射面を平面形状又は凸面形状に形成して構成されている点にある。   According to a third characteristic configuration of the present invention, in addition to the first characteristic configuration, the bending optical path forming unit includes a first light reflector that reflects light from the measurement target region, and the first light reflector. And a second light reflector that reflects the reflected light and guides it to the light receiving means, and the light reflecting surface of the first light reflector is formed in a concave shape, and the second light reflector The light reflecting surface of the light reflector is formed in a planar shape or a convex shape.

第3特徴構成によれば、計測対象領域からの光が、光反射面を凹面形状に形成して構成されている第1の光反射体にて反射され、その第1の光反射体にて反射した光が光反射面を平面形状又は凸面形状に形成して構成されている第2の光反射体にて反射されて、計測対象領域の像を縮小した像を受光手段が受光するように受光手段における光軸方向に折り返した状態で受光手段に導かれることになる。   According to the third characteristic configuration, the light from the measurement target region is reflected by the first light reflector that is configured by forming the light reflecting surface in a concave shape, and the first light reflector is used. The reflected light is reflected by a second light reflector having a light reflecting surface formed in a planar shape or a convex shape so that the light receiving means receives an image obtained by reducing the image of the measurement target region. The light receiving means is guided to the light receiving means while being folded back in the optical axis direction.

このように第1の反射体は光反射面を凹面形状に形成しているから、第1の反射体にて計測対象領域からの光が反射されると、計測対象領域における複数の単位受光対象範囲の夫々からの光は、凹面形状の反射面にて計測対象領域の経路横幅方向の中央側に寄せ集めるように屈曲する状態で反射する。その結果、計測対象領域の像を縮小させる状態で光を反射させることになる。その第1の反射体にて反射した光を例えば光反射面を平面形状又は凸面形状に形成して構成されている第2の光反射体にて反射して受光手段に導くことになる。   As described above, since the first reflector has a concave light reflecting surface, when light from the measurement target area is reflected by the first reflector, a plurality of unit light receiving targets in the measurement target area are used. The light from each of the ranges is reflected in a bent state so as to be gathered to the center side in the path width direction of the measurement target region by the concave reflecting surface. As a result, light is reflected while the image of the measurement target region is reduced. For example, the light reflected by the first reflector is reflected by a second light reflector formed by forming a light reflecting surface in a planar shape or a convex shape, and guided to the light receiving means.

このように構成すると、計測対象領域における複数の単位受光対象範囲の夫々からの光を極力受光手段の光軸方向に近い状態で第1の反射体にて反射させることで、計測対象領域の像を縮小した像を受光手段にて受光できるように折り曲げ光路が形成されることになり、対象物移送手段にて計測対象領域を通過するように移送される粒状体群が搬送の乱れに起因して経路横幅方向と交差する方向に位置がずれることがあっても、対象となる単位受光対象範囲ではなく隣接する列の単位受光対象範囲の受光量として誤って評価するおそれが少ないものにすることが可能である。   If comprised in this way, the light of each of the several unit light reception object range in a measurement object area | region will be reflected by the 1st reflector in the state near to the optical axis direction of a light-receiving means as much as possible, and the image of a measurement object area | region will be obtained. Therefore, a bent optical path is formed so that an image reduced in size can be received by the light receiving means, and the granular material group transferred so as to pass through the measurement target region by the object transferring means is caused by the disturbance of the conveyance. Even if the position may shift in the direction that intersects the width direction of the path, it should be less likely to be erroneously evaluated as the amount of light received in the unit light receiving target range of the adjacent column instead of the target unit light receiving target range. Is possible.

又、上述したように、第1の光反射体の光反射面が凹面形状に形成されており、この第1の反射体にて光が反射されると計測対象領域の経路横幅方向の中央側に寄せ集めるように屈曲する状態で反射することから、例えば第1の光反射体を平面形状に構成するものに比べて、第2の光反射体の経路横幅方向に沿う長さを短くして装置をコンパクト化させることが可能となる。   In addition, as described above, the light reflecting surface of the first light reflector is formed in a concave shape, and when light is reflected by the first reflector, the center side in the path width direction of the measurement target region Therefore, the length of the second light reflector along the lateral width direction of the second light reflector is shortened compared to, for example, the first light reflector having a planar shape. The apparatus can be made compact.

そして、前記第2の光反射体としては、光反射面を平面形状に形成したものと凸面形状に形成したもののいずれも用いることが可能であるが、第2の光反射体の光反射面を凸面形状に形成すると、第1及び第2の光反射体を夫々平面形状で構成するときにおける第1及び第2の光反射体並びに受光手段夫々の配置構成をそのまま適用することが可能となる利点がある。   As the second light reflector, either a light reflecting surface formed in a planar shape or a convex surface formed can be used, but the light reflecting surface of the second light reflector is used. When formed in a convex shape, the first and second light reflectors and the light receiving means can be applied as they are when the first and second light reflectors are each formed in a planar shape. There is.

本発明の第4特徴構成は、第1特徴構成〜第3特徴構成に加えて、前記評価手段が、前記受光手段にて受光する光の受光量が適正光量範囲を外れていなければ正常物として評価し、前記受光量が適正光量範囲を外れていると異常物として評価するように構成され、前記評価手段の評価結果に基づいて、前記計測対象領域よりも前記対象物移送手段による粒状体移送方向下手側箇所において、前記正常物として評価された粒状体と前記異常物として評価された粒状体とを異なる移送経路に分離して選別する分離手段が備えられ、前記照明手段が、前記計測対象領域の前記経路横幅方向に沿う方向視において、前記受光手段が前記検出光を受光するときの光軸に対して粒状体移送方向の上手側及び下手側の夫々に照明部が設けられ、前記粒状体移送方向の上手側に設けられる照明部及び前記粒状体移送方向の下手側に設けられる照明部のうちのいずれか一方が前記計測対象領域を直接照明するライン状光源にて構成され、且つ、前記粒状体移送方向の上手側に設けられる照明部及び前記粒状体移送方向の下手側に設けられる照明部のうちの他方が前記のライン状光源が発した光を反射してその反射した光により前記計測対象領域を照明する光反射体にて構成されている点にある。   In addition to the first to third feature configurations, the fourth feature configuration of the present invention is a normal product if the light receiving amount of light received by the light receiving device is not out of the appropriate light amount range. It is configured to evaluate and evaluate as an abnormal object when the amount of received light is outside the appropriate light amount range, and based on the evaluation result of the evaluation means, the granular material transfer by the object transfer means rather than the measurement target area Separating means for separating and sorting the granular material evaluated as the normal material and the granular material evaluated as the abnormal material into different transfer paths at a location on the lower side in the direction is provided, and the illuminating means includes the measurement object When viewed in a direction along the width direction of the path of the region, an illumination unit is provided on each of the upper side and the lower side of the granular material transport direction with respect to the optical axis when the light receiving means receives the detection light, Transfer Any one of the illumination unit provided on the upper side in the direction and the illumination unit provided on the lower side in the granular material transport direction is configured by a linear light source that directly illuminates the measurement target region, and the granularity The other of the illuminating unit provided on the upper side of the body transfer direction and the illuminating unit provided on the lower side of the granular material transfer direction reflects the light emitted by the linear light source, and the measurement is performed by the reflected light. It is in the point comprised with the light reflector which illuminates a target area | region.

第4特徴構成によれば、前記評価手段が、前記受光手段にて受光する光の受光量が適正光量範囲を外れていなければ正常物として評価し、前記受光量が適正光量範囲を外れていると異常物として評価することになるが、そのような評価は、計測対象領域における複数の単位受光対象範囲に相当する複数の単位受光範囲毎に行われることになる。そして、分離手段が、前記評価手段の評価結果に基づいて、計測対象領域よりも移送方向下手側箇所において正常物と異常物とを異なる移送経路に分離して選別する処理を実行することになる。つまり、複数の単位受光範囲における受光量に基づく評価にて、異常物と評価された単位受光対象範囲に対応する部位に位置する粒状体と、正常物と評価された単位受光対象範囲に対応する部位に位置する粒状体とを異なる移送経路に分離させるのである。   According to the fourth characteristic configuration, the evaluation unit evaluates the received light amount received by the light receiving unit as a normal object if the received light amount is not outside the appropriate light amount range, and the received light amount is outside the appropriate light amount range. However, such an evaluation is performed for each of the plurality of unit light receiving ranges corresponding to the plurality of unit light receiving target ranges in the measurement target region. Then, based on the evaluation result of the evaluation unit, the separation unit executes a process of separating and sorting the normal object and the abnormal object in different transfer paths at a position lower in the transfer direction than the measurement target region. . That is, in the evaluation based on the amount of light received in a plurality of unit light receiving ranges, it corresponds to a granular material located in a part corresponding to the unit light receiving target range evaluated as an abnormal object and a unit light receiving target range evaluated as a normal object. The granular material located in the part is separated into different transfer paths.

そして、前記照明手段における前記ライン状光源が計測対象領域を経路横幅方向の全幅又はほぼ全幅にわたって直接照明する。一方、前記照明手段における前記光反射体が前記ライン状光源が発した光を反射してその反射した光により前記ライン状光源による照明方向とは異なる照明方向から計測対象領域を経路横幅方向の全幅又はほぼ全幅にわたって照明する。つまり、計測対象領域に位置する粒状体群に対して夫々異なる方向からライン状光源と光反射体とにより各別に照明するようにしているので、粒状体が例えば外周面が曲面である粒状体群であっても照明ムラのない状態で良好に照明を行うことが可能である。又、前記光反射体は、ライン状光源からの光を反射させるものであるから自ら発光する必要はなくライン状光源に比べて構成が簡素であり、しかも、長期間使用しても故障するおそれは少ないから、上記構成によれば、装置全体としての故障発生率を低いものにして装置の信頼性を向上することも可能となる。   The linear light source in the illuminating means directly illuminates the measurement target region over the entire width in the path width direction or substantially the entire width. On the other hand, the light reflector in the illumination means reflects the light emitted from the line light source, and the reflected light causes the measurement target region to pass through the entire width in the path width direction from an illumination direction different from the illumination direction by the line light source. Or illuminate almost the entire width. That is, since the granular material group positioned in the measurement target region is individually illuminated by the line-shaped light source and the light reflector from different directions, the granular material group, for example, whose outer peripheral surface is a curved surface Even so, it is possible to perform illumination well in a state without illumination unevenness. Further, since the light reflector reflects light from the line light source, it does not need to emit light by itself, has a simple structure compared to the line light source, and may fail even if used for a long time. Since there are few, according to the said structure, it becomes possible to make the failure incidence rate as the whole apparatus low, and to improve the reliability of an apparatus.

前記ライン状光源は装置の使用に伴う経年変化により劣化して発光量が減少することがあるが、光反射体にて反射して粒状体群を照明する光量も同じ量だけ減少することになるから、計測対象領域に位置する粒状体群は夫々異なる方向から常に同じ又はほぼ同じ光量により照明することが可能となる。そうすると、粒状体群を照明する照明光量は受光手段の計測対象となる粒状体の外周面のどの領域においても同じ又は同じであるから、受光手段にて光量を計測するときに、受光手段が、前記単位受光対象範囲として、粒状体における移送方向上手側の箇所を計測している場合であっても、移送方向下手側の箇所を計測している場合であっても、受光する光量には差が出ないことになる。その結果、例えば、受光手段における前記単位受光対象範囲が対象物の移送方向上手側を対象とする場合と移送方向下手側を対象とする場合との夫々に対応させて互いに異なった判定基準を設定する等、評価選別手段の処理構成を複雑にしなくても、受光手段にて計測される受光量に基づいて適正に評価選別することが可能となる。   The line-shaped light source may deteriorate due to aging with use of the apparatus and the light emission amount may decrease, but the light amount reflected by the light reflector to illuminate the granular material group will also decrease by the same amount. Therefore, the granular material groups located in the measurement target region can always be illuminated with the same or substantially the same amount of light from different directions. Then, since the illumination light quantity for illuminating the granular material group is the same or the same in any region of the outer peripheral surface of the granular material to be measured by the light receiving means, when the light receiving means measures the light quantity, Even if the unit light receiving target range is measured at a location on the upper side in the transfer direction in the granular material, or is measured at a location on the lower side in the transfer direction, there is a difference in the amount of light received. Will not come out. As a result, for example, different judgment criteria are set corresponding to the case where the unit light receiving target range in the light receiving means targets the upper side in the transfer direction of the object and the case in which the lower side in the transfer direction is the target. Even if the processing configuration of the evaluation selection unit is not complicated, it is possible to appropriately perform evaluation selection based on the amount of received light measured by the light receiving unit.

本発明の第5特徴構成は、第4特徴構成に加えて、前記照明用の光反射体と前記ライン状光源とが前記粒状体移送方向に沿って並ぶ状態で設けられ、且つ、前記照明用の光反射体が前記ライン状光源よりも前記粒状体移送方向の下手側に位置する状態で設けられている点にある。   According to a fifth characteristic configuration of the present invention, in addition to the fourth characteristic configuration, the illumination light reflector and the linear light source are provided in a state of being aligned along the granular material transport direction, and the illumination The light reflector is provided in a state of being located on the lower side of the granular material transport direction than the line-shaped light source.

第5特徴構成によれば、前記照明用の光反射体が前記ライン状光源よりも前記粒状体移送方向の下手側に位置する状態で設けられているので、計測対象領域よりも移送方向下手側に上述したような分離手段を設ける必要があるが、このような分離手段の近くに設けられる箇所に、前記ライン状光源に比べて小さい設置スペースで済ませることが可能な前記照明用の光反射体を位置させて設けることになるから、分離手段の設置スペースをできるだけ広くして照明用の光反射体に干渉することなく良好に設置することが可能となる。   According to the fifth characteristic configuration, the illumination light reflector is provided in a state of being located on the lower side of the granular material transfer direction than the line-shaped light source. It is necessary to provide the separation means as described above, but the light reflector for illumination can be installed at a place near the separation means with a smaller installation space than the line-shaped light source. Therefore, it is possible to make the installation space of the separating means as wide as possible and to satisfactorily install without interfering with the light reflector for illumination.

以下、本発明に係る粒状体選別装置の実施形態を図面に基づいて説明する。
図1及び図2に示すように、前記粒状体選別装置には、広幅の板状のシュータ1が水平面に対して所定角度に傾斜されて設置され、このシュータ1の上部側に設けた貯留タンク2から振動フィーダ3によって搬送されて供給される外周面が曲面である粒状体群としての米粒群kが、シュータ1の上面を一層状態で経路横幅方向に沿って複数列状に並ぶ横拡がり状態で流下案内される構成となっている(図3参照)。尚、図3は動作説明図であるため、図1、図2とは装置構成の配置が異なる箇所がある。上記シュータ1は、幅方向全幅に亘って平坦な案内面に形成された平面シュータである。尚、ここでは、一層状態で移送させることを目的としているので、流れ状態により部分的に粒が重なって二層状態等になっても、一層状態の概念に含まれる。
Hereinafter, embodiments of a granular material sorting apparatus according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, in the granular material sorting apparatus, a wide plate-like shooter 1 is installed at a predetermined angle with respect to a horizontal plane, and a storage tank provided on the upper side of the shooter 1 The rice grain group k as a granular body group whose outer peripheral surface is conveyed by the vibration feeder 3 and supplied from the curved surface 2 is a horizontally expanded state in which the upper surface of the shooter 1 is arranged in a plurality of rows along the path width direction in a single layer state. (See FIG. 3). Since FIG. 3 is an explanatory diagram of the operation, there are places where the arrangement of the apparatus configuration is different from those in FIGS. The shooter 1 is a flat shooter formed on a flat guide surface over the entire width in the width direction. In addition, since it aims at making it transfer in a single layer state here, even if a particle | grain partially overlaps by a flow state and it becomes a two-layer state etc., it is contained in the concept of a single layer state.

貯留タンク2には、外部の精米機等から供給される米粒群kや、その外部からの米粒群kを1次選別処理した後再選別される正常物又は不良物が貯留される。貯留タンク2から振動フィーダ3上に落下した米粒群kのシュータ1への供給量は、振動フィーダ3の振動による米粒群kの搬送速度を変化させて調節される。そして、図2に示すように、米粒群kがシュータ1の下端部から移動落下する予定移送経路IK中に米粒群kに対する計測対象領域Jが設定されている。又、米粒群kは一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で計測対象領域Jを通過するように移送される構成となっている。従って、振動フィーダ3及びシュータ1により、外周面が曲面である粒状体群を計測対象領域を通過させながら一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で移送する対象物移送手段TIが構成されている。   The storage tank 2 stores rice grains k supplied from an external rice mill or the like, and normal or defective products re-sorted after the primary sorting of the rice grains k from the outside. The amount of rice grains k dropped from the storage tank 2 onto the vibration feeder 3 to the shooter 1 is adjusted by changing the conveying speed of the rice grains k due to the vibration of the vibration feeder 3. As shown in FIG. 2, a measurement target region J for the rice grain group k is set in the planned transfer path IK in which the rice grain group k moves and drops from the lower end of the shooter 1. In addition, the rice grain group k is configured to be transferred so as to pass through the measurement target region J in a single layer state and in a horizontally expanded state arranged in a plurality of rows along the path width direction. Therefore, the object to be transported by the vibration feeder 3 and the shooter 1 in a horizontally expanded state in which the granular body group whose outer peripheral surface is a curved surface passes through the measurement target region and is arranged in a plurality of rows along the path width direction. A transfer means TI is configured.

又、前記計測対象領域Jにおける前記経路横幅方向での全幅又はほぼ全幅を照明する照明手段4が設けられている。詳述すると、前記照明手段4として、予定移送経路IKの装置前面側(図1において左側)に位置する前面側照明手段4Bと、装置後面側(図1において右側)に位置する後面側照明手段4Aとが設けられ、前面側照明手段4B及び後面側照明手段4Aは、夫々、前記計測対象領域Jの前記経路横幅方向に沿う方向視において、受光手段5が前記検出光を受光するときの光軸OLに対して粒状体移送方向の上手側及び下手側の夫々に照明部S1,S2が設けられ、それらの照明部S1,S2により前記計測対象領域Jを照明する構成となっている。   Further, illumination means 4 for illuminating the entire width or almost the entire width in the path width direction in the measurement target region J is provided. Specifically, as the illumination means 4, the front side illumination means 4B located on the apparatus front side (left side in FIG. 1) of the scheduled transfer path IK and the rear side illumination means located on the apparatus rear side (right side in FIG. 1). 4A, and the front side illuminating means 4B and the rear side illuminating means 4A are light when the light receiving means 5 receives the detection light in the direction view along the lateral width direction of the measurement target region J, respectively. Illumination units S1 and S2 are provided on the upper side and the lower side of the granular material transfer direction with respect to the axis OL, respectively, and the measurement target region J is illuminated by these illumination units S1 and S2.

以下、照明手段4の具体的な構成について説明する。
先ず、後面側照明手段4Aについて説明する。この後面側照明手段4Aは、図5にも示すように、予定移送経路IKの装置前面側において、前記計測対象領域Jを経路横幅方向の全幅又はほぼ全幅にわたって直接照明する2本の円柱状の蛍光灯を並べて構成されるライン状光源41Aと、そのライン状光源41Aが発した光を反射してその反射した光によりライン状光源41Aによる照明方向とは異なる照明方向から計測対象領域Jを経路横幅方向の全幅又はほぼ全幅にわたって照明する光反射体42Aとを備えて、互いに異なる複数の照明方向から夫々計測対象領域Jを照明するように構成されている。
Hereinafter, a specific configuration of the illumination unit 4 will be described.
First, the rear side illumination means 4A will be described. As shown in FIG. 5, the rear surface side illumination means 4A has two cylindrical shapes that directly illuminate the measurement target region J over the entire width or almost the entire width in the path width direction on the front side of the scheduled transfer path IK. A line-shaped light source 41A configured by arranging fluorescent lamps, and the measurement target region J is routed from an illumination direction that is different from the illumination direction by the line-shaped light source 41A by reflecting the light emitted from the line-shaped light source 41A. And a light reflector 42A that illuminates the entire width in the horizontal width direction or substantially the entire width, and is configured to illuminate the measurement target region J from a plurality of different illumination directions.

従って、前記粒状体移送方向の上手側に設けられる照明部S1及び前記粒状体移送方向の下手側に設けられる照明部S2のうちの一方、すなわち、前記粒状体移送方向の上手側に設けられる照明部S1が、前記計測対象領域を前記経路横幅方向での全幅又はほぼ全幅にわたって直接照明するライン状光源41Aにて構成され、前記各照明部S1,S2のうちの他方、すなわち、前記粒状体移送方向の下手側に設けられる照明部S2が、前記のライン状光源41Aが発した光を反射してその反射した光により前記ライン状光源41Aによる照明方向とは異なる照明方向から前記計測対象領域を経路横幅方向の全幅又はほぼ全幅にわたって照明する光反射体42Aにて構成されている。   Accordingly, one of the illumination unit S1 provided on the upper side of the granular material transfer direction and the illumination unit S2 provided on the lower side of the granular material transfer direction, that is, illumination provided on the upper side of the granular material transfer direction. The part S1 is composed of a linear light source 41A that directly illuminates the measurement target region over the entire width or almost the entire width in the path width direction, and the other of the illumination parts S1 and S2, that is, the granular material transfer The illumination unit S2 provided on the lower side of the direction reflects the light emitted by the linear light source 41A, and the reflected light reflects the light to be measured from the illumination direction different from the illumination direction by the linear light source 41A. It is configured by a light reflector 42A that illuminates over the entire width or almost the entire width in the path width direction.

粒状体群としての米粒群の外周部は断面形状が略円形状又は略楕円形状であり、外周面が曲面となるものであるが、計測対象領域Jに位置している米粒群に対して、上述したように互いに異なる方向から夫々照明することで、照明ムラの少ない極力均一な状態で良好に照明できるようにしている。   The outer peripheral part of the rice grain group as the granular body group is a substantially circular shape or a substantially elliptical shape in cross section, and the outer peripheral surface is a curved surface, but for the rice grain group located in the measurement target region J, As described above, by illuminating from different directions, it is possible to illuminate well in a uniform state with as little illumination unevenness as possible.

前記ライン状光源41Aには、その背部側及び一部側方箇所を覆う状態で内面につや消しの白色塗装を施した曲面状の拡散反射板43が配置されている。そして、前記光反射体42Aは、米粒移送方向に対して幅狭でありライン状光源41Aの長手方向に沿って長尺の矩形状に構成され、反射面が鏡面にて構成されている。尚、ライン状光源41A及び光反射体42Aを装置に組付ける際には、前記計測対象領域Jにおいて、ライン状光源41Aにより照明される光量と光反射体42Aにて照明される光量とが同じ又はほぼ同じになるように、計測対象領域Jに対するライン状光源41Aの傾斜角度を適切な角度になるように調整を行った後に位置固定で組み付けることになる。因みに、この実施形態では、光反射体42Aは後述するような背景光量調節部8と共通な支持ブラケット44に支持される構成となっている。   The line-shaped light source 41A is provided with a curved diffuse reflector 43 having a matte white coating on the inner surface in a state of covering the back side and part of the side. The light reflector 42A is narrow in the rice grain transfer direction and is formed in a long rectangular shape along the longitudinal direction of the line light source 41A, and the reflection surface is configured as a mirror surface. When the line light source 41A and the light reflector 42A are assembled in the apparatus, the light quantity illuminated by the line light source 41A and the light quantity illuminated by the light reflector 42A are the same in the measurement target region J. Alternatively, the adjustment is performed so that the inclination angle of the linear light source 41A with respect to the measurement target region J becomes an appropriate angle so as to be substantially the same, and then the fixed position is assembled. Incidentally, in this embodiment, the light reflector 42A is configured to be supported by a support bracket 44 that is common to the background light amount adjusting unit 8 as described later.

図2に示すように、ライン状光源41Aを上方側すなわち米粒群の移送方向の上手側に位置し、光反射体42Aを下方側すなわち米粒群の移送方向の下手側に位置させて設けるようにしているので、後述する如く計測対象領域Jよりも移送方向下手側に不良物分離用のエアー吹き付け装置6を設ける場合に、設置スペースをできるだけ広くして光反射体42Aに干渉することなく良好に設置することが可能な構成となっている。   As shown in FIG. 2, the linear light source 41A is positioned on the upper side, that is, the upper side in the transfer direction of the rice grain group, and the light reflector 42A is positioned on the lower side, that is, the lower side in the transfer direction of the rice grain group. Therefore, as will be described later, when the air blowing device 6 for separating defectives is provided on the lower side in the transfer direction than the measurement target region J, the installation space is made as wide as possible without causing interference with the light reflector 42A. It is a configuration that can be installed.

図2に示すように、前記前面側照明手段4Bは、前記後面側照明手段4Aと同様に、前記計測対象領域Jに位置する米粒群kの移送方向上手側に位置する上手側外面部分を直接照明する2本の円柱状の蛍光灯を並べて構成されるライン状光源41Bと、そのライン状光源41Bが発した光を反射して、その反射した光により計測対象領域Jに位置する米粒群の移送方向下手側に位置する下手側外面部分を照明する光反射体42Bとを備えて構成されるが、各部材の配置構成が計測対象領域Jを中心として前後で対称な配置関係となるだけで、それ以外は後面側照明手段4Aと同じであるから詳細な説明は省略する。   As shown in FIG. 2, the front side illumination unit 4B directly applies the upper side outer surface part located on the upper side in the transfer direction of the rice grain group k located in the measurement target region J, similarly to the rear side illumination unit 4A. A line-shaped light source 41B configured by arranging two cylindrical fluorescent lamps to illuminate, and the light emitted from the line-shaped light source 41B is reflected, and the rice grains located in the measurement target region J are reflected by the reflected light. The light reflector 42B illuminates the lower side outer surface portion located on the lower side in the transfer direction, but the arrangement configuration of each member is merely symmetrical with respect to the measurement target region J in the front-rear direction. Other than that, since it is the same as the rear side illumination means 4A, detailed description is omitted.

前面側照明手段4Bからの照明光が上記計測対象領域Jの前面側で反射した反射光を受光する前面側受光装置5Bと、後面側照明手段4Aからの照明光が計測対象領域Jの後面側で反射した反射光を受光する後面側受光装置5Aとが設けられ、この両受光装置5A,5Bにて、上記計測対象領域Jからの光を受光する受光手段5が構成されている。   The front side light receiving device 5B that receives the reflected light reflected from the front side of the measurement target region J by the illumination light from the front side illumination unit 4B, and the rear side of the measurement target region J is the illumination light from the rear side illumination unit 4A. And a rear surface side light receiving device 5A that receives the reflected light reflected by the light receiving device 5A, and the light receiving devices 5A and 5B constitute light receiving means 5 that receives light from the measurement target region J.

前記各受光装置5A,5Bは、前記幅広の計測対象領域Jからの光を受光する複数個の受光素子5aを計測対象領域Jの幅方向に沿って並置させる状態で備えて、米粒の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で計測対象領域Jからの検出光を受光するように構成されている。つまり、図6及び図8に示すように、前記各受光装置5A,5Bは、前記米粒群の各米粒の大きさよりも小さい範囲p(例えば米粒の大きさの10分の1よりも小さい範囲)を夫々の受光対象範囲とする複数個の受光素子5aを前記幅広の計測対象領域Jに対応させてライン状に並ぶ状態で並置されたモノクロタイプのCCDセンサ部50と、設定視野角の範囲内より入射される光を集光させて複数の受光素子に導く集光手段として機能する集光レンズ51a(図17参照)を備えた光学系51とから構成されている。そして、各受光装置5A,5Bは、後述するように、計測対象領域Jの経路横幅方向の全幅又はほぼ全幅にわたり計測対象領域Jに位置する米粒群kの像をCCDセンサ部50の各受光素子5a上に結像させる状態で設けられ、例えば図8において計測対象領域Jの右端側から左端側に向けて各受光素子5aから各受光情報が順次取り出されるように構成される。   Each of the light receiving devices 5A and 5B includes a plurality of light receiving elements 5a that receive light from the wide measurement target region J in a state of being juxtaposed along the width direction of the measurement target region J. The detection light from the measurement target region J is received in a resolution state where the smaller range is the unit light reception target range. That is, as shown in FIGS. 6 and 8, each of the light receiving devices 5A and 5B has a range p smaller than the size of each rice grain in the rice grain group (for example, a range smaller than 1/10 of the size of the rice grain). And a monochrome type CCD sensor unit 50 in which a plurality of light receiving elements 5a having respective light receiving target ranges are arranged side by side in correspondence with the wide measurement target region J, and within a set viewing angle range The optical system 51 includes a condensing lens 51a (see FIG. 17) that functions as a condensing unit that condenses more incident light and guides it to a plurality of light receiving elements. Each of the light receiving devices 5A and 5B receives, as will be described later, an image of the rice grain group k positioned in the measurement target region J over the entire width or almost the entire width of the measurement target region J in the path lateral width direction. For example, the light receiving information is sequentially extracted from each light receiving element 5a from the right end side to the left end side of the measurement target region J in FIG.

前記各受光装置5A,5Bから計測対象領域Jを見たときに計測対象領域Jの背景に相当する箇所に、前記各受光装置5A,5Bに向けて光を投射する背景光量調整部8が設けられている。この背景光量調整部8は、図4に示すように、計測対象領域Jの横幅方向に沿って密状態で並べて設置される複数のLED発光素子80と、それらの複数のLED発光素子80が設置される領域の光投射側に配置されて複数のLED発光素子80が発光した光を拡散させる拡散板81とを備えて構成されている。そして、ケーシング83の内部に、複数のLED発光素子80が設置されたLED基板82が放熱板84に貼り付ける状態で取り付けられている。そして、図7に示すように、複数のLED発光素子80の発光出力を変更調整自在な調光装置85が備えられ、この調光装置85は、後述する制御装置24からの制御指令に基づいてLED発光素子80の発光出力を変更調整するように構成されている。
尚、この変更調節は手動設定にて行う構成となっているが、受光手段5の計測結果に基づいて、計測対象となる粒状体の種類の違い等に応じて制御装置24からの指令に基づいて光量を自動調整する構成としてもよい。
A background light amount adjustment unit 8 that projects light toward the light receiving devices 5A and 5B is provided at a position corresponding to the background of the measurement target region J when the measurement target region J is viewed from the light receiving devices 5A and 5B. It has been. As illustrated in FIG. 4, the background light amount adjustment unit 8 includes a plurality of LED light emitting elements 80 that are arranged in a dense state along the horizontal width direction of the measurement target region J, and the plurality of LED light emitting elements 80 are installed. And a diffusing plate 81 for diffusing the light emitted from the plurality of LED light emitting elements 80. Then, an LED substrate 82 on which a plurality of LED light emitting elements 80 are installed is attached inside the casing 83 in a state of being attached to the heat sink 84. As shown in FIG. 7, a light control device 85 that can change and adjust the light emission outputs of the plurality of LED light emitting elements 80 is provided. The light control device 85 is based on a control command from the control device 24 described later. The light emission output of the LED light emitting element 80 is configured to be changed and adjusted.
Although this change adjustment is performed by manual setting, based on the measurement result of the light receiving means 5, based on the command from the control device 24 depending on the type of granular material to be measured. The light amount may be automatically adjusted.

そして、予定移送経路IKの装置前面側及び装置後面側の夫々において、前記計測対象領域の像を縮小した像を受光手段5が受光するように、前記計測対象領域からの光を前記受光手段5における光軸方向に折り返して前記受光手段5に導く光反射式の折り曲げ光路形成手段9が備えられている。   The light from the measurement target region is received by the light receiving unit 5 so that the light receiving unit 5 receives a reduced image of the image of the measurement target region on each of the apparatus front side and the apparatus rear side of the scheduled transfer path IK. There is provided a light reflection type bent optical path forming means 9 that is folded back in the optical axis direction and guided to the light receiving means 5.

次に、予定移送経路IKの装置後面側に位置する折り曲げ光路形成手段9について、第1の反射体10、第2の反射体11、及び、受光装置5Aの支持構造について具体的に説明する。
すなわち、前記折り曲げ光路形成手段9は、計測対象領域Jからの光を反射する第1の反射体10と、その第1の反射体10にて反射した光を反射する第2の反射体11とを備えて構成され、且つ、前記第1の反射体10及び第2の反射体11の夫々が光反射面を平面状に形成して構成され、しかも、各反射体10、11はその光反射面10a,11aが鏡面にて構成されており、略長方形の板状に形成されている。
Next, regarding the bent optical path forming means 9 positioned on the rear side of the scheduled transfer path IK, the support structure for the first reflector 10, the second reflector 11, and the light receiving device 5A will be described in detail.
That is, the bending optical path forming means 9 includes a first reflector 10 that reflects light from the measurement target region J, and a second reflector 11 that reflects light reflected by the first reflector 10. And each of the first reflector 10 and the second reflector 11 is formed by forming a light reflection surface in a planar shape, and each of the reflectors 10 and 11 reflects the light. The surfaces 10a and 11a are mirror surfaces, and are formed in a substantially rectangular plate shape.

図5、図6に示すように、装置枠体としての収納用ケーシング13の左右側壁にわたって略コの字形に屈曲した支持ステー14が架設される状態で設けられ、この支持ステー14に対して、その長手方向の中央部付近にて前記各反射体10、11並びに前記受光装置5Aが支持される構成となっている。つまり、支持ステー14から固定延設した支持ブラケット15を介して前記第1の反射体10が取り付け支持されている。そして、その第1の反射体10は、前記支持ブラケット15に対して前記経路横幅方向に沿う横軸芯X1周りで回動自在に支持され、且つ、複数の調節ネジ16を反射体10に当て付けた状態で締め付けることで第1の反射体10を位置固定することが可能であり、しかも、各調節ネジ16を回動させて位置を変更させることで第1の反射体10の前記軸芯X1周りでの傾斜角度を変更調節並びに固定自在に構成されている。   As shown in FIG. 5 and FIG. 6, a support stay 14 bent in a substantially U-shape is provided over the left and right side walls of the storage casing 13 as an apparatus frame. The reflectors 10 and 11 and the light receiving device 5A are supported near the center in the longitudinal direction. That is, the first reflector 10 is attached and supported through the support bracket 15 fixedly extended from the support stay 14. The first reflector 10 is supported by the support bracket 15 so as to be rotatable around the horizontal axis X1 along the horizontal direction of the path, and a plurality of adjusting screws 16 are applied to the reflector 10. It is possible to fix the position of the first reflector 10 by tightening it in the attached state, and the axis of the first reflector 10 can be changed by rotating each adjusting screw 16 to change the position. The tilt angle around X1 can be changed, adjusted and fixed.

又、第2の反射体11と受光装置5Aとは、支持具17により一体的に組み付けた状態で、前記支持ステー14に固定装着する構成となっている。すなわち、前記支持具17は、底板17aと、その底板17aの左右両側側から固定立設した左右の支持板17bとにより構成され、左右の支持板17bは支持ステー14に対する取り付け箇所から計測対象領域J側に向けて延設させる構成となっており、その延設方向の先端部付近において、左右の支持板17bにわたって第2の反射体11を架け渡す状態で取り付ける構成としている。又、この第2の反射体11は、第1の反射体10と同様に、前記経路横幅方向に沿う軸芯X2周りで回動自在に左右の支持板17bに支持されており、複数の調節ネジ18を第2の反射体11に当て付けた状態で締め付けることで第2の反射体11を位置固定することが可能であり、しかも、各調節ネジ18を回動させて位置を変更させることで第2の反射体11の前記軸芯X2周りでの傾斜角度を変更調節並びに固定自在に構成されている。   The second reflector 11 and the light receiving device 5 </ b> A are configured to be fixedly attached to the support stay 14 in a state of being integrally assembled by the support 17. That is, the support 17 is composed of a bottom plate 17a and left and right support plates 17b fixed upright from both left and right sides of the bottom plate 17a. It is configured to extend toward the J side, and is configured to be attached in a state where the second reflector 11 is bridged across the left and right support plates 17b in the vicinity of the distal end portion in the extending direction. Similarly to the first reflector 10, the second reflector 11 is supported by the left and right support plates 17b so as to be rotatable around the axis X2 along the lateral direction of the path. It is possible to fix the position of the second reflector 11 by tightening the screw 18 applied to the second reflector 11 and to change the position by rotating each adjustment screw 18. Thus, the tilt angle of the second reflector 11 around the axis X2 can be changed, adjusted and fixed.

又、受光装置5Aを保持する受光装置保持具19を、前記左右の支持板17bにて前記経路横幅方向に沿う軸芯X3周りで回動自在に枢支する構成となっており、前記左右の支持板17bにおける前記軸芯X3の上下両側に位置する箇所に夫々設けられた調節ネジ20を受光装置保持具19に当て付けた状態で締め付けることで受光装置保持具19すなわち受光装置5Aを位置固定することが可能であり、しかも、各調節ネジ20を回動させて位置を変更させることで受光装置5Aの前記軸芯X3周りでの傾斜角度を変更調節並びに固定自在に構成されている。尚、前記支持ステー14における前記受光装置5Aが位置する箇所には、受光装置保持具19の回動を許容するための開口14Aが形成されている。   Further, the light receiving device holder 19 for holding the light receiving device 5A is pivotally supported by the left and right support plates 17b so as to be rotatable around the axis X3 along the horizontal direction of the path. The position of the light receiving device holder 19, that is, the light receiving device 5 </ b> A is fixed by tightening the adjusting screws 20 provided on the support plate 17 b on the upper and lower sides of the axis X <b> 3 in contact with the light receiving device holder 19. In addition, the angle of inclination of the light receiving device 5A around the axis X3 can be changed, adjusted, and fixed by rotating each adjusting screw 20 to change the position. Note that an opening 14 </ b> A for allowing the light receiving device holder 19 to rotate is formed at a location of the support stay 14 where the light receiving device 5 </ b> A is located.

上記構成により、図15に示すように、前記計測対象領域Jの像を縮小した像を受光手段5が受光するように、計測対象領域Jからの光を受光手段5における光軸方向(図のラインOLに沿う方向)に折り返して受光手段5に導く折り曲げ光路形成手段9が構成される。尚、予定移送経路IKの装置前面側に位置する折り曲げ光路形成手段9についても同様な構成であり、配置構成が前後で対称となるだけでそれ以外は同じ構成であるから説明は省略する。   With the above configuration, as shown in FIG. 15, the light from the measurement target region J is received in the direction of the optical axis in the light receiving unit 5 so that the light receiving unit 5 receives an image obtained by reducing the image of the measurement target region J (see FIG. A bent optical path forming means 9 is formed which is folded back in the direction along the line OL) and led to the light receiving means 5. The bent optical path forming means 9 located on the front side of the apparatus with respect to the scheduled transfer path IK has the same configuration, and the arrangement configuration is symmetric in the front and rear, and the other configurations are the same.

図2に示すように、前面側照明手段4B、前面側受光装置5B、前面側の背景光量調整部8、前面側の折り曲げ光路形成手段9の夫々が前面側の収納ケーシング13に収納され、後面側照明手段4A、後面側受光装置5A、後面側の背景光量調整部8、後面側の折り曲げ光路形成手段9の夫々が後面側の収納ケーシング13に収納されており、両収納ケーシング13は側板が共通の一体の箱体に形成され、各収納ケーシング13は、計測対象領域Jに面する側に板状の透明なガラスからなる透過窓13A,13Bを備えている。   As shown in FIG. 2, the front side illumination means 4B, the front side light receiving device 5B, the front side background light amount adjusting unit 8, and the front side bent optical path forming means 9 are housed in the front side storage casing 13, and the rear side. The side illuminating means 4A, the rear side light receiving device 5A, the rear side background light amount adjusting unit 8, and the rear side bent optical path forming means 9 are accommodated in a rear casing housing casing 13, and the both casings 13 have side plates. Each storage casing 13 is provided with transmission windows 13A and 13B made of plate-like transparent glass on the side facing the measurement target region J.

予定移送経路IKの前記計測対象領域Jから経路下手側の分離箇所において、計測対象領域Jでの受光情報に基づいて不良と判定された米粒や異物等の不良物に対してエアーを吹き付けて正常な米粒群kの移動方向から分離させるためのエアー吹き付け装置6が設けられ、このエアー吹き付け装置6は、噴射ノズル6aの複数個を、上記予定移送経路IKの全幅を所定幅で複数個の区画に分割形成した各区画に対応する状態で並置させ、不良物が存在する区画の噴射ノズル6aが作動されるように構成されている。従って、前記エアー吹き付け装置6が、前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段を構成することになる。尚、このエアー吹き付け装置6は、詳述はしないが、不良物が存在する区画の噴射ノズル6aが作動させるように、エアー状態を変更調節するエアー噴出状態を切り換え操作するエアー切り換えバルブが一体的に備えられる構成となっている。   Normal air is blown against defectives such as rice grains and foreign matters determined to be defective based on the light reception information in the measurement target area J at the separation point on the lower side of the path from the measurement target area J of the scheduled transfer path IK. An air spraying device 6 for separating the rice grains k from the moving direction is provided. The air spraying device 6 includes a plurality of spray nozzles 6a and a plurality of sections having a predetermined width over the entire width of the scheduled transfer path IK. The spray nozzles 6a of the sections where defectives are present are operated by juxtaposing them in a state corresponding to the sections divided and formed. Therefore, the air blowing device 6 constitutes a separating unit that separates normal and defective materials in the granular material group transferred to the separation location into different paths. Although not described in detail, the air blowing device 6 is integrated with an air switching valve for switching and operating an air ejection state for changing and adjusting the air state so that the ejection nozzle 6a in a section where a defective object exists is operated. It is the composition which is prepared for.

そして、シュータ1の下端部から所定経路に沿って流下する米粒群kのうちで、前記噴射ノズル6aからのエアーの吹き付けを受けずにそのまま進行してくる正常な米粒kを回収する良米用の受口部21と、エアーの吹き付けを受けて正常な米粒kの流れから横方向に分離した着色米や胴割れ米等の不良米又は石やガラス片等の異物を回収する不良物用の受口部22とが設けられ、良米用の受口部21が横幅方向に細長い筒状に形成され、その良米用の受口部21の周囲を囲むように、不良物用の受口部22が形成されている。尚、良米用の受口部21にて回収された米粒k、及び、不良物用の受口部22にて回収された不良物は、再選別等のために、本装置の貯留タンク2又は他の選別装置に搬送される。
図1に示すように、表側の上部斜め部分に情報の表示及び入力用の操作卓23が設置され、又、装置外面を覆うカバーKが機枠に取り付けられている。
And for the good rice which collects the normal rice grain k which advances as it is without receiving the blowing of the air from the said injection nozzle 6a among the rice grain groups k which flow down along the predetermined path | route from the lower end part of the shooter 1. Receiving portion 21 and for defective items such as colored rice and shell cracked rice separated from the flow of normal rice grains k by blowing air, or foreign matter such as stones and glass pieces. The receptacle 22 is provided, the receptacle 21 for good rice is formed in an elongated cylindrical shape in the width direction, and the receptacle for defectives is surrounded by the receptacle 21 for good rice. A portion 22 is formed. Note that the rice grains k collected at the receiving part 21 for good rice and the defectives collected at the receiving part 22 for defectives are stored in the storage tank 2 of this apparatus for re-sorting. Or it is conveyed to another sorter.
As shown in FIG. 1, a console 23 for displaying and inputting information is installed in an upper oblique portion on the front side, and a cover K covering the outer surface of the apparatus is attached to the machine frame.

次に制御構成について説明する。図7に示すように、マイクロコンピュータ利用の制御装置24が設けられ、この制御装置24に、両受光装置5A,5Bからの各画像信号と、操作卓23からの操作情報とが入力されている。一方、制御装置24からは、前記ライン状光源41A,41Bを点灯させる点灯回路25に対する駆動信号と、各噴射ノズル6aへの各エアー供給をオンオフする複数個の電磁弁26に対する駆動信号と、前記振動フィーダ用振動発生器3Aに対する駆動信号と、前記調光装置85への制御指令用の信号とが出力されている。   Next, the control configuration will be described. As shown in FIG. 7, a microcomputer-based control device 24 is provided, and image signals from both the light receiving devices 5 </ b> A and 5 </ b> B and operation information from the console 23 are input to the control device 24. . On the other hand, from the control device 24, a driving signal for the lighting circuit 25 for lighting the line light sources 41A and 41B, a driving signal for a plurality of electromagnetic valves 26 for turning on / off each air supply to each injection nozzle 6a, and A driving signal for the vibration feeder vibration generator 3A and a control command signal to the dimmer 85 are output.

そして、上記制御装置24を利用して、前記各受光装置5A,5Bの受光量を設定時間間隔でサンプリングして、そのサンプリングした受光量の光量値が米粒群における正常物からの検出光に対する適正光量範囲ΔE1,ΔE2を外れているか否かの判別を行う評価手段の一例としての判別処理手段100が構成されている。具体的には、この判別処理手段100は、前面側の受光装置5Bの各受光素子5aの受光量を設定時間間隔でサンプリングして、そのサンプリングした光量値が各受光素子5a毎に設定された適正光量範囲ΔE2を外れているか否かの判別を各受光素子5a毎に行うとともに、後面側の受光装置5Aの各受光素子5aの受光量を設定時間間隔でサンプリングして、そのサンプリングした光量値が各受光素子5a毎に設定された適正光量範囲ΔE1を外れているか否かの判別を各受光素子5a毎に行い、上記両判別においていずれかの受光素子5aの受光量が適正光量範囲ΔE1,ΔE2を外れている場合に不良物の存在を検出する。   And using the said control apparatus 24, the light-receiving amount of each said light-receiving device 5A, 5B is sampled by the setting time interval, and the light quantity value of the sampled light-receiving amount is appropriate with respect to the detection light from the normal thing in a rice grain group. A discrimination processing unit 100 as an example of an evaluation unit that discriminates whether or not the light amount ranges ΔE1 and ΔE2 are out of the range is configured. Specifically, the discrimination processing means 100 samples the received light amount of each light receiving element 5a of the light receiving device 5B on the front side at set time intervals, and the sampled light amount value is set for each light receiving element 5a. Whether the light amount is outside the proper light amount range ΔE2 is determined for each light receiving element 5a, and the amount of light received by each light receiving element 5a of the light receiving device 5A on the rear side is sampled at a set time interval, and the sampled light amount value Is determined for each light receiving element 5a to determine whether or not the light amount of each light receiving element 5a is out of the appropriate light amount range ΔE1 set for each light receiving element 5a. The presence of a defective object is detected when it is outside ΔE2.

又、上記判別処理手段100は、各受光装置5A,5Bの各受光素子5a毎に、前記サンプリングにより得られた設定個数の受光量データについて、暗側から明側に亘る間を複数段階に区分けした各光量値に対する度数分布(ヒストグラムともいう)を求めて、その度数分布に基づいて前記適正光量範囲ΔE1,ΔE2を設定するように構成されている。具体的には、照明手段4からの照明光量が十分に安定した状態で、先ず、米粒群kを流さずに前記背景光量調整部8からの光を受光して、その受光量が検査を行なうのに十分な光量であることを確認する。次に、米粒群kを流しながら、各受光装置5A,5Bの各受光素子5aについて設定個数の受光量データをサンプリングし、その受光量データを256段階のデジタル値に変換する。尚、この場合において、前記エアー吹き付け装置6は作動させない。   Further, the discrimination processing means 100 divides, for each light receiving element 5a of each light receiving device 5A, 5B, a set number of received light quantity data obtained by the sampling from a dark side to a bright side in a plurality of stages. A frequency distribution (also referred to as a histogram) for each light quantity value obtained is obtained, and the appropriate light quantity ranges ΔE1 and ΔE2 are set based on the frequency distribution. Specifically, in a state in which the illumination light amount from the illumination unit 4 is sufficiently stable, first, light from the background light amount adjustment unit 8 is received without flowing the rice grain group k, and the received light amount is inspected. Make sure that the amount of light is sufficient. Next, while flowing the rice grain group k, a set number of received light amount data is sampled for each light receiving element 5a of each light receiving device 5A, 5B, and the received light amount data is converted into 256 steps of digital values. In this case, the air blowing device 6 is not operated.

そして、図9(イ)に示すように、判別処理手段100は、前記度数分布hgにおいて暗側から明側に亘って各光量値に対する度数値が連続して存在する連続領域(図において斜線で示す)の上端部の近傍位置に対応させて上側光量値TH1を設定するとともに、その上側光量値TH1から明側に設定光量K1離れた位置に前記適正光量範囲ΔE1,ΔE2の上限値T1を設定し、且つ、前記連続領域の下端部の近傍位置に対応させて下側光量値TH2を設定するとともに、その下側光量値TH2から暗側に設定光量K2離れた位置に前記適正光量範囲ΔE1,ΔE2の下限値T2を設定するように構成されている。尚、上記上側光量値TH1及び下側光量値TH2の設定については後述する。又、上記各設定光量K1,K2は制御定数として予め設定されている。   Then, as shown in FIG. 9 (a), the discrimination processing means 100 is a continuous region (indicated by diagonal lines in the figure) in which the power value for each light quantity value continuously exists from the dark side to the bright side in the frequency distribution hg. The upper light quantity value TH1 is set in correspondence with the position near the upper end of (shown), and the upper limit value T1 of the appropriate light quantity ranges ΔE1 and ΔE2 is set at a position away from the upper light quantity value TH1 on the bright side by the set light quantity K1. In addition, the lower light amount value TH2 is set in correspondence with the position near the lower end of the continuous region, and the appropriate light amount range ΔE1, is set at a position away from the lower light amount value TH2 on the dark side by the set light amount K2. The lower limit value T2 of ΔE2 is set. The setting of the upper light quantity value TH1 and the lower light quantity value TH2 will be described later. The set light amounts K1 and K2 are set in advance as control constants.

さらに、図9(イ)〜(ハ)に示すように、上記判別処理手段100は、前記サンプリングによって設定時間ごとに得られる設定個数の受光量データの中に、前記上側光量値TH1よりも明るい光量値が含まれているときは、前記上側光量値TH1を明側に設定量移動させる一方、前記設定個数の受光量データの中に前記上側光量値TH1よりも明るい光量値が含まれていないときは、前記上側光量値TH1を暗側に設定量移動させ、且つ、前記設定個数の受光量データの中に前記下側光量値TH2よりも暗い光量値が含まれているときは、前記下側光量値TH2を暗側に設定量移動させる一方、前記設定個数の受光量データの中に前記下側光量値TH2よりも暗い光量値が含まれていないときは、前記下側光量値TH2を明側に設定量移動させる補正処理を設定時間ごとに実行する。   Further, as shown in FIGS. 9A to 9C, the discrimination processing means 100 is brighter than the upper light quantity value TH1 in the set number of received light quantity data obtained for each set time by the sampling. When the light quantity value is included, the upper light quantity value TH1 is moved by a set amount to the bright side, while the set number of received light quantity data does not include a light quantity value brighter than the upper light quantity value TH1. When the upper light quantity value TH1 is moved to the dark side by a set amount, and the received light quantity data of the set number includes a light quantity value that is darker than the lower light quantity value TH2, the lower While the side light quantity value TH2 is moved to the dark side by a set amount, when the light quantity data of the set number does not include a light quantity value darker than the lower light quantity value TH2, the lower light quantity value TH2 is changed. Move the set amount to the bright side Performing cell correction process for each set time.

尚、上記設定量としては、前記256段階の受光量データにおける1段階とし、前記各設定光量K1,K2の値はこの設定値よりも大きな値に設定されている。そして、図9の(イ)では、サンプリングにより得られた設定個数の受光量データの中に上側光量値TH1よりも明るい光量値が含まれているので、上側光量値TH1を明側に1段階移動させ、一方、下側光量値TH2よりも暗い光量値は含まれていないので、下側光量値TH2を明側に1段階移動させて、下側光量値TH2がちょうど連続領域の下端部に位置した状態を示す。
図9(ロ)では、(イ)の後に、サンプリングにより得られた設定個数の受光量データの中に、上側光量値TH1よりも明るい光量値及び下側光量値TH2よりも暗い光量値が共に含まれていないので、上側光量値TH1を暗側に1段階移動させ、下側光量値TH2を明側に1段階移動させている。
図9(ハ)では、(ロ)の後に、サンプリングにより得られた設定個数の受光量データの中に、上側光量値TH1よりも明るい光量値が含まれていないので、上側光量値TH1を暗側に1段階移動させる一方、下側光量値TH2よりも暗い光量値が含まれているので、下側光量値TH2を暗側に1段階移動させている。
以下、同様な補正処理を行なうことにより、上側光量値TH1は上記連続領域の上端部もしくはその付近に固定され、下側光量値TH2は上記連続領域の下端部もしくはその付近に固定されることになる。
The set amount is one step in the 256-step received light amount data, and the values of the set light amounts K1 and K2 are set to values larger than the set values. In (a) of FIG. 9, since a light quantity value brighter than the upper light quantity value TH1 is included in the set number of received light quantity data obtained by sampling, the upper light quantity value TH1 is increased by one step on the bright side. On the other hand, since the light amount value darker than the lower light amount value TH2 is not included, the lower light amount value TH2 is moved to the bright side by one step, and the lower light amount value TH2 is just at the lower end of the continuous region. The position is shown.
In FIG. 9 (b), after (a), both the light quantity value brighter than the upper light quantity value TH1 and the light quantity value darker than the lower light quantity value TH2 are included in the set number of received light quantity data obtained by sampling. Since it is not included, the upper light amount value TH1 is moved one step to the dark side, and the lower light amount value TH2 is moved one step to the bright side.
In FIG. 9C, after (B), since the light quantity data of the set number obtained by sampling does not include a light quantity value brighter than the upper light quantity value TH1, the upper light quantity value TH1 is darkened. While the light amount value darker than the lower light amount value TH2 is included, the lower light amount value TH2 is moved one step toward the dark side.
Thereafter, by performing the same correction process, the upper light amount value TH1 is fixed at or near the upper end portion of the continuous region, and the lower light amount value TH2 is fixed at or near the lower end portion of the continuous region. Become.

さらに、図10に示すように、上記判別処理手段100は、前記連続領域の上端部に対応する上端光量値U1と前記連続領域の下端部に対応する下端光量値D1との光量値の差U1−D1が設定値HKよりも大きい場合には、前記補正処理を実行し、上端光量値U1と下端光量値D1との光量値の差U1−D1が設定値HKよりも小さい場合には、前記補正処理を停止するように構成されている。
つまり、上記設定値HKは、米粒群が計測対象領域Jを通過しているときは、図10に一点鎖線で示すように上記光量値の差U1−D1が設定値HKより大きくなるように設定され、米粒群が計測対象領域Jを通過していないときは、図10に実線で示すように、前記反射板8A,8Bからの反射光のみを受光するために、その受光量データの度数分布hgの連続領域の幅が狭くなるのに対応させて、その上端光量値UHと下端光量値DHとの光量値の差UH−DHが設定値HKよりも小さくなるように設定されている。
従って、米粒群が計測対象領域Jを通過しているときは、前記補正処理が実行されて適正光量範囲ΔE1,ΔE2の上限値T1及び下限値T2が逐次修正されるが、米粒群が計測対象領域Jを通過していないときは、前記補正処理の実行が停止されて、直前に米粒群が計測対象領域Jを通過していたときの適正光量範囲ΔE1,ΔE2の上限値T1及び下限値T2の値が保持されることになる。
Further, as shown in FIG. 10, the discrimination processing means 100 is configured to detect the difference U1 between the light amount value U1 between the upper end light amount value U1 corresponding to the upper end portion of the continuous region and the lower end light amount value D1 corresponding to the lower end portion of the continuous region. When -D1 is larger than the set value HK, the correction process is executed, and when the light amount difference U1-D1 between the upper end light amount value U1 and the lower end light amount value D1 is smaller than the set value HK, The correction process is configured to stop.
That is, the set value HK is set so that the difference U1-D1 in the light amount value is larger than the set value HK as shown by a one-dot chain line in FIG. When the rice grain group does not pass through the measurement target region J, as shown by the solid line in FIG. 10, in order to receive only the reflected light from the reflectors 8A and 8B, the frequency distribution of the received light amount data Corresponding to the narrowing of the width of the hg continuous area, the light amount difference UH−DH between the upper end light amount value UH and the lower end light amount value DH is set to be smaller than the set value HK.
Therefore, when the rice grain group passes the measurement target region J, the correction process is executed, and the upper limit value T1 and the lower limit value T2 of the appropriate light amount ranges ΔE1, ΔE2 are sequentially corrected. When the region J has not been passed, the execution of the correction process is stopped, and the upper limit value T1 and the lower limit value T2 of the appropriate light amount ranges ΔE1, ΔE2 when the rice grain group has passed the measurement target region J immediately before. The value of is held.

そして、上記のように各ラインセンサ5A,5Bの各受光素子5a毎に、設定及び補正される前面側及び後面側の適正光量範囲ΔE1,ΔE2の上限値T1及び下限値T2の値は、図11に示すように、前記制御装置24内のメモリLUT(前面側用及び後面側用のLUT)に、不良検出処理用のルックアップテーブルとして記憶される。
即ち、位置データi(i=0〜〔受光素子の数−1〕)で表した各受光素子5a毎に、センサ出力電圧をとり得る全ての光量値j(前記256段階の光量値)の範囲で変化させながら、その各値jが前記適正光量範囲ΔE1,ΔE2内であれば、メモリLUTの該当番地(i,j)に判定出力として「0」を記憶させ、適正光量範囲ΔE1,ΔE2を外れていれば、メモリLUTの該当番地(i,j)に判定出力として「1」を記憶させる。そして、前記判別を行うときは、上記作成したメモリLUTに対して、各ラインセンサ5A,5Bの受光素子5aの位置データi(i=0〜〔受光素子の数−1〕)と、その位置iでの各受光素子5aの光量値jとを入力すると、その各受光素子5aについて、正常物のときは判定出力「0」が、不良物のときは判定出力「1」が夫々出力されるので、それに基づいて前記判別を行う。
As described above, the upper limit value T1 and the lower limit value T2 of the appropriate light amount ranges ΔE1, ΔE2 on the front side and the rear side set and corrected for each light receiving element 5a of each line sensor 5A, 5B are as shown in FIG. 11, the data is stored in a memory LUT (front side and rear side LUT) in the control device 24 as a lookup table for defect detection processing.
That is, for each light receiving element 5a represented by position data i (i = 0 to [number of light receiving elements-1]), a range of all light amount values j (the 256 step light amount values) that can take the sensor output voltage. If each value j is within the appropriate light quantity range ΔE1, ΔE2 while changing the value, “0” is stored as a determination output in the corresponding address (i, j) of the memory LUT, and the appropriate light quantity ranges ΔE1, ΔE2 are set. If not, “1” is stored as the determination output at the corresponding address (i, j) of the memory LUT. When the determination is made, the position data i (i = 0 to [the number of light receiving elements−1]) of the light receiving elements 5a of the line sensors 5A and 5B and the position thereof are determined with respect to the memory LUT created above. When the light quantity value j of each light receiving element 5a at i is input, a determination output “0” is output for each light receiving element 5a when it is normal, and a determination output “1” is output when it is defective. Therefore, the determination is performed based on this.

各受光装置5A,5Bの受光出力における不良物の判別について図12に例示する。図12において、e0は、正常な米粒からの標準的な反射光に対する出力電圧レベルであり、受光素子5aの出力電圧が適正光量範囲ΔE1,ΔE2よりも小さい場合e1,e2では、正常な米粒よりも光の反射率が小さい不良の米粒等の存在を判別し、適正光量範囲ΔE1,ΔE2よりも大きい場合e3では、正常な米粒よりも反射率が大きい異物の存在を判別する。   FIG. 12 exemplifies the determination of defectives in the light receiving outputs of the light receiving devices 5A and 5B. In FIG. 12, e0 is an output voltage level with respect to standard reflected light from normal rice grains. When the output voltage of the light receiving element 5a is smaller than the appropriate light amount range ΔE1, ΔE2, e1 and e2 are higher than normal rice grains. Also, the presence of a defective rice grain or the like having a low light reflectance is determined, and if it is larger than the appropriate light amount ranges ΔE1 and ΔE2, the presence of a foreign substance having a reflectance higher than that of a normal rice grain is determined.

そして、制御装置24は、計測対象領域Jを通過した米粒群kのうちで、不良物の存在が判別された場合には、計測対象領域Jから噴射ノズル6aの噴射位置に米粒群kが搬送されるのに要する時間間隔が経過するに伴って、不良物に対してその位置に対応する区画の各噴射ノズル6aからエアーを吹き付けて正常な米粒の経路から分離させるべくエアー吹き付け装置6を作動させて、正常な米粒は良米用の受口部21に回収し、不良米又は石やガラス片等の異物を不良物用の受口部22に回収する。従って、この実施形態においては、制御装置24により構成される判別処理手段100により、前記受光手段の受光情報に基づいて、前記計測対象領域における複数の単位受光対象範囲に相当する複数の単位受光範囲毎に受光量を評価する評価手段が構成される。   And when the presence of a defective thing is discriminate | determined among the rice grain groups k which passed the measurement object area | region J, the control apparatus 24 conveys the rice grain group k from the measurement object area | region J to the injection position of the injection nozzle 6a. As the time interval required for the operation has elapsed, the air blowing device 6 is operated to blow the air from the spray nozzles 6a in the section corresponding to the position of the defective product to separate it from the normal rice grain path. Then, normal rice grains are collected in the receiving portion 21 for good rice, and foreign substances such as defective rice or stones and glass pieces are collected in the receiving portion 22 for defective items. Therefore, in this embodiment, a plurality of unit light receiving ranges corresponding to a plurality of unit light receiving target ranges in the measurement target region based on the light receiving information of the light receiving unit by the discrimination processing unit 100 configured by the control device 24. Evaluation means for evaluating the amount of received light is configured for each.

次に、図13及び図14に示すフローチャートに基づいて、適正光量範囲の設定処理及び適正光量範囲の補正処理について説明する。
前記適正光量範囲の設定処理では、装置の電源をオンした後、先ず、前記計測対象領域Jに米粒を供給しない状態で、各受光素子5a毎に、前記各反射板8A,8Bからの反射光について設定個数の受光量データをサンプリングして、その受光量データの平均値Taを各受光素子5a毎に求める。尚、このときに、各受光素子5a毎の受光量データの平均値Taに基づいて、各背景光量調整部8からの受光量が検査を行なうのに十分な光量であることを確認する。
Next, the appropriate light quantity range setting process and the appropriate light quantity range correction process will be described based on the flowcharts shown in FIGS.
In the setting process of the appropriate light amount range, after turning on the power of the apparatus, first, the reflected light from each of the reflecting plates 8A and 8B for each light receiving element 5a in a state where rice grains are not supplied to the measurement target region J. A set number of received light amount data are sampled, and an average value Ta of the received light amount data is obtained for each light receiving element 5a. At this time, based on the average value Ta of the received light amount data for each light receiving element 5a, it is confirmed that the received light amount from each background light amount adjusting unit 8 is a sufficient amount of light for inspection.

次に、前記計測対象領域Jへの米粒の供給を開始した状態で、上記と同様に、各受光素子5a毎に、前記計測対象領域Jからの光について設定個数の受光量データをサンプリングし、サンプリングが終了すると、計測対象領域Jへの米粒の供給を停止する。そして、各受光素子5a毎に、上記受光量データの最大光量値Tmaxと最小光量値Tminを求めるとともに、前記平均値Taとの上側偏差ΔT1(Tmax−Ta)及び下側偏差ΔT2(Ta−Tmin)を求め、それら受光素子の個数分の上側偏差ΔT1及び下側偏差ΔT2のうちで、極端に大きい値のものを除去するために、上側偏差ΔT1及び下側偏差ΔT2の夫々において、大きい方からn番目(例えば10番目)のものを選ぶ。   Next, in the state where the supply of rice grains to the measurement target region J is started, the received light amount data of a set number of light from the measurement target region J is sampled for each light receiving element 5a in the same manner as described above. When sampling is completed, the supply of rice grains to the measurement target region J is stopped. For each light receiving element 5a, the maximum light amount value Tmax and the minimum light amount value Tmin of the light reception amount data are obtained, and the upper side deviation ΔT1 (Tmax−Ta) and the lower side deviation ΔT2 (Ta−Tmin) from the average value Ta. In order to remove the extremely large value of the upper side deviation ΔT1 and the lower side deviation ΔT2 corresponding to the number of the light receiving elements, the larger one of the upper side deviation ΔT1 and the lower side deviation ΔT2 Choose the nth (eg 10th) one.

次に、上記選んだ上側偏差ΔT1を前記平均値Taに加算して上側設定値TH1を求め、さらに、その上側設定値TH1に設定値K1を加算して前記適正光量範囲ΔE1,ΔE2の上限値T1を求める処理、及び、上記選んだ下側偏差ΔT2を前記平均値Taから引算して下側設定値TH2を求め、さらに、その下側設定値TH2から設定値K2を引算して前記適正光量範囲ΔE1,ΔE2の下限値T2を求める処理を、各受光素子5a毎に行い、最後に、設定された上限値T1及び下限値T2のデータに基づいて、前記メモリLUTを作成する。   Next, the selected upper deviation ΔT1 is added to the average value Ta to obtain an upper set value TH1, and further, the set value K1 is added to the upper set value TH1 to obtain an upper limit value of the appropriate light quantity ranges ΔE1 and ΔE2. The process of obtaining T1, and subtracting the selected lower deviation ΔT2 from the average value Ta to obtain the lower set value TH2, and further subtracting the set value K2 from the lower set value TH2 The process of obtaining the lower limit value T2 of the appropriate light amount ranges ΔE1 and ΔE2 is performed for each light receiving element 5a, and finally, the memory LUT is created based on the set upper limit value T1 and lower limit value T2.

前記適正光量範囲の補正処理では、前記計測対象領域Jに米粒を供給して、各受光素子5aの受光量が適正光量範囲ΔE1,ΔE2を外れているか否かの判別を行っている状態で、各受光素子5a毎に、設定時間(例えば、数秒から数10秒)ごとに設定個数の受光量データをサンプリングして、そのサンプリングした受光量データについて前記度数分布を作成する。次に、その度数分布における連続領域の上端光量値U1と下端光量値D1との光量値の差U1−D1が設定値HKよりも大きいか否を判断して、その光量値の差U1−D1が設定値HKよりも大きくない場合には以下の処理は行わない。   In the correction process of the appropriate light amount range, rice grains are supplied to the measurement target region J, and it is determined whether the light reception amount of each light receiving element 5a is out of the appropriate light amount ranges ΔE1 and ΔE2. For each light receiving element 5a, a set number of received light quantity data is sampled every set time (for example, several seconds to several tens of seconds), and the frequency distribution is created for the sampled received light quantity data. Next, it is determined whether or not the difference U1-D1 between the upper end light amount value U1 and the lower end light amount value D1 of the continuous region in the frequency distribution is larger than the set value HK, and the difference between the light amount values U1-D1. Is not larger than the set value HK, the following processing is not performed.

上記光量値の差U1−D1が設定値HKよりも大きい場合には、先ず、上記度数分布において、現在の上側設定値TH1よりも明るい光量値データが存在する場合には、その上側設定値TH1の値を1増加させ、現在の上側設定値TH1よりも明るい光量値データが存在しない場合には、その上側設定値TH1の値を1減少させる。次に、上記度数分布において、現在の下側設定値TH2よりも暗い光量値データが存在する場合には、その下側設定値TH2の値を1減少させ、現在の下側設定値TH2よりも暗い光量値データが存在しない場合には、その下側設定値TH2の値を1増加させる。   When the light quantity value difference U1-D1 is larger than the set value HK, first, if there is light quantity value data brighter than the current upper set value TH1 in the frequency distribution, the upper set value TH1. Is increased by 1 and if there is no light quantity value data brighter than the current upper set value TH1, the value of the upper set value TH1 is decreased by 1. Next, in the frequency distribution, if there is light quantity value data darker than the current lower set value TH2, the value of the lower set value TH2 is decreased by 1 to make it lower than the current lower set value TH2. If there is no dark light quantity value data, the lower set value TH2 is incremented by one.

最後に、上側設定値TH1及び下側設定値TH2の変更に応じて適正光量範囲ΔE1,ΔE2の上限値T1及び下限値T2を変更し、この変更された上限値T1及び下限値T2のデータに基づいて、前記メモリLUTの内容を修正する。   Finally, the upper limit value T1 and the lower limit value T2 of the appropriate light quantity ranges ΔE1, ΔE2 are changed in accordance with the change of the upper set value TH1 and the lower set value TH2, and the changed upper limit value T1 and lower limit value T2 are converted into data. Based on this, the contents of the memory LUT are modified.

そして、制御装置24は、不良の判別情報に基づいて、前記両受光装置5A,5Bの計測対象領域Jに移送した米粒群kのうちで、米粒の不良又は異物の存在が判別された場合には、計測対象領域Jから噴射ノズル6aによるエアー噴射位置までの移送時間が経過するに伴って、流下している不良の米粒又は異物に対して、その位置に対応する区画の各噴射ノズル6aからエアーを吹き付けて正常な米粒の経路から分離させる。   And the control apparatus 24 is based on the discrimination | determination information of a defect, When the defect of a rice grain or presence of a foreign material is discriminate | determined among the rice grain groups k transferred to the measurement object area | region J of both the said light receiving devices 5A and 5B. As the transfer time from the measurement target region J to the air injection position by the injection nozzle 6a elapses, the defective rice grains or foreign matters flowing down from each injection nozzle 6a in the section corresponding to the position. Blow air away from the normal rice grain path.

〔別実施形態〕
次に、粉粒体検査装置の別実施形態について説明する。
[Another embodiment]
Next, another embodiment of the particulate inspection apparatus will be described.

(1)上記実施形態では、前記折り曲げ光路形成手段が、前記計測対象領域からの光を反射する第1の光反射体と、その第1の光反射体にて反射した光を反射して前記受光手段に導く第2の光反射体とを備えて構成され、且つ、前記第1の光反射体及び第2の光反射体の夫々が光反射面を平面状に形成して構成されるものを例示したが、このような構成に代えて、次のように構成してもよい。 (1) In the above-described embodiment, the bending optical path forming unit reflects the light reflected by the first light reflector and the first light reflector that reflects the light from the measurement target region. A second light reflector that leads to the light receiving means, and each of the first light reflector and the second light reflector is formed by forming a light reflecting surface in a planar shape. However, instead of such a configuration, the following configuration may be used.

すなわち、前記折り曲げ光路形成手段を、前記計測対象領域からの光を反射する第1の光反射体と、その第1の光反射体にて反射した光を反射して前記受光手段に導く第2の光反射体とを備えて構成され、且つ、前記第1の光反射体の光反射面を凹面形状に形成し、前記第2の光反射体の光反射面を平面形状又は凸面形状に形成して構成するものでもよい。例えば、図16(イ)に示すように、第1の光反射体10Aを光反射面を凹面形状に形成し、第2の光反射体11の光反射面を上記実施形態と同様な平面形状に形成するものとしてもよい。又、図16(ロ)に示すように、第1の光反射体10Aを光反射面を凹面形状に形成し、第2の光反射体11Aの光反射面を凸面形状に形成するものとしてもよい。
このとき、第1の光反射体の前記経路横幅方向での寸法は、計測対象領域における前記経路横幅方向での横幅とほぼ同じ寸法になるように構成してあり、前記計測対象領域からの光を光軸方向に沿う平行状態で受け入れたのち、計測対象領域の像を縮小させた状態で第2の光反射体に反射させることができる。
That is, the bent optical path forming means reflects the first light reflector that reflects the light from the measurement target region, and the second light that reflects the light reflected by the first light reflector and guides it to the light receiving means. The light reflecting surface of the first light reflector is formed in a concave shape, and the light reflecting surface of the second light reflector is formed in a planar shape or a convex shape. It may be configured. For example, as shown in FIG. 16 (a), the first light reflector 10A has a light reflecting surface formed in a concave shape, and the light reflecting surface of the second light reflector 11 has a planar shape similar to that of the above embodiment. It is good also as what is formed. Further, as shown in FIG. 16 (b), the first light reflector 10A may be formed with a light reflecting surface having a concave shape and the light reflecting surface of the second light reflector 11A may be formed with a convex shape. Good.
At this time, the dimension of the first light reflector in the path width direction is substantially the same as the width in the path width direction in the measurement target area. Can be reflected in the second light reflector in a state in which the image of the measurement target region is reduced.

又、前記折り曲げ光路形成手段としては、2つの反射体を備える構成に限らず、1つの反射体を備えるものでもよく、3つ以上の反射体を備える構成としてもよく、要するに、計測対象領域の像を縮小した像を受光手段が受光するように、計測対象領域からの光を受光手段における光軸方向に折り返して受光手段に導く構成であればよい。   Further, the bending optical path forming means is not limited to a configuration including two reflectors, and may be a configuration including one reflector, or a configuration including three or more reflectors. Any structure may be used as long as the light from the measurement target region is folded back in the optical axis direction of the light receiving unit and guided to the light receiving unit so that the light receiving unit receives the reduced image.

(2)上記実施形態では、前記第1の反射体及び第2の反射体の夫々を、調節ネジにより傾斜角度を変更調整可能に構成するものを示したが、このような角度調節手段を備えることなく位置固定状態で備える構成としてもよい。 (2) In the above embodiment, each of the first reflector and the second reflector is configured such that the inclination angle can be changed and adjusted by the adjusting screw. However, such an angle adjusting means is provided. It is good also as a structure provided with a position fixed state without.

(3)上記実施形態では、前記評価手段が、前記受光手段にて計測される光の受光量に基づいて粒状体を評価するにあたって、前記受光手段にて計測される光の受光量が適正光量範囲を外れていなければ正常物と判別し、受光量が適正光量範囲を外れていると異常物として判別するように構成したが、このような構成に限らず、例えば、粒状体の大きさを評価して小さい粒状体と大きい粒状体とを選別するように構成するものでもよい。 (3) In the above embodiment, when the evaluation unit evaluates the granular material based on the amount of light received by the light receiving unit, the amount of light received by the light receiving unit is an appropriate light amount. If it is not out of the range, it is determined as a normal object, and if the amount of received light is out of the appropriate light amount range, it is determined as an abnormal object. It may be configured so as to evaluate and sort small and large particles.

(4)上記実施形態では、前記受光手段として、予定移送経路IKの装置前面側に位置する前面側受光手段5Bと装置後面側に位置する後面側受光手段5Aとが設けられ、前記照明手段4として、予定移送経路IKの装置前面側に位置する前面側照明手段4Bと装置後面側に位置する後面側照明手段4Aとが設けられる構成としたが、前面側受光手段5B及び前面側照明手段4Bだけを備える構成や、後面側受光手段5A及び後面側照明手段4Aだけを備える構成としてもよい。 (4) In the above embodiment, as the light receiving means, the front side light receiving means 5B located on the front side of the apparatus of the scheduled transfer path IK and the rear side light receiving means 5A located on the rear side of the apparatus are provided. As described above, the front side illumination unit 4B located on the front side of the apparatus in the scheduled transfer path IK and the rear side illumination unit 4A located on the rear side of the apparatus are provided. However, the front side light receiving unit 5B and the front side illumination unit 4B are provided. It is good also as a structure provided only with 5 A of back surface side light-receiving means, and 4 A of back surface side illumination means.

(5)上記実施形態では、前記照明手段としての前面側照明手段4Bと後面側照明手段4Aとの夫々が、前記計測対象領域を直接照明するライン状光源と、そのライン状光源が発した光を反射して前記計測対象領域を前記ライン状光源の照明方向と異なる方向から照明する照明用の光反射体とを備えて構成されるものを例示したが、このような照明用の光反射体を設けるものではなく、例えば複数のライン状光源を備えて、それら複数のライン状光源により計測対象領域を互いに異なる方向から照明する構成としてもよい。 (5) In the above embodiment, each of the front-side illumination unit 4B and the rear-side illumination unit 4A serving as the illumination unit directly illuminates the measurement target region, and the light emitted from the line-shaped light source. The illumination light reflector for illuminating the measurement target region from a direction different from the illumination direction of the line-shaped light source is illustrated as an example. For example, a plurality of line light sources may be provided, and the measurement target regions may be illuminated from different directions by the plurality of line light sources.

(6)上記実施形態では、前記対象物移送手段として、経路横幅方向の全幅にわたって平坦な案内面に形成された平面シュータを備えて構成されるものを例示したが、このような構成に限らず、例えば直線状の溝を経路横幅方向に沿って複数列に並べる状態で形成した溝付きシュータにて構成して、それらの複数列の溝により粒状体群を移送するような構成としてもよい。 (6) In the above-described embodiment, the object transfer means is exemplified as having the flat shooter formed on the flat guide surface over the entire width in the path width direction, but is not limited to such a structure. For example, it may be configured by a grooved shooter formed in a state where linear grooves are arranged in a plurality of rows along the path width direction, and the granular material group may be transferred by the plurality of rows of grooves.

(7)上記実施形態では、受光手段として、モノクロタイプのCCDセンサ以外に、撮像管式のテレビカメラでもよい。又、モノクロタイプではなく、カラータイプのCCDセンサにて構成して、例えば、色情報R,G,B毎の受光量から不良米や異物の存否をさらに精度良く判別してもよい。 (7) In the above embodiment, the light receiving means may be a tube tube type television camera in addition to the monochrome type CCD sensor. Further, instead of a monochrome type, a color type CCD sensor may be used, and for example, the presence or absence of defective rice or foreign matter may be determined with higher accuracy from the amount of received light for each of the color information R, G, and B.

(8)上記実施形態では、分離手段が、不良物に対してエアーを吹き付けて、正常物と異なる経路に分離させるようにしたが、これに限るものではなく、例えば不良物をエアーで吸引して分離させるようにしたり、機械的な接当作用により分離させるようにしてもよい。 (8) In the above embodiment, the separation means sprays air on the defective object and separates it into a path different from the normal object. However, the present invention is not limited to this, and for example, the defective object is sucked with air. May be separated by mechanical contact, or may be separated by mechanical contact action.

(9)上記実施形態では、粒状体群が米粒群である場合について例示したが、これに限るものではなく、例えば、樹脂ペレット等における不良物や異物の存否を検査する場合にも適用できる。 (9) In the above embodiment, the case where the granular material group is the rice grain group is illustrated, but the present invention is not limited to this, and can be applied to, for example, inspecting the presence or absence of defectives or foreign matters in resin pellets or the like.

粉粒体検査装置の全体側面図Whole side view of powder inspection equipment 同要部側面図Side view of the main part 同要部斜視図Perspective view of the main part 背景光量調整部の構成を示す図The figure which shows the structure of a background light quantity adjustment part 折れ曲がり光路形成手段の構成を示す図The figure which shows the structure of a bending optical path formation means 折れ曲がり光路形成手段の構成を示す図The figure which shows the structure of a bending optical path formation means 制御構成のブロック図Block diagram of control configuration 受光手段の受光状態を示す図The figure which shows the light reception state of the light receiving means 適正光量範囲の設定及び補正処理を説明するグラフGraph explaining the setting and correction processing of the appropriate light amount range 適正光量範囲の補正処理を説明するグラフGraph explaining the correction process for the appropriate light intensity range 不良判別用のメモリのブロック図Block diagram of memory for defect determination ラインセンサの受光出力電圧の波形図Waveform diagram of line sensor light receiving output voltage 制御作動のフローチャートFlow chart of control operation 制御作動のフローチャートFlow chart of control operation 折れ曲がり光路形成手段の概略構成を示す図The figure which shows schematic structure of a bending optical path formation means 別実施形態における折れ曲がり光路形成手段の構成を示す図The figure which shows the structure of the bending optical path formation means in another embodiment. 受光手段の受光状態を示す説明図Explanatory drawing showing the light receiving state of the light receiving means 本発明の課題を説明するための図The figure for demonstrating the subject of this invention

符号の説明Explanation of symbols

4 照明手段
5 受光手段
6 分離手段
9 折り曲げ光路形成手段
10 第1の反射体
10a 反射面
11 第2の反射体
11a 反射面
41A,41B ライン状光源
42A,42B 照明用の光反射体
100 評価手段
TI 対象物移送手段
4 Illuminating means 5 Light receiving means 6 Separating means 9 Bending optical path forming means 10 First reflector 10a Reflecting surface 11 Second reflector 11a Reflecting surface 41A, 41B Linear light sources 42A, 42B Illuminating light reflector 100 Evaluation means TI object transfer means

Claims (5)

粒状体群を計測対象領域を通過させながら一層状態で且つ経路横幅方向に沿って複数列状に並ぶ横拡がり状態で移送する対象物移送手段と、
粒状体の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で、且つ、前記経路横幅方向に広がる視野角を有する状態で、前記計測対象領域からの光を受光する受光手段と、
前記計測対象領域の前記経路横幅方向の全幅又はほぼ全幅を照明する照明手段と、
前記受光手段の受光情報に基づいて、前記計測対象領域における複数の単位受光対象範囲に相当する複数の単位受光範囲毎に受光量を評価する評価手段とが設けられた粒状体選別装置であって、
前記計測対象領域の像を縮小した像を前記受光手段が受光するように、前記計測対象領域からの光を前記受光手段における光軸方向に折り返して前記受光手段に導く光反射式の折り曲げ光路形成手段を備えている粒状体選別装置。
An object transfer means for transferring the granular material group in a horizontally expanded state arranged in a plurality of rows along the path width direction while passing through the measurement target region;
A light receiving means for receiving light from the measurement target region in a resolution state in which a range smaller than the size of the granular body is a unit light reception target range and having a viewing angle widening in the path width direction;
Illuminating means for illuminating the entire width or almost the entire width of the measurement target region in the path width direction;
A granular material sorting apparatus provided with evaluation means for evaluating the amount of received light for each of a plurality of unit light receiving ranges corresponding to a plurality of unit light receiving target ranges in the measurement target region based on light reception information of the light receiving means. ,
Forming a light-reflecting bent optical path that folds light from the measurement target area in the optical axis direction of the light receiving means and guides it to the light receiving means so that the light receiving means receives a reduced image of the image of the measurement target area A granular material sorting apparatus comprising means.
前記折り曲げ光路形成手段が、
前記計測対象領域からの光を反射する第1の光反射体と、その第1の光反射体にて反射した光を反射して前記受光手段に導く第2の光反射体とを備えて構成され、且つ、前記第1の光反射体及び第2の光反射体の夫々が光反射面を平面状に形成して構成されている請求項1記載の粒状体選別装置。
The bending optical path forming means is
A first light reflector that reflects light from the measurement target region, and a second light reflector that reflects the light reflected by the first light reflector and guides it to the light receiving means. The granular material sorting apparatus according to claim 1, wherein each of the first light reflector and the second light reflector is formed by forming a light reflection surface in a planar shape.
前記折り曲げ光路形成手段が、
前記計測対象領域からの光を反射する第1の光反射体と、その第1の光反射体にて反射した光を反射して前記受光手段に導く第2の光反射体とを備えて構成され、且つ、前記第1の光反射体の光反射面を凹面形状に形成し、前記第2の光反射体の光反射面を平面形状又は凸面形状に形成して構成されている請求項1記載の粒状体選別装置。
The bending optical path forming means is
A first light reflector that reflects light from the measurement target region, and a second light reflector that reflects the light reflected by the first light reflector and guides it to the light receiving means. The light reflecting surface of the first light reflector is formed in a concave shape, and the light reflecting surface of the second light reflector is formed in a planar shape or a convex shape. The granular material sorting apparatus as described.
前記評価手段が、前記受光手段にて受光する光の受光量が適正光量範囲を外れていなければ正常物として評価し、前記受光量が適正光量範囲を外れていると異常物として評価するように構成され、
前記評価手段の評価結果に基づいて、前記計測対象領域よりも前記対象物移送手段による粒状体移送方向下手側箇所において、前記正常物として評価された粒状体と前記異常物として評価された粒状体とを異なる移送経路に分離して選別する分離手段が備えられ、
前記照明手段が、前記計測対象領域の前記経路横幅方向に沿う方向視において、前記受光手段が前記検出光を受光するときの光軸に対して粒状体移送方向の上手側及び下手側の夫々に照明部が設けられ、前記粒状体移送方向の上手側に設けられる照明部及び前記粒状体移送方向の下手側に設けられる照明部のうちのいずれか一方が前記計測対象領域を直接照明するライン状光源にて構成され、且つ、前記粒状体移送方向の上手側に設けられる照明部及び前記粒状体移送方向の下手側に設けられる照明部のうちの他方が前記のライン状光源が発した光を反射してその反射した光により前記計測対象領域を照明する光反射体にて構成されている請求項1〜3のいずれか1項に記載の粒状体選別装置。
The evaluation means evaluates as a normal object if the amount of light received by the light receiving means is not outside the proper light amount range, and evaluates as an abnormal object if the light reception amount is outside the appropriate light amount range. Configured,
Based on the evaluation result of the evaluation means, the granular material evaluated as the normal material and the granular material evaluated as the abnormal material at a location on the lower side of the granular material transfer direction by the object transfer means than the measurement target region. And separating means for separating and sorting into different transfer paths,
When the illumination means is viewed in a direction along the path width direction of the measurement target region, each of the upper side and the lower side in the granular material transfer direction with respect to the optical axis when the light receiving means receives the detection light. An illumination unit is provided, and one of the illumination unit provided on the upper side of the granular material transfer direction and the illumination unit provided on the lower side of the granular material transfer direction directly illuminates the measurement target region A light source and the other of the illumination unit provided on the upper side of the granular material transfer direction and the illumination unit provided on the lower side of the granular material transfer direction is the light emitted from the line light source. The granular material sorting apparatus according to any one of claims 1 to 3, comprising a light reflector that reflects and illuminates the measurement target region with the reflected light.
前記照明用の光反射体と前記ライン状光源とが前記粒状体移送方向に沿って並ぶ状態で設けられ、且つ、前記照明用の光反射体が前記ライン状光源よりも前記粒状体移送方向の下手側に位置する状態で設けられている請求項4記載の粒状体選別装置。   The illumination light reflector and the line light source are provided in a state of being aligned along the granular material transport direction, and the illumination light reflector is more in the granular material transport direction than the line light source. The granular material sorter according to claim 4, which is provided in a state of being located on the lower side.
JP2005053123A 2005-02-28 2005-02-28 Granule sorter Active JP4675120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053123A JP4675120B2 (en) 2005-02-28 2005-02-28 Granule sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053123A JP4675120B2 (en) 2005-02-28 2005-02-28 Granule sorter

Publications (2)

Publication Number Publication Date
JP2006234744A true JP2006234744A (en) 2006-09-07
JP4675120B2 JP4675120B2 (en) 2011-04-20

Family

ID=37042539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053123A Active JP4675120B2 (en) 2005-02-28 2005-02-28 Granule sorter

Country Status (1)

Country Link
JP (1) JP4675120B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045886A (en) * 2010-12-10 2011-03-10 Kubota Corp Granule sorting apparatus
KR101173206B1 (en) 2010-04-19 2012-08-10 주식회사 아이디알시스템 Grain color sorting apparatus for using near infrared ray
WO2014103767A1 (en) * 2012-12-28 2014-07-03 株式会社サタケ Imaging device
JP2015094711A (en) * 2013-11-13 2015-05-18 東洋ガラス機械株式会社 Discrimination device
KR101830891B1 (en) * 2016-05-25 2018-02-21 이소향 Color-based sorting apparatus
KR20180039711A (en) 2015-08-28 2018-04-18 가부시끼가이샤 사따께 A device having an optical unit
JP2019522177A (en) * 2016-05-26 2019-08-08 シコラ アーゲー Apparatus and method for inspecting bulk material
WO2019164009A1 (en) * 2018-02-26 2019-08-29 株式会社サタケ Illuminating device for sorting machine or inspecting machine
CN114850077A (en) * 2022-05-18 2022-08-05 安徽唯嵩光电科技有限公司 Image acquisition optical imaging system and color sorter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233735A (en) * 1995-02-27 1996-09-13 Iseki & Co Ltd Near infrared component analyzer
JPH1082622A (en) * 1996-09-05 1998-03-31 Dainippon Printing Co Ltd Substrate inspection apparatus
JP2000266682A (en) * 1999-03-17 2000-09-29 Olympus Optical Co Ltd Image fetching apparatus
JP2001272353A (en) * 2000-03-24 2001-10-05 Kubota Corp Powder and grain inspecting device
JP2002263585A (en) * 2001-03-13 2002-09-17 Kubota Corp Granular material classifying apparatus and granular material treating apparatus
JP2005003666A (en) * 2003-05-20 2005-01-06 Dainippon Screen Mfg Co Ltd Spectroscopic ellipsometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233735A (en) * 1995-02-27 1996-09-13 Iseki & Co Ltd Near infrared component analyzer
JPH1082622A (en) * 1996-09-05 1998-03-31 Dainippon Printing Co Ltd Substrate inspection apparatus
JP2000266682A (en) * 1999-03-17 2000-09-29 Olympus Optical Co Ltd Image fetching apparatus
JP2001272353A (en) * 2000-03-24 2001-10-05 Kubota Corp Powder and grain inspecting device
JP2002263585A (en) * 2001-03-13 2002-09-17 Kubota Corp Granular material classifying apparatus and granular material treating apparatus
JP2005003666A (en) * 2003-05-20 2005-01-06 Dainippon Screen Mfg Co Ltd Spectroscopic ellipsometer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173206B1 (en) 2010-04-19 2012-08-10 주식회사 아이디알시스템 Grain color sorting apparatus for using near infrared ray
JP2011045886A (en) * 2010-12-10 2011-03-10 Kubota Corp Granule sorting apparatus
CN104937398A (en) * 2012-12-28 2015-09-23 株式会社佐竹 Imaging device
JP2014130080A (en) * 2012-12-28 2014-07-10 Satake Corp Photographing device
KR20150103087A (en) 2012-12-28 2015-09-09 가부시끼가이샤 사따께 Imaging device
KR102124678B1 (en) * 2012-12-28 2020-06-18 가부시끼가이샤 사따께 Imaging device
TWI608228B (en) * 2012-12-28 2017-12-11 佐竹股份有限公司 Checking device
WO2014103767A1 (en) * 2012-12-28 2014-07-03 株式会社サタケ Imaging device
JP2015094711A (en) * 2013-11-13 2015-05-18 東洋ガラス機械株式会社 Discrimination device
KR20180039711A (en) 2015-08-28 2018-04-18 가부시끼가이샤 사따께 A device having an optical unit
CN108139334A (en) * 2015-08-28 2018-06-08 株式会社佐竹 Has the device of optical unit
CN108139334B (en) * 2015-08-28 2020-09-18 株式会社佐竹 Device with optical unit
US10702891B2 (en) 2015-08-28 2020-07-07 Satake Corporation Device equipped with optical unit
KR101830891B1 (en) * 2016-05-25 2018-02-21 이소향 Color-based sorting apparatus
JP2019522177A (en) * 2016-05-26 2019-08-08 シコラ アーゲー Apparatus and method for inspecting bulk material
JP7128116B2 (en) 2016-05-26 2022-08-30 シコラ アーゲー Apparatus and method for inspecting bulk materials
JP2019148431A (en) * 2018-02-26 2019-09-05 株式会社サタケ Illuminating device for sorting machine or inspection machine
WO2019164009A1 (en) * 2018-02-26 2019-08-29 株式会社サタケ Illuminating device for sorting machine or inspecting machine
CN114850077A (en) * 2022-05-18 2022-08-05 安徽唯嵩光电科技有限公司 Image acquisition optical imaging system and color sorter

Also Published As

Publication number Publication date
JP4675120B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4675120B2 (en) Granule sorter
JP5795498B2 (en) Granule sorter
JP5676369B2 (en) Granule sorter
WO2013069736A1 (en) Granule inspection device
JP4076414B2 (en) Defective object detection device and separation device using the same
JP4851856B2 (en) Granule sorter
WO2014103767A1 (en) Imaging device
JP2006231233A (en) Apparatus for sorting particulate material
JP6157086B2 (en) Granule inspection device
JP4733409B2 (en) Granule sorter
JP4338284B2 (en) Powder inspection equipment
JP3288613B2 (en) Defect detection device and defect removal device
JP2001264256A (en) Powder and grain inspecting device
JP3318223B2 (en) Defect detection device and defect removal device
JPH1190345A (en) Inspection apparatus of granular bodies
JP5232214B2 (en) Granule sorter
JP6153311B2 (en) Granule inspection device
JP4052911B2 (en) Defective object detection device and separation device using the same
JP6128730B2 (en) Granule inspection device
JP3146165B2 (en) Defect detection device and defect removal device
JP2011045886A5 (en)
JPH1190346A (en) Defect detector and defective article remover
JP2000210626A (en) Defective article detector, and adjusting jig and adjusting method therefor
JP4454086B2 (en) Powder inspection equipment
JP3146149B2 (en) Defect detection device and defect removal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150