JP2006233566A - System for evaluating acquired solar radiation energy amount - Google Patents
System for evaluating acquired solar radiation energy amount Download PDFInfo
- Publication number
- JP2006233566A JP2006233566A JP2005049245A JP2005049245A JP2006233566A JP 2006233566 A JP2006233566 A JP 2006233566A JP 2005049245 A JP2005049245 A JP 2005049245A JP 2005049245 A JP2005049245 A JP 2005049245A JP 2006233566 A JP2006233566 A JP 2006233566A
- Authority
- JP
- Japan
- Prior art keywords
- solar radiation
- acquired
- energy amount
- radiation energy
- building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、建物、特に住宅の空間領域毎に日射を透過可能な開口部からの取得日射エネルギーを得たとき単位時間当たり、且つ単位体積当たりの取得日射エネルギー量の適否を判定する取得日射エネルギー量評価システムに関するものである。 The present invention relates to an acquired solar energy that determines the suitability of an acquired solar energy amount per unit time and per unit volume when acquiring acquired solar energy from an opening that can transmit solar radiation for each space region of a building, particularly a house. It relates to a quantity evaluation system.
建物を建築する地点(緯度、経度)、開口部の方向、季節、時刻に基づいて開口部に対する太陽の位置を演算すると共に、その演算結果と開口部の外側に存在する日照障害物の情報から開口部に照射される日照の位置と面積を演算し、それ等の演算結果から開口部を通して照射された照度分布を演算すると共に、開口部面に入力される熱量を演算する技術が提案されている(例えば、特許文献1参照)。 Calculate the position of the sun with respect to the opening based on the location (latitude, longitude), direction of the opening, season, and time to build the building. From the calculation result and the information on the sunlight obstruction outside the opening A technique has been proposed in which the position and area of sunshine irradiated to the opening is calculated, the illuminance distribution irradiated through the opening is calculated from the calculation results, and the amount of heat input to the opening surface is calculated. (For example, refer to Patent Document 1).
しかしながら、前述の従来例では、日射を透過可能なガラス窓等の開口部を有する部屋の取得日射エネルギー量の適否を判断し得るものではなく、夏季の例えば西日(日没前の日差し)で暑くなり過ぎる可能性のある部屋の検証が容易に出来る技術が望まれていた。 However, in the above-described conventional example, it is not possible to judge the suitability of the amount of solar radiation energy acquired for a room having an opening such as a glass window that can transmit solar radiation. For example, in the west in summer (sunlight before sunset) There was a need for a technology that could easily verify rooms that might be too hot.
本発明は前記課題を解決するものであり、その目的とするところは、日射を透過可能なガラス窓等の開口部を有する閉ざされた部屋の夏季の暑さの様子を明確に表示することが出来、夏季の例えば西日(日没前の日差し)で暑くなり過ぎる可能性のある部屋の検証が容易に出来る取得日射エネルギー量評価システムを提供せんとするものである。 The present invention solves the above-mentioned problems, and the object of the present invention is to clearly display the state of summer heat in a closed room having an opening such as a glass window that can transmit sunlight. It is possible to provide a system for evaluating the amount of solar radiation energy acquired that can easily verify rooms that may become too hot in the summer, for example, the west (sunlight before sunset).
前記目的を達成するための本発明に係る取得日射エネルギー量評価システムの第1の構成は、建物の空間領域毎に日射を透過可能な開口部からの取得日射エネルギーを得たとき、取得日射エネルギー量の適否を判定する取得日射エネルギー量評価システムであって、夏日を抽出する夏日抽出手段と、前記夏日抽出手段により抽出された夏日において、前記建物の所定の空間領域に含まれる全ての開口部から取得される取得日射エネルギー量を算出する取得日射エネルギー量算出手段と、前記夏日抽出手段により抽出された夏日日数に亘って取得日射エネルギー量を積算する取得日射エネルギー量積算手段と、前記取得日射エネルギー量積算手段により積算された前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する判別手段と、前記判別手段により、前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合にその空間領域を特定して表示する表示手段とを有することを特徴とする。 The first configuration of the acquired solar radiation energy amount evaluation system according to the present invention for achieving the above object is that when the acquired solar energy is obtained from an opening through which solar radiation can be transmitted for each space area of a building, the acquired solar energy is obtained. An acquired solar radiation energy amount evaluation system for determining the suitability of a quantity, which is included in a predetermined spatial region of the building on a summer day extraction means for extracting a summer day and a summer day extracted by the summer day extraction means An acquisition solar energy amount calculating means for calculating an acquired solar energy amount acquired from all openings, and an acquired solar energy amount integration for integrating the acquired solar energy amount over the number of summer days extracted by the summer sun extracting means. And an acquired acquired solar radiation energy amount per predetermined time in a unit of the space area of the building integrated by the acquired solar radiation energy amount integrating means is predetermined. A determination unit that determines whether or not the threshold value is greater than or equal to a threshold value, and a space when the determination unit determines that the accumulated acquired solar radiation energy amount per predetermined time in a unit of the space area of the building is equal to or greater than a predetermined threshold value. And display means for specifying and displaying the area.
また、本発明に係る取得日射エネルギー量評価システムの第2の構成は、前記第1の構成において、前記表示手段は、前記判別手段により、前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合に、建物図面においてその空間領域の表示を他の空間領域の表示と異なるように表示することを特徴とする。 Further, a second configuration of the acquired solar radiation energy amount evaluation system according to the present invention is the integrated configuration according to the first configuration, wherein the display unit is integrated and acquired per predetermined time in the space area unit of the building by the determination unit. When it is determined that the amount of solar radiation energy is equal to or greater than a predetermined threshold value, the display of the spatial region is displayed differently from the display of other spatial regions in the building drawing.
また、本発明に係る取得日射エネルギー量評価システムの第3の構成は、前記第1の構成において、前記所定の閾値は、前記建物の空間領域単位での所定時間当たりの体感許容限界の積算取得日射エネルギー量に設定したことを特徴とする。 Moreover, the third configuration of the acquired solar radiation energy amount evaluation system according to the present invention is the integrated configuration according to the first configuration, wherein the predetermined threshold value is an integrated acquisition of perceived permissible limits per predetermined time in the space area of the building. It is characterized by the amount of solar radiation energy.
また、本発明に係る取得日射エネルギー量評価システムの第4の構成は、前記第1の構成において、前記所定の閾値は、前記建物の建物構成による熱応答特性に基づいて該建物の空間領域内の室温上昇程度から設定されることを特徴とする。 Further, a fourth configuration of the acquired solar radiation energy amount evaluation system according to the present invention is the first configuration, wherein the predetermined threshold is within a space region of the building based on a thermal response characteristic of the building configuration of the building. It is set from the room temperature rise degree.
また、本発明に係る取得日射エネルギー量評価システムの第5の構成は、前記第1の構成において、前記取得日射エネルギー量算出手段は、外気温を考慮した所定の割増係数を乗じる演算を行うことを特徴とする。 Further, in the fifth configuration of the acquired solar radiation energy amount evaluation system according to the present invention, in the first configuration, the acquired solar radiation energy amount calculation means performs an operation of multiplying by a predetermined additional coefficient in consideration of outside air temperature. It is characterized by.
また、本発明に係る取得日射エネルギー量評価システムの第6の構成は、前記第1の構成において、前記開口部からの取得日射を遮る周辺建物、または前記開口部に設けられる日射遮蔽要素により該開口部面が受ける取得日射エネルギー量を調整する取得日射エネルギー量調整手段を有することを特徴とする。 Further, the sixth configuration of the acquired solar radiation energy amount evaluation system according to the present invention is the above-described first configuration, in which the solar radiation shielding element provided in the surrounding building or the opening that blocks the acquired solar radiation from the opening is used. It has the acquired solar radiation energy amount adjustment means which adjusts the solar radiation energy amount which an opening part surface receives.
また、本発明に係る取得日射エネルギー量評価システムの第7の構成は、前記第1の構成において、前記表示手段は、コンピュータの表示画面上に表示することを特徴とする。 The seventh configuration of the acquired solar radiation energy amount evaluation system according to the present invention is characterized in that, in the first configuration, the display means displays on a display screen of a computer.
更に、本発明に係る取得日射エネルギー量評価システムの第8の構成は、建物の空間領域毎に日射を透過可能な開口部からの取得日射エネルギーを得たとき、取得日射エネルギー量の適否を判定する取得日射エネルギー量評価システムであって、気象データによる1日分の全天日射量が所定値以上、及び/又は気象データによる1日分の平均気温が所定値以上である日を夏日とする夏日抽出手段と、前記夏日抽出手段により抽出された夏日において、前記建物の所定の空間領域に含まれる全ての開口部から取得される取得日射エネルギー量を算出する取得日射エネルギー量算出手段と、前記夏日抽出手段により抽出された夏日日数に亘って取得日射エネルギー量を積算する取得日射エネルギー量積算手段と、前記取得日射エネルギー量積算手段により積算された値を総日照時間で除し更に前記建物の空間領域単位当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する判別手段と、前記判別手段により、前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合にその空間領域を特定して表示する表示手段とを有することを特徴とする。 Further, the eighth configuration of the acquired solar radiation energy amount evaluation system according to the present invention determines whether or not the acquired solar radiation energy amount is appropriate when acquiring solar radiation energy from an opening that can transmit solar radiation for each space area of the building. An acquired solar radiation energy amount evaluation system, wherein a day when the total solar radiation amount for one day based on weather data is not less than a predetermined value and / or the average temperature for one day based on weather data is not less than a predetermined value is defined as a summer day Summer day extraction means, and on the summer day extracted by the summer day extraction means, an acquisition solar energy amount calculation for calculating an acquisition solar energy amount acquired from all openings included in a predetermined space region of the building Means, an acquired solar energy amount integrating means for integrating the acquired solar energy amount over the number of summer days extracted by the summer sun extracting means, and the acquired solar energy amount integrating means A value obtained by dividing the value by the total sunshine duration, and further determining whether or not the accumulated acquired solar radiation energy amount per space area unit of the building is equal to or greater than a predetermined threshold; and Display means for specifying and displaying the spatial region when it is determined that the accumulated amount of solar radiation energy per predetermined time in a unit of the spatial region has exceeded a predetermined threshold value.
本発明に係る取得日射エネルギー量評価システムの第1の構成によれば、例えば全国約1300箇所に設置された自動気象観測システムであるアメダス(Automated Meteorological Data Acquisition System)の気象データを加工した拡張アメダス気象データを利用することにより、夏日抽出手段により夏日を抽出することが出来る。ここでいう夏日とは、夏季において部屋が暑くなり過ぎる可能性のある日が何日あるかの合計日数である。 According to the first configuration of the acquired solar radiation energy amount evaluation system according to the present invention, for example, an extended AMeDAS that processes weather data of AMeDAS (Automated Meteorological Data Acquisition System) that is an automatic meteorological observation system installed in about 1300 locations nationwide. By using the weather data, the summer day can be extracted by the summer day extraction means. The summer day referred to here is the total number of days in which the room may become too hot in the summer.
そして、夏日抽出手段により抽出された夏日において、建物の所定の空間領域に含まれる全ての開口部から取得される取得日射エネルギー量を取得日射エネルギー量算出手段により算出することが出来る。 And the acquired solar radiation energy amount acquired from all the openings contained in the predetermined space area of the building on the summer day extracted by the summer sun extracting unit can be calculated by the acquired solar radiation energy amount calculating unit.
そして、取得日射エネルギー量積算手段により、夏日抽出手段により抽出された夏日日数に亘って取得日射エネルギー量を積算することが出来る。 The acquired solar radiation energy amount integration means can integrate the acquired solar radiation energy amount over the number of summer days extracted by the summer day extraction means.
そして、取得日射エネルギー量積算手段により積算された建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別手段により判別することが出来る。尚、空間領域単位とは、空間領域の体積を所定の単位体積にしたものである。 Then, the determining means can determine whether or not the integrated acquired solar radiation energy amount per predetermined time in the space area unit of the building integrated by the acquired solar radiation energy amount integrating means is equal to or greater than a predetermined threshold value. The space area unit is a volume obtained by setting the volume of the space area to a predetermined unit volume.
そして、判別手段により、建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合に、表示手段によりその空間領域を特定して表示することが出来る。 Then, when it is determined by the determining means that the accumulated acquired solar radiation energy amount per predetermined time in the space area unit of the building is equal to or greater than a predetermined threshold value, the display means can specify and display the space area. .
これにより、建物の空間領域毎に日射を透過可能な開口部からの取得日射エネルギーを得たとき単位時間当たり、且つ単位体積当たりの取得日射エネルギー量の適否を判定し、明確に表示することが出来る。 This makes it possible to determine the appropriateness of the amount of solar radiation energy acquired per unit time and per unit volume when clearly acquiring solar radiation energy from an opening that can transmit solar radiation for each space area of the building, and clearly display it. I can do it.
これにより、日射を透過可能なガラス窓等の開口部を有する空間領域(部屋等)の夏季の暑さの様子を明確に表示することが出来、例えば夏季の西日で暑くなり過ぎる可能性のある空間領域(部屋)の検証が容易に出来る。 As a result, it is possible to clearly display the summer heat in a space area (room, etc.) having an opening such as a glass window through which solar radiation can be transmitted. A certain space area (room) can be easily verified.
また本発明に係る取得日射エネルギー量評価システムの第2の構成によれば、表示手段により、判別手段により建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合に、その空間領域の表示(例えば色彩)を他の空間領域の表示(例えば色彩)と異なるように表示することで、夏季暑くなり過ぎる可能性のある空間領域とそうでない空間領域との識別が容易に出来る。 Further, according to the second configuration of the acquired solar radiation energy amount evaluation system according to the present invention, the accumulated solar radiation energy amount per predetermined time in the space area unit of the building is greater than or equal to a predetermined threshold by the discriminating unit by the display unit. If it is determined that the display of the space area (for example, color) is different from the display of other space areas (for example, color), the space area that may be too hot in summer and the space area that is not Can be easily identified.
また本発明に係る取得日射エネルギー量評価システムの第3の構成によれば、所定の閾値を、建物の空間領域単位での体感許容限界の積算取得日射エネルギー量に設定することで、体感許容限界を越えた空間領域を特定して表示することが出来る。 Further, according to the third configuration of the acquired solar radiation energy amount evaluation system according to the present invention, the predetermined threshold value is set to the cumulative acquired solar energy amount of the permissible sensory limit in units of the space area of the building, so It is possible to specify and display a spatial region that exceeds.
また本発明に係る取得日射エネルギー量評価システムの第4の構成によれば、所定の閾値を、建物の建物構成(躯体構造、層構成、仕上材などを総合して)による熱応答特性に基づいて該建物の空間領域内の室温上昇程度から設定することで、建物の建物構成による熱応答特性に基づいて体感許容限界を越えた空間領域を特定して表示することが出来る。 Moreover, according to the 4th structure of the acquired solar radiation energy amount evaluation system which concerns on this invention, a predetermined threshold value is based on the thermal response characteristic by the building structure (A total of a frame structure, a layer structure, finishing materials, etc.) of a building. Thus, by setting from the room temperature rise in the space area of the building, it is possible to identify and display the space area that exceeds the permissible limit based on the thermal response characteristics of the building structure.
また本発明に係る取得日射エネルギー量評価システムの第5の構成によれば、取得日射エネルギー量算出手段により、外気温を考慮した所定の割増係数を乗じる演算を行うことで外気温を考慮した取得日射エネルギー量を算出することが出来る。 Further, according to the fifth configuration of the acquired solar radiation energy amount evaluation system according to the present invention, the acquired solar radiation energy amount calculation means performs an operation that takes into account the outside air temperature by performing a calculation that is multiplied by a predetermined additional coefficient that takes into account the outside air temperature. The amount of solar radiation energy can be calculated.
また本発明に係る取得日射エネルギー量評価システムの第6の構成によれば、取得日射エネルギー量調整手段により、開口部からの取得日射を遮る周辺建物、または開口部に設けられる日射遮蔽要素により該開口部面が受ける取得日射エネルギー量を調整することが出来、これにより開口部からの取得日射を遮る周辺建物や開口部に設けられる日射遮蔽要素を考慮した取得日射エネルギー量を算出することが出来る。 Further, according to the sixth configuration of the acquired solar energy amount evaluation system according to the present invention, the acquired solar energy amount adjusting means causes the solar radiation shielding element provided in the surrounding building or the opening to block the acquired solar radiation from the opening. It is possible to adjust the amount of solar radiation energy received by the opening surface, and to calculate the amount of solar radiation energy that takes into account the solar radiation shielding elements provided in surrounding buildings and openings that block the solar radiation acquired from the opening. .
また本発明に係る取得日射エネルギー量評価システムの第7の構成によれば、前記表示は、コンピュータの表示画面上に表示することが出来、これにより、建物の空間領域毎に日射を透過可能な開口部からの取得日射エネルギーを得たとき、単位時間当たり、且つ単位体積当たりの取得日射エネルギー量の適否を判定し、明確に表示することが出来る。 Further, according to the seventh configuration of the acquired solar radiation energy amount evaluation system according to the present invention, the display can be displayed on a display screen of a computer, and thereby, the solar radiation can be transmitted for each space area of the building. When the acquired solar radiation energy from the opening is obtained, the suitability of the acquired solar energy amount per unit time and per unit volume can be determined and clearly displayed.
また本発明に係る取得日射エネルギー量評価システムの第8の構成によれば、気象データによる1日分の全天日射量が所定値以上、及び/又は気象データによる1日分の平均気温が所定値以上である日を夏日とすることが出来、また取得日射エネルギー量算出手段により加算された夏日の取得日射エネルギー量を夏日の総日照時間数で割った1時間当たりの積算取得日射エネルギー量とすることが出来る。尚、総日照時間数は夏日日数に亘り太陽が水平線から出ている時間数、即ち、太陽高度が0より大きい時の時間数である。 Moreover, according to the 8th structure of the acquired solar radiation energy amount evaluation system which concerns on this invention, the total amount of solar radiation for 1 day by a weather data is more than predetermined value, and / or the average temperature for 1 day by a weather data is predetermined. A day that is greater than or equal to the value can be regarded as a summer day, and the total amount of solar radiation acquired per hour obtained by dividing the amount of solar radiation acquired by the summer solar energy amount added by the means for calculating the amount of solar radiation acquired by the total number of sunshine hours in the summer It can be the amount of energy. The total number of sunshine hours is the number of hours that the sun has left the horizon over the number of summer days, that is, the number of hours when the solar altitude is greater than zero.
図により本発明に係る取得日射エネルギー量評価システムの一実施形態を具体的に説明する。図1は本発明に係る取得日射エネルギー量評価システムの制御系の構成を示すブロック図、図2及び図3は拡張アメダスの気象データの一例をグラフ化して示す図、図4は本発明に係る取得日射エネルギー量評価システムにより建物の空間領域で夏季暑くなり過ぎる可能性があるか否かの評価を行う様子を示すフローチャート、図5は本発明に係る取得日射エネルギー量評価システムにより建物の間取り図を作成した様子を示す図、図6は本発明に係る取得日射エネルギー量評価システムにより建物が設置された方位を設定する様子を示す図、図7は評価する空間領域を選択した様子を示す図、図8はアメダスの地域を設定する様子を示す図、図9〜図14は本発明に係る取得日射エネルギー量評価システムにより表示された画像の一例を示す図、図15は建物の建物構成による熱応答特性を説明する図である。 An embodiment of the acquired solar radiation energy amount evaluation system according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a control system of an acquired solar radiation energy amount evaluation system according to the present invention, FIGS. 2 and 3 are graphs showing examples of extended AMeDAS weather data, and FIG. 4 is a diagram according to the present invention. FIG. 5 is a flow chart showing a state of evaluating whether there is a possibility that the summer space is too hot in the space area of the building by the acquired solar energy amount evaluation system, FIG. 5 is a floor plan of the building by the acquired solar energy amount evaluation system according to the present invention. FIG. 6 is a diagram illustrating a state in which the direction in which the building is installed is set by the acquired solar radiation energy amount evaluation system according to the present invention, and FIG. 7 is a diagram illustrating a state in which a space area to be evaluated is selected. FIG. 8 is a diagram showing how to set an AMeDAS region, and FIGS. 9 to 14 show examples of images displayed by the acquired solar radiation energy amount evaluation system according to the present invention. FIG. 15 is a diagram for explaining the thermal response characteristics of the building structure of the building.
図1において、1は建物の空間領域(部屋やワンルームの一部等)毎に日射を透過可能なガラス窓等の開口部26で通風のないように締め切った状態における該開口部26からの取得日射エネルギーを得たとき単位時間当たり、且つ単位体積当たりの取得日射エネルギー量の適否を判定する取得日射エネルギー量評価システムであり、建物等の建築物が建築された地域での日射や外気温等の気象データは無人自動気象観測装置であるアメダス(Automated Meteorological Dataa Acquisition System;地域気象観測システムの略称)気象データを加工した拡張アメダス気象データを利用することが出来る。 In FIG. 1, reference numeral 1 denotes an acquisition from the opening 26 in a state where it is shut off so that there is no ventilation at the opening 26 of a glass window or the like that can transmit sunlight for each space area of the building (room, part of a room, etc.) This is an acquired solar energy evaluation system that determines the suitability of the amount of solar energy acquired per unit time and per unit volume when solar energy is obtained. Solar radiation, outside temperature, etc. in areas where buildings such as buildings are built The Amedas (Automated Meteorological Dataa Acquisition System), which is an unmanned automatic meteorological observation device, can use extended Amedas meteorological data.
拡張アメダス気象データは、日本建築学会が作成したもので、気象庁が公開しているアメダス気象データの欠測、およびアメダスで観測されていない日射量や湿度等の気象データを補充して汎用性を高めた気象データのことである。その内容としては日本全国842地点の気温、絶対湿度、水平面全天日射量、大気放射量、風向、風速、降水量、日照時間の時別値で1981年から1995年の15年分のデータと標準年のデータを含んでいる。標準年データとは15年間の気象データから月別にそれぞれ平均的な年(月)を選択してつなぎ合わせた仮想の1年間の気象データで概ねその地点での標準的な気象データと推測されるものである。本実施形態においては標準年での気温と水平面全天日射量を用いている。 Expanded AMeDAS weather data was created by the Architectural Institute of Japan. It is the enhanced weather data. The contents include 15-year data from 1981 to 1995 with hourly values of air temperature, absolute humidity, horizontal solar radiation, atmospheric radiation, wind direction, wind speed, precipitation, and sunshine hours at 842 locations throughout Japan. Includes standard year data. Standard year data is hypothetical one-year meteorological data obtained by selecting and joining the average year (month) for each month from the 15-year meteorological data. Is. In this embodiment, the temperature in the standard year and the horizontal solar radiation amount are used.
拡張アメダス気象データは、0.1℃単位で1時間毎の気温、0.1℃単位で1日の平均気温、0.01MJ/m2h単位で1時間毎の水平面全天日射量、0.1MJ/m2d単位で1日の積算値等が含まれている。図2は拡張アメダス気象データの一例として東京の年間平均気温を示し、図3は拡張アメダス気象データの一例として東京の7月〜9月の平均気温と、1日の積算日射量を示す。これ等の拡張アメダス気象データは、取得日射エネルギー量評価システム1に設けられた拡張アメダス気象情報データベース(以下、「拡張アメダス気象情報DB」という)2に記憶される。 Expanded AMeDAS meteorological data are: hourly temperature in units of 0.1 ° C, average daily temperature in units of 0.1 ° C, horizontal solar radiation over an hour in units of 0.01 MJ / m 2 h, 0 .1MJ / m 2 d The integrated value for 1 day is included. FIG. 2 shows an annual average temperature in Tokyo as an example of extended AMeDAS weather data, and FIG. 3 shows an average temperature in July-September of Tokyo and an integrated daily solar radiation amount as an example of extended AMeDAS weather data. These expanded AMeDAS meteorological data are stored in an extended AMeDAS weather information database (hereinafter referred to as “EXTENDED AMEDAS MEATHER INFORMATION DB”) 2 provided in the acquired solar radiation energy amount evaluation system 1.
取得日射エネルギー量評価システム1に設けられた演算装置27には太陽位置演算部3が設けられている。太陽位置演算部3は、目的の建物の地球上の位置(緯度、経度、或いは所在住所等)、季節及び時刻に対応した太陽位置を演算するものである。 The solar position calculation unit 3 is provided in the calculation device 27 provided in the acquired solar radiation energy amount evaluation system 1. The sun position calculation unit 3 calculates the position of the target building on the earth (latitude, longitude, address, etc.), the sun position corresponding to the season and time.
地球上の位置及び季節、時刻が指定されたとき、指定された各条件に対応した太陽の位置は一義的に決定される。太陽の位置は、太陽高度(h°;地上に於ける特定の点と太陽を結ぶ線と該点に於ける水平線とのなす角)と、太陽の方位角(A°;太陽が南中したときを0°とした子午線との角度をいい、西方向を正、東方向を負で表す)とによって特定されるものであり、以下の数1式によって演算することが可能である。 When the position on the earth, season, and time are specified, the position of the sun corresponding to each specified condition is uniquely determined. The position of the sun is the solar altitude (h °; the angle between a line connecting a specific point on the ground and the sun and the horizontal line at that point) and the azimuth of the sun (A °; This is specified by the angle from the meridian with the time being 0 °, and the west direction is positive and the east direction is negative), and can be calculated by the following equation (1).
〔数1〕
sin(h)= sin(φ)・ sin(δ)+ cos(φ)・ cos(δ)・ cos(t)
sin(A)= cos(δ)・ sin(t)・ sec(h)
但し、 h;太陽高度(°)、φ;目的地の緯度(°)、δ:太陽の赤緯(°)、夏至δ=23.45 、春・秋分δ=0、冬至δ=−23.45 、t;時角(°)、1時間を15°とした真太陽時の時角A;太陽の方位角(°)である。
[Equation 1]
sin (h) = sin (φ) · sin (δ) + cos (φ) · cos (δ) · cos (t)
sin (A) = cos (δ) · sin (t) · sec (h)
Where h: solar altitude (°), φ: destination latitude (°), δ: sun declination (°), summer solstice δ = 2.45, spring / autumn δ = 0, winter solstice δ = -23.45, t; Hour angle (°), hour angle A at true sun with 15 ° for one hour; azimuth angle (°) of the sun.
太陽位置演算部3には上記数1式を解くプログラムや三角関数表が格納され、入力部4から、図6に示すように、評価する建物が建設される目的地の緯度、経度、季節及び時刻等の情報が入力されると、これらの情報は一時記憶装置5に一時記憶され、プログラムの実行が指示されたとき、太陽位置演算部3によって指定された条件に応じた太陽の位置を演算することが可能である。そして演算した結果を記憶し或いは一時記憶装置5に一時記憶させておくことが可能である。 The sun position calculation unit 3 stores a program for solving the above equation 1 and a trigonometric function table. From the input unit 4, as shown in FIG. 6, the latitude, longitude, season and destination of the destination where the building to be evaluated is constructed are stored. When information such as time is input, the information is temporarily stored in the temporary storage device 5, and when the execution of the program is instructed, the position of the sun corresponding to the conditions specified by the sun position calculation unit 3 is calculated. Is possible. The calculated result can be stored or temporarily stored in the temporary storage device 5.
そして、特定の緯度及び経度を持った地点における建物の開口部26面の法線方向の方位角である開口部26面方位(α)と、開口部26面の傾斜角度である開口部26面傾角(θ)と、を設定することによって、この開口部26面と太陽とのなす角である開口部26面交角(hw)を以下の数2式により演算することが可能である。 Then, the opening 26 surface orientation (α) that is the azimuth of the normal direction of the opening 26 surface of the building at a point having a specific latitude and longitude, and the opening 26 surface that is the inclination angle of the opening 26 surface By setting the inclination angle (θ), it is possible to calculate the opening 26 surface intersection angle (hw), which is an angle formed by the surface of the opening portion 26 and the sun, by the following equation (2).
〔数2〕
sin(hw)= sin(h)・ cos(θ)+ cos(h)・ sin(θ)・ cos(A−α)
[Equation 2]
sin (hw) = sin (h) · cos (θ) + cos (h) · sin (θ) · cos (A−α)
そして開口部26面交角hwが90°を越えた場合、対象となる開口部26面には日射が当たらないこととなる。 And when the opening part 26 surface crossing angle hw exceeds 90 degrees, the solar radiation will not hit the object opening part 26 surface.
ここで、開口部26面は例えば20cm角を一単位のセル空間領域とする仮想パネルとして分割される。その仮想パネルと太陽との間に直線を引いた際にその直線上に隣家や庇等の障害物が入り込まなければその仮想パネルは日射を受けるものと判断できる。そして、その日射を受ける仮想パネルへの日射量を合計することにより、その開口部26からの取得日射エネルギー量が演算される。尚、仮想パネルの大きさは適宜設定することが出来る。 Here, the surface of the opening 26 is divided as a virtual panel having, for example, a 20 cm square as a unit cell space region. When a straight line is drawn between the virtual panel and the sun, it can be determined that the virtual panel is exposed to solar radiation unless an obstacle such as a neighbor or a fence enters the straight line. Then, the amount of solar radiation energy acquired from the opening 26 is calculated by summing the amount of solar radiation to the virtual panel that receives the solar radiation. The size of the virtual panel can be set as appropriate.
具体的には太陽からの直達日射の方向ベクトルと、開口部26面の建物外側方向の法線ベクトルとのベクトル積から日射が与えられるか否かを判断し、日射が与えられた場合に直達日射が開口部26面に対してどのような角度を持つのかを算出し、投影面積の効果、ガラスの透過特性、日射遮蔽手段の効果を考慮することが出来る。開口部26の大きさが一様でないことや高低差があるために開口部26面を複数に分割された仮想パネルとして取り扱うことにより日射計算の簡便さと精度を実現することが出来る。 Specifically, it is judged whether or not solar radiation is given from the vector product of the direction vector of direct solar radiation from the sun and the normal vector in the direction of the outside of the building on the 26th surface of the opening. It is possible to calculate what angle the solar radiation has with respect to the surface of the opening 26, and to take into consideration the effect of the projected area, the transmission characteristics of the glass, and the effect of the solar radiation shielding means. Since the size of the opening 26 is not uniform and there is a height difference, the simplicity and accuracy of solar radiation calculation can be realized by treating the surface of the opening 26 as a virtual panel divided into a plurality of parts.
ここで、直達日射量とは、太陽から直接照射される日差しであり、拡張アメダス気象データによる水平面全天日射量は、該直達日射量と、拡散日射量との和で表わされる。拡散日射量とは、日射が周囲に反射した結果、間接的に検出され、特定の方向を持たず拡散的に認識される日射量である。 Here, the direct solar radiation amount is the sunlight directly irradiated from the sun, and the horizontal total solar radiation amount based on the extended AMeDAS weather data is represented by the sum of the direct solar radiation amount and the diffuse solar radiation amount. The diffuse solar radiation amount is an amount of solar radiation that is indirectly detected as a result of reflection of solar radiation to the surroundings and recognized diffusely without having a specific direction.
本実施形態では、1時間毎の拡張アメダス気象データを利用しており、例えば西日のような日差しを検査するために直接の計算は水平面全天日射量の中で直達日射量のみを対象としている。 In this embodiment, hourly extended AMeDAS weather data is used. For example, in order to inspect sunlight such as the western sun, direct calculation is only for direct solar radiation in the horizontal solar radiation. Yes.
水平面全天日射量を直達日射量と拡散日射量とに分離する場合には、直散分離法が知られており、直散分離法には、Nagataモデル、Udagawaモデル、Erbsモデル、Watanabeモデル、Perezモデル等の各モデルが知られている。本実施形態ではWatanabeモデルを採用して拡張アメダス気象データとして水平面全天日射量を直達日射量と拡散日射量とに分離して直達日射量を採用して開口部26からの取得日射エネルギー量を計算した一例である。尚、精度を上げるために直達日射量に拡散日射量を加えて開口部26からの取得日射エネルギー量を計算することも出来る。 When separating horizontal solar radiation into direct and diffuse solar radiation, the direct-scattering separation method is known, which includes the Nagata model, Udagawa model, Erbs model, Watanabe model, Each model is known, such as the Perez model. In this embodiment, the Watanabe model is adopted and the horizontal solar radiation amount is separated into direct solar radiation amount and diffuse solar radiation amount as extended AMeDAS weather data, and the direct solar radiation amount is adopted to obtain the amount of solar radiation energy acquired from the opening 26. It is an example calculated. In order to increase the accuracy, the amount of solar radiation acquired from the opening 26 can be calculated by adding the amount of diffuse solar radiation to the amount of direct solar radiation.
取得日射エネルギー量評価システム1の演算装置27に設けられた間取り作成部8は、図5〜図14に示す建物、即ち、住宅の間取り図を作成するものであり、間取り図データベース(以下、「間取り図DB」という)9から適宜選択して参照することが出来、参照して更新した新たな間取り図を間取り図DB9に格納することも出来る。また作成した間取り図の中から取得日射エネルギー量評価システム1により取得日射エネルギー量を表示する部屋或いはワンルームの一部の空間領域を選択する機能も備えている。また開口部26面の分割されたパネルの単位面積や枚数等も適宜設定出来る。 The floor plan creation unit 8 provided in the computing device 27 of the acquired solar radiation energy amount evaluation system 1 creates floor plans of the buildings shown in FIGS. 5 to 14, that is, homes. 9) (referred to as “floor plan DB”) can be appropriately selected and referred to, and a new floor plan that has been referred to and updated can be stored in the floor plan DB 9. In addition, the system has a function of selecting a room or a partial space area of the one room where the acquired solar energy amount is displayed by the acquired solar energy amount evaluation system 1 from the created floor plan. In addition, the unit area and the number of the divided panels of the opening 26 surface can be set as appropriate.
また、周辺建物情報作成部12は、建設される建物の周辺隣家や立木等の日射障害物に関する周辺情報図を作成するものであり、周辺建物情報データベース(以下、「周辺建物情報DB」という)13から参照して作成することも出来る。 The peripheral building information creation unit 12 creates a peripheral information map related to solar radiation obstacles such as neighboring neighbors and standing trees of the building to be constructed, and is a peripheral building information database (hereinafter referred to as “peripheral building information DB”). It can also be created with reference to 13.
図6に示す方位設定画面10を利用して建設される建物の緯度、経度、及び真北を0°としたときの開口部26の戸外に向かう法線方向の角度を入力し、前述した太陽位置演算部3によって演算した太陽の位置と、各開口部26の複数に分割された各仮想パネルの位置とを結んだ直線上に、周辺建物情報作成部12により作成した開口部26の外側に存在する例えば庇や隣家の壁或いは立木等の日射障害物が在るか無いかの条件に基づいて開口部26の各仮想パネルに取得される日射があるか否かを求め、取得日射がある仮想パネルの日射量を合計することによりその開口部26からの取得日射エネルギー量を演算することが出来る。 The latitude and longitude of the building to be constructed using the azimuth setting screen 10 shown in FIG. 6 and the angle in the normal direction toward the outside of the opening 26 when true north is 0 ° are input, and the sun described above On the outside of the opening 26 created by the surrounding building information creation unit 12 on a straight line connecting the position of the sun calculated by the position calculation unit 3 and the position of each virtual panel divided into a plurality of openings 26. There is an acquisition of solar radiation, asking whether there is solar radiation acquired on each virtual panel of the opening 26 based on the condition whether there are solar radiation obstacles such as walls, standing trees or standing trees that exist By summing the solar radiation amount of the virtual panel, the amount of solar radiation energy acquired from the opening 26 can be calculated.
そして、各開口部26からの取得日射エネルギー量を開口部26単位毎で且つ単位時間毎に取得日射エネルギー量取得手段となる取得日射エネルギー量取得部28により取得される。 Then, the acquired solar energy amount from each opening 26 is acquired by the acquired solar energy amount acquisition unit 28 serving as an acquired solar energy amount acquisition unit for each unit of the opening 26 and for each unit time.
ここで、夏日抽出手段となる夏日抽出部14により、取得日射エネルギー量取得部28により取得され、拡張アメダス気象情報DB2に記憶して格納された気象データによる1日分の水平面全天日射量が所定値以上、或いは気象データによる1日分の平均気温が所定値以上である日を夏日15として抽出し、夏日15対象日数を算出する。 Here, one day of horizontal global solar radiation by the weather data acquired by the acquired solar radiation energy acquisition unit 28 by the summer sun extraction unit 14 serving as a summer sun extraction means and stored in the extended AMeDAS weather information DB 2 is stored. The day when the amount is equal to or greater than the predetermined value or the average temperature for one day based on the weather data is equal to or greater than the predetermined value is extracted as the summer day 15, and the number of target days for summer day 15 is calculated.
これは夏季に過剰な日射取得がないかどうかを検証するためのものである。本実施形態では、1日分の水平面全天日射量が所定値以上で且つ1日分の平均気温が所定値以上である日を夏日15として抽出した一例について説明するが、1日分の水平面全天日射量が所定値以上か、若しくは1日分の平均気温が所定値以上かのいずれか一方の条件である日を夏日15とすることも出来る。拡張アメダス気象情報には0.1℃単位で1日の平均気温の統計データが含まれており、このデータを利用することが出来る。 This is to verify whether there is excessive solar radiation acquisition in the summer. In the present embodiment, an example will be described in which a day when the horizontal solar radiation amount for one day is equal to or greater than a predetermined value and the average temperature for one day is equal to or greater than a predetermined value is extracted as a summer day 15. The day when the horizontal solar radiation amount is greater than or equal to a predetermined value or the average temperature for one day is greater than or equal to the predetermined value can be set as the summer day 15. The extended AMeDAS weather information includes statistical data of the average daily temperature in units of 0.1 ° C, and this data can be used.
例えば、1日分の水平面全天日射量の判定基準値を14MJ/m2dとし、1日分の平均気温の判定基準値を25℃として、1日分の水平面全天日射量が14MJ/m2d以上で且つ1日分の平均気温が25℃以上である日を夏日15とするか、もしくは、1日分の水平面全天日射量が14MJ/m2d以上または1日分の平均気温が25℃以上の何れかである日を夏日15とすることが出来る。尚、夏日15の条件は他の種々の条件に設定することも出来、例えば、1日の最低気温が25℃以上、夜間の最低気温が25℃以上、1日分の直達日射量が7MJ/m2d以上等のようにこれ等の各条件で所定の数値に適宜設定し、更に適宜組み合わせて夏日15を抽出することも出来る。 For example, the determination reference value for the horizontal solar radiation amount for one day is 14 MJ / m 2 d, the determination reference value for the average temperature for one day is 25 ° C., and the horizontal solar radiation amount for one day is 14 MJ / m. The day when the average temperature of m 2 d or more and the average temperature for one day is 25 ° C. or more is set as summer day 15, or the amount of horizontal solar radiation for one day is 14 MJ / m 2 d or more or for one day The day when the average temperature is 25 ° C. or higher can be set as summer day 15. The conditions for summer day 15 can be set to various other conditions. For example, the minimum daily temperature is 25 ° C or higher, the nighttime minimum temperature is 25 ° C or higher, and the direct solar radiation for one day is 7MJ. It is also possible to extract the summer day 15 by appropriately setting a predetermined numerical value under each of these conditions such as / m 2 d or more and further combining them appropriately.
過剰な日射取得を検証する場合、日射が少ない日、曇りの日のデータを含むと全体の平均像としては曖昧になるため夏日15を設定することが有効である。また、その夏日15の日数が少ない場合は気候が比較的寒冷で仮に検査した夏日15は大きな値を示してもコストをかけてまで日射緩和処置が必ずしも得策でない場合もある。その判断目安として夏日15の対象日数を算出し、夏日15が少なければ日射緩和を処置しないで済む。即ち、過剰対応を防止することが出来る。 When verifying excessive solar radiation acquisition, it is effective to set the summer day 15 because the entire average image becomes ambiguous if data on days with little solar radiation and cloudy days are included. In addition, when the number of summer days 15 is small, even if the summer day 15 in which the climate is relatively cold and the tentative inspection shows a large value, the solar radiation mitigation treatment may not always be advantageous until the cost is increased. As a criterion for the determination, the target number of days of summer day 15 is calculated. That is, excessive correspondence can be prevented.
例えば、図3において、15は1日分の平均気温が25℃以上で且つ1日分の水平面全天日射量が14MJ/m2d以上となる夏日15を示す。水平面全天日射量を14MJ/m2d以上と定めたのは鉄骨系ALC(軽量気泡コンクリート)建物において、実態に合うことを日射量の変化とこれに応答する室温の関係により確認したからである。 For example, in FIG. 3, 15 indicates a summer day 15 when the average temperature for one day is 25 ° C. or more and the horizontal solar radiation amount for one day is 14 MJ / m 2 d or more. The reason why the horizontal solar radiation amount was set to 14 MJ / m 2 d or more was confirmed in the steel-based ALC (lightweight aerated concrete) building by the relationship between the change in the amount of solar radiation and the room temperature responding to it. is there.
また、冬日抽出手段となる冬日抽出部19により、取得日射エネルギー量取得手段となる取得日射エネルギー量取得部28により取得し、拡張アメダス気象情報DB2に記憶して格納された気象データによる所定期間中を冬日として抽出し、冬日対象日数を算出する。冬季は例えば図2に示すように、年間平均気温が低くなる12月〜2月の3ヶ月間の取得日射エネルギー量を積算する。冬季にはどれ位日射を得るかを算出するのが目的である。 Also, during a predetermined period of time by the weather data acquired by the acquired solar radiation energy amount acquisition unit 28 as the acquired solar radiation energy amount acquisition means by the winter day extraction unit 19 as winter day extraction means, and stored and stored in the extended AMeDAS weather information DB 2 Is extracted as a winter day, and the number of days covered by the winter day is calculated. In winter, for example, as shown in FIG. 2, the amount of acquired solar radiation energy for three months from December to February when the annual average temperature is lowered is integrated. The purpose is to calculate how much solar radiation is obtained in winter.
取得日射エネルギー量算出手段となる取得日射エネルギー量算出部20は夏日抽出部14により抽出された夏日15において、建物の所定の空間領域に含まれる全ての開口部26から取得される取得日射エネルギー量を算出する。 The acquired solar radiation energy amount calculation unit 20 serving as the acquired solar radiation energy amount calculation means is the acquired solar radiation acquired from all the openings 26 included in a predetermined space area of the building on the summer day 15 extracted by the summer day extraction unit 14. Calculate the amount of energy.
また取得日射エネルギー量算出部20は外気温を考慮した所定の割増係数を乗じる演算を行う。一般に西面に開口部26がある部屋の場合は東面に開口部26がある部屋と同じ取得日射エネルギー量であっても室温が高くなる。これは西面に開口部26がある部屋は外気温が高い午後以降に取得日射エネルギー量のピークがあるためである。 Moreover, the acquired solar radiation energy amount calculation unit 20 performs a calculation by multiplying by a predetermined premium coefficient considering the outside air temperature. In general, in the case of a room having an opening 26 on the west surface, the room temperature becomes high even if the amount of solar radiation energy acquired is the same as that of the room having the opening 26 on the east surface. This is because the room with the opening 26 on the west surface has a peak in the amount of solar radiation energy acquired after the afternoon when the outside air temperature is high.
従って、同じ取得日射エネルギー量であっても室温が高くなる西面に開口部26がある部屋の評価を適正に行うために取得日射エネルギー量に対して外気温を考慮した所定の割増係数を乗じて補正する。例えば、外気温が25℃以上の場合には、その外気温(℃)を25℃で除した値を割増係数として、建物の所定の空間領域に含まれる全ての開口部26から取得される取得日射エネルギー量に乗じて外気温の効果を取り入れた補正取得日射エネルギー量とすることが出来る。25℃を重み付けの基準としたのは1日の最低気温が25℃以上となる所謂、熱帯夜を基準とした一例である。 Therefore, in order to properly evaluate the room with the opening 26 on the west surface where the room temperature becomes high even with the same amount of acquired solar radiation energy, the acquired solar radiation energy is multiplied by a predetermined additional factor that takes into account the outside air temperature. To correct. For example, when the outside air temperature is 25 ° C. or higher, the value obtained by dividing the outside air temperature (° C.) by 25 ° C. is used as an additional coefficient, and acquired from all the openings 26 included in a predetermined space area of the building. Multiplying the amount of solar radiation energy, it is possible to obtain a corrected acquired solar radiation energy amount that incorporates the effect of outside temperature. The criterion for weighting 25 ° C. is an example based on a so-called tropical night where the lowest daily temperature is 25 ° C. or higher.
また、取得日射エネルギー量調整手段となる取得日射エネルギー量調整部29により、開口部26からの取得日射を遮る周辺建物、または開口部26に設けられる種々の日射遮蔽要素により該開口部26面が受ける取得日射エネルギー量を調整することが出来る。 Further, the acquired solar radiation energy amount adjusting unit 29 serving as an acquired solar energy amount adjusting means makes the surface of the opening portion 26 by a peripheral building that blocks the acquired solar radiation from the opening portion 26 or various solar shielding elements provided in the opening portion 26. The amount of solar radiation energy received can be adjusted.
開口部26に設けられる種々の日射遮蔽要素の日射遮蔽機能情報は、日射遮蔽機能情報データベース(以下、「日射遮蔽機能情報DB」という)25に記憶して格納されており、取得日射エネルギー量調整部29は日射遮蔽機能情報DB25に格納された種々の日射遮蔽要素の日射遮蔽機能情報から所定の係数を開口部26から取得される取得日射エネルギー量に乗じて日射遮蔽要素の効果を取り入れた補正取得日射エネルギー量とすることが出来る。 The solar shading function information of various solar shading elements provided in the opening 26 is stored and stored in the solar shading function information database (hereinafter referred to as “sunlight shielding function information DB”) 25, and the obtained solar energy amount adjustment The unit 29 corrects the effect of the solar shading element by multiplying the acquired solar energy amount acquired from the opening 26 by a predetermined coefficient from the solar shading function information of various solar shading elements stored in the solar shading function information DB 25. It can be the amount of solar radiation energy acquired.
一般に外部日射量が同じとき東面の開口部26からの取得日射エネルギー量よりも南面の開口部26からの取得日射エネルギー量が小さくなる。これは、開口部26に設けられたガラスの日射透過率が太陽の入射角によって異なるためである、 Generally, when the amount of external solar radiation is the same, the amount of solar radiation acquired from the opening 26 on the south surface is smaller than the amount of solar radiation energy acquired from the opening 26 on the east surface. This is because the solar radiation transmittance of the glass provided in the opening 26 varies depending on the incident angle of the sun.
例えば、ガラスの日射透過率は、日射の入射角が0度〜60度までは略一定であるが、日射の入射角が60度を越えるあたりから急激に低下し、日射の入射角が90度に達すると、ガラス表面で全反射するため日射透過率は0となる。従って、各種のガラスの0度〜60度の範囲での一定の日射透過率に対して、日射の入射角が60度〜90度の範囲の所定の角度に対応する補正率を乗じることにより、日射の入射角に対応したガラスの日射透過の効果を取り入れた補正取得日射エネルギー量とすることが出来る。 For example, the solar radiation transmittance of glass is substantially constant when the incident angle of solar radiation is from 0 degrees to 60 degrees, but rapidly decreases when the incident angle of solar radiation exceeds 60 degrees, and the incident angle of solar radiation is 90 degrees. , The solar radiation transmittance becomes zero because of total reflection on the glass surface. Therefore, by multiplying the constant solar radiation transmittance in the range of 0 to 60 degrees of various glasses by a correction factor corresponding to a predetermined angle in the range of the incident angle of solar radiation of 60 to 90 degrees, It can be set as a corrected acquired solar radiation energy amount that takes into account the solar radiation transmission effect of the glass corresponding to the incident angle of solar radiation.
取得日射エネルギー量積算手段となる取得日射エネルギー量積算部11は、夏日抽出部14により抽出された夏日15日数に亘って取得日射エネルギー量を積算する。即ち、取得日射エネルギー量積算部11は開口部26からの取得日射エネルギー量を開口部26単位毎で且つ単位時間毎に取得する取得日射エネルギー量取得手段となる取得日射エネルギー量取得部28により取得され、拡張アメダス気象情報DB2に記憶された夏日15の取得日射エネルギー量を積算する。 An acquired solar energy amount integrating unit 11 serving as an acquired solar energy amount integrating unit integrates the acquired solar energy amount over the 15 days of the summer day extracted by the summer day extracting unit 14. That is, the acquired solar energy amount integrating unit 11 is acquired by the acquired solar energy amount acquiring unit 28 which is an acquired solar energy amount acquiring means for acquiring the acquired solar energy amount from the opening 26 for each unit of the opening 26 and for each unit time. Then, the acquired solar radiation energy amount of summer day 15 stored in the extended AMeDAS weather information DB 2 is integrated.
判別手段となる判別部16は、取得日射エネルギー量積算部11により積算された建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する。 The discriminating unit 16 serving as a discriminating unit discriminates whether or not the cumulative acquired solar radiation energy amount per predetermined time in the building space area unit integrated by the acquired solar radiation energy amount integrating unit 11 is equal to or greater than a predetermined threshold value.
前記所定の閾値は、建物の空間領域単位での体感許容限界の積算取得日射エネルギー量に設定されており、更に詳しくは、建物の建物構成による熱応答特性に基づいて該建物の空間領域内の室温上昇温度程度から設定することが出来る。 The predetermined threshold value is set to the accumulated solar radiation energy amount of the permissible limit in units of the space area of the building, and more specifically, based on the thermal response characteristics according to the building configuration of the building. It can be set from about room temperature rise temperature.
即ち、図15を参照して、建物の建物構成による熱応答特性に基づく熱のバランスとしては以下の数3式に示す通りである。 That is, referring to FIG. 15, the heat balance based on the thermal response characteristics of the building structure is as shown in the following equation (3).
〔数3〕
Q+q+qS=TRCR+TKCK+L
[Equation 3]
Q + q + q S = T R C R + T K C K + L
ここで、直接知りたいのは人が感じる温度となるTRである。しかしながら、上記数3式の様な関係があり、また現実には室は熱的に単純でなく、必ず熱移動が発生するために容易に知ることは出来ない。 Here, I want to know directly is a T R that the temperature felt by the people. However, there is a relationship as shown in the above equation (3). In reality, the room is not thermally simple, and heat transfer always occurs, so it cannot be easily known.
熱移動の複雑さで解り易い例としては、壁や室は熱容量を有するために、温度変化は瞬時に生じるのではなく、熱移動を行った結果として与えられることが挙げられる。一例として特段の空調を施さなくとも外気温の変化に応じて室温は変化するが、外気温と一致するのではなく異なった室温を表すことが挙げられる。 As an example that is easy to understand due to the complexity of heat transfer, because walls and chambers have heat capacity, temperature changes do not occur instantaneously but are given as a result of heat transfer. As an example, the room temperature changes according to the change in the outside air temperature without special air conditioning, but it does not coincide with the outside air temperature but represents a different room temperature.
一方、この熱の変化の緩やかさは、散乱日射や外気温の応答が室温変化に比べて、一旦緩衝されて伝わってゆくことで理解出来る。この緩衝は部屋の内部の空間領域を囲い込んでいる部分が室温に対しての緩衝を行っていると推測することで理解出来る。またこのことは外壁を介しての熱移動は、壁部分を緩衝体として行われることから室内部にとってみれば、かなり均一化した影響の仕方になると推測することに繋がる。 On the other hand, the gradual change of the heat can be understood by the fact that the diffuse solar radiation and the response of the outside air temperature are once buffered and transmitted as compared to the room temperature change. This buffering can be understood by assuming that the portion surrounding the space area inside the room is buffering against room temperature. This also leads to the assumption that the heat transfer through the outer wall is performed with the wall portion as a buffer, so that it becomes a fairly uniform influence for the indoor portion.
ここで直達日射効果のみを異ならせた部屋E(東側の部屋)と部屋W(西側の部屋)を想定すると、以下の数4式の通りである。 Here, assuming a room E (room on the east side) and a room W (room on the west side) in which only the direct solar radiation effect is different, the following equation (4) is obtained.
〔数4〕
QE+qE+qSE=TRECRE+TKECKE+LE
QW+qW+qSW=TRWCRW+TKWCKW+LW
[Equation 4]
Q E + q E + q SE = T RE C RE + T KE C KE + L E
Q W + q W + q SW = T RW C RW + T KW C KW + L W
外壁を介した熱移動が平均化されるとして、即ちqE=qW、qSE=qSW、LE=LWで、また部屋の熱的応答特性は同じであるはずだから、CRE=CRW、CKE=CKWであるから以下の数5式となる。 As heat transfer through the outer wall is averaged, ie q E = q W , q SE = q SW , L E = L W and the thermal response characteristics of the room should be the same, C RE = Since C RW and C KE = C KW , the following equation 5 is obtained.
〔数5〕
QE−QW=CR(TRE−TRW)+CK(TKE−TKW)
[Equation 5]
Q E -Q W = C R ( T RE -T RW) + C K (T KE -T KW)
こうすることで環境に基づく変動因子は消すことが出来る。但し、壁の熱容量等の存在から一義的に室の熱容量を決めることまでは出来ない。また熱容量の存在の為に温度分布、熱移動が発生することから室温TRと壁温度TKを一意的に関係付けることは不可能である。とはいえ一時近似として係数を介して結びつけることを想定すると、以下の数6式となる。 In this way, environmental variables can be eliminated. However, it is not possible to uniquely determine the heat capacity of the room from the existence of the heat capacity of the walls. The temperature distribution due to the presence of the heat capacity, heat transfer is not possible to uniquely relate room temperature T R and the wall temperature T K from occur. However, assuming that they are connected through a coefficient as a temporary approximation, the following equation 6 is obtained.
〔数6〕
QE−QW=C′R(TRE−TRW)
C′R:見掛けの室の熱容量
[Equation 6]
Q E -Q W = C 'R (T RE -T RW)
C ′ R : Apparent chamber heat capacity
CKの存在と熱移動の影響でC′Rは一定値ではないが、見掛け変動を説明する係数としては有意義なもので実測から推測出来るものである。この関係式は直達日射による供給熱量と室内温度の関係を示しているものだが、さらに外気温による供給熱量の影響を加えた供給熱量と室温変化を結びつける関係を推定すると以下の数7式となる。 C 'R in the presence and influence of the heat transfer C K not constant values, as the coefficients describing the apparent change in which it inferred from the measured at meaningful. This relational expression shows the relationship between the amount of heat supplied by direct solar radiation and the room temperature. However, if the relationship between the amount of heat supplied and the change in room temperature, which is influenced by the amount of heat supplied by the outside air temperature, is estimated, the following equation (7) is obtained. .
〔数7〕
Q+qS=C″RT
[Equation 7]
Q + q S = C ″ R T
そして、上記数7式において、例えば1時間ごとに、Qに何らかの修正を加えることで前述したように、外気温の効果を取り入れる形式とする可能性を見出すことが出来る。外気温による供給熱量の影響もその根源は太陽熱であり、両者が相関することは矛盾しない。 In the above formula 7, for example, every hour, by adding some correction to Q, as described above, it is possible to find a possibility of adopting a format that incorporates the effect of the outside air temperature. The influence of the amount of heat supplied by the outside air temperature is also based on solar heat, and there is no contradiction that the two are correlated.
即ち、Q+qSを、Qを補正して求めるとして、Q×(TS℃/25℃)(ここでTSが25℃以上であれば該TS℃を25℃で除した値とする。TSが25℃より低ければ重み付けはしない)とすることが出来る。これを外気温を考慮した割増係数という。この場合に25℃を重みの規準としたのは、いわゆる熱帯夜(1日の最低気温が25℃以上)を目安とした一例であり、外気温の効果を考慮することで例えば夕刻外気温が高くかつ日射が射し込む、いわゆる西日の効果を考慮した補正が出来る。またこうした補正を、例えば1時間毎に、取得日射エネルギー量を算出することで外気温が変化してゆく場合の影響も勘案することが出来る。なお、ここでは25℃以上としたが、気象条件の異なる場所では、例えば湿度を勘案して、他の温度にしてもいい。 That is, when Q + q S is obtained by correcting Q, Q × (T S ° C./25° C.) (where T S is 25 ° C. or more, it is a value obtained by dividing T S ° C. by 25 ° C.). T S can be and not) is weighted if lower than 25 ℃. This is referred to as an additional factor that takes into account the outside temperature. In this case, 25 ° C. was used as an example of a standard for a so-called tropical night (minimum daily temperature is 25 ° C. or more). In addition, corrections can be made in consideration of the so-called effect of the western sun that the sun shines on. In addition, for such correction, for example, by calculating the amount of acquired solar radiation energy every hour, it is possible to take into account the influence when the outside air temperature changes. In addition, although it was 25 degreeC or more here, in the place where weather conditions differ, you may consider other humidity, for example, considering humidity.
ここで、熱応答特性を求める場合の一例としては、外界条件が同じに設定された開口部26が東に面する東室と、開口部26が西に面する西室とを設置し、東室と西室の温度差と、それぞれの開口部26からの取得日射エネルギー量の差とから算出することが出来る。即ち、同日の両室の室内温度差は、外界条件が同じなので単純に開口部26からの取得日射エネルギー量の差によると考えられるため、単位時間当たりのΔQ/ΔTRを熱応答特性(熱容量に相当する)とすることが出来る。 Here, as an example of obtaining the thermal response characteristics, an east chamber with the opening 26 facing the east and the west chamber with the opening 26 facing the west, which are set to the same external conditions, are installed. It can be calculated from the temperature difference between the room and the west room and the difference in the amount of solar radiation energy acquired from each opening 26. That is, the indoor temperature difference day of both chambers, because the external conditions are considered to be due to the difference in acquisition solar energy from simply opening 26 because they are the same, per unit time Delta] Q / [Delta] T R the thermal response characteristics (heat capacity Equivalent to).
そして、表示手段となるコンピュータの表示画面、即ち、表示部17は、図9〜図14に示すように、判別部16により、建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合に、その空間領域を特定して建物図面上の空間領域に表示する。本実施形態では、判別部16により、建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合に、その空間領域の色彩を他の空間領域の色彩と異なるように表示した一例を示す。 Then, as shown in FIGS. 9 to 14, the display screen of the computer serving as the display means, that is, the display unit 17, has the accumulated solar radiation energy amount per predetermined time in the space area unit of the building by the determination unit 16. When it is determined that the predetermined threshold value is exceeded, the spatial area is specified and displayed in the spatial area on the building drawing. In the present embodiment, when the determination unit 16 determines that the accumulated acquired solar radiation energy amount per predetermined time in a unit of the space area of the building is equal to or greater than a predetermined threshold value, the color of the space area is changed to that of another space area. An example displayed differently from the color is shown.
次に図4を用いて、取得日射エネルギー量評価システム1により建物の夏季の検証を行う様子について説明する。先ず、ステップS1において、間取り図を作成する。次にステップS2において、間取り作成部8により間取り図DB9に格納された間取り図サンプルを参照して、図5に示すように、CAD(Computer Aided Design;コンピュータによる設計製図)による間取り入力を行う。 Next, the manner in which the building is verified in the summer by the acquired solar radiation energy amount evaluation system 1 will be described with reference to FIG. First, in step S 1, to create a floor plan. In step S 2, with reference to the floor plan samples stored in the floor plan DB9 by Floor creation unit 8, as shown in FIG. 5, CAD; performs floor plans input by (Computer Aided Design design drawing by a computer) .
このとき、周辺建物情報作成部12により周辺建物情報を入力する。周辺建物情報DB13に格納された周辺建物情報を参照することも出来る。 At this time, the surrounding building information creation unit 12 inputs the surrounding building information. The surrounding building information stored in the surrounding building information DB 13 can also be referred to.
次にステップS3において、図6に示す方位設定画面10を利用して建物位置情報を入力する。建物の位置情報としては、建物の緯度、経度を入力するか若しくは建物の住所を入力することも出来る。建物の位置情報(緯度、経度)と月日時間から太陽位置演算部3により太陽高度と太陽方位角を求め、直達日射の方向角、高度とする。 In step S 3, by using the orientation setting screen 10 shown in FIG. 6 to enter the building location. As building location information, the latitude and longitude of the building can be input, or the address of the building can be input. The solar position calculation unit 3 obtains the solar altitude and the solar azimuth from the building position information (latitude, longitude) and the date and time, and sets the direction angle and altitude of direct solar radiation.
次にステップS4において、評価する空間領域を入力する。このとき、図7に示すように、検証する部屋やワンルーム内の一部の空間領域を指定することで検証空間領域の選択を行うことが出来る。 In step S 4, enter the spatial region to be evaluated. At this time, as shown in FIG. 7, the verification space area can be selected by designating a room to be verified or a partial space area in the studio.
次にステップS5において、アメダス気象データの参照地点を指定する。図8に示すポップアップメニューをクリックして、アメダス地域設定画面18を利用して建物の設置場所に最も近い気象条件であるアメダス観測点を選択する。 In step S 5, to specify a reference point AMeDAS weather data. The pop-up menu shown in FIG. 8 is clicked, and the AMeDAS observation point that is the weather condition closest to the installation location of the building is selected using the AMeDAS region setting screen 18.
次にステップS6において、アメダス地域設定画面18の計算実行ボタン18aをクリックして取得日射シミユレーションを実行する。取得日射エネルギー量取得部28は拡張アメダス気象情報DB2に格納された気象データから検査対象期間のデータを抽出する。このとき、1日分の平均気温が25℃以上で且つ1日分の水平面全天日射量が14MJ/m2d以上となる夏日15を抽出すると共に、年間平均気温が低くなる12月〜2月の3ヶ月間を冬日として抽出する。 In step S 6, it executes the acquisition solar stain Yu configuration by clicking the calculation button 18a of AMEDAS region setting screen 18. The acquired solar radiation energy amount acquisition unit 28 extracts data of the inspection target period from the weather data stored in the extended AMeDAS weather information DB 2. At this time, the summer average 15 where the daily average temperature is 25 ° C or higher and the horizontal solar radiation amount per day is 14 MJ / m 2 d or higher is extracted, and the annual average temperature decreases from December Three months in February are extracted as winter days.
夏日15と冬日の検査期間の初期時刻から最終時刻までの取得日射エネルギー量を演算し積算して行く。最終時刻になった時点で全開口部26毎に夏季と冬季の積算された取得日射エネルギー量を夏日15及び冬日の夫々の総日照時間数で割った1時間当たりの積算取得日射エネルギー量として一同に表示する(図9、図11、図13参照)。 The amount of solar radiation energy acquired from the initial time to the final time of the inspection period on summer days 15 and winter days is calculated and accumulated. Total accumulated solar radiation energy per hour divided by the total number of hours of sunshine in summer and winter on each summer opening and winter in each opening 26 at the time of the final time They are displayed together (see FIGS. 9, 11, and 13).
ステップS7において、判別部16は取得日射エネルギー量積算部11により積算された建物の空間領域単位での夏季の積算された取得日射エネルギー量を夏日15の総日照時間数で割った1時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別し、所定の閾値以上になっていれば、ステップS8において、該空間領域の床面を例えば薄赤色に彩色する。 In step S 7 , the discriminating unit 16 divides the accumulated solar radiation energy amount accumulated in summer in the unit of the spatial area of the building accumulated by the obtained solar radiation energy amount accumulating unit 11 by the total number of sunshine hours on the summer day 15. cumulative acquisition solar energy per it is determined whether it is above a predetermined threshold value, if equal to or greater than a predetermined threshold value, in step S 8, to color the floor of the space region, for example, in light red.
本実施形態では、空間領域の一畳当たり(天井高さ2.4mとして)の夏季の積算された取得日射エネルギー量を夏日15の総日照時間数で割った1時間当たりの積算取得日射エネルギー量が70KJ/1畳・天井高さ2.4m・1時間以上になった場合にその空間領域の床面を薄赤色に彩色するように構成している。本実施形態の所定の閾値を70KJ/1畳・天井高さ2.4m・1時間としたのは、実際の建物における体感許容限界のアンケート調査と、実測した取得日射エネルギー量に基づいて設定したものである。 In this embodiment, the accumulated acquired solar radiation energy per hour obtained by dividing the accumulated amount of solar radiation energy accumulated in summer per tatami of the space area (assuming the ceiling height is 2.4 m) by the total number of sunshine hours on summer day 15. When the amount is 70 KJ / 1 tatami, the ceiling height is 2.4 m, and 1 hour or more, the floor surface of the space area is colored light red. The predetermined threshold of this embodiment is set to 70 KJ / 1 tatami, ceiling height 2.4 m, 1 hour, based on a questionnaire survey of the permissible limit of sensation in an actual building and an actually acquired amount of solar radiation energy. Is.
図9及び図10は建物の空間領域となる部屋6,7の両方が夏日15において、閾値となる70KJ/畳以上となって部屋6,7の床面が薄赤色に彩色して表示された一例である。尚、図9から図14において、部屋6,7の中央に積算所得日射エネルギー量の単位がKJ/畳になっているが、これは顧客への便宜上の表示で、天井高さ2.4m・1時間を省略したものであり、正確には、KJ/1畳・天井高さ2.4m・1時間である FIGS. 9 and 10 show that the rooms 6 and 7 which are the space areas of the building are displayed on the summer day 15 at a threshold of 70 KJ / tatami or more and the floors of the rooms 6 and 7 are colored light red. It is an example. In FIGS. 9 to 14, the unit of the accumulated solar radiation energy amount is KJ / tatami in the center of the rooms 6 and 7, but this is a display for the convenience of the customer and the ceiling height is 2.4 m · 1 hour is omitted. To be precise, it is KJ / 1 tatami, ceiling height 2.4m, 1 hour.
取得日射エネルギー量は開口部26を透過した後の部屋等の空間領域に供給されるエネルギー量を指しており、特別な日射遮蔽要素を用いない場合でも開口部26により閉じられた空間領域に、通常の開口部26を透過して供給される取得日射エネルギー量を計算している。また種々の日射遮蔽要素を用いた場合でも、検査している空間領域は開放されておらず、何らかの形態で開口部26に存在して日射が部分的に遮蔽されるものである。 The amount of acquired solar radiation energy refers to the amount of energy supplied to a space area such as a room after passing through the opening 26, and even in the case where no special solar shielding element is used, the space area closed by the opening 26 The amount of acquired solar radiation energy supplied through the normal opening 26 is calculated. Even when various solar shading elements are used, the space area being inspected is not open, and is present in the opening 26 in some form to partially shield solar radiation.
図9及び図10は開口部26に特別な日射遮蔽要素を設けずに低放射ペアガラスで構成された開口部26である。本実施形態では、部屋6,7の床面が薄赤色に彩色して表示する。また、部屋6,7に含まれるそれぞれの開口部26からの夏季と冬季の取得日射エネルギー量をそれぞれ棒グラフで各開口部26毎に表示すると共に、1空間領域(例えば1つの部屋)に複数の開口部26を有する場合には、各開口部26の夏季と冬季の各取得日射エネルギー量を取得日射エネルギー量算出部20により加算して、それぞれに加算された夏日15と冬日の各取得日射エネルギー量を夏季及び冬季の取得日射エネルギー量として各空間領域(部屋)に一同に表示したものである。 9 and 10 show the opening 26 made of low radiation pair glass without providing any special solar radiation shielding element in the opening 26. In the present embodiment, the floor surfaces of the rooms 6 and 7 are displayed in a light red color. In addition, the amount of solar radiation energy acquired in summer and winter from each opening 26 included in each of the rooms 6 and 7 is displayed for each opening 26 in a bar graph, and a plurality of items are displayed in one space area (for example, one room). In the case of having the openings 26, the acquired solar radiation energy amounts in the summer and winter seasons of the respective openings 26 are added by the acquired solar energy amount calculation unit 20, and the acquired solar radiation 15 and winter day solar radiation added to each are added. The amount of energy is displayed together in each space area (room) as the amount of solar radiation energy acquired in summer and winter.
尚、図9及び図10に表示された夏季及び冬季のそれぞれの取得日射エネルギー量は、取得日射エネルギー量積算部11により積算された夏日15及び冬日のそれぞれの積算取得日射エネルギー量を夏日15及び冬日のそれぞれの総日照時間数で割った1時間当たりの積算取得日射エネルギー量としている。 The acquired solar radiation energy amounts in the summer and winter seasons shown in FIGS. 9 and 10 are obtained by calculating the accumulated solar radiation energy amounts in the summer day 15 and winter days accumulated by the acquired solar energy amount integrating unit 11 in the summer day. The amount of solar radiation energy acquired per hour divided by the total number of sunshine hours for each of 15 and winter days.
夏季と冬季の各取得日射エネルギー量を表す棒グラフは、特定の開口部26毎に1つ作成されて引き出し線で連結される。またグラフの初期位置は建物全体の重心と各開口部26の中心とを結んだ線分上で建物から適度に離れた位置に表示され、画面上でドラッグすることで移動出来、必要に応じて消去することも出来る。 One bar graph representing the amount of solar radiation energy acquired in summer and winter is created for each specific opening 26 and connected by a lead line. In addition, the initial position of the graph is displayed on the line connecting the center of gravity of the entire building and the center of each opening 26 at a position that is moderately separated from the building, and can be moved by dragging on the screen, if necessary It can be erased.
開口部26に何もない単なる開け放たれた開口部26面と比較すると、天井高さ2.4m・1時間、低放射ペアガラスで構成された開口部26だけで日射遮蔽率は35%である。即ち、65%だけ日射を透過する。 Compared with the opening 26 surface that is simply open, with nothing in the opening 26, the ceiling height is 2.4 m · 1 hour, and only the opening 26 made of low radiation pair glass has a solar radiation shielding rate of 35%. . That is, the solar radiation is transmitted by 65%.
前記ステップS8において、部屋6,7の床面が薄赤色に彩色されたため、ステップS9において、日射遮蔽要素による日射対策を行う。図11及び図12は日射遮蔽要素の一例として部屋6の低放射ペアガラスで構成された開口部26に固定式日射遮蔽部材21を取り付けた場合の一例である。 In step S 8, since the floor of the room 6 is colored in pale red, in step S 9, perform solar radiation measures by solar radiation shielding element. FIGS. 11 and 12 show an example of a case where a fixed solar shading member 21 is attached to an opening 26 made of low radiation pair glass in the room 6 as an example of the solar shading element.
次に前記ステップS6に戻って取得日射シミュレーションを実行し、判別部16により、取得日射エネルギー量積算部11により積算された建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する。 Next, returning to the step S6, an acquired solar radiation simulation is executed, and the accumulated solar radiation energy amount per predetermined time in the space area unit of the building integrated by the acquired solar energy amount integrating unit 11 is determined by the determining unit 16. It is determined whether or not the threshold is exceeded.
図11及び図12において、部屋6は、開口部26に固定式日射遮蔽部材21を取り付けたことにより取得日射エネルギー量積算部11により積算された建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が閾値となる70KJ/1畳・2.4m・1時間よりも小さくなり、床面が白色に変更される。 11 and 12, the room 6 is obtained by integrating the fixed solar radiation shielding member 21 in the opening 26, and is obtained by integrating the obtained solar radiation energy amount accumulating unit 11 in units of space area of the building. The amount of solar radiation energy becomes smaller than 70 KJ / 1 tatami, 2.4 m, 1 hour, which is the threshold, and the floor surface is changed to white.
同時に夏季と冬季のそれぞれの取得日射エネルギー量が図9と同様に棒グラフでその開口部26に表示される。低放射ペアガラスの開口部26で日射が65%透過し、更に固定式日射遮蔽部材21で日射が65%透過するため、全体で42.3%(65%×65%=42.3%)の日射が透過する。即ち、日射遮蔽率としては58%である。 At the same time, the acquired solar radiation energy amounts in the summer and winter are displayed in the opening 26 as a bar graph as in FIG. Because the solar radiation is 65% transmitted through the opening 26 of the low radiation pair glass and the solar radiation is further transmitted 65% by the fixed solar shielding member 21, the total is 42.3% (65% × 65% = 42.3%). Sunlight penetrates. That is, the solar radiation shielding rate is 58%.
前記ステップS8において、部屋7の床面が薄赤色に彩色されたため、ステップS9において、再度、日射遮蔽要素による日射対策を行う。図13及び図14は日射遮蔽要素の一例として部屋7の開口部26に同じく固定式日射遮蔽部材21を取り付けた場合の一例である。 In step S 8, since the floor of the room 7 is colored in pale red, in step S 9, again, perform solar radiation measures by solar radiation shielding element. FIGS. 13 and 14 show an example in which a fixed solar shading member 21 is attached to the opening 26 of the room 7 as an example of the solar shading element.
次に前記ステップS6に戻って取得日射シミュレーションを実行し、判別部16により、取得日射エネルギー量積算部11により積算された建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する。 Next, returning to the step S6, an acquired solar radiation simulation is executed, and the accumulated solar radiation energy amount per predetermined time in the space area unit of the building integrated by the acquired solar energy amount integrating unit 11 is determined by the determining unit 16. It is determined whether or not the threshold is exceeded.
図13及び図14において、部屋7にも開口部26に固定式日射遮蔽部材21を取り付けたことにより取得日射エネルギー量積算部11により積算された建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が閾値となる70KJ/畳よりも小さくなり、床面が白色に変更される。 13 and 14, the fixed solar radiation shielding member 21 is attached to the opening 26 in the room 7 as well, and the cumulative acquisition per predetermined time in the space area unit of the building accumulated by the solar radiation energy accumulation unit 11 is obtained. The amount of solar radiation energy is smaller than 70 KJ / tatami, which is a threshold value, and the floor surface is changed to white.
同時に夏季と冬季のそれぞれの取得日射エネルギー量が図9、図11と同様に棒グラフでその開口部26に表示される。 At the same time, the acquired solar radiation energy amounts in the summer and winter are displayed in the opening 26 as a bar graph in the same manner as in FIGS.
尚、固定式日射遮蔽部材21、遮熱ガラス、可動式日射遮蔽部材等の日射遮蔽機能情報は日射遮蔽機能情報データベース(以下、「日射遮蔽機能情報DB」という)25に記憶して格納されており、取得日射エネルギー量積算部11により夏日15及び冬日の取得日射エネルギー量を積算する際に各日射遮蔽率が利用される。 The solar shading function information such as the fixed solar shading member 21, the heat shielding glass, and the movable solar shading member is stored and stored in a solar shading function information database (hereinafter referred to as "sunlight shielding function information DB") 25. In addition, the solar radiation shielding rate is used when the acquired solar radiation energy amount accumulating unit 11 accumulates the acquired solar radiation energy amounts on summer days 15 and winter days.
付け庇24や周辺建物は、目的の建物の地球上の位置(緯度、経度、或いは所在住所等)、季節及び時刻に対応した太陽位置を太陽位置演算部3により演算し、時々刻々と移動する太陽の位置と、各開口部26の複数に分割された各仮想パネルの位置とを結んだ直線上に、周辺建物情報作成部12により作成した開口部26の外側に存在する隣家や付け庇24や構造庇が在るか無いかの条件に基づいて開口部26の各仮想パネルに取得される日射があるか否かを求め、取得日射がある仮想パネルへの日射量を合計することによりその開口部26からの取得日射エネルギー量を演算する。 The tsubo 24 and surrounding buildings move from moment to moment by calculating the sun position corresponding to the position of the target building on the earth (latitude, longitude, address, etc.), season and time by the sun position calculator 3. Neighbors and attachments 24 that exist outside the opening 26 created by the surrounding building information creation unit 12 on a straight line connecting the position of the sun and the position of each virtual panel divided into a plurality of openings 26. Or whether there is solar radiation acquired in each virtual panel of the opening 26 based on the condition whether or not there is a structural flaw, and by summing the amount of solar radiation to the virtual panel with acquired solar radiation The amount of solar radiation energy acquired from the opening 26 is calculated.
例えば可動式日射遮蔽部材を利用した場合には夏季の取得日射エネルギー量は低減するが冬季の取得日射エネルギー量は変化しない。一方、固定式日射遮蔽部材21と遮熱ガラスでは夏季と冬季の取得日射エネルギー量を概ね同程度に減少させる。 For example, when a movable solar radiation shielding member is used, the amount of solar radiation acquired in summer is reduced, but the amount of solar radiation acquired in winter does not change. On the other hand, the fixed solar shading member 21 and the heat shielding glass reduce the amount of solar radiation energy acquired in summer and winter to approximately the same level.
また付け庇24を適宜調整することが出来れば冬季の取得日射エネルギー量の低減に比べて夏季の取得日射エネルギー量をより多く遮蔽することが出来ることが分かる。また隣接建物の影響は逆に夏季の取得日射エネルギー量の低減以上に冬季の取得日射エネルギー量低減に影響してしまうことが分かる。 It can also be seen that if the attachment rod 24 can be adjusted as appropriate, the amount of solar radiation acquired in summer can be shielded more than the amount of solar energy acquired in winter. Moreover, it turns out that the influence of an adjacent building will influence the reduction of the acquired solar radiation energy amount in winter more than the reduction of the acquired solar radiation energy amount in the summer.
各日射遮蔽要素には上述した特性があるために、取得日射エネルギー量が大きいからといって闇雲に日射遮蔽要素を講じると、冬季の取得日射エネルギー量も減じてしまい冬季にはむしろ多く取り入れたい取得日射エネルギー量を有効に活用出来なくなる。このため、それぞれの日射遮蔽要素の特性を活かしながら取得日射エネルギー量を制御するために多様な日射遮蔽要素の準備とその特性を活かすために夏季と冬季の取得日射エネルギー量の評価を同時に表示することが不可欠となる。 Because each solar shading element has the above-mentioned characteristics, if the solar radiation shielding element is applied to the dark clouds just because the amount of solar radiation acquired is large, the amount of solar radiation acquired in the winter will decrease and it will be desirable to incorporate more in the winter. The amount of solar radiation energy acquired cannot be used effectively. For this reason, the preparation of various solar shading elements to control the amount of solar radiation obtained while utilizing the characteristics of each solar shading element, and the evaluation of the amount of solar radiation energy acquired in the summer and winter at the same time to display the characteristics are displayed simultaneously. It is essential.
また、付け庇24の効果や周辺建物の影響はその配置や寸法、建物自身がどの方向にどの種類の開口部を有するかでその影響程度が様々に変化する。一般的に付け庇24は夏季の南向きの日射を遮蔽するには有効であることが知られているが、例えば開口部26が南から30°傾いた方向を向いているとすれば一体どの程度に遮蔽効果を有するのか容易には判断出来ない。従って、上記のような取得日射エネルギー量評価システム1を構築して始めて簡便な検討が可能となる。 Further, the effect of the spider 24 and the influence of surrounding buildings vary depending on the arrangement and dimensions thereof and the kind of opening in which direction the building itself has in which direction. In general, the spider 24 is known to be effective in shielding the south-facing solar radiation in the summer. For example, if the opening 26 faces 30 ° from the south, It is not easy to judge whether it has a shielding effect. Therefore, simple studies are possible only after the above-described acquired solar radiation energy amount evaluation system 1 is constructed.
ステップS7において、各部屋の積算取得日射エネルギー量が閾値よりも小さくなった時点で処理を終了する。 In step S 7, the process ends when the cumulative acquisition solar energy amount of each room is smaller than the threshold value.
尚、本発明は共同住宅・寄宿舎・学校・老人ホーム・保育所・ホテル又は旅館等、住宅という建物用途に関わらず部屋単位の日射取得エネルギー評価を必要とする空間に用いることが出来る。 In addition, this invention can be used for the space which requires the solar radiation acquisition energy evaluation of a room unit, such as a housing | casing house, a dormitory, a school, a nursing home, a nursery school, a hotel or an inn, such as a house.
本発明の活用例として、建物の空間領域毎に日射を透過可能な開口部からの取得日射エネルギーを得たとき単位時間当たり、且つ単位体積当たりの取得日射エネルギー量の適否を判定する取得日射エネルギー量評価システムに適用出来、建物以外にも適用出来る。 As an example of use of the present invention, acquired solar radiation energy for determining the suitability of the acquired solar energy amount per unit time and per unit volume when acquiring solar radiation energy from an opening that can transmit solar radiation for each space area of a building It can be applied to a quantity evaluation system and can be applied to other than buildings.
1…取得日射エネルギー量評価システム
2…拡張アメダス気象情報DB
3…太陽位置演算部
4…入力部
5…一時記憶装置
6,7…部屋
8…間取り作成部
9…間取り図DB
10…方位設定画面
11…取得日射エネルギー量積算部
12…周辺建物情報作成部
13…周辺建物情報DB
14…夏日抽出部
15…夏日
16…判別部
17…表示部
18…アメダス地域設定画面
18a…計算実行ボタン
19…冬日抽出部
20…取得日射エネルギー量算出部
21…固定式日射遮蔽部材
24…付け庇
25…日射遮蔽機能情報DB
26…開口部
27…演算装置
28…取得日射エネルギー量取得部
29…取得日射エネルギー量調整部
1 ... Acquired solar radiation energy evaluation system 2 ... Extended AMeDAS weather information DB
DESCRIPTION OF SYMBOLS 3 ... Solar position calculating part 4 ... Input part 5 ... Temporary storage device 6,7 ... Room 8 ... Floor plan creation part 9 ... Floor plan DB
10… Direction setting screen
11 ... Acquired solar radiation energy integration part
12… Neighboring building information creation department
13 ... Surrounding building information DB
14 ... Summer day extraction section
15 ... Summer
16: Discriminator
17 ... Display section
18… Amedas area setting screen
18a ... Calculation execution button
19… Winter day extractor
20… Acquired solar radiation energy calculation part
21 ... Fixed solar shading member
24 ...
25 ... Solar radiation shielding function information DB
26… Opening
27: Arithmetic unit
28 ... Acquired solar energy acquisition part
29 ... Acquired solar radiation energy adjustment part
Claims (8)
夏日を抽出する夏日抽出手段と、
前記夏日抽出手段により抽出された夏日において、前記建物の所定の空間領域に含まれる全ての開口部から取得される取得日射エネルギー量を算出する取得日射エネルギー量算出手段と、
前記夏日抽出手段により抽出された夏日日数に亘って取得日射エネルギー量を積算する取得日射エネルギー量積算手段と、
前記取得日射エネルギー量積算手段により積算された前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する判別手段と、
前記判別手段により、前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合にその空間領域を特定して表示する表示手段と、
を有することを特徴とする取得日射エネルギー量評価システム。 An acquired solar energy amount evaluation system that determines the suitability of an acquired solar energy amount when obtaining solar radiation energy from an opening that can transmit solar radiation for each space area of a building,
Summer day extraction means for extracting summer days;
On the summer day extracted by the summer day extraction means, acquired solar radiation energy amount calculating means for calculating the acquired solar radiation energy amount acquired from all the openings included in the predetermined space region of the building;
An acquisition solar energy amount integrating means for integrating the acquired solar energy amount over the number of summer days extracted by the summer day extraction means;
A discriminating unit for discriminating whether or not the cumulative acquired solar radiation energy amount per predetermined time in the space area unit of the building integrated by the acquired solar radiation energy amount integrating unit is equal to or greater than a predetermined threshold;
Display means for specifying and displaying the spatial area when it is determined by the determining means that the accumulated acquired solar radiation energy amount per predetermined time in the space area unit of the building is equal to or greater than a predetermined threshold;
An acquired solar radiation energy amount evaluation system characterized by comprising:
気象データによる1日分の全天日射量が所定値以上、及び/又は気象データによる1日分の平均気温が所定値以上である日を夏日とする夏日抽出手段と、
前記夏日抽出手段により抽出された夏日において、前記建物の所定の空間領域に含まれる全ての開口部から取得される取得日射エネルギー量を算出する取得日射エネルギー量算出手段と、
前記夏日抽出手段により抽出された夏日日数に亘って取得日射エネルギー量を積算する取得日射エネルギー量積算手段と、
前記取得日射エネルギー量積算手段により積算された値を総日照時間で除し更に前記建物の空間領域単位当たりの積算取得日射エネルギー量が所定の閾値以上になったか否かを判別する判別手段と、
前記判別手段により、前記建物の空間領域単位での所定時間当たりの積算取得日射エネルギー量が所定の閾値以上になったと判別した場合にその空間領域を特定して表示する表示手段と、
を有することを特徴とする取得日射エネルギー量評価システム。 An acquired solar energy amount evaluation system that determines the suitability of an acquired solar energy amount when obtaining solar radiation energy from an opening that can transmit solar radiation for each space area of a building,
A summer day extraction means for setting a day when the global solar radiation amount for one day based on weather data is a predetermined value or more and / or a day when the average temperature for one day based on weather data is a predetermined value or more;
On the summer day extracted by the summer day extraction means, acquired solar radiation energy amount calculating means for calculating the acquired solar radiation energy amount acquired from all the openings included in the predetermined space region of the building;
An acquisition solar energy amount integrating means for integrating the acquired solar energy amount over the number of summer days extracted by the summer day extraction means;
A determining unit that divides the value integrated by the acquired solar radiation energy integrating unit by the total sunshine duration and further determines whether or not the integrated acquired solar energy amount per space area unit of the building is equal to or greater than a predetermined threshold value;
Display means for specifying and displaying the spatial area when it is determined by the determining means that the accumulated acquired solar radiation energy amount per predetermined time in the space area unit of the building is equal to or greater than a predetermined threshold;
An acquired solar radiation energy amount evaluation system characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005049245A JP4761787B2 (en) | 2005-02-24 | 2005-02-24 | Acquired solar radiation energy evaluation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005049245A JP4761787B2 (en) | 2005-02-24 | 2005-02-24 | Acquired solar radiation energy evaluation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006233566A true JP2006233566A (en) | 2006-09-07 |
JP4761787B2 JP4761787B2 (en) | 2011-08-31 |
Family
ID=37041526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005049245A Active JP4761787B2 (en) | 2005-02-24 | 2005-02-24 | Acquired solar radiation energy evaluation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4761787B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006234562A (en) * | 2005-02-24 | 2006-09-07 | Asahi Kasei Homes Kk | Device for displaying amount of acquired solar radiation energy |
JP2010169699A (en) * | 2010-05-13 | 2010-08-05 | Asahi Kasei Homes Co | Device for displaying amount of acquired solar radiation energy |
CN114839698A (en) * | 2021-02-01 | 2022-08-02 | 丰田自动车株式会社 | Illuminance providing device and illuminance collecting system |
JP7524940B2 (en) | 2020-03-27 | 2024-07-30 | Agc株式会社 | Solar radiation estimation system, air conditioning control system, air conditioning device, vehicle, building, solar radiation estimation method, air conditioning control method, and solar radiation estimation program |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611577A (en) * | 1992-06-27 | 1994-01-21 | Casio Comput Co Ltd | Sunshine hour measuring device |
JPH10239161A (en) * | 1997-02-26 | 1998-09-11 | Mitsui Home Co Ltd | Method and system for simulating thermal environment of building |
JP2000008476A (en) * | 1998-06-26 | 2000-01-11 | Asahi Chem Ind Co Ltd | Sunshine simulation device |
JP2001290864A (en) * | 2000-02-04 | 2001-10-19 | Sekisui Chem Co Ltd | Environment display device, tentative designing method for building using the same, building designing device, and evaluating method for building |
JP2001349598A (en) * | 2000-06-05 | 2001-12-21 | Shimizu Corp | Evaluating system for building operation performance |
JP2002349937A (en) * | 2001-05-24 | 2002-12-04 | Asahi Kasei Corp | Ventilation amount of building, and temperature predicting system |
JP2003083586A (en) * | 2001-09-10 | 2003-03-19 | Matsushita Electric Ind Co Ltd | Controller for air conditioner |
JP2003193579A (en) * | 2001-12-25 | 2003-07-09 | Asahi Kasei Corp | House |
JP2003216715A (en) * | 2002-01-22 | 2003-07-31 | Toshiba Corp | Device for evaluating and monitoring building energy saving |
JP2004030455A (en) * | 2002-06-27 | 2004-01-29 | Sumitomo Forestry Co Ltd | System for evaluating sunshine shielding |
JP2006233562A (en) * | 2005-02-24 | 2006-09-07 | Nippo Corporation:Kk | Position adjusting device for paving stop form, and position adjusting method using the same |
-
2005
- 2005-02-24 JP JP2005049245A patent/JP4761787B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611577A (en) * | 1992-06-27 | 1994-01-21 | Casio Comput Co Ltd | Sunshine hour measuring device |
JPH10239161A (en) * | 1997-02-26 | 1998-09-11 | Mitsui Home Co Ltd | Method and system for simulating thermal environment of building |
JP2000008476A (en) * | 1998-06-26 | 2000-01-11 | Asahi Chem Ind Co Ltd | Sunshine simulation device |
JP2001290864A (en) * | 2000-02-04 | 2001-10-19 | Sekisui Chem Co Ltd | Environment display device, tentative designing method for building using the same, building designing device, and evaluating method for building |
JP2001349598A (en) * | 2000-06-05 | 2001-12-21 | Shimizu Corp | Evaluating system for building operation performance |
JP2002349937A (en) * | 2001-05-24 | 2002-12-04 | Asahi Kasei Corp | Ventilation amount of building, and temperature predicting system |
JP2003083586A (en) * | 2001-09-10 | 2003-03-19 | Matsushita Electric Ind Co Ltd | Controller for air conditioner |
JP2003193579A (en) * | 2001-12-25 | 2003-07-09 | Asahi Kasei Corp | House |
JP2003216715A (en) * | 2002-01-22 | 2003-07-31 | Toshiba Corp | Device for evaluating and monitoring building energy saving |
JP2004030455A (en) * | 2002-06-27 | 2004-01-29 | Sumitomo Forestry Co Ltd | System for evaluating sunshine shielding |
JP2006233562A (en) * | 2005-02-24 | 2006-09-07 | Nippo Corporation:Kk | Position adjusting device for paving stop form, and position adjusting method using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006234562A (en) * | 2005-02-24 | 2006-09-07 | Asahi Kasei Homes Kk | Device for displaying amount of acquired solar radiation energy |
JP4553750B2 (en) * | 2005-02-24 | 2010-09-29 | 旭化成ホームズ株式会社 | Acquired solar radiation energy display device |
JP2010169699A (en) * | 2010-05-13 | 2010-08-05 | Asahi Kasei Homes Co | Device for displaying amount of acquired solar radiation energy |
JP7524940B2 (en) | 2020-03-27 | 2024-07-30 | Agc株式会社 | Solar radiation estimation system, air conditioning control system, air conditioning device, vehicle, building, solar radiation estimation method, air conditioning control method, and solar radiation estimation program |
CN114839698A (en) * | 2021-02-01 | 2022-08-02 | 丰田自动车株式会社 | Illuminance providing device and illuminance collecting system |
CN114839698B (en) * | 2021-02-01 | 2024-02-13 | 丰田自动车株式会社 | Illuminance providing device and illuminance collecting system |
Also Published As
Publication number | Publication date |
---|---|
JP4761787B2 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | An investigation of optimal window-to-wall ratio based on changes in building orientations for traditional dwellings | |
Subhashini et al. | A passive design solution to enhance thermal comfort in an educational building in the warm humid climatic zone of Madurai | |
Uribe et al. | Impact of different control strategies of perforated curved louvers on the visual comfort and energy consumption of office buildings in different climates | |
Al-Obaidi et al. | A study of the impact of environmental loads that penetrate a passive skylight roofing system in Malaysian buildings | |
Zahiri et al. | The effect of passive design strategies on thermal performance of female secondary school buildings during warm season in a hot and dry climate | |
Gamero-Salinas et al. | The influence of building form variables on the environmental performance of semi-outdoor spaces. A study in mid-rise and high-rise buildings of Singapore | |
KR101933876B1 (en) | System and method for simulating of sunshine availability for buildings | |
Albatayneh et al. | Development of a new metric to characterise the buildings thermal performance in a temperate climate | |
Balter et al. | On high-rise residential buildings in an oasis-city: Thermal and energy assessment of different envelope materiality above and below tree canopy | |
JP5188535B2 (en) | Acquired solar radiation energy display device | |
JP4761787B2 (en) | Acquired solar radiation energy evaluation system | |
Paule et al. | A lighting simulation tool for the new European daylighting standard | |
Oxizidis et al. | A computational method to assess the impact of urban climate on buildings using modeled climatic data | |
Hong et al. | Comparative analysis of the daylight and building-energy performance of a double-skin facade system with multisectional shading devices of different control strategies | |
Davila et al. | On the combined use of laser-cut panel light redirecting systems and horizontal blinds for daylighting and solar heat control, a focus on visual comfort objectives | |
JP3913621B2 (en) | Solar radiation shielding evaluation system | |
Panão et al. | Determining the shading correction factor using a smartphone camera with a fisheye lens | |
JP4553750B2 (en) | Acquired solar radiation energy display device | |
Dev et al. | Dynamic facade control systems for optimal daylighting, a case of Kerala | |
Shen et al. | A global method for efficient synchronized shading control using the “effective daylight” concept | |
KONSTANTZOS et al. | Design recommendations for perimeter office spaces based on visual performance criteria | |
Asawa et al. | Thermal design tool for outdoor space based on numerical simulation system using 3D-CAD | |
Awadh | The impact of external shading and windows’ glazing and frame on thermal performance of residential house in Abu-Dhabi | |
Lai et al. | Regression modelling of radiant fluxes on different view factors under shading in a densely built environment | |
JP6902183B2 (en) | Building material selection equipment, building material selection method, programs and recording media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080131 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4761787 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |