JP4076414B2 - Defective object detection device and separation device using the same - Google Patents

Defective object detection device and separation device using the same Download PDF

Info

Publication number
JP4076414B2
JP4076414B2 JP2002273303A JP2002273303A JP4076414B2 JP 4076414 B2 JP4076414 B2 JP 4076414B2 JP 2002273303 A JP2002273303 A JP 2002273303A JP 2002273303 A JP2002273303 A JP 2002273303A JP 4076414 B2 JP4076414 B2 JP 4076414B2
Authority
JP
Japan
Prior art keywords
light
amount
light amount
appropriate
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002273303A
Other languages
Japanese (ja)
Other versions
JP2004108995A (en
Inventor
祐一 山崎
直人 池田
裕明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002273303A priority Critical patent/JP4076414B2/en
Publication of JP2004108995A publication Critical patent/JP2004108995A/en
Application granted granted Critical
Publication of JP4076414B2 publication Critical patent/JP4076414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sorting Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粒状体群を検査対象物として、その検査対象物の存在予定箇所を照明する照明手段と、前記存在予定箇所からの光を受光する受光手段と、前記受光手段の受光方向であって前記存在予定箇所の背部側箇所に配置されて前記受光手段に向けて光を投射する投射部材と、前記受光手段の受光量を設定時間間隔でサンプリングして、そのサンプリングした受光量の光量値が前記粒状体群における正常物からの検出光に対する適正光量範囲を外れた場合に不良物の存在を判別する判別手段とが設けられている不良物検出装置、及び、それを用いた分離装置に関する。
【0002】
【従来の技術】
前記不良物検出装置では、検査対象物として例えば米粒群のような粒状体群が存在予定箇所にて蛍光灯等の照明手段にて照明され、前記存在予定箇所にて照明光が粒状体群で反射された反射光や粒状体群を透過した透過光、及び、存在予定箇所の背部側箇所に設けた投射部材から投射される光をCCDセンサ等の受光手段にて受光し、その受光量の光量値が粒状体群における正常物からの検出光に対する適正光量範囲を外れている否かを判別するようにしている。又、このような不良物検出装置を用いた分離装置においては、上記したような判別によって適正光量範囲を外れているとして存在が検出された不良物は、上記存在予定箇所よりも下手側に搬送されて、分離手段としてのエアー噴出装置により吹き付けられるエアーにて正常物とは異なる経路に分離される構成となっている。
【0003】
そして、従来では、前記判別手段が、前記受光手段の受光量を設定時間間隔でサンプリングして、そのサンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各光量値に対する度数分布を求めて、その度数分布に基づいて前記適正光量範囲の上限値及び下限値を設定するように構成されており、しかも、前記投射部材として、検査対象物である粒状体群のうち正常物からの検出光と同一又は略同一の明るさの光を受光手段に向けて投射するように、照明手段からの光を反射させる反射板が備えられる構成のものがあった(例えば、特許文献1参照。)。
【0004】
又、別の従来技術として次のように構成されたものもある。つまり、前記投射部材として、前記存在予定箇所の背部側箇所に設けられるバックグランドつまり背景板の後方側に光源ランプを設けて、この光源ランプの光量を調節することで、投射部材から投射させる光の光量を自動調整するように構成したものがあった。説明を加えると、投射部材から投射させる光の光量として粒状体群における正常物からの検出光と同一又は略同一の明るさとなる基準値を予め設定しておき、受光手段の受光量の検出値に基づいて投射部材から投射させる光の光量が自動的に上記したような基準値に自動調整されるように光源ランプの光量を調節する構成である(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開2001−272353号公報(第6頁―第9頁、第1図−第4図、第8図)
【特許文献2】
特公平6−10635号公報(第2頁―第3頁、第3図)
【0006】
【発明が解決しようとする課題】
上記特許文献1に示されるものは、上記したようにサンプリングにより得られた設定個数の受光量データについての度数分布に基づいて適正光量範囲の上限値及び下限値を設定することにより、実際に検査される粒状体群からの反射光や透過光の光量についての光量の分布に適合させた状態で適正光量範囲を設定できるようにしたものである。
【0007】
説明を加えると、前記照明手段からの照明光が検査対象物として粒状体群で反射された反射光や粒状体群を透過した透過光は、全ての粒状体が同じ光量になるとは限らず個々の粒状体によって少しづつ異なった値になりバラツキが生じるものである。しかも、それらの光量がバラついて分布する光量の範囲つまり分布領域は同じ種類の粒状体群であっても常に一定になることはなく、例えば、生産ロットが異なったり生産者や生産場所が異なるような粒状体群であれば、その分布領域自体も種々変化することになる。
そこで、上記特許文献1に示される従来構成では、このような検査対象物である粒状体群の光量の分布領域の違いに対応させて適正光量範囲の上限値や下限値をより適正な値として設定するようにしている。
【0008】
しかし、上記したように適正光量範囲の上限値や下限値をより適正な値として設定するようにしても、前記投射部材は照明手段からの光を反射するだけであり、投射部材から受光手段に向けて投射する光の光量は照明手段の光量や投射部材の反射率等によって一律に定まるものであるから、粒状体群について正常物と不良物との判別が適正に行えないものとなるおそれがあった。
図面を参照しながら具体的に説明すると、図21(イ)及び図21(ロ)に、サンプリングにより得られた設定個数の受光量データについての度数分布の一例を示している。尚、この図では、粒状体群のほとんどが正常物である場合を示しており、図中のpiは、度数分布の中のピーク値でありそのピーク値に対応する光量値BGは投射部材から投射される光の光量である。つまり、存在予定箇所に粒状体群が存在しないときには常に投射部材から投射される光が受光手段にて受光されることになり、受光手段の受光量を設定時間間隔でサンプリングした場合、投射部材から投射される光の光量が最も頻度の高いデータとなるのである。
そして、この投射部材から投射される光の光量値BGが照明手段の光量の変化に伴って変化することがあり、又、光量が一定であっても上述したように粒状体群の光量の分布領域は種々変化するので、図21(イ)に示すように投射部材から投射させる光の光量値に対して粒状体群の光量の分布領域が暗側にずれたり、図21(ロ)に示すように前記光量値BGに対して粒状体群の光量の分布領域が明側にずれたりすることがある。
【0009】
このように前記投射部材から投射させる光の光量値BGに対して粒状体群の光量の分布領域がずれてしまうと、投射部材から投射させる光の光量が粒状体群における正常物からの光と同一又は略同一の明るさとは異なるものになり、正常物と不良物とを判別する場合の判別精度が低下するおそれがあり、前記光量値BGが適正光量範囲の上限値を超えて高くなったり、適正光量範囲の下限値を下回ったりすると、粒状体中に不良物が存在していなくても誤って不良と判別するおそれがある等、粒状体群からの反射光や透過光の光量に基づいて適正な判別処理が行えないものとなる不利があった。
【0010】
又、上記特許文献2に示される従来構成のように、投射部材から投射させる光の光量が自動的に上記したような基準値に自動調整される構成とした場合であっても、この特許文献2に示される従来構成では、投射部材から投射される光の光量が常に予め設定された一定の値である前記基準値になるように調整されるものの、上述した如く粒状体群の光量の分布領域は種々変化することから、図21に示すように、投射部材から投射させる光の光量値BG(この値が上記基準値に対応する)に対して粒状体群の光量の分布領域がずれるおそれがあり、上述したような不利を解消できないものであった。
【0011】
本発明はかかる点に着目してなされたものであり、その目的は、実際に検査される粒状体群からの反射光や透過光の光量についての光量分布に適合させて、投射部材から投射される光の光量を適正な状態に調整することにより、不良物を判別するときの精度を向上させることが可能となる不良物検出装置を提供する点にある。
【0012】
本発明の別の目的は、不良物を判別するときの精度を向上させて適正に不良物を正常物とを分離させることが可能となる分離装置を提供する点にある。
【0013】
【課題を解決するための手段】
請求項1に記載の不良物検出装置は、粒状体群を検査対象物として、その検査対象物の存在予定箇所を照明する照明手段と、前記存在予定箇所からの光を受光する受光手段と、前記受光手段の受光方向であって前記存在予定箇所の背部側箇所に配置されて前記受光手段に向けて光を投射する投射部材と、前記受光手段の受光量を設定時間間隔でサンプリングして、そのサンプリングした受光量が前記粒状体群における正常物からの検出光に対する適正光量範囲を外れた場合に不良物の存在を判別する判別手段とが設けられているものであって、前記判別手段が、前記適正光量範囲を設定するために、前記サンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各受光量に対する度数分布を求めるように構成され、且つ、前記度数分布に基づいて前記適正光量範囲の上限値及び下限値を自動設定するように構成され、前記投射部材から前記受光手段に向けて投射する光の光量を変更調整する光量調整手段が備えられ、この光量調整手段が、前記判別手段の前記度数分布の情報に基づいて、前記投射部材から前記受光手段に向けて投射する光の光量を自動的に変更調整して、その度数分布において最も頻度の高い光量値を前記適正光量範囲内における適正位置に位置させることを特徴とする。
【0014】
すなわち、照明手段が粒状体群の存在予定箇所を照明し、存在予定箇所からの光を受光する受光手段の受光量を設定時間間隔でサンプリングして、サンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各受光量に対する度数分布が求められる。この度数分布は前記適正光量範囲を設定するために求められる。例えば、この度数分布に基づいて適正光量範囲の上限値や下限値が適宜設定されることになる。
【0015】
そして、その求められた度数分布の情報に基づいて、その度数分布において最も頻度の高い光量値が適正光量範囲内における適正位置に位置するように、光量調整手段が、投射部材から受光手段に向けて投射する光の光量を変更調整するのである。
説明を加えると、存在予定箇所に粒状体群が存在しない場合には常に投射部材から投射される光が受光手段にて受光されることになるので、投射部材から投射される光の光量が常に度数分布において最も頻度の高い光量値となる。そこで、求められた度数分布において最も頻度の高い光量値が適正光量範囲内における適正位置に位置するように光量を変更調整するのである。
前記適正光量範囲内における適正位置としては、例えば適正光量範囲の中央値とする場合や、その中央値よりも少し明側に設定したり、あるいは、中央値よりも少し暗側に設定するような場合等がある。
【0016】
従って、粒状体群で反射された反射光や粒状体群を透過した透過光にバラツキが生じて、それらの光量がバラついて分布する光量の範囲つまり分布領域も種々変化するようなことがあっても、実際に検査される粒状体群の検出光量の分布状況に適合させて投射部材から投射される光の光量値を適正光量範囲内の適正な位置になるように変更調整することにより、不良物を判別するときの精度を向上させることが可能となった。
そして、度数分布に基づいて前記適正光量範囲の上限値及び下限値を自動設定されるので、例えば、手動操作によって設定する場合に比べて煩わしい操作が不要であり、しかも、手動操作による場合のように誤った設定が行われるおそれのない良好な状態で適正光量範囲の上限値及び下限値を設定することができる。
【0017】
請求項2に記載の不良物検出装置は、請求項1において、前記粒状体群を横幅方向に広げた状態でその横幅方向に沿って幅広に形成された前記存在予定箇所を通過するように搬送させる搬送手段が備えられ、前記受光手段が、前記存在予定箇所からの光を受光する複数個の受光部を前記存在予定箇所の横幅方向に沿って並置させるように構成され、前記判別手段が、前記受光量の光量値が前記適正光量範囲を外れているか否かについての判別処理及び前記度数分布を求める処理を前記各受光部毎に実行するように構成され、前記光量調整手段が、前記複数個の受光部の並び方向に沿って並置された複数の光源を備えて構成され、且つ、前記複数個の受光部に対して投射する光の光量を各光源毎に各別に、又は、区分けされた複数個づつの光源毎に変更調整自在に構成されていることを特徴とする。
【0018】
上記構成によれば、粒状体群が横幅方向に広がった状態でその横幅方向に沿って幅広に形成された存在予定箇所を通過するともに、その幅広の存在予定箇所からの光が、存在予定箇所の幅方向に沿って並置させた複数個の受光部にて受光され、その受光手段の各受光部毎に受光量の光量値が適正光量範囲を外れているか否かについての判別処理が実行される。又、複数個の受光部により得られた複数の受光量データについて暗側から明側にわたる間を複数段階に区分けした各受光量に対する度数分布が求められ、この度数分布に基づいて、各受光部毎に適正光量範囲の上限値及び下限値が適宜設定されることになる。
【0019】
そして、前記光量調整手段が複数個の受光部の並び方向に沿って並置された複数の光源を備えて構成されており、この光量調整手段は、複数個の受光部に対して投射する光の光量を各光源毎に各別に変更調整するか、又は、区分けされた複数個づつの光源毎に変更調整することになる。
【0020】
つまり、粒状体群を横幅方向に広げた状態で幅広の存在予定箇所を通過させるように順次搬送して多量の粒状体群を並列的に効率良く検査することができるとともに、投射部材から投射される光の光量を各光源毎に各別に又は複数個づつの光源毎に変更調整することにより、複数個の受光部の夫々において、投射部材から投射される光の光量と適正光量範囲との位置関係を適正な状態に変更調整することができるので、各受光部の夫々の光量値に基づいて前記判別処理を実行するときにおける不良物を判別するときの精度を向上させることが可能となる。
【0021】
請求項3記載の不良物検出装置は、請求項1又は2において、前記光量調整手段が、前記適正光量範囲内における適正位置を前記適正光量範囲における中央位置として、前記投射部材から前記受光手段に向けて投射する光の光量前記適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じに変更調整すことを特徴とする。
【0022】
すなわち、投射部材から受光手段に向けて投射する光の光量が適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じになるように変更調整されることになる。前記適正光量範囲は、粒状体群からの反射光や透過光についての光量のバラツキにおける分布領域に基づいて設定されるものであり、適正光量範囲における中央位置に対応する光量は前記分布領域のほぼ中央位置に対応しており、粒状体群からの反射光や透過光の光量の平均的な値になるものであるから、投射部材から投射する光の光量と粒状体群における正常物からの反射光や透過光の光量との差が極力小さいものとなり、正常物と不良物とを判別する場合の判別精度を向上させることが可能となる。
【0023】
請求項4記載お不良物検出装置は、請求項1〜3のいずれかにおいて、前記受光手段からの受光量を増減させる補正係数を変更設定して、前記適正光量範囲に対する受光量の感度を補正する感度補正手段が設けられ、前記光量調整手段が、
前記感度補正手段による感度補正に対応させて、前記受光量が減少するように感度補正されると、前記適正光量範囲内における適正位置を前記適正光量範囲の中央位置よりも小側の光量の位置として、前記投射部材から前記受光手段に向けて投射する光の光量前記適正光量範囲の中央位置よりも小側の光量に変更調整し、前記受光量が増加するように感度補正されると、前記適正光量範囲内における適正位置を前記適正光量範囲の中央位置よりも大側の光量の位置として、前記投射部材から前記受光手段に向けて投射する光の光量前記適正光量範囲の中央位置よりも大側の光量に変更調整すことを特徴とする。
【0024】
すなわち、受光手段からの受光量が補正係数の変更設定により増加されるように感度の補正が行われると、投射部材から投射する光の光量が適正光量範囲の中央値よりも大側の光量になるように変更調整されることになる。一方、受光手段からの受光量が補正係数の変更設定により減少されるように感度の補正が行われると、投射部材から投射する光の光量が適正光量範囲の中央値よりも小側の光量になるように変更調整される。
【0025】
つまり、受光手段からの受光量が増加されるように感度の補正が行われた場合には、投射部材から投射する光の光量が適正光量範囲の中央値よりも大側の光量になるので、適正光量範囲を暗側に外れる不良物の光量と投射部材から投射する光の光量との光量差が大となり、このとき適正光量範囲の暗側の下限値を標準的な値よりも少し高めの値に変更設定することにより適正光量範囲を暗側に外れる不良物の誤検出を回避させ易い状態にすることが可能となる。一方、受光手段からの受光量が減少されるように感度の補正が行われた場合には、投射部材から投射する光の光量が適正光量範囲の中央値よりも大側の光量になるので、適正光量範囲を明側に外れる不良物の光量と投射部材から投射する光の光量との光量差が大となり、このとき適正光量範囲の明側の上限値を標準的な値よりも少し高めの値に変更設定することにより適正光量範囲を明側に外れる不良物の誤検出を回避させ易い状態にすることが可能となる。
【0028】
請求項記載の分離装置は、請求項1〜4のいずれか1項に記載の不良物検出装置を備えたものであって、検査対象物としての粒状体群を予定移送経路に沿って前記存在予定箇所とその存在予定箇所の位置よりも経路下手側の分離箇所とに移送する移送手段と、前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段とを備えて構成されていることを特徴とする。
【0029】
すなわち、移送手段によって粒状体群が予定移送経路に沿って存在予定箇所とその存在予定箇所の位置よりも経路下手側の分離箇所とにわたって移送される。そして、存在予定箇所においては上記したような不良物検出装置によって不良物の判別処理が行われ、経路下手側の分離箇所においては、不良物検出装置の判別結果に基づいて分離手段を作動させて、粒状体群のうちの正常物と不良物とを異なる経路に分離させるのである。
従って、不良物検出装置の判別結果に基づいて粒状体群の中から不良物を精度よく判別し、そのような不良物を正常物から分離させることを適正に行うことが可能となった。
【0030】
【発明の実施の形態】
以下、本発明に係る不良物検出装置及びそれを用いた分離装置の実施形態を、粒状体群の一例として玄米や精米等の米粒群を検査対象物として流下案内させながら、不良検出及び不良物除去を行う不良物除去装置に適用する場合について図面に基づいて説明する。以下、前記不良物除去装置について説明する。
【0031】
図1及び図2に示すように、広幅の板状のシュータ1が、水平面に対して所定角度(例えば60度)に傾斜されて設置され、このシュータ1の上部側に設けた貯溜タンク7からフィーダ9によって搬送されて供給された米粒群kが、シュータ1の上面を一層状態で横方向に広がった状態で流下案内される(図3参照)。尚、図3は動作説明図であるため、図1、図2とは装置構成の配置が異なる箇所がある。ここで、上記シュータ1は、幅方向全幅に亘って平坦な案内面に形成された平面シュータである。尚、ここでは、一層状態で移送させることを目的としているので、流れ状態により部分的に粒が重なって2層状態等になっても、一層状態の概念に含まれる。
【0032】
貯溜タンク7には、外部の精米機等から供給される米粒群kや、その外部からの米粒群kを1次選別処理した後再選別される正常物又は不良物が貯溜される。タンク7は下端側ほど先細筒状に形成され、貯溜タンク7からフィーダ9上に落下した米粒群kのシュータ1への供給量は、フィーダ9の振動による米粒群kの搬送速度を変化させて調節される。
【0033】
図2に示すように、米粒群kがシュータ1の下端部から移動落下する予定移送経路IK中に、米粒群kの存在が予定されている存在予定箇所(以下、検出箇所Jという)が設定されている。尚、米粒群kは横幅方向に広がった状態でその横幅方向に沿って幅広に形成された上記検出箇所Jを通過するように搬送される構成となっている。
【0034】
予定移送経路IKの前面側(図2において左側)を照明する前面側ライン状光源4Bと、予定移送経路IKの後面側(図2において右側)を照明する後面側ライン状光源4Aとが設けられている。各ライン状光源4A,4Bと前記検出箇所Jとを結ぶ照明光の経路には夫々拡散透過板18A,18Bが配置され、各ライン状光源4A,4Bの背部側及び一部側方箇所を覆う状態で、内面につや消しの白色塗装を施した曲面状の拡散反射板20A,20Bが配置されている。この両ライン状光源4A,4Bにて米粒群の存在予定箇所としての検出箇所Jを照明する照明手段4が構成されている。
【0035】
上記前面側ライン状光源4Bからの照明光が上記検出箇所Jの前面側で反射した反射光を受光する前面側ラインセンサ5Bと、後面側ライン状光源4Aからの照明光が上記検出箇所Jの後面側で反射した反射光を受光する後面側ラインセンサ5Aとが設けられ、この両ラインセンサ5A,5Bにて、上記検出箇所Jからの光を受光する受光手段5が構成されている。
前記各ライン状光源4A,4Bは、各ラインセンサ5A,5Bの受光方向に対して傾いた複数の方向から米粒群kを照明するように、検出箇所Jを斜め下方から照明する下側光源と、検出箇所Jを斜め上方から照明する上側光源とを備えている。そして、このように検出箇所Jを照明光の照明角度を変えて異なる方向から照明して、米粒群kが正常な検出箇所Jから横方向にずれた場合でも、極力均一な状態で良好に照明できるようにしている。
【0036】
図6に示すように、前記両ラインセンサ5A,5Bは、前記幅広の検出箇所Jからの光を受光する複数個の受光部としての複数個の受光素子5aを検出箇所Jの幅方向に沿って並置させるように構成されている。つまり、前記米粒群の各米粒の大きさよりも小さい範囲p(例えば米粒の大きさの10分の1程度)を夫々の受光対象範囲とする複数個の受光素子5aを前記幅広の検出箇所Jに対応させてライン状に並ぶ状態で備えている。
そして、各ラインセンサ5A,5Bは、受光素子5aが直線状に並置されたモノクロタイプのCCDセンサ部50と、検出箇所Jでの米粒群kの像を上記CCDセンサの各受光素子5a上に結像させる光学系51とから構成され、例えば図3において検出箇所Jの右端側から左端側に向けて、各受光素子5aから各受光情報が順次取り出されるように構成されている。
【0037】
前記各ラインセンサ5A,5Bの受光方向であって前記検出箇所Jの背部側箇所に配置されて、前記各ラインセンサ5A,5Bに向けて光を投射する投射部材8が設けられている。この投射部材8は、前記検出箇所Jの横幅方向に沿って密状態で並べて設置される複数のLED発光素子80と、それらの複数のLED発光素子80が設置される領域の光投射側に配置されて複数のLED発光素子80が発光した光を拡散させる拡散板81とを備えて構成されている。
【0038】
詳述すると、図4に示すように、検出箇所Jの横幅方向に沿って長尺状に構成され、且つ、断面形状が略矩形状であって前方側部分が開口しているケーシング83の内部に、複数のLED発光素子80が設置されたLED基板82が設けられている。このLED基板82は、図4(ロ)に示すように前記横幅方向に沿って密状態で複数のLED発光素子80を並べる状態で設置されている。そして、このLED基板82は、ケーシング83にビス止めされたアルミニューム板からなる放熱板84に対してシリコン放熱樹脂を介して貼り付けて取り付けられている。一方、このLED基板82の前方側には、LED発光素子80が発光した光を拡散させる拡散板81が、複数のLED発光素子80の並び方向の中央部において各LED発光素子80との間の離間距離が大であり、前記並び方向の両端側では各LED発光素子80との間の離間距離が小となるように湾曲する状態で設けられている。このように拡散板81を湾曲させることで、前記検出箇所Jにおける光の強さが横幅方向中央にて大になり端部部分にて小になるというような偏りが生じないように、光の強さが横幅方向において極力均一になるようにしている。
【0039】
そして、図7に示すように、複数のLED発光素子80をその並び方向において設定個数(数個〜10個程度)のブロックBKに区分けして、各ブロックBK毎に一括してLED発光素子80の発光出力を変更調整自在な発光出力調整手段としての調光装置85が備えられている。この調光装置85は、後述する制御装置10からの制御指令に基づいて各ブロックBK毎のLED発光素子80の発光出力を変更調整するように構成されている。
【0040】
図2に示すように、前面側ライン状光源4B、前面側ラインセンサ5B及び後面側反射板8Aが一方の収納部13Bに収納され、後面側ライン状光源4A、後面側ラインセンサ5A及び前面側反射板8Bが他方の収納部13Aに収納され、両収納部13A,13Bは側板が共通の一体の箱体に形成され、各収納部13A,13Bは、検出箇所Jに面する側に板状の透明なガラスからなる透過窓14A,14Bを備えている。つまり、各ライン状光源4A,4B及び各ラインセンサ5A,5Bが、前記検出箇所Jに面する側に透過窓14A,14Bを備えた収納部13A,13Bに収納されて、各ライン状光源4A,4Bが前記透過窓14A,14Bを通して前記検出箇所Jを照明し、且つ、各ラインセンサ5A,5Bが前記透過窓14A,14Bを通して前記検出箇所Jからの光を受光するように構成されている。
【0041】
予定移送経路IKの前記検出箇所Jから経路下手側の分離箇所において、検出箇所Jでの受光情報に基づいて不良と判定された米粒や異物等の不良物に対してエアーを吹き付けて正常な米粒群kの移動方向から分離させるためのエアー吹き付け装置6が設けられ、このエアー吹き付け装置6は、噴射ノズル6aの複数個を、上記予定移送経路IKの全幅を所定幅で複数個の区画に分割形成した各区画に対応する状態で並置させ、不良物が存在する区画の噴射ノズル6aが作動されるように構成されている。
【0042】
つまり、シュータ1が、米粒群kを一層状態で横幅方向に広げた状態でその横幅方向に沿って幅広に形成された検出箇所Jを通過するように搬送させる搬送手段として機能するとともに、米粒群kを予定移送経路IKに沿って検出箇所Jとその検出箇所Jの位置よりも経路下手側の分離箇所とに移送する移送手段として機能する構成となっており、前記エアー吹き付け装置6が、前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段を構成することになる。
【0043】
そして、シュータ1の下端部から所定経路に沿って流下する米粒群kのうちで、前記噴射ノズル6aからのエアーの吹き付けを受けずにそのまま進行してくる正常な米粒kを回収する良米用の受口部2Bと、エアーの吹き付けを受けて正常な米粒kの流れから横方向に分離した着色米や胴割れ米等の不良米又は石やガラス片等の異物を回収する不良物用の受口部3Bとが設けられ、良米用の受口部2Bが横幅方向に細長い筒状に形成され、その良米用の受口部2Bの周囲を囲むように、不良物用の受口部3Bが形成されている。尚、良米用の受口部2Bにて回収された米粒k、及び、不良物用の受口部3Bにて回収された不良物は、再選別等のために、本検査装置のタンク7へ又は他の検査装置に搬送される。
【0044】
図1に示すように、脚部F0を備えた底板F1上に立設された縦枠F2,F3,F4が、横枠F5,F6,F7によって連結されて機枠が構成されている。表側の縦枠F4の上部斜め部分に、情報の表示及び入力用の操作卓21が設置され、前記フィーダ9に対する振動発生器9Aが横枠F5上に設置され、前記エアー吹き付け装置6に対するエアー供給用のエアタンク15が底板F1上に設置されている。又、箱状の収納部13A,13Bが前部側で縦枠F4に後部側で縦枠F3に支持され、シュート1が上部側で横枠F6に下部側で収納部13Bに支持されている。装置外面を覆うカバーKが機枠に取り付けられている。
【0045】
次に制御構成について説明する。図5に示すように、マイクロコンピュータ利用の制御装置10が設けられ、この制御装置10に、両ラインセンサ5A,5Bからの各画像信号と、前記操作卓21からの操作情報とが入力されている。一方、制御装置10からは、前記ライン状光源4A,4Bを点灯させる点灯回路19に対する駆動信号と、各噴射ノズル6aへの各エアー供給をオンオフする複数個の電磁弁11に対する駆動信号と、前記フィーダ用振動発生器9Aに対する駆動信号と、前記調光装置85への制御指令用の信号とが出力されている。
【0046】
上記制御装置10を利用して、前記透過用及び反射用ラインセンサ5A,5Bの受光情報に基づいて、米粒群kにおける不良物の存否を判別する判別手段100が構成され、この判別手段100は、米粒群kからの検出光(透過光及び反射光)つまり透過用及び反射用ラインセンサ5A,5Bの受光量がその適正光量範囲(透過光の場合はΔEt、反射光の場合はΔEh)を外れた場合に、不良物の存在を判別するように構成されている。又、この判別手段100は、前記適正光量範囲を設定するために、透過用及び反射用ラインセンサ5A,5Bの受光量を設定時間間隔でサンプリングして得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各光量値に対する度数分布を求めるように構成され、且つ、前記度数分布に基づいて前記適正光量範囲の上限値及び下限値を自動設定するように構成されている。しかも、前記受光量の光量値が前記適正光量範囲を外れているか否かについての判別処理及び前記度数分布を求める処理を前記各受光部毎に実行するように構成されている。
【0047】
更に、前記制御装置10を利用して、前記判別手段100の前記度数分布の情報に基づいて、その度数分布において最も頻度の高い投射部材8から投射される光の光量値が適正光量範囲内における適正位置に位置するように、投射部材8から透過用及び反射用ラインセンサ5A,5Bに向けて投射する光の光量を変更調整すべく調光装置85に制御用指令情報を指令する光量指令手段101が構成されている。従って、この光量指令手段101と前記調光装置85とにより、投射部材8から透過用及び反射用ラインセンサ5A,5Bに向けて投射する光の光量を変更調整する光量調整手段KTが構成される。
【0048】
次に、上記適正光量範囲の設定のための受光データの各種補正処理について説明する。
先ず、前記米粒群kにおける正常物と透過率及び反射率が同一の検査基準物Kjを前記検出位置Jに位置させて、図8に示すように、前記透過用及び反射用ラインセンサ5A,5Bが受光する各受光情報を基準受光量情報として求める。つまり、各センサ5A,5Bの各受光部5a毎に、透過光の基準受光量Siと反射光の基準受光量Si'(i=0〜〔受光部の数−1〕)を記憶し、同時に、その基準受光量Si,Si'についての平均値Sm,Sm'を求めておく(この処理を「リファレンス作成」と呼ぶ)。ここで、検査基準物Kjは、長手状の検出位置Jに合わせて長尺状の白色系の樹脂板等にて構成される。尚、透過光用と反射光用に、別々の検査基準物Kjを用いてもよい。
【0049】
又、照明光源5A,5Bからの照明光量の変動を検出する。具体的には、照明光量が十分に安定な状態で、図9に示すように、投射部材8の光量を検査用基準値に設定しておき、反射用ラインセンサ5Bの各受光素子5aの出力電圧r〔i〕(i=0〜〔受光素子の数−1〕)を基準の照明光量値として計測し、その全受光部についての平均値rmを求めておく(この処理を「照明光補正データ作成」と呼ぶ)。一方、実際の検査を行う最新の時点で、反射用ラインセンサ5Bの各受光部5aの出力電圧r'〔i〕を計測し、その全受光部についての平均値rm'を求め、基準の照明光量値の平均値rmと最新の照明光量値の平均値rm'との比(rm'/rm)を照明光量の変化率とする。尚、上記反射用反射板8Bに代えて、透過用反射板8Aからの反射光を受光する透過用ラインセンサ5Aの受光情報によって、上記照明光量の変化率を求めてもよい。
【0050】
尚、上記照明光量の安定状態を得るために、出荷調整時等において、点灯後充分な時間が経過してから上記基準光量の測定を行う。又、実際の検査運転時には、所定時間(例えば30分)の検査を行うと、図示しない清掃手段にて窓部14A,14Bが清掃されるので、その清掃後に、前記照明光量の測定を行う。
【0051】
そして、透過光及び反射光の各センサ出力電圧jについて、基準受光量の平均値Sm,Sm'に対する各受光素子5aの基準受光量Si,Si'の偏差を打ち消すために、基準受光量の平均値Sm,Sm'と各受光素子5aの基準受光量Si,Si'の比を掛け、さらに、照明光量の変動の影響を打ち消すために、前記照明光量の変化率(rm'/rm)で割るように、下式に基づいて補正処理して、透過光及び反射光の各センサ5A,5Bの補正後の出力電圧jt,jh(センサ補正出力)を得る。
【0052】
【数1】
センサ補正出力jt=j×(Sm/Si)×(rm/rm')
センサ補正出力jh=j×(Sm'/Si')×(rm/rm')
【0053】
次に、上記各センサ補正出力jt,jhについての感度補正処理を行う。ここでは、感度値を標準値(100)に設定する。尚、実際の検査運転時において、感度値を「100」より大に(例えば、110)に設定すると、基準受光量の平均値Sm,Sm'からのセンサ補正出力jt,jhの偏差(jt−Sm),(jh−Sm')が大きくなるように検出受光量が増加補正され、感度値を「100」より小に(例えば、90)に設定すると、上記偏差(jt−Sm),(jh−Sm')が小さくなるように検出受光量が減少補正された透過光及び反射光の各感度補正出力jk,jk'が得られる。
【0054】
【数2】
感度補正出力jk=(感度値/100)×(jt−Sm)+(Sm)
感度補正出力jk'=(感度値/100)×(jh−Sm')+(Sm')
【0055】
つまり、前記制御装置10を利用して、前記透過用及び反射用ラインセンサ5A,5Bからの受光量(上式のjt及びjh)を増減させるための補正係数(感度値)を変更設定して、前記適正光量範囲に対する受光量の感度を補正する感度補正手段102が構成されている。そして、感度値を「100」より大きく例えば「110」等のように変更して上記受光量を増加させると、増加補正された受光量が適正光量範囲から外れ易くなって不良判別の感度が高くなり、一方、感度値を「100」より小さく例えば「90」等のように変更して上記受光量を減少させると、減少補正された受光量が適正光量範囲から外れ難くなって不良判別の感度が低くなるように、透過光及び反射光の適正光量範囲に対する受光量の感度が補正される。この感度調整は操作卓21を用いて作業者が手動で行うことになる。
【0056】
次に、判別手段100による適正光量範囲設定処理について説明する。尚、この適正光量範囲設定処理は装置の出荷調整時に実行するようになっている。
各ラインセンサ5A,5Bの各受光素子5a毎に、設定時間間隔でサンプリングして得られた設定個数の受光量データについて、暗側から明側に亘る間を複数段階に区分けした各光量値に対する度数分布(ヒストグラムともいう)を求めて、その度数分布に基づいて前記適正光量範囲を設定するのである。
【0057】
具体的には、図13に示すように、照明光源5A,5Bからの照明光量が十分に安定した状態で、米粒群kを流しながら、各ラインセンサ5A,5Bの各受光素子5a毎に設定時間間隔で受光量データつまり出力電圧をサンプリングし、その出力電圧を256段階のデジタル値に変換する。尚、この場合において、前記エアー吹き付け装置6は作動させない。その後米粒群kの供給を停止して、例えば、図18に示すように、各受光素子5a毎に、サンプリングされた設定個数の出力電圧について、暗側から明側に亘る間を複数段階に区分けした各受光量に対する度数分布hgを求める。そして、その度数分布hgにおいて暗側から明側に亘って各受光量に対する度数値が連続して存在する連続領域の上端部の近傍位置に対応させて上側光量値TH1を設定するとともに、その上側光量値TH1から明側に設定光量K1離れた位置に前記適正光量範囲ΔEt,ΔEhの上限値T1を設定し、且つ、前記連続領域の下端部の近傍位置に対応させて下側光量値TH2を設定するとともに、その下側光量値TH2から暗側に設定光量K2離れた位置に前記適正光量範囲ΔEt,ΔEhの下限値T2を設定するように構成されている。上記各設定光量K1,K2は制御定数として予め設定されている。そして、上記のように各ラインセンサ5A,5Bの各受光素子5a毎に、設定及び補正される前面側及び後面側の適正光量範囲ΔE1,ΔE2の上限値T1及び下限値T2の値は、後述するような前記制御装置10内のメモリLUT(前面側用及び後面側用のLUT)に、不良検出処理用のルックアップテーブルとして記憶される。
このようにして各受光素子5a毎に設定された適正光量範囲を受光素子5aの並び方向に沿って連続して表すと図19(イ)に示すようになる。
【0058】
次に、光量指令手段101による光量指令処理について説明する。この光量指令処理は、出荷調整時だけでなく通常の運転状態においても繰り返し実行することになる。上述したようにして求められた度数分布の情報に基づいて、例えば、図18のピーク値piのように度数分布において最も頻度の高い箇所は、投射部材8から投射される光の光量値に対応するものである。そこで、この度数分布において最も頻度の高い光量値が適正光量範囲内における適正位置に位置するように、投射部材8から受光手段に向けて投射する光の光量を変更調整するように調光装置85に制御情報を指令する。
【0059】
つまり、図15に示すように、出荷調整時に実行するときは感度補正手段102による感度値が標準の感度値「100」に設定されている状態であるから、図20(イ)に示すように、前記適正光量範囲内における適正位置として、前記投射部材8から前記受光手段に向けて投射する光の光量BGが前記適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じになるように変更調整するように構成されている。
又、通常運転を実行するときのように感度補正手段102による感度補正が行われると、それに対応させて、感度値が標準値「100」より大に設定され前記受光量が増加少するように感度補正されると、適正光量範囲内における適正位置として、例えば図20(ロ)に示すように、投射部材8から投射する光の光量が適正光量範囲の中央値よりもすこし大側の光量の位置になるように変更調整し、感度値が標準値「100」より小に設定され受光量が減少するように感度補正されると、適正光量範囲内における適正位置として、例えば図20(ハ)に示すように、投射部材8から投射する光の光量が適正光量範囲の中央値よりも小側の光量の位置になるように変更調整するよう構成されている。
【0060】
そして、このとき、複数個の受光素子5aに対して投射する光の光量を上述したように受光素子5aの並び方向において複数のブロックBK毎に区分けされた複数個づつの受光素子5a毎に変更調整する構成となっている。説明を加えると、装置の初期設置状態では、例えば、図19(イ)に示すように、各受光素子5aでの並び方向での投射部材8の光量のバラツキは少ないが、検査を長期にわたり実行するに伴って図19(ロ)に示すように左右両端側部分において光量が大きく変動してしまうことがある。例えば、ライン状光源として蛍光灯を用いると長手方向両端側部分の光度が減少して、米粒群kの光量の分布状態と投射部材8の光量との相関関係が中央位置と左右両端側部分とで異なってしまうことがある。又、長期の使用で投射部材8の表面に塵埃が付着して光量が低下することもある。そこで、このような場合には、前記並び方向の中央部分では投射部材8の光量を変化させず、左右両端側に対応するブロックBKの部分だけを投射部材8の光量を明側に変更させることで図19(イ)に示すような初期状態に近い適正な状態に戻すことができるのである。
【0061】
次に、通常運転を実行するときにおける適正光量範囲に対する適正光量範囲補正処理について説明する。この適正光量範囲補正処理は、通常の運転状態を継続して実行しているときに、受光量データが検出されるに伴って適正光量範囲そのものを適宜補正するようにしている。すなわち、図14に示すように、設定時間毎に設定個数の受光量データをサンプリングして、そのデータの中に上側光量値TH1よりも明るい光量値が含まれているときは、前記上側光量値TH1を明側に1段階移動させる一方、前記設定個数の受光量データの中に前記上側光量値TH1よりも明るい光量値が含まれていないときは前記上側光量値TH1を暗側に1段階移動させ、且つ、前記設定個数の受光量データの中に前記下側光量値TH2よりも暗い光量値が含まれているときは前記下側光量値TH2を暗側に1段階移動させる一方、前記設定個数の受光量データの中に前記下側光量値TH2よりも暗い光量値が含まれていないときは前記下側光量値TH2を明側に1段階移動させるのである。
【0062】
そして、上記のように各ラインセンサ5A,5Bの各受光素子5a毎に設定されるとともに、その後補正される前面側及び後面側の適正光量範囲ΔEt,ΔEhの上限値T1及び下限値T2の値は、図10に示すように、前記制御装置10内のメモリLUT(前面側用及び後面側用のLUT)に、不良検出処理用のルックアップテーブルとして記憶される。
このルックアップテーブルについて説明を加えると、位置データi(i=0〜〔受光素子の数−1〕)で表した各受光素子5a毎に、センサ出力電圧をとり得る全ての光量値j(前記256段階の光量値)の範囲で変化させながら、その各値jが前記適正光量範囲ΔEt,ΔEH内であれば、メモリLUTの該当番地(i,j)に判定出力として「0」を記憶させ、適正光量範囲ΔEt,ΔEHを外れていれば、メモリLUTの該当番地(i,j)に判定出力として「1」を記憶させる。そして、前記判別を行うときは、上記作成したメモリLUTに対して、各ラインセンサ5A,5Bの受光素子5aの位置データi(i=0〜〔受光素子の数−1〕)と、その位置iでの各受光素子5aの光量値jとを入力すると、その各受光素子5aについて、正常物のときは判定出力「0」が、不良物のときは判定出力「1」が夫々出力されるので、それに基づいて前記判別手段100が判別を行うのである。
【0063】
以下、具体的に、透過光用及び反射光用の各ラインセンサ5A,5Bの受光出力について説明する。
透過光の場合は、図11の透過光用ラインセンサ5Aの出力波形に示すように、各受光部5aの受光量に対応する出力電圧が米粒群kに対する適正光量範囲ΔEt内にある場合に正常な米粒の存在を判別し、設定適正範囲ΔEtを外れた場合に米粒の不良又は異物の存在を判別する。図中、e0は、正常米粒からの標準的な透過光に対する出力電圧レベルである。そして、適正光量範囲ΔEtよりも小さい場合に、正常な米粒よりも透過率が小さい不良の米粒や異物等(例えば、黒色の石粒)の存在を判別し、適正光量範囲ΔEtよりも大きい場合に、正常な米粒kよりも透過率が大きい明側の不良の米粒k又は前記異物の存在を判別する。この明側の不良の米粒k又は異物の例としては、薄い色付の透明なガラス片等が正常な米粒kよりも透過率が大きい異物になり、又、正常な米粒kを「もち米」としたときの「うるち米」が正常な米粒kよりも透過率が大きい不良の米粒kになる。
【0064】
図11には、受光素子5aの出力電圧(受光量)が、米粒kに一部着色部分が存在する位置や黒色の石等の位置(e1で示す)、及び、胴割れ部分が存在する位置(e2で示す)では、上記適正光量範囲ΔEtよりも下側に位置し、又、正常な米粒よりも透過率が大きい異物等が存在する場合には、位置e3に示すように適正光量範囲ΔEtよりも上側に位置している状態を例示している。
【0065】
一方、反射光の場合には、図12の反射光用のラインセンサ5Bの補正後の出力波形に示すように、各受光部5aの受光量に対応する補正後の出力電圧が適正光量範囲ΔEh内にある場合に正常な米粒の存在を判別し、適正光量範囲ΔEhを外れた場合に前記米粒の不良又は前記異物の存在を判別する。図中、e0'は、正常米粒からの標準的な反射光に対する出力電圧レベルである。図には、米粒kに一部着色部分が存在する位置(e1'で示す)や胴割れ部分が存在する位置(e2'で示す)では、上記適正光量範囲ΔEhから下側に外れている状態を例示し、又、ガラス片等の異物が存在する場合には、異物からの強い直接反射光によって位置e3'に示すように適正光量範囲ΔEhから上側に外れている状態を例示している。又、図示しないが、黒色の石等では、反射率が非常に小さいので、波形において適正光量範囲ΔEhから下側に大きく外れることになる。
【0066】
前記制御装置10は、上記不良の判別情報に基づいて、前記両ラインセンサ5A,5Bの検出位置Jに移送した米粒群kのうちで、米粒の不良又は異物の存在が判別された場合には、検出位置Jから前記噴射ノズル6aによるエアー噴射位置までの移送時間が経過するに伴って、流下している不良の米粒又は異物に対して、その位置に対応する区画の各噴射ノズル6aからエアーを吹き付けて正常な米粒の経路から分離させる。
【0067】
そして、図16に示すように、出荷調整時においては、装置の電源をオンして所定のウオームアップ運転をして、照明光量の安定状態等を十分に確認してから、先ず、前記「リファレンス作成」と、最初の「照明光補正データ作成」の各処理を行う。次に、センサ出力補正と感度補正(但し、標準の感度値)を行い、前記適正光量範囲設定処理及び初回の光量指令処理を実行し、設定された適正光量範囲ΔEt,ΔEhに基づいてメモリLUTを作成する。最後に、エアー吹き付け装置6の各ノズルの作動時間等の排除調整を行う。
【0068】
そして、図17に示すように、通常の検査運転時には、先ず、装置の電源をオンして所定のウオームアップ運転をしてから、そのときの最新の「照明光補正データ作成」を行って照明光量の変化率のデータを算出し、その照明光量の変化率のデータと、前記適正光量範囲ΔEt,ΔEhとを使って、メモリ内のデータを書き換えてメモリLUTを作成する。さらに、感度値の設定が行われると、その感度値の設定に対応させて前記光量調整処理を実行する。又、上記修正後のメモリLUTを用いて、シュート1に米粒群kを供給して検査を開始する。
そして、清掃用の所定時間(30分)が経過すると、米粒群kの供給を止めて検査を停止し、図示しない清掃手段を作動させて窓部14A,14Bの清掃を行うとともに、前記光量範囲補正処理を実行するとともに、その補正結果に対応させて前記光量指令処理を実行して、それらの処理結果を反映させてメモリ内のデータを書き換えてメモリLUTを作成する。そして、以後は、この修正後のメモリLUTを用いて、再び、シュート1に米粒群kを供給して検査を開始する。
【0069】
〔別実施形態〕
以下、別実施形態を列記する。
【0070】
(1)上記実施形態では、前記適正光量範囲に対する受光量の感度を補正する感度補正手段が設けられ、その感度設定に対応させて前記投射部材から投射される光の光量値の前記適正光量範囲内における位置を変更調整する構成としたが、このような構成に限らず、常に、一定の位置、例えば、適正光量範囲の中央位置の光量と同じか又はほぼ同じになるように変更調整する構成としてもよい。
【0071】
(2)上記実施形態では、前記光量調整手段KTが、光源として複数のLED発光素子を用いるようにしたが、このようなLED発光素子に限らず、蛍光灯、白熱灯等、他の光源を用いてもよい。又、複数の領域毎に変更調整する構成に限らず、1つの光源を用いて存在予定箇所の横幅方向全範囲を投射するようにして、その光源の光量を調整するようにしてもよい。
【0072】
(3)上記実施形態では、通常運転を実行しているときに、清掃用の所定時間が経過する毎に、前記光量範囲補正処理及び光量指令処理を繰り返し実行する構成としたが、このような構成に限らず、作業を開始するときにだけ前記光量範囲補正処理と光量指令処理を実行する構成としてもよい。
【0074】
)上記実施形態では、受光手段として、透過光及び反射光用の各ラインセンサ5A,5Bを用いたが、透過光又は反射光用のいずれかのラインセンサ5A,5Bで受光手段を構成してもよい。尚、ラインセンサも、モノクロタイプのCCDラインセンサ以外に、撮像管式のテレビカメラでもよい。又、モノクロタイプではなく、カラータイプのCCDセンサにて構成して、例えば、色情報R,G,B毎の受光量から不良米や異物の存否をさらに精度良く判別してもよい。
【0075】
)上記実施形態では、移送手段Hが、粒状体群を予定移送経路に沿って一層状態で横幅方向に広がった状態で移送するように構成し、これに合わせて、照明手段4A,4Bが、粒状体群の横幅方向の全幅を照明するように構成し、受光手段5A,5Bが、前記粒状体群の横幅方向の全幅を受光範囲とするように構成したが、これに限るものではない。例えば粒状体群を一列状態で移送させ、これに合わせて、照明手段を単一のランプ等にて構成し、受光手段を単一の受光センサで構成するようにしてもよい。
【0076】
)上記実施形態では、分離手段が、不良物に対してエアーを吹き付けて、正常物と異なる経路に分離させるようにしたが、これに限るものではなく、例えば不良物をエアーで吸引して分離させるようにしたり、機械的な接当作用により分離させるようにしてもよい。
【0077】
)上記実施形態では、検査対象物としての粒状体群が米粒群である場合について例示したが、これに限るものではなく、例えば、プラスチック粒等における不良物や異物の存否を検査する場合にも適用できる。
【図面の簡単な説明】
【図1】不良物除去装置の全体側面図
【図2】同要部側面図
【図3】動作状態を示す要部の斜視図
【図4】投射部材を示す図
【図5】制御構成のブロック図
【図6】ラインセンサの受光範囲を示す図
【図7】投射部材の回路構成図
【図8】基準受光量の記憶時の出力波形図
【図9】照明光量の変化状態を示す出力波形図
【図10】不良判別用のメモリのブロック図
【図11】透過光用ラインセンサの出力波形図
【図12】反射光用ラインセンサの出力波形図
【図13】適正光量範囲設定処理を示すフローチャート
【図14】適正光量範囲補正処理を示すフローチャート
【図15】光量指令処理を示すフローチャート
【図16】出荷調整時の制御作動のフローチャート
【図17】通常運転時の制御作動のフローチャート
【図18】度数分布を示すグラフ
【図19】各受光素子の適正光量範囲を示す図
【図20】度数分布を示すグラフ
【図21】度数分布を示すグラフ
【符号の説明】
4 照明手段
5 受光手段
6 分離手段
8 投射部材
80 光源
100 判別手段
102 感度補正手段
H 移送手段
KT 光量調整手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a illuminating unit that illuminates a planned location of an inspection target object with a granular body group as an inspection target, a light receiving unit that receives light from the planned location, and a light receiving direction of the light receiving unit. A projection member that is arranged on the back side of the planned location and projects light toward the light receiving means, and the amount of light received by the light receiving means is sampled at a set time interval, and the light quantity value of the sampled received light quantity Relates to a defect detection device provided with a determination means for determining the presence of a defect when it falls outside an appropriate light amount range for detection light from a normal object in the granular material group, and a separation device using the same .
[0002]
[Prior art]
In the defective object detection apparatus, for example, a granular material group such as a rice grain group is illuminated by an illuminating means such as a fluorescent lamp at a planned location, and the illumination light is a granular material group at the planned location. The reflected light, the transmitted light that has passed through the granular material group, and the light projected from the projection member provided on the back side of the planned location are received by a light receiving means such as a CCD sensor. It is determined whether or not the light amount value is outside the appropriate light amount range for the detection light from the normal object in the granular material group. Further, in the separation apparatus using such a defective object detection apparatus, the defective object whose presence is detected as being out of the appropriate light amount range by the above-described determination is transported to the lower side than the planned existing position. Thus, the air is blown by an air blowing device as a separating means, and is separated into a path different from that of a normal product.
[0003]
Conventionally, the discriminating means samples the amount of light received by the light receiving means at a set time interval, and the set number of received light quantity data obtained by the sampling is divided into a plurality of stages from the dark side to the bright side. It is configured to obtain a frequency distribution for each divided light quantity value, and to set an upper limit value and a lower limit value of the appropriate light quantity range based on the frequency distribution, and as the projection member, it is an inspection object. There is a configuration in which a reflecting plate that reflects light from the illuminating unit is provided so as to project light having the same or substantially the same brightness as the detection light from the normal object toward the light receiving unit. (For example, refer to Patent Document 1).
[0004]
Another conventional technique is configured as follows. That is, as the projection member, a light source lamp is provided on the back side of the backside portion of the planned location, that is, the rear side of the background plate, and the light projected from the projection member by adjusting the light amount of the light source lamp. There was one configured to automatically adjust the amount of light. In other words, a reference value that is the same or substantially the same brightness as the detection light from the normal object in the granular material group is set in advance as the amount of light projected from the projection member, and the detection value of the light reception amount of the light receiving means The light amount of the light source lamp is adjusted so that the light amount of light projected from the projection member is automatically adjusted to the reference value as described above (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-272353 (pages 6 to 9, FIGS. 1 to 4 and 8)
[Patent Document 2]
Japanese Examined Patent Publication No. 6-10635 (2nd page-3rd page, Fig. 3)
[0006]
[Problems to be solved by the invention]
The above-mentioned patent document 1 is actually inspected by setting an upper limit value and a lower limit value of an appropriate light amount range based on a frequency distribution for a set number of received light amount data obtained by sampling as described above. The appropriate light amount range can be set in a state adapted to the light amount distribution of the reflected light and transmitted light from the granular group.
[0007]
In other words, the reflected light reflected by the granular material group as the inspection object and the transmitted light transmitted through the granular material group are not necessarily the same light amount for all the granular materials. Depending on the granular material, the value becomes slightly different and the variation occurs. In addition, the range of the light quantity that is distributed in a distributed manner, that is, the distribution area, is not always constant even for the same type of granular material group. For example, production lots are different or producers and production locations are different. In the case of a granular group, the distribution area itself changes variously.
Therefore, in the conventional configuration shown in Patent Document 1, the upper limit value and the lower limit value of the appropriate light amount range are set to more appropriate values corresponding to the difference in the light amount distribution region of the granular material group as the inspection target. I am trying to set it.
[0008]
However, as described above, even if the upper limit value and the lower limit value of the appropriate light amount range are set as more appropriate values, the projection member only reflects light from the illumination unit, and the projection member to the light reception unit. Since the amount of light projected toward the surface is uniformly determined by the amount of light of the illumination means, the reflectance of the projection member, etc., there is a risk that the normal and defective items cannot be properly determined for the granular material group. there were.
More specifically, with reference to the drawings, FIGS. 21A and 21B show an example of a frequency distribution for a set number of received light quantity data obtained by sampling. This figure shows a case where most of the granular material group is normal, and pi in the figure is a peak value in the frequency distribution, and the light quantity value BG corresponding to the peak value is obtained from the projection member. This is the amount of light to be projected. That is, when there is no granular body group at the planned location, the light projected from the projection member is always received by the light receiving means, and when the amount of light received by the light receiving means is sampled at a set time interval, This is because the amount of light projected is the most frequent data.
The light amount value BG of the light projected from the projection member may change with the change in the light amount of the illumination means, and even if the light amount is constant, as described above, the light amount distribution of the granular material group. Since the area changes variously, as shown in FIG. 21 (a), the distribution area of the light quantity of the granular material group shifts to the dark side with respect to the light quantity value of the light projected from the projection member, or as shown in FIG. Thus, the distribution area of the light quantity of the granular material group may be shifted to the bright side with respect to the light quantity value BG.
[0009]
In this way, when the distribution region of the light quantity of the granular material group shifts with respect to the light quantity value BG of the light projected from the projection member, the light quantity of the light projected from the projection member becomes the light from the normal object in the granular material group. The brightness may be different from the same or substantially the same brightness, and there is a risk that the discrimination accuracy when discriminating between a normal product and a defective product may be lowered, and the light amount value BG exceeds the upper limit value of the appropriate light amount range. Based on the amount of reflected or transmitted light from the granular material group, such as when the value falls below the lower limit of the appropriate light quantity range, there is a risk of erroneously determining that there is no defective in the granular material. Therefore, there is a disadvantage that proper discrimination processing cannot be performed.
[0010]
Further, even when the light quantity projected from the projection member is automatically adjusted to the reference value as described above as in the conventional structure shown in Patent Document 2, this Patent Document is used. In the conventional configuration shown in FIG. 2, the light quantity of the light projected from the projection member is always adjusted to the reference value, which is a constant value set in advance. Since the region changes variously, as shown in FIG. 21, the distribution region of the light amount of the granular material group may shift with respect to the light amount value BG of the light projected from the projection member (this value corresponds to the reference value). Therefore, the disadvantages as described above cannot be eliminated.
[0011]
The present invention has been made paying attention to such a point, and the object is to be projected from the projection member in conformity with the light amount distribution of the reflected light and transmitted light from the group of granular bodies to be actually inspected. It is in providing a defective detection device that can improve the accuracy when determining a defective by adjusting the amount of light to an appropriate state.
[0012]
Another object of the present invention is to provide a separation device capable of improving the accuracy when discriminating a defective product and properly separating the defective product from a normal product.
[0013]
[Means for Solving the Problems]
The defective object detection apparatus according to claim 1, with the granular body group as an inspection object, an illuminating unit that illuminates a planned location of the inspection target, a light receiving unit that receives light from the planned location, The light receiving direction of the light receiving means and the projection member that is arranged at the back side of the planned location and projects light toward the light receiving means, and the amount of light received by the light receiving means is sampled at set time intervals, A discriminating means for discriminating the presence of a defective object when the sampled received light quantity is out of an appropriate light amount range for detection light from a normal object in the granular material group; In order to set the appropriate light quantity range, the number of received light quantity data obtained by the sampling is set to a frequency for each received light quantity divided into a plurality of stages from the dark side to the bright side. And an upper limit value and a lower limit value of the appropriate light amount range are automatically set based on the frequency distribution, and the light amount of light projected from the projection member toward the light receiving means is determined. A light amount adjusting unit for changing and adjusting is provided, and the light amount adjusting unit automatically changes and adjusts the light amount of light projected from the projection member toward the light receiving unit based on the information of the frequency distribution of the determining unit. Then, the light quantity value having the highest frequency in the frequency distribution is positioned at an appropriate position within the appropriate light quantity range .
[0014]
That is, the illumination means illuminates the planned location of the granular material group, samples the received light amount of the light receiving means that receives light from the planned location at a set time interval, and sets the number of received light quantity data obtained by sampling. , The frequency distribution for each received light amount obtained by dividing the range from the dark side to the bright side into a plurality of stages is obtained. This frequency distribution is obtained in order to set the appropriate light amount range. For example, the upper limit value and the lower limit value of the appropriate light amount range are appropriately set based on this frequency distribution.
[0015]
Then, based on the obtained frequency distribution information, the light amount adjusting means is directed from the projection member to the light receiving means so that the most frequent light amount value in the frequency distribution is located at an appropriate position within the appropriate light amount range. The amount of light to be projected is changed and adjusted.
If the explanation is added, since the light projected from the projection member is always received by the light receiving means when there is no granular body group at the planned location, the amount of light projected from the projection member is always It becomes the most frequent light quantity value in the frequency distribution. Therefore, the light quantity is changed and adjusted so that the light quantity value having the highest frequency in the obtained frequency distribution is located at an appropriate position within the appropriate light quantity range.
As the appropriate position within the appropriate light amount range, for example, when it is set to the median value of the appropriate light amount range, it is set slightly brighter than the median value, or set slightly darker than the median value. There are cases.
[0016]
Therefore, the reflected light reflected by the granular material group and the transmitted light transmitted through the granular material group may vary, and the range of light quantity, that is, the distribution area in which the light quantity varies may vary. Also, by adjusting and adjusting the light quantity value of the light projected from the projection member so as to be in an appropriate position within the appropriate light quantity range according to the distribution state of the detected light quantity of the granular group to be actually inspected, It became possible to improve the accuracy when discriminating objects.
Then, since the upper limit value and lower limit value of the appropriate light amount range are automatically set based on the frequency distribution, for example, a troublesome operation is unnecessary as compared with the case of setting by manual operation, and as in the case of manual operation. Thus, it is possible to set the upper limit value and the lower limit value of the appropriate light amount range in a good state where there is no risk of erroneous setting.
[0017]
According to a second aspect of the present invention, there is provided the defect detection apparatus according to the first aspect, wherein the granular material group is transported so as to pass through the pre-existing location formed wide along the horizontal width direction in a state where the granular material group is expanded in the horizontal width direction. Transporting means is provided, and the light receiving means is configured to juxtapose a plurality of light receiving portions that receive light from the existing planned location along a width direction of the planned existing location, It is configured to execute, for each of the light receiving units, a determination process as to whether or not a light amount value of the received light amount is out of the appropriate light amount range, and a process for obtaining the frequency distribution, and the light amount adjusting unit includes the plurality of light amount adjusting units. A plurality of light sources juxtaposed along the direction in which the light receiving units are arranged, and the amount of light projected to the plurality of light receiving units is separately or divided for each light source. Multiple light sources Characterized in that it is configured to freely change adjustment.
[0018]
According to the above configuration, the granular material group extends in the horizontal width direction and passes through the existing location that is formed wide along the horizontal width direction. Is received by a plurality of light receiving units juxtaposed along the width direction, and a determination process is performed for each light receiving unit of the light receiving means as to whether or not the light amount of the received light amount is out of the appropriate light amount range. The In addition, a frequency distribution for each received light amount obtained by dividing a plurality of received light amount data obtained by a plurality of light receiving portions into a plurality of stages from the dark side to the bright side is obtained, and based on this frequency distribution, each light receiving unit is obtained. The upper limit value and lower limit value of the appropriate light amount range are set as appropriate.
[0019]
The light amount adjusting means includes a plurality of light sources juxtaposed along the direction in which the plurality of light receiving portions are arranged, and the light amount adjusting means is configured to transmit light projected onto the plurality of light receiving portions. The light amount is changed and adjusted separately for each light source, or changed and adjusted for each of a plurality of divided light sources.
[0020]
In other words, it is possible to efficiently inspect a large number of granular material groups in parallel by sequentially transporting the granular material groups so as to pass through a wide existing portion in a state where the granular material groups are expanded in the lateral width direction, and projected from the projection member. The position of the light quantity projected from the projection member and the appropriate light quantity range in each of the plurality of light receiving units by changing and adjusting the light quantity of each light source separately or for each of the plurality of light sources. Since the relationship can be changed and adjusted to an appropriate state, it is possible to improve the accuracy of determining a defective when executing the determination process based on the respective light quantity values of the respective light receiving units.
[0021]
According to a third aspect of the present invention, there is provided the defective object detection apparatus according to the first or second aspect, wherein the light amount adjusting unit moves from the projection member to the light receiving unit with a proper position within the proper light amount range as a center position in the proper light amount range. towards characterized the same or substantially the same as that you change adjustment and amount of light corresponding to the central position in the proper quantity range the amount of light to be projected.
[0022]
In other words, the amount of light projected from the projection member toward the light receiving means is changed and adjusted so as to be the same as or substantially the same as the amount of light corresponding to the center position in the appropriate light amount range. The appropriate light amount range is set based on the distribution region in the variation in the light amount of the reflected light and transmitted light from the granular material group, and the light amount corresponding to the center position in the appropriate light amount range is almost the same as the distribution region. Corresponds to the center position, and is the average value of the amount of reflected light and transmitted light from the granular material group, so the amount of light projected from the projection member and the reflection from the normal object in the granular material group The difference between the amount of light and the amount of transmitted light is as small as possible, and it is possible to improve the discrimination accuracy when discriminating between normal and defective products.
[0023]
4. The defective object detection device according to claim 4, wherein the correction coefficient for increasing or decreasing the amount of light received from the light receiving means is changed and set to correct the sensitivity of the amount of received light with respect to the appropriate light amount range. Sensitivity correction means is provided, and the light amount adjustment means is
Corresponding to the sensitivity correction by the sensitivity correction means, when sensitivity correction is performed so that the amount of received light decreases, the appropriate position in the appropriate light amount range is set to a light amount position smaller than the center position of the appropriate light amount range. as, wherein the amount of light projected toward the light receiving means from the projection member than the center position of the proper amount ranging change adjusted to the amount of the small side, when sensitivity correction to the light receiving amount is increased the as the position of the light amount of the larger side than the central position of the proper quantity range proper position within the proper quantity range, the center position of the proper quantity range the amount of light projected toward the light receiving means from said projection member characterized in that you change adjustment to the amount of larger side than.
[0024]
That is, when sensitivity correction is performed so that the amount of light received from the light receiving means is increased by changing the correction coefficient, the amount of light projected from the projection member is set to a larger amount than the median of the appropriate light amount range. Will be changed and adjusted. On the other hand, when the sensitivity is corrected so that the amount of light received from the light receiving means is reduced by changing the correction coefficient, the amount of light projected from the projection member is reduced to a smaller amount than the median of the appropriate light amount range. Changed and adjusted so that
[0025]
That is, when the sensitivity is corrected so that the amount of light received from the light receiving means is increased, the amount of light projected from the projection member is larger than the median value of the appropriate light amount range. The light amount difference between the light amount of the defect that deviates from the appropriate light amount range to the dark side and the light amount projected from the projection member becomes large, and at this time the lower limit value on the dark side of the appropriate light amount range is slightly higher than the standard value. By changing and setting the value, it becomes possible to make it easy to avoid erroneous detection of a defective object that deviates from the appropriate light amount range to the dark side. On the other hand, when the sensitivity is corrected so that the amount of light received from the light receiving means is reduced, the amount of light projected from the projection member is larger than the median value of the appropriate light amount range. The light amount difference between the light amount of the defective object that deviates from the appropriate light amount range to the bright side and the light amount projected from the projection member becomes large, and at this time, the upper limit value on the bright side of the appropriate light amount range is slightly higher than the standard value. By changing the value to the value, it becomes possible to make it easy to avoid erroneous detection of a defective object that deviates from the appropriate light amount range to the bright side.
[0028]
The separation device according to claim 5 is provided with the defective object detection device according to any one of claims 1 to 4 , and the granular material group as the inspection object is disposed along the scheduled transfer path. Transfer means for transferring to an existing planned location and a separation location on the lower side of the path from the location of the planned existing location, and separating normal and defective materials from the granular material group transferred to the separation location on different paths It is characterized by comprising a separating means.
[0029]
That is, the granular material group is transferred by the transfer means along the planned transfer path over the planned location and the separation location on the lower side of the path from the location of the planned location. Then, in the planned location, the defect detection device as described above performs the defect determination process, and in the separation portion on the lower path side, the separation means is operated based on the determination result of the defect detection device. The normal product and the defective product in the granular material group are separated into different paths.
Therefore, it has become possible to accurately determine a defective object from the granular material group based on the determination result of the defective object detection device and to separate such a defective object from a normal object.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the defect detection apparatus according to the present invention and the embodiment of the separation apparatus using the defect detection apparatus and the defect detection apparatus are guided while flowing down rice grains such as brown rice and polished rice as an object to be inspected as an example of the granular material group. A case where the present invention is applied to a defect removing apparatus that performs removal will be described with reference to the drawings. Hereinafter, the defect removing apparatus will be described.
[0031]
As shown in FIGS. 1 and 2, a wide plate-like shooter 1 is installed at a predetermined angle (for example, 60 degrees) with respect to a horizontal plane, and a storage tank 7 provided on the upper side of the shooter 1 is installed. The rice grain group k conveyed and supplied by the feeder 9 is guided to flow down in a state where the upper surface of the shooter 1 is spread in the lateral direction in a single layer state (see FIG. 3). Since FIG. 3 is an explanatory diagram of the operation, there are places where the arrangement of the apparatus configuration is different from those in FIGS. Here, the shooter 1 is a flat shooter formed on a flat guide surface over the entire width in the width direction. In addition, since it aims at making it transfer in a single layer state here, even if a particle | grain partially overlaps by a flow state and becomes a two-layer state etc., it is contained in the concept of a single layer state.
[0032]
The storage tank 7 stores rice grains k supplied from an external rice mill or the like, and normal or defective products that are re-sorted after the primary sorting of the rice grains k from the outside. The tank 7 is formed in a tapered cylinder toward the lower end side, and the supply amount of the rice grain group k that has fallen onto the feeder 9 from the storage tank 7 to the shooter 1 varies the conveying speed of the rice grain group k due to the vibration of the feeder 9. Adjusted.
[0033]
As shown in FIG. 2, in the planned transfer path IK in which the rice grain group k moves and drops from the lower end of the shooter 1, a planned location where the rice grain group k is planned (hereinafter referred to as a detection location J) is set. Has been. In addition, the rice grain group k is configured to be conveyed so as to pass through the detection portion J formed wide along the horizontal width direction in a state of spreading in the horizontal width direction.
[0034]
A front-side line light source 4B that illuminates the front side (left side in FIG. 2) of the planned transfer path IK and a rear-side line light source 4A that illuminates the rear side (right side in FIG. 2) of the planned transfer path IK are provided. ing. Diffusing and transmitting plates 18A and 18B are disposed on the path of the illumination light connecting the line light sources 4A and 4B and the detection point J, respectively, and cover the back side and part side portions of the line light sources 4A and 4B. In the state, curved diffuse reflectors 20A and 20B having a matte white coating on the inner surface are arranged. Illumination means 4 for illuminating the detection location J as the planned location of the rice grain group is constituted by the two line-shaped light sources 4A and 4B.
[0035]
The front side line sensor 5B that receives the reflected light reflected from the front side of the detection point J by the illumination light from the front side linear light source 4B, and the illumination light from the rear side line light source 4A is the detection point J. A rear-side line sensor 5A that receives the reflected light reflected on the rear side is provided, and the light-receiving means 5 that receives the light from the detection point J is configured by both line sensors 5A and 5B.
Each of the line-shaped light sources 4A and 4B includes a lower light source that illuminates the detection point J from obliquely below so as to illuminate the rice grain group k from a plurality of directions inclined with respect to the light receiving directions of the line sensors 5A and 5B. , And an upper light source that illuminates the detection portion J obliquely from above. And even if the detection location J is illuminated from a different direction by changing the illumination angle of the illumination light in this way, even when the rice grain group k is shifted laterally from the normal detection location J, illumination is performed in a uniform state as much as possible. I can do it.
[0036]
As shown in FIG. 6, both the line sensors 5A and 5B have a plurality of light receiving elements 5a as light receiving portions for receiving light from the wide detection point J along the width direction of the detection point J. Are arranged side by side. That is, a plurality of light receiving elements 5a each having a range p smaller than the size of each rice grain of the rice grain group (for example, about one tenth of the size of the rice grain) as the respective light receiving target ranges are set as the wide detection points J. Correspondingly, they are arranged in a line.
Each of the line sensors 5A and 5B includes a monochrome type CCD sensor unit 50 in which the light receiving elements 5a are arranged in a straight line and an image of the rice grain group k at the detection point J on each light receiving element 5a of the CCD sensor. For example, the light receiving information is sequentially extracted from each light receiving element 5a from the right end side to the left end side of the detection point J in FIG.
[0037]
A projection member 8 is provided that projects light toward each of the line sensors 5A and 5B. The projection member 8 is disposed in the light receiving direction of each of the line sensors 5A and 5B and on the back side of the detection location J. The projection member 8 is arranged on the light projection side of a plurality of LED light emitting elements 80 arranged in a dense state along the lateral width direction of the detection location J and a region where the plurality of LED light emitting elements 80 are installed. And a diffusion plate 81 for diffusing the light emitted by the plurality of LED light emitting elements 80.
[0038]
More specifically, as shown in FIG. 4, the inside of the casing 83 is formed in an elongated shape along the lateral width direction of the detection location J, has a substantially rectangular cross-sectional shape, and has an open front portion. In addition, an LED substrate 82 provided with a plurality of LED light emitting elements 80 is provided. As shown in FIG. 4B, the LED substrate 82 is installed in a state in which a plurality of LED light emitting elements 80 are arranged in a dense state along the lateral width direction. The LED substrate 82 is attached to a heat radiating plate 84 made of an aluminum plate screwed to the casing 83 with a silicon heat radiating resin. On the other hand, on the front side of the LED substrate 82, a diffusion plate 81 for diffusing the light emitted by the LED light emitting element 80 is provided between each LED light emitting element 80 at the center in the arrangement direction of the plurality of LED light emitting elements 80. The separation distance is large, and the both ends in the arrangement direction are provided in a curved state so that the separation distance between each LED light emitting element 80 is small. By curving the diffuser plate 81 in this way, the light intensity at the detection location J is increased at the center in the lateral width direction, so that there is no bias that does not occur at the end portion. The strength is made as uniform as possible in the width direction.
[0039]
As shown in FIG. 7, the plurality of LED light emitting elements 80 are divided into a set number (several to ten) of blocks BK in the arrangement direction, and the LED light emitting elements 80 are collectively collected for each block BK. A light control device 85 is provided as a light emission output adjusting means capable of changing and adjusting the light emission output. The dimming device 85 is configured to change and adjust the light emission output of the LED light emitting element 80 for each block BK based on a control command from the control device 10 to be described later.
[0040]
As shown in FIG. 2, the front-side line light source 4B, the front-side line sensor 5B, and the rear-side reflecting plate 8A are housed in one housing portion 13B. The reflecting plate 8B is housed in the other housing portion 13A, and both housing portions 13A and 13B are formed as a single box with a common side plate, and each housing portion 13A and 13B has a plate shape on the side facing the detection location J. Transmission windows 14A and 14B made of transparent glass. That is, the line light sources 4A and 4B and the line sensors 5A and 5B are housed in the housing portions 13A and 13B having the transmission windows 14A and 14B on the side facing the detection portion J, and the line light sources 4A. , 4B illuminate the detection location J through the transmission windows 14A, 14B, and the line sensors 5A, 5B are configured to receive light from the detection location J through the transmission windows 14A, 14B. .
[0041]
Normal rice grains by blowing air to defective grains such as rice grains and foreign matters determined to be defective based on the light receiving information at the detected position J at the separated position on the lower side of the path from the detected position J of the scheduled transfer path IK An air blowing device 6 for separating the moving direction of the group k is provided. The air blowing device 6 divides a plurality of injection nozzles 6a into a plurality of sections with a predetermined width over the entire width of the scheduled transfer path IK. The jet nozzles 6a are arranged in a state corresponding to each of the formed sections, and the nozzles 6a of the sections where defectives are present are operated.
[0042]
That is, the shooter 1 functions as a conveying unit that conveys the rice grain group k so as to pass through the detection point J that is wide in the horizontal width direction in a state where the rice grain group k is expanded in the horizontal width direction in a single layer state, and the rice grain group k is configured to function as a transfer means for transferring k to the detection location J along the planned transfer path IK and to the separation location on the lower side of the path from the position of the detection location J, and the air blowing device 6 is Separation means for separating the normal product and the defective product in the granular material group transferred to the separation location into different paths is configured.
[0043]
And for the good rice which collects the normal rice grain k which advances as it is without receiving the blowing of the air from the said injection nozzle 6a among the rice grain groups k which flow down along the predetermined path | route from the lower end part of the shooter 1. Receiving part 2B, and for defective items such as colored rice and shell cracked rice separated from the flow of normal rice grains k by blowing air or collecting foreign matter such as stones and glass pieces The receiving portion 2B is provided, and the receiving portion 2B for good rice is formed in an elongated cylindrical shape in the width direction, and the receiving port for defectives is surrounded by the receiving portion 2B for good rice Part 3B is formed. Incidentally, the rice grains k collected at the receiving part 2B for good rice and the defectives collected at the receiving part 3B for defectives are used for the tank 7 of this inspection apparatus for re-sorting and the like. Or to another inspection device.
[0044]
As shown in FIG. 1, vertical frames F2, F3, and F4 standing on a bottom plate F1 having legs F0 are connected by horizontal frames F5, F6, and F7 to form a machine frame. A console 21 for displaying and inputting information is installed on the upper oblique portion of the vertical frame F4 on the front side, a vibration generator 9A for the feeder 9 is installed on the horizontal frame F5, and air is supplied to the air blowing device 6 An air tank 15 is installed on the bottom plate F1. Further, the box-shaped storage portions 13A and 13B are supported on the front side by the vertical frame F4 and on the rear side by the vertical frame F3, and the chute 1 is supported on the upper side by the horizontal frame F6 and on the lower side by the storage portion 13B. . A cover K that covers the outer surface of the apparatus is attached to the machine frame.
[0045]
Next, the control configuration will be described. As shown in FIG. 5, a control device 10 using a microcomputer is provided, and image signals from both line sensors 5A and 5B and operation information from the console 21 are input to the control device 10. Yes. On the other hand, from the control device 10, a driving signal for the lighting circuit 19 for lighting the line light sources 4A and 4B, a driving signal for a plurality of electromagnetic valves 11 for turning on / off each air supply to each injection nozzle 6a, and A drive signal for the feeder vibration generator 9 </ b> A and a control command signal to the dimmer 85 are output.
[0046]
Based on the light reception information of the transmission and reflection line sensors 5A and 5B, the determination unit 100 is configured to determine whether there is a defect in the rice grain group k by using the control device 10. , The detection light (transmitted light and reflected light) from the rice grain group k, that is, the received light amount of the transmission and reflection line sensors 5A and 5B is within the appropriate light amount range (ΔEt for transmitted light, ΔEh for reflected light). When it comes off, it is configured to determine the presence of a defective product. The discriminating means 100 uses the set amount of received light amount data obtained by sampling the received light amounts of the transmission and reflection line sensors 5A and 5B at set time intervals in order to set the appropriate light amount range. It is configured to obtain a power distribution for each light quantity value divided into a plurality of stages from the dark side to the bright side, and the upper limit value and the lower limit value of the appropriate light quantity range are automatically set based on the power distribution. It is configured. In addition, a determination process as to whether or not the light amount value of the received light amount is out of the appropriate light amount range and a process for obtaining the frequency distribution are executed for each light receiving unit.
[0047]
Further, based on the information on the frequency distribution of the discriminating means 100 using the control device 10, the light quantity value of the light projected from the projection member 8 having the highest frequency in the frequency distribution is within the appropriate light quantity range. Light quantity command means for commanding control command information to the light control device 85 so as to change and adjust the light quantity of light projected from the projection member 8 toward the transmission and reflection line sensors 5A and 5B so as to be positioned at an appropriate position. 101 is configured. Accordingly, the light quantity command means 101 and the light control device 85 constitute light quantity adjustment means KT that changes and adjusts the light quantity of light projected from the projection member 8 toward the transmission and reflection line sensors 5A and 5B. .
[0048]
Next, various correction processes of received light data for setting the appropriate light amount range will be described.
First, the inspection reference object Kj having the same transmittance and reflectance as the normal substance in the rice grain group k is positioned at the detection position J, and as shown in FIG. 8, the transmission and reflection line sensors 5A, 5B. Each received light information received by is obtained as reference received light amount information. That is, for each light receiving portion 5a of each sensor 5A, 5B, the reference received light amount Si of transmitted light and the reference received light amount Si ′ of reflected light (i = 0 to [number of light receiving portions −1]) are stored, and at the same time. The average values Sm and Sm ′ for the reference received light amounts Si and Si ′ are obtained (this process is referred to as “reference creation”). Here, the inspection reference object Kj is constituted by a long white resin plate or the like in accordance with the longitudinal detection position J. Separate inspection reference objects Kj may be used for transmitted light and reflected light.
[0049]
Moreover, the fluctuation | variation of the illumination light quantity from illumination light source 5A, 5B is detected. Specifically, as shown in FIG. 9, with the illumination light quantity sufficiently stable, the light quantity of the projection member 8 is set to the inspection reference value, and the output of each light receiving element 5a of the reflection line sensor 5B. The voltage r [i] (i = 0 to [number of light receiving elements-1]) is measured as a reference illumination light quantity value, and an average value rm is obtained for all the light receiving parts (this process is referred to as “illumination light correction”). Called "data creation"). On the other hand, at the latest time point when the actual inspection is performed, the output voltage r ′ [i] of each light receiving part 5a of the reflection line sensor 5B is measured, the average value rm ′ for all the light receiving parts is obtained, and the reference illumination is obtained. A ratio (rm ′ / rm) between the average value rm of the light quantity value and the average value rm ′ of the latest illumination light quantity value is defined as the change rate of the illumination light quantity. Note that the rate of change in the amount of illumination light may be obtained based on the light reception information of the transmission line sensor 5A that receives the reflected light from the transmission reflection plate 8A instead of the reflection reflection plate 8B.
[0050]
In order to obtain a stable state of the illumination light amount, the reference light amount is measured after sufficient time has elapsed after lighting, for example, during shipping adjustment. Further, during an actual inspection operation, if inspection is performed for a predetermined time (for example, 30 minutes), the window portions 14A and 14B are cleaned by a cleaning unit (not shown), and thus the amount of illumination light is measured after the cleaning.
[0051]
Then, for each sensor output voltage j of transmitted light and reflected light, the average of the reference received light amount is used to cancel the deviation of the reference received light amount Si, Si ′ of each light receiving element 5a with respect to the average value Sm, Sm ′ of the reference received light amount. Multiply the values Sm and Sm ′ by the ratio of the reference received light amounts Si and Si ′ of each light receiving element 5a, and further divide by the rate of change of the illumination light quantity (rm ′ / rm) in order to cancel out the influence of the fluctuation of the illumination light quantity. As described above, the correction processing is performed based on the following expression to obtain the corrected output voltages jt and jh (sensor correction outputs) of the sensors 5A and 5B for the transmitted light and the reflected light.
[0052]
[Expression 1]
Sensor correction output jt = j × (Sm / Si) × (rm / rm ′)
Sensor correction output jh = j × (Sm ′ / Si ′) × (rm / rm ′)
[0053]
Next, sensitivity correction processing is performed on the sensor correction outputs jt and jh. Here, the sensitivity value is set to the standard value (100). In the actual inspection operation, if the sensitivity value is set larger than “100” (for example, 110), the deviations (jt−) of the sensor correction outputs jt and jh from the average values Sm and Sm ′ of the reference received light amount. Sm), (jh−Sm ′) are increased and corrected so that the detected light reception amount is increased, and the sensitivity value is set to be smaller than “100” (for example, 90), the deviation (jt−Sm), (jh) The sensitivity correction outputs jk and jk ′ of the transmitted light and the reflected light, in which the detected light reception amount is corrected to decrease so that −Sm ′) is reduced, are obtained.
[0054]
[Expression 2]
Sensitivity correction output jk = (sensitivity value / 100) × (jt−Sm) + (Sm)
Sensitivity correction output jk ′ = (sensitivity value / 100) × (jh−Sm ′) + (Sm ′)
[0055]
That is, the control device 10 is used to change and set correction coefficients (sensitivity values) for increasing or decreasing the amount of light received from the transmission and reflection line sensors 5A and 5B (jt and jh in the above equation). Sensitivity correction means 102 is configured to correct the sensitivity of the received light amount with respect to the appropriate light amount range. When the sensitivity value is changed to a value larger than “100”, for example, “110” and the received light amount is increased, the increased corrected received light amount easily deviates from the appropriate light amount range, and the sensitivity for defect determination is increased. On the other hand, if the sensitivity value is changed to be smaller than “100”, for example, “90”, and the received light amount is decreased, the decrease-corrected received light amount is not easily deviated from the appropriate light amount range, and the sensitivity for defect determination The sensitivity of the received light amount with respect to the appropriate light amount range of the transmitted light and the reflected light is corrected so as to be low. This sensitivity adjustment is manually performed by the operator using the console 21.
[0056]
Next, the appropriate light amount range setting process by the determination unit 100 will be described. This appropriate light amount range setting process is executed at the time of shipment adjustment of the apparatus.
For each light receiving element 5a of each line sensor 5A, 5B, with respect to each light quantity value obtained by dividing a range from the dark side to the bright side with respect to a set number of received light amount data obtained by sampling at a set time interval. A frequency distribution (also called a histogram) is obtained, and the appropriate light amount range is set based on the frequency distribution.
[0057]
Specifically, as shown in FIG. 13, setting is made for each light receiving element 5a of each line sensor 5A, 5B while flowing the rice grain group k in a state where the illumination light quantity from the illumination light sources 5A, 5B is sufficiently stable. The received light amount data, that is, the output voltage is sampled at time intervals, and the output voltage is converted into 256-stage digital values. In this case, the air blowing device 6 is not operated. Thereafter, the supply of the rice grain group k is stopped, and for example, as shown in FIG. 18, the set number of output voltages sampled for each light receiving element 5a is divided into a plurality of stages from the dark side to the bright side. The frequency distribution hg for each received light amount is obtained. Then, in the frequency distribution hg, the upper light quantity value TH1 is set in correspondence with the position near the upper end of the continuous area where the power value for each received light amount exists continuously from the dark side to the bright side, and the upper side An upper limit value T1 of the appropriate light amount ranges ΔEt and ΔEh is set at a position distant from the light amount value TH1 by the set light amount K1, and the lower light amount value TH2 is set in correspondence with the position near the lower end of the continuous region. The lower limit value T2 of the appropriate light amount ranges ΔEt and ΔEh is set at a position apart from the lower light amount value TH2 and set light amount K2 on the dark side. The set light amounts K1 and K2 are set in advance as control constants. As described above, the upper limit value T1 and the lower limit value T2 of the appropriate light amount ranges ΔE1 and ΔE2 on the front side and the rear side to be set and corrected for each light receiving element 5a of each line sensor 5A and 5B will be described later. In such a memory LUT (front side and rear side LUT) in the control device 10 is stored as a failure detection look-up table.
When the appropriate light amount range set for each light receiving element 5a in this way is continuously expressed along the direction in which the light receiving elements 5a are arranged, it is as shown in FIG.
[0058]
Next, the light quantity command processing by the light quantity command unit 101 will be described. This light quantity command processing is repeatedly executed not only at the time of shipping adjustment but also in a normal operation state. Based on the frequency distribution information obtained as described above, for example, the most frequent location in the frequency distribution such as the peak value pi in FIG. 18 corresponds to the light amount value of the light projected from the projection member 8. To do. Therefore, the light control device 85 is configured to change and adjust the light amount of the light projected from the projection member 8 toward the light receiving means so that the most frequent light amount value in the frequency distribution is located at an appropriate position within the appropriate light amount range. Control information.
[0059]
That is, as shown in FIG. 15, when executing at the time of shipping adjustment, the sensitivity value by the sensitivity correction means 102 is set to the standard sensitivity value “100”. As a proper position within the proper light quantity range, the light quantity BG of light projected from the projection member 8 toward the light receiving means is the same as or substantially the same as the light quantity corresponding to the center position in the proper light quantity range. It is configured to change and adjust.
When sensitivity correction is performed by the sensitivity correction means 102 as in normal operation, the sensitivity value is set to be larger than the standard value “100” and the received light amount is increased or decreased accordingly. When the sensitivity is corrected, as the appropriate position within the appropriate light amount range, for example, as shown in FIG. 20B, the light amount of the light projected from the projection member 8 is slightly larger than the median value of the appropriate light amount range. If the sensitivity value is set to be smaller than the standard value “100” and the sensitivity is corrected so that the amount of received light is reduced, the appropriate position within the appropriate light amount range is shown in FIG. As shown in FIG. 3, the light quantity of the light projected from the projection member 8 is changed and adjusted so that the light quantity position is smaller than the median value of the appropriate light quantity range.
[0060]
At this time, the amount of light projected to the plurality of light receiving elements 5a is changed for each of the plurality of light receiving elements 5a divided into the plurality of blocks BK in the arrangement direction of the light receiving elements 5a as described above. The configuration is adjusted. In other words, in the initial installation state of the apparatus, for example, as shown in FIG. 19 (a), there is little variation in the amount of light of the projection members 8 in the alignment direction in each light receiving element 5a, but the inspection is performed for a long time. As a result, as shown in FIG. 19B, the amount of light may fluctuate greatly at the left and right ends. For example, when a fluorescent lamp is used as the line light source, the luminous intensity at both ends in the longitudinal direction is reduced, and the correlation between the distribution of the light quantity of the rice grain group k and the light quantity of the projection member 8 is the center position and the left and right end parts. May be different. Moreover, dust may adhere to the surface of the projection member 8 after a long period of use, and the amount of light may decrease. Therefore, in such a case, the light amount of the projection member 8 is not changed in the central portion of the arrangement direction, and only the portion of the block BK corresponding to the left and right ends is changed to the bright side. Thus, it is possible to return to an appropriate state close to the initial state as shown in FIG.
[0061]
Next, the appropriate light amount range correction process for the appropriate light amount range when performing normal operation will be described. In the appropriate light amount range correction processing, the appropriate light amount range itself is appropriately corrected as the received light amount data is detected when the normal operation state is continuously executed. That is, as shown in FIG. 14, when a set number of received light amount data is sampled at each set time and the data includes a light amount value brighter than the upper light amount value TH1, the upper light amount value is set. While TH1 is moved one step to the bright side, when the light quantity data of the set number does not include a light amount value brighter than the upper light amount value TH1, the upper light amount value TH1 is moved one step to the dark side. In addition, when the set number of received light quantity data includes a light quantity value darker than the lower light quantity value TH2, the lower light quantity value TH2 is moved to the dark side by one step, When the quantity of received light quantity data does not include a light quantity value darker than the lower light quantity value TH2, the lower light quantity value TH2 is moved one step to the bright side.
[0062]
Then, as described above, the upper limit value T1 and the lower limit value T2 of the appropriate light amount ranges ΔEt and ΔEh on the front side and the rear side that are set for each light receiving element 5a of the line sensors 5A and 5B and are corrected thereafter. 10, is stored in a memory LUT (front side and rear side LUT) in the control device 10 as a lookup table for defect detection processing.
When this look-up table is further described, for each light receiving element 5a represented by the position data i (i = 0 to [number of light receiving elements-1]), all light quantity values j that can take a sensor output voltage (the above-mentioned If each value j is within the appropriate light amount range ΔEt, ΔEH while changing in a range of 256 light amount values), “0” is stored as a determination output in the corresponding address (i, j) of the memory LUT. If the appropriate light amount ranges ΔEt and ΔEH are not included, “1” is stored as the determination output at the corresponding address (i, j) of the memory LUT. When the determination is made, the position data i (i = 0 to [the number of light receiving elements−1]) of the light receiving elements 5a of the line sensors 5A and 5B and the position thereof are determined with respect to the memory LUT created above. When the light quantity value j of each light receiving element 5a at i is input, a determination output “0” is output for each light receiving element 5a when it is normal, and a determination output “1” is output when it is defective. Therefore, based on this, the determination means 100 performs determination.
[0063]
Hereinafter, the light reception outputs of the line sensors 5A and 5B for transmitted light and reflected light will be specifically described.
In the case of transmitted light, as shown in the output waveform of the transmitted light line sensor 5A in FIG. 11, normal when the output voltage corresponding to the amount of light received by each light receiving portion 5a is within the appropriate light amount range ΔEt for the rice grain group k. The presence of a fresh rice grain is discriminated, and if it is outside the set appropriate range ΔEt, the rice grain is defective or the presence of foreign matter is discriminated. In the figure, e0 is the output voltage level for standard transmitted light from normal rice grains. When the light amount is smaller than the appropriate light amount range ΔEt, the presence of defective rice grains or foreign matters (for example, black stone particles) whose transmittance is smaller than that of normal rice grains is determined, and when the light amount range is larger than the appropriate light amount range ΔEt. Then, the presence of the defective rice grain k on the bright side having a higher transmittance than the normal rice grain k or the foreign matter is determined. As an example of the defective rice grain k or foreign matter on the bright side, a light colored transparent glass piece or the like becomes a foreign matter having a larger transmittance than the normal rice grain k, and the normal rice grain k is changed to “glutinous rice”. “Uruchi rice” becomes a defective rice grain k having a larger transmittance than the normal rice grain k.
[0064]
In FIG. 11, the output voltage (light receiving amount) of the light receiving element 5 a is a position where a partially colored portion exists in the rice grain k, a position of black stone or the like (indicated by e1), and a position where a shell crack portion exists. (Indicated by e2), when there is a foreign substance or the like that is located below the appropriate light amount range ΔEt and has a larger transmittance than normal rice grains, the appropriate light amount range ΔEt as indicated by a position e3. The state located in the upper side is illustrated.
[0065]
On the other hand, in the case of reflected light, as shown in the corrected output waveform of the reflected light line sensor 5B in FIG. 12, the output voltage after correction corresponding to the amount of light received by each light receiving portion 5a is in the appropriate light amount range ΔEh. The presence of normal rice grains is determined when it is within the range, and the defect of the rice grains or the presence of the foreign matter is determined when the proper light amount range ΔEh is not satisfied. In the figure, e0 ′ is an output voltage level for standard reflected light from normal rice grains. In the figure, at a position where a part of the rice grain k is colored (indicated by e1 ′) and a position where a cracked portion of the rice is present (indicated by e2 ′), a state deviating downward from the appropriate light amount range ΔEh. In addition, when a foreign object such as a glass piece is present, a state in which the object is deviated upward from the appropriate light amount range ΔEh as indicated by a position e3 ′ by strong direct reflected light from the foreign object is illustrated. Although not shown, black stones and the like have a very low reflectance, so that they greatly deviate from the appropriate light amount range ΔEh in the waveform.
[0066]
When the control device 10 determines based on the defect determination information, among the rice grain groups k transferred to the detection positions J of the two line sensors 5A and 5B, whether the rice grains are defective or the presence of foreign matter is determined. As the transfer time from the detection position J to the air injection position by the injection nozzle 6a elapses, the air from each injection nozzle 6a in the section corresponding to that position flows against the defective rice grains or foreign matters that are flowing down. To separate from the normal rice grain pathway.
[0067]
Then, as shown in FIG. 16, at the time of shipment adjustment, the apparatus is turned on and a predetermined warm-up operation is performed, and after confirming the stable state of the illumination light quantity, etc., first, the “reference” Each process of “creation” and first “illumination light correction data creation” is performed. Next, sensor output correction and sensitivity correction (however, standard sensitivity values) are performed, the appropriate light quantity range setting process and the first light quantity command process are executed, and the memory LUT is based on the set appropriate light quantity ranges ΔEt and ΔEh. Create Finally, exclusion adjustments such as the operation time of each nozzle of the air blowing device 6 are performed.
[0068]
Then, as shown in FIG. 17, during the normal inspection operation, the apparatus is first turned on to perform a predetermined warm-up operation, and then the latest “illumination light correction data creation” at that time is performed to perform illumination. The data of the change rate of the light quantity is calculated, and the data in the memory is rewritten using the change rate data of the illumination light quantity and the appropriate light quantity ranges ΔEt and ΔEh to create the memory LUT. Further, when the sensitivity value is set, the light amount adjustment processing is executed in accordance with the sensitivity value setting. Further, the rice grain group k is supplied to the chute 1 using the corrected memory LUT and the inspection is started.
When a predetermined time (30 minutes) for cleaning elapses, the supply of the rice grains k is stopped to stop the inspection, the cleaning means (not shown) is operated to clean the windows 14A and 14B, and the light amount range. A correction process is executed, the light quantity command process is executed in accordance with the correction result, and the data in the memory is rewritten to reflect the process result to create a memory LUT. Thereafter, the grain group k is again supplied to the chute 1 using the corrected memory LUT, and the inspection is started.
[0069]
[Another embodiment]
Hereinafter, other embodiments are listed.
[0070]
(1) In the above embodiment, sensitivity correction means for correcting the sensitivity of the received light amount with respect to the appropriate light amount range is provided, and the appropriate light amount range of the light amount value of the light projected from the projection member corresponding to the sensitivity setting. However, the present invention is not limited to such a configuration, and is always configured to change and adjust so that the light amount is always the same as or substantially the same as the light amount at the center position of the appropriate light amount range. It is good.
[0071]
(2) In the above embodiment, the light amount adjusting means KT uses a plurality of LED light emitting elements as a light source, but is not limited to such LED light emitting elements, and other light sources such as a fluorescent lamp and an incandescent lamp are used. It may be used. Further, the present invention is not limited to the configuration in which the adjustment is performed for each of the plurality of regions, and the light amount of the light source may be adjusted by projecting the entire range in the width direction of the existing location using one light source.
[0072]
(3) In the above embodiment, when the normal operation is performed, the light amount range correction process and the light amount command process are repeatedly executed every time a predetermined time for cleaning elapses. It is good also as a structure which performs the said light quantity range correction | amendment process and light quantity instruction | command process only when starting a work | work not only in a structure.
[0074]
( 4 ) In the above embodiment, the line sensors 5A and 5B for transmitted light and reflected light are used as the light receiving means, but the light receiving means is constituted by either the line sensor 5A or 5B for transmitted light or reflected light. May be. The line sensor may also be an imaging tube type television camera other than the monochrome type CCD line sensor. Further, instead of a monochrome type, a color type CCD sensor may be used, and for example, the presence or absence of defective rice or foreign matter may be determined with higher accuracy from the amount of received light for each of the color information R, G, and B.
[0075]
( 5 ) In the above-described embodiment, the transfer means H is configured to transfer the granular material group in a state of being spread in the horizontal direction in a single layer along the scheduled transfer path, and according to this, the illumination means 4A, 4B Is configured to illuminate the entire width of the granular material group in the horizontal width direction, and the light receiving means 5A and 5B are configured to set the entire width of the granular material group in the horizontal width direction as the light receiving range. Absent. For example, the granular material group may be transferred in a single row, and in accordance with this, the illumination means may be constituted by a single lamp or the like, and the light receiving means may be constituted by a single light receiving sensor.
[0076]
( 6 ) In the above embodiment, the separation means blows air against the defective object and separates it into a different path from the normal object. However, the present invention is not limited to this, and for example, the defective object is sucked with air. May be separated by mechanical contact, or may be separated by mechanical contact action.
[0077]
( 7 ) In the above embodiment, the case where the granular material group as the inspection object is the rice grain group is exemplified. However, the present invention is not limited to this. For example, when inspecting the presence or absence of defectives or foreign matters in plastic grains or the like It can also be applied to.
[Brief description of the drawings]
FIG. 1 is an overall side view of a defective object removing apparatus. FIG. 2 is a side view of the main part. FIG. 3 is a perspective view of the main part showing an operating state. Block diagram [Fig. 6] Diagram showing the light receiving range of the line sensor [Fig. 7] Circuit configuration diagram of the projection member [Fig. 8] Output waveform diagram when storing the reference received light amount [Fig. 9] Output showing the change state of the illumination light quantity Waveform diagram [FIG. 10] Block diagram of memory for defect determination [FIG. 11] Output waveform diagram of transmitted light line sensor [FIG. 12] Output waveform diagram of reflected light line sensor [FIG. 13] Proper light quantity range setting processing FIG. 14 is a flowchart showing an appropriate light amount range correction process. FIG. 15 is a flowchart showing a light quantity command process. FIG. 16 is a flowchart of a control operation during shipping adjustment. FIG. 17 is a flowchart of a control operation during normal operation. 18 shows frequency distribution Graph 19 Graph [EXPLANATION OF SYMBOLS] showing a graph Figure 21 frequency distribution shown FIG. [20] frequency distribution indicating the proper quantity range of the light receiving elements
4 Illuminating means 5 Light receiving means 6 Separating means 8 Projecting member 80 Light source 100 Discriminating means 102 Sensitivity correcting means H Transfer means KT Light quantity adjusting means

Claims (5)

粒状体群を検査対象物として、その検査対象物の存在予定箇所を照明する照明手段と、
前記存在予定箇所からの光を受光する受光手段と、
前記受光手段の受光方向であって前記存在予定箇所の背部側箇所に配置されて前記受光手段に向けて光を投射する投射部材と、
前記受光手段の受光量を設定時間間隔でサンプリングして、そのサンプリングした受光量が前記粒状体群における正常物からの検出光に対する適正光量範囲を外れた場合に不良物の存在を判別する判別手段とが設けられている不良物検出装置であって、
前記判別手段が、
前記適正光量範囲を設定するために、前記サンプリングにより得られた設定個数の受光量データについて、暗側から明側にわたる間を複数段階に区分けした各受光量に対する度数分布を求めるように構成され、且つ、前記度数分布に基づいて前記適正光量範囲の上限値及び下限値を自動設定するように構成され、
前記投射部材から前記受光手段に向けて投射する光の光量を変更調整する光量調整手段が備えられ、
この光量調整手段が、前記判別手段の前記度数分布の情報に基づいて、前記投射部材から前記受光手段に向けて投射する光の光量を自動的に変更調整して、その度数分布において最も頻度の高い光量値を前記適正光量範囲内における適正位置に位置させる不良物検出装置。
Illumination means for illuminating the planned location of the inspection object, with the granular body group as the inspection object,
A light receiving means for receiving light from the existing location;
A projection member that projects light toward the light receiving means disposed in a light receiving direction of the light receiving means and located on the back side of the planned location;
A determination unit that samples the amount of light received by the light receiving unit at set time intervals, and determines the presence of a defective object when the sampled amount of received light is outside an appropriate light amount range for detection light from a normal object in the granular material group. And a defect detection device provided with
The discrimination means is
In order to set the appropriate light amount range, for a set number of received light amount data obtained by the sampling, configured to obtain a frequency distribution for each received light amount divided into a plurality of stages from the dark side to the bright side, And it is configured to automatically set an upper limit value and a lower limit value of the appropriate light amount range based on the frequency distribution,
A light amount adjusting means for changing and adjusting the amount of light projected from the projection member toward the light receiving means;
The light amount adjusting means automatically changes and adjusts the light amount of light projected from the projection member toward the light receiving means based on the information of the frequency distribution of the determining means , and the most frequent in the frequency distribution. A defective detection device that positions a high light amount value at an appropriate position within the appropriate light amount range .
前記粒状体群を横幅方向に広げた状態でその横幅方向に沿って幅広に形成された前記存在予定箇所を通過するように搬送させる搬送手段が備えられ、
前記受光手段が、前記存在予定箇所からの光を受光する複数個の受光部を前記存在予定箇所の横幅方向に沿って並置させるように構成され、
前記判別手段が、前記受光量の光量値が前記適正光量範囲を外れているか否かについての判別処理及び前記度数分布を求める処理を前記各受光部毎に実行するように構成され、
前記光量調整手段が、
前記複数個の受光部の並び方向に沿って並置された複数の光源を備えて構成され、且つ、
前記複数個の受光部に対して投射する光の光量を各光源毎に各別に、又は、区分けされた複数個づつの光源毎に変更調整自在に構成されている請求項1記載の不良物検出装置。
Conveying means for conveying the granular material group so as to pass through the pre-existing portion formed wide along the lateral width direction in a state where the granular body group is expanded in the lateral width direction, is provided.
The light receiving means is configured to juxtapose a plurality of light receiving units that receive light from the existing planned location along a lateral width direction of the existing planned location,
The determination unit is configured to execute, for each light receiving unit, a determination process as to whether or not a light amount value of the received light amount is out of the appropriate light amount range and a process of obtaining the frequency distribution.
The light amount adjusting means is
A plurality of light sources arranged side by side along the direction in which the plurality of light receiving units are arranged; and
2. The defect detection according to claim 1, wherein the amount of light projected onto the plurality of light receiving units is configured to be freely adjustable for each light source or for each of a plurality of divided light sources. apparatus.
前記光量調整手段が、
前記適正光量範囲内における適正位置を前記適正光量範囲における中央位置として、前記投射部材から前記受光手段に向けて投射する光の光量前記適正光量範囲における中央位置に対応する光量と同じか又はほぼ同じに変更調整する請求項1又は2に記載の不良物検出装置。
The light amount adjusting means is
As a central position in the proper quantity range proper position within said proper light amount range, the same or substantially the amount of light corresponding to the central position in the proper quantity range the amount of light projected toward the light receiving means from said projection member defective object detection apparatus according to Motomeko 1 or 2 tO aDJUST same as change.
前記受光手段からの受光量を増減させる補正係数を変更設定して、前記適正光量範囲に対する受光量の感度を補正する感度補正手段が設けられ、
前記光量調整手段が、
前記感度補正手段による感度補正に対応させて、前記受光量が減少するように感度補正されると、前記適正光量範囲内における適正位置を前記適正光量範囲の中央位置よりも小側の光量の位置として、前記投射部材から前記受光手段に向けて投射する光の光量前記適正光量範囲の中央位置よりも小側の光量に変更調整し、
前記受光量が増加するように感度補正されると、前記適正光量範囲内における適正位置を前記適正光量範囲の中央位置よりも大側の光量の位置として、前記投射部材から前記受光手段に向けて投射する光の光量前記適正光量範囲の中央位置よりも大側の光量に変更調整する請求項1〜3のうちいずれか1項に記載の不良物検出装置。
Sensitivity correction means for correcting the sensitivity of the received light amount with respect to the appropriate light amount range is provided by changing and setting a correction coefficient for increasing or decreasing the received light amount from the light receiving means,
The light amount adjusting means is
Corresponding to the sensitivity correction by the sensitivity correction means, when sensitivity correction is performed so that the amount of received light decreases, the appropriate position in the appropriate light amount range is set to a light amount position smaller than the center position of the appropriate light amount range. as a change adjusted to the amount of the smaller side than the central position of the proper quantity range the amount of light projected toward the light receiving means from said projection member,
When the sensitivity is corrected so that the amount of received light increases, the appropriate position in the appropriate light amount range is set as the light amount position larger than the center position of the appropriate light amount range from the projection member toward the light receiving means. defective object detection apparatus according to any one of the Motomeko 1-3 you change adjusts the amount of projection light to the light amount of the larger side than the central position of the proper quantity range.
請求項1〜4のいずれか1項に記載の不良物検出装置を備えた分離装置であって、
検査対象物としての粒状体群を予定移送経路に沿って前記存在予定箇所とその存在予定箇所の位置よりも経路下手側の分離箇所とに移送する移送手段と、
前記分離箇所に移送された粒状体群のうちの正常物と不良物とを異なる経路に分離させる分離手段とを備えて構成されている分離装置。
A separation apparatus comprising the defect detection apparatus according to any one of claims 1 to 4,
A transfer means for transferring a granular material group as an inspection object along the planned transfer path to the existing planned location and a separation location on the lower side of the path from the location of the planned existing location;
A separation device comprising separation means for separating a normal product and a defective product of the granular material group transferred to the separation part into different paths.
JP2002273303A 2002-09-19 2002-09-19 Defective object detection device and separation device using the same Expired - Lifetime JP4076414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273303A JP4076414B2 (en) 2002-09-19 2002-09-19 Defective object detection device and separation device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273303A JP4076414B2 (en) 2002-09-19 2002-09-19 Defective object detection device and separation device using the same

Publications (2)

Publication Number Publication Date
JP2004108995A JP2004108995A (en) 2004-04-08
JP4076414B2 true JP4076414B2 (en) 2008-04-16

Family

ID=32270090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273303A Expired - Lifetime JP4076414B2 (en) 2002-09-19 2002-09-19 Defective object detection device and separation device using the same

Country Status (1)

Country Link
JP (1) JP4076414B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527646A (en) * 2010-12-20 2012-07-04 布勒易捷特色选机械(合肥)有限公司 Bicolor check coarse cereal color selector
KR20190010589A (en) * 2016-05-26 2019-01-30 시코라 아게 Bulk re-inspecting device and method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523474B2 (en) * 2005-04-06 2010-08-11 シーケーディ株式会社 Defect inspection device and PTP packaging machine
JP4851856B2 (en) * 2006-06-14 2012-01-11 株式会社クボタ Granule sorter
JP5277414B2 (en) * 2008-12-26 2013-08-28 株式会社Sumco Detection device and detection method for colored foreign substances contained in quartz powder raw material
KR100933436B1 (en) * 2009-06-04 2009-12-23 주식회사 아이디알시스템 Leaflet for color-based sorting apparatus
JP5129795B2 (en) * 2009-08-19 2013-01-30 東洋ガラス株式会社 Object identification device and object selection device
CN102009042B (en) * 2010-11-25 2012-08-15 大连理工大学 Granular material shape-based selector
JP5232214B2 (en) * 2010-12-10 2013-07-10 株式会社クボタ Granule sorter
JP5795498B2 (en) 2011-06-03 2015-10-14 株式会社クボタ Granule sorter
CN107790399B (en) * 2016-08-31 2019-07-19 合肥美亚光电技术股份有限公司 Raw grain seed detector and its light path system
KR102018910B1 (en) * 2016-09-26 2019-09-05 두성산업(주) Failure detection feeder using optical sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527646A (en) * 2010-12-20 2012-07-04 布勒易捷特色选机械(合肥)有限公司 Bicolor check coarse cereal color selector
KR20190010589A (en) * 2016-05-26 2019-01-30 시코라 아게 Bulk re-inspecting device and method
KR102395039B1 (en) * 2016-05-26 2022-05-09 시코라 아게 Bulk material inspection apparatus and method

Also Published As

Publication number Publication date
JP2004108995A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3079932B2 (en) Grain color sorter
JP4076414B2 (en) Defective object detection device and separation device using the same
JP5795498B2 (en) Granule sorter
JP5676369B2 (en) Granule sorter
JPH07155702A (en) Grain color sorting device
JP4675120B2 (en) Granule sorter
JP5792519B2 (en) Granule sorter
JP2011078922A (en) Plastic pellet sorter
JP4851856B2 (en) Granule sorter
JP4052911B2 (en) Defective object detection device and separation device using the same
JP4338284B2 (en) Powder inspection equipment
JP3288613B2 (en) Defect detection device and defect removal device
JP2000097866A (en) Detector for defective, and separator using same
JPH1190345A (en) Inspection apparatus of granular bodies
JP2001264256A (en) Powder and grain inspecting device
JP3318223B2 (en) Defect detection device and defect removal device
JP2006231233A (en) Apparatus for sorting particulate material
JP3505027B2 (en) Defective device
JP2862822B2 (en) Grain sorter
JP2000210626A (en) Defective article detector, and adjusting jig and adjusting method therefor
JP4454086B2 (en) Powder inspection equipment
JPH1157628A (en) Device and system for granular material inspection
JP3146165B2 (en) Defect detection device and defect removal device
JPH1190346A (en) Defect detector and defective article remover
JP3146149B2 (en) Defect detection device and defect removal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Ref document number: 4076414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term