JP2006233136A - Method for producing phosphor composition and phosphor composition obtained by the method - Google Patents

Method for producing phosphor composition and phosphor composition obtained by the method Download PDF

Info

Publication number
JP2006233136A
JP2006233136A JP2005053432A JP2005053432A JP2006233136A JP 2006233136 A JP2006233136 A JP 2006233136A JP 2005053432 A JP2005053432 A JP 2005053432A JP 2005053432 A JP2005053432 A JP 2005053432A JP 2006233136 A JP2006233136 A JP 2006233136A
Authority
JP
Japan
Prior art keywords
phosphor composition
stimulation
phosphor
producing
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005053432A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokota
弘 横田
Yasuhiro Yagi
康洋 八木
Masato Yoshida
誠人 吉田
Hiroyuki Ishibashi
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005053432A priority Critical patent/JP2006233136A/en
Publication of JP2006233136A publication Critical patent/JP2006233136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a phosphor composition that has high emission intensity, is reduced in cost and is applied to a scintillator material and a phosphor material, contains no impurity structure having adverse effect on luminous efficiency and is constituted of a high-purity single crystal structure. <P>SOLUTION: The phosphor composition is obtained by dropping a phosphor composition raw material in a solution of a phosphor composition raw material to a solution of an alkali-based precipitant to precipitate a phosphor composition precursor, washing the obtained phosphor composition precursor with water and then firing the washed phosphor composition precursor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光体組成物の製造方法、及び、それにより得られる蛍光体組成物に関する。より好ましくは、ガンマ線、X線、中性子線などの放射線検出器に用いられるシンチレータ、プラズマディスプレイ(PDP)用蛍光体、陰極線管(CRT)用蛍光体、投写管用蛍光体などに適用できる蛍光体組成物の製造方法に関する。   The present invention relates to a method for producing a phosphor composition and a phosphor composition obtained thereby. More preferably, the phosphor composition can be applied to scintillators used in radiation detectors such as gamma rays, X-rays, and neutron rays, phosphors for plasma displays (PDP), phosphors for cathode ray tubes (CRT), phosphors for projection tubes, etc. The present invention relates to a method for manufacturing a product.

蛍光体組成物の用途はPDP、CRT、投写管などのディスプレイ用蛍光体、及びガンマ線、X線、中性子線などの放射線検出器に用いられるシンチレータなど多岐に亘るが、ディスプレイ用蛍光体としては、各種デバイスの消費電力低減の観点から発光効率のよい蛍光体が求められている。発光効率に影響を及ぼす因子の一つとして蛍光体母材の構造均一性があり、単一の結晶構造で構成される蛍光体母材を合成することが求められている。例えば、緑色蛍光体の一つであるY2SiO5:Tbを蛍光体組成物前駆体の洗浄工程を含まない、従来の方法で合成した場合、主構造であるY2SiO5相のほかに不純物構造であるY23相の生成が蛍光体組成物のX線回折パターンより認められる(例えば、非特許文献1参照)。
Yun Chan Kang et al. , J. Solid State Chem. 146, 168-175(1999)
The phosphor composition has a wide range of uses such as a phosphor for display such as PDP, CRT, and projection tube, and a scintillator used for radiation detectors such as gamma rays, X-rays, and neutron rays. From the viewpoint of reducing the power consumption of various devices, there is a demand for phosphors with good luminous efficiency. One of the factors affecting the luminous efficiency is the structural uniformity of the phosphor base material, and it is required to synthesize a phosphor base material composed of a single crystal structure. For example, when Y 2 SiO 5 : Tb, which is one of green phosphors, is synthesized by a conventional method that does not include a phosphor composition precursor cleaning step, in addition to the main structure Y 2 SiO 5 phase, Generation of a Y 2 O 3 phase that is an impurity structure is recognized from the X-ray diffraction pattern of the phosphor composition (see, for example, Non-Patent Document 1).
Yun Chan Kang et al., J. Solid State Chem. 146, 168-175 (1999)

本発明は、発光強度が高くかつ低コスト化可能なシンチレータ材料及び蛍光体材料に適用できる蛍光体組成物について、高純度な結晶構造で構成される蛍光体組成物の製造方法を提供することを目的とする。   The present invention provides a method for producing a phosphor composition having a high-purity crystal structure, with respect to a phosphor composition that can be applied to a scintillator material and a phosphor material that have high emission intensity and can be reduced in cost. Objective.

本発明者らは、前記課題を解決するためには蛍光体組成物原料溶液とアルカリ系沈殿剤との反応によって得られる蛍光体組成物前駆体中に残留しているアルカリ成分などの残留物を除去することが必要であると考え、蛍光体組成物原料溶液とアルカリ系沈殿剤との反応によって得られる蛍光体組成物前駆体を水により複数回洗浄することによる残留物除去により前記課題を解決できることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have removed residues such as alkali components remaining in the phosphor composition precursor obtained by the reaction of the phosphor composition raw material solution and the alkaline precipitant. The above problem is solved by removing the residue by washing the phosphor composition precursor obtained by the reaction between the phosphor composition raw material solution and the alkaline precipitant multiple times with water. The present inventors have found that the present invention can be accomplished and have completed the present invention.

すなわち、本発明は、下記の蛍光体組成物の製造方法及びその製造方法によって得られる蛍光体組成物に関する。
(1)蛍光体組成物原料溶液中の蛍光体組成物原料をアルカリ系沈殿剤溶液中に滴下して蛍光体組成物前駆体を沈殿させ、得られた蛍光体組成物前駆体を水で洗浄し、次いで焼成することを特徴とする蛍光体組成物の製造方法。
That is, the present invention relates to the following phosphor composition manufacturing method and the phosphor composition obtained by the manufacturing method.
(1) The phosphor composition raw material in the phosphor composition raw material solution is dropped into the alkaline precipitant solution to precipitate the phosphor composition precursor, and the obtained phosphor composition precursor is washed with water. And then firing the phosphor composition.

(2)蛍光体組成物前駆体の水による洗浄を、洗浄後の水のpHが7〜8となるまで行うことを特徴とする(1)に記載の蛍光体組成物の製造方法。   (2) The method for producing a phosphor composition according to (1), wherein the phosphor composition precursor is washed with water until the pH of the washed water becomes 7-8.

(3)蛍光体組成物前駆体を調製する際、蛍光体組成物原料溶液をアルカリ系沈殿剤溶液に滴下することを特徴とする(1)又は(2)に記載の蛍光体組成物の製造方法。   (3) Production of the phosphor composition according to (1) or (2), wherein when preparing the phosphor composition precursor, the phosphor composition raw material solution is dropped into an alkaline precipitant solution. Method.

(4)蛍光体組成物原料が、少なくとも1種のアルカリ土類元素、少なくとも1種の希土類元素、アルミニウム及び珪素からなる群から選ばれる少なくとも2種類の元素の各々の化合物を含有することを特徴とする(1)〜(3)のいずれかに記載の蛍光体組成物の製造方法。   (4) The phosphor composition raw material contains at least one compound of at least one element selected from the group consisting of at least one alkaline earth element, at least one rare earth element, aluminum, and silicon. The method for producing a phosphor composition according to any one of (1) to (3).

(5)アルカリ土類元素の化合物がアルカリ土類元素の硝酸塩、塩化物又は硫酸塩であり、希土類元素の化合物が希土類元素の硝酸塩、塩化物又は硫酸塩であり、アルミニウムの化合物が硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム又はアルミニウムアルコキシドであり、珪素の化合物がテトラアルコキシシラン又はシリカゾルである請求項1〜4のいずれかに記載の蛍光体組成物の製造方法。   (5) The alkaline earth element compound is an alkaline earth element nitrate, chloride or sulfate, the rare earth element compound is a rare earth element nitrate, chloride or sulfate, and the aluminum compound is aluminum nitrate, It is aluminum chloride, aluminum sulfate, or aluminum alkoxide, and the compound of silicon is tetraalkoxysilane or silica sol, The manufacturing method of the fluorescent substance composition in any one of Claims 1-4.

(6)蛍光体組成物が、一般式[1]
(A23(B23(SiO2 [1]
(ただしx+y+z=1のとき、0<x<0.5、0<y<0.5、0<z<0.95であり、AはGd、Y、Lu及びLaから選ばれる少なくとも1種の元素、BはA以外の少なくとも1種の希土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激又は放射線刺激により、紫外、可視又は赤外領域で発光する結晶質を含む(1)〜(5)のいずれかに記載の蛍光体組成物の製造方法。
(6) The phosphor composition has the general formula [1]
(A 2 O 3 ) x (B 2 O 3 ) y (SiO 2 ) z [1]
(However, when x + y + z = 1, 0 <x <0.5, 0 <y <0.5, 0 <z <0.95, and A is at least one selected from Gd, Y, Lu and La. The element B represents at least one rare earth element other than A.)
The phosphor according to any one of (1) to (5), comprising a crystalline substance that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. A method for producing the composition.

(7)上記結晶質の結晶構造がY2SiO5と同タイプである(6)に記載の蛍光体組成物の製造方法。 (7) The method for producing a phosphor composition according to (6), wherein the crystalline crystal structure is the same type as that of Y 2 SiO 5 .

(8)蛍光体組成物が、一般式[2]
(A23(B23(Al23 [2]
(ただしa+b+c=1のとき、0<a<0.375、0<b<0.375、0<c<0.85であり、AはGd、Y、Lu及びLaから選ばれる少なくとも1種の元素、BはA以外の少なくとも1種の希土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激、及び放射線刺激により紫外、可視もしくは赤外領域で発光する結晶質を含む(1)〜(5)のいずれかに記載の蛍光体組成物の製造方法。
(8) The phosphor composition has the general formula [2]
(A 2 O 3 ) a (B 2 O 3 ) b (Al 2 O 3 ) c [2]
(However, when a + b + c = 1, 0 <a <0.375, 0 <b <0.375, 0 <c <0.85, and A is at least one selected from Gd, Y, Lu and La. The element B represents at least one rare earth element other than A.)
The phosphor according to any one of (1) to (5), comprising a crystalline substance that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, and radiation stimulation. A method for producing the composition.

(9)上記結晶質の結晶構造がY3Al512と同タイプである(8)に記載の蛍光体組成物の製造方法。 (9) The method for producing a phosphor composition according to (8), wherein the crystalline crystal structure is the same type as that of Y 3 Al 5 O 12 .

(10)蛍光体組成物が、一般式[3]
(QO)(BO)(RO)(SiO [3]
(ただし、d+e+f+g=1のとき、0<d<0.25、0<e<0.25、0<f<0.4、0<g<0.95であり、Bは希土類元素から選ばれる少なくとも1種の元素、QはMg、Ca、Sr、Ba及びRaから選ばれる少なくとも1種の元素、RはQ以外の少なくとも1種のアルカリ土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激又は放射線刺激により紫外、可視もしくは赤外領域で発光する結晶質を含む(1)〜(5)のいずれかに記載の蛍光体組成物の製造方法。
(10) The phosphor composition has the general formula [3]
(QO) d (BO) e (RO) f (SiO z ) g [3]
(However, when d + e + f + g = 1, 0 <d <0.25, 0 <e <0.25, 0 <f <0.4, 0 <g <0.95, and B is selected from rare earth elements. (At least one element, Q represents at least one element selected from Mg, Ca, Sr, Ba and Ra, and R represents at least one alkaline earth element other than Q.)
The phosphor composition according to any one of (1) to (5), comprising a crystalline material that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. Manufacturing method.

(11)上記結晶質の結晶構造がCaMgSi26と同タイプである(10)に記載の蛍光体組成物の製造方法。 (11) The method for producing a phosphor composition according to (10), wherein the crystalline crystal structure is the same type as that of CaMgSi 2 O 6 .

(12)蛍光体組成物が、一般式[4]
(QO)(BO)(RO)(Al23 [4]
(ただし、h+i+k+m=1のとき、0<h<0.143、0<i<0.143、0<k<0.3、0<m<0.95であり、Bは希土類元素から選ばれる少なくとも1種の元素、QはMg、Ca、Sr、Ba及びRaから選ばれる少なくとも1種の元素、RはQ以外の少なくとも1種のアルカリ土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激又は放射線刺激により紫外、可視もしくは赤外領域で発光する結晶質を含む(1)〜(5)のいずれかに記載の蛍光体組成物の製造方法。
(12) The phosphor composition has the general formula [4].
(QO) h (BO) i (RO) k (Al 2 O 3 ) m [4]
(However, when h + i + k + m = 1, 0 <h <0.143, 0 <i <0.143, 0 <k <0.3, 0 <m <0.95, and B is selected from rare earth elements. (At least one element, Q represents at least one element selected from Mg, Ca, Sr, Ba and Ra, and R represents at least one alkaline earth element other than Q.)
The phosphor composition according to any one of (1) to (5), comprising a crystalline material that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. Manufacturing method.

(13)上記結晶質の結晶構造がBaMgAl1017と同タイプである(12)に記載の蛍光体組成物の製造方法。 (13) The method for producing a phosphor composition according to (12), wherein the crystalline crystal structure is the same type as BaMgAl 10 O 17 .

(14)上記(1)〜(13)のいずれかに記載の蛍光体組成物の製造方法により製造された蛍光体組成物。   (14) A phosphor composition manufactured by the method for manufacturing a phosphor composition according to any one of (1) to (13).

本発明により、発光強度が高くかつ低コストなシンチレータ材料及び蛍光体材料に適用できる蛍光体組成物について、高純度な結晶構造で構成される蛍光体組成物の製造方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, a phosphor composition that has a high emission intensity and can be applied to a low-cost scintillator material and phosphor material can be provided with a method for producing a phosphor composition having a high-purity crystal structure.

本発明において用いられる蛍光体組成物原料としては、例えば、少なくとも1種のアルカリ土類元素、少なくとも1種の希土類元素、アルミニウム及び珪素からなる群から選ばれる少なくとも2種類の元素の各々の化合物を含有する混合物が挙げられる。   Examples of the phosphor composition material used in the present invention include compounds of at least two elements selected from the group consisting of at least one alkaline earth element, at least one rare earth element, aluminum, and silicon. The mixture which contains is mentioned.

アルカリ土類元素の化合物の例としては、例えばアルカリ土類元素の硝酸塩、塩化物及び硫酸塩が挙げられる。希土類元素の化合物の例としては、例えば希土類元素の硝酸塩、塩化物及び硫酸塩が挙げられる。アルミニウムの化合物の例としては、例えば硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム、及び、アルミニウムメトキシド、アルミニウムエトキシド等のアルミニウムアルコキシドが挙げられる。珪素の化合物の例としては、例えばテトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランや、シリカゾルが挙げられる。珪素の化合物としては、テトラアルコキシシランを塩酸触媒下で加水分解して得られるシリカゾルを用いることが好ましい。   Examples of alkaline earth element compounds include alkaline earth element nitrates, chlorides and sulfates. Examples of rare earth element compounds include nitrates, chlorides and sulfates of rare earth elements. Examples of the aluminum compound include aluminum nitrate, aluminum chloride, aluminum sulfate, and aluminum alkoxide such as aluminum methoxide and aluminum ethoxide. Examples of silicon compounds include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, and silica sol. As the silicon compound, it is preferable to use a silica sol obtained by hydrolyzing tetraalkoxysilane in a hydrochloric acid catalyst.

蛍光体組成物原料溶液としては、例えば、蛍光体組成物原料を水又はアルコール系溶媒に溶解した水溶液又はアルコール系溶液が好ましい。蛍光体組成物原料溶液中の蛍光体組成物原料の濃度は、溶液中の固形分含有量として1〜50重量%が好ましく、3〜40重量%がより好ましい。   As the phosphor composition raw material solution, for example, an aqueous solution or an alcohol solution in which the phosphor composition raw material is dissolved in water or an alcohol solvent is preferable. The concentration of the phosphor composition raw material in the phosphor composition raw material solution is preferably 1 to 50% by weight, more preferably 3 to 40% by weight as the solid content in the solution.

アルカリ系沈殿剤としては、アンモニアが好ましく、通常、アンモニア水として用いることが好ましい。例えば、関東化学製JIS特級28〜30重量%アンモニア水、和光純薬製試薬特級品25重量%アンモニア水、和光純薬製試薬一級品25重量%アンモニア水等が挙げられ、それらの中でも和光純薬製試薬特級品25重量%アンモニア水が好ましい。
また、蛍光体組成物原料溶液の容量、及び濃度などに応じ、前記アンモニア水を水、あるいはアルコール等の溶媒で更に希釈して用いることも可能である。
As the alkaline precipitant, ammonia is preferable, and it is usually preferable to use ammonia water. Examples include JIS special grade 28-30 wt% ammonia water manufactured by Kanto Chemical Co., Ltd., Wako Pure Chemical reagent special grade 25 wt% ammonia water, Wako Pure Chemical reagent first grade 25 wt% ammonia water, and the like. Pharmaceutical reagent special grade 25% by weight ammonia water is preferred.
In addition, the aqueous ammonia can be further diluted with a solvent such as water or alcohol according to the volume and concentration of the phosphor composition raw material solution.

アンモニウム以外のアルカリ系沈殿剤も使用することができ、例えば、炭酸水素アンモニウム、イミダゾール、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウムなども用いることができる。これらのアルカリ系沈殿剤も、その水溶液もしくはアルコール系溶液として用いることが好ましい。
また、アルカリ系沈殿剤に、界面活性剤を混合させて用いることも可能である。
Alkaline precipitants other than ammonium can also be used, such as ammonium hydrogen carbonate, imidazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, sodium hydroxide, water Potassium oxide, sodium hydrogen carbonate and the like can also be used. These alkaline precipitants are also preferably used as an aqueous solution or an alcohol solution.
It is also possible to use a surfactant mixed with an alkaline precipitant.

アルカリ系沈殿剤を水溶液又はアルコール系溶液として用いる場合、アルカリ系沈殿剤の濃度は、1〜30重量%とすることが好ましく、4〜25重量%とすることがより好ましい。   When the alkaline precipitant is used as an aqueous solution or an alcoholic solution, the concentration of the alkaline precipitant is preferably 1 to 30% by weight, and more preferably 4 to 25% by weight.

蛍光体組成物前駆体は、蛍光体組成物原料溶液を用い、蛍光体組成物原料とアルカリ系沈殿剤との液相反応によって得られるが、蛍光体組成物前駆体を均一に生成させるためには、蛍光体組成物原料溶液をアルカリ系沈殿剤溶液中に滴下して反応させる。この反応方法においては、反応温度に特に制限はなく、室温で十分であり、例えば、反応系を撹拌しながら、好ましくは15〜30℃、より好ましくは20〜27℃の温度で反応させることが望ましい。また、滴下終了後、好ましくは5〜30分間、より好ましくは10〜20分間撹拌を継続することが望ましい。   A phosphor composition precursor is obtained by a liquid phase reaction between a phosphor composition raw material and an alkaline precipitant using a phosphor composition raw material solution. In order to uniformly produce a phosphor composition precursor, Is a reaction in which the phosphor composition raw material solution is dropped into an alkaline precipitant solution. In this reaction method, the reaction temperature is not particularly limited, and room temperature is sufficient. For example, the reaction system is preferably reacted at a temperature of 15 to 30 ° C., more preferably 20 to 27 ° C. while stirring the reaction system. desirable. Moreover, it is desirable to continue stirring after the completion of dropping, preferably for 5 to 30 minutes, more preferably for 10 to 20 minutes.

沈殿として得られた蛍光体組成物前駆体の水による洗浄は、洗浄後の水のpHが7〜8になるまで行うことが好ましく、pHが7〜7.5になるまで行うことがより好ましく、pHが7〜7.2になるまで行うことが特に好ましい。
洗浄に用いる水は超純水を用いることが好ましく、電気比抵抗が18MΩ・cm以上の水を用いることが好ましく、18〜18.2MΩ・cmの水を用いることがより好ましい。水の温度は、10〜25℃が好ましく、15〜20℃がより好ましい。
The washing of the phosphor composition precursor obtained as a precipitate with water is preferably performed until the pH of the washed water becomes 7 to 8, more preferably until the pH becomes 7 to 7.5. It is particularly preferable to carry out until the pH reaches 7 to 7.2.
The water used for washing is preferably ultrapure water, preferably water having an electrical resistivity of 18 MΩ · cm or more, more preferably 18 to 18.2 MΩ · cm. 10-25 degreeC is preferable and the temperature of water has more preferable 15-20 degreeC.

蛍光体組成物前駆体の洗浄は、水に蛍光体組成物前駆体を分散させたのち、遠心分離により再分離する工程を、前記条件を満足するまで複数回行う方法が好ましい。
遠心分離は蛍光体組成物前駆体の水への流失が確認されない回転数、及び時間を選択して行うことが好ましく、例えば、回転半径20cmの装置を用いた場合、回転数1000rpm〜4000rpm、分離時間3〜10分で行うことが好ましく、回転数2000rpm〜3000rpm、分離時間4〜7分で行うことがより好ましく、回転数3000rpm、分離時間4〜5分で行うことが特に好ましい。
The phosphor composition precursor is preferably washed by dispersing the phosphor composition precursor in water and then performing re-separation by centrifugation a plurality of times until the above conditions are satisfied.
Centrifugation is preferably performed by selecting a rotation speed and a time at which the phosphor composition precursor is not confirmed to flow out to water. For example, when an apparatus having a rotation radius of 20 cm is used, the rotation speed is 1000 rpm to 4000 rpm. The time is preferably 3 to 10 minutes, more preferably at a rotational speed of 2000 rpm to 3000 rpm and a separation time of 4 to 7 minutes, and particularly preferably at a rotational speed of 3000 rpm and a separation time of 4 to 5 minutes.

蛍光体組成物は、上記の水による洗浄後、蛍光体組成物前駆体を焼成することによって得ることができ、大気雰囲気下、窒素などの不活性雰囲気下、希釈水素などの還元雰囲気下いずれの雰囲気下の焼成によっても得ることができる。特に好ましいのは窒素などの不活性雰囲気下である。焼成温度は、1000〜1600℃が好ましく、1100〜1500℃がより好ましく、焼成時間は、3〜10時間が好ましく、5〜8時間がより好ましい。   The phosphor composition can be obtained by calcination of the phosphor composition precursor after washing with water as described above. The phosphor composition can be obtained in an air atmosphere, an inert atmosphere such as nitrogen, or a reducing atmosphere such as diluted hydrogen. It can also be obtained by firing in an atmosphere. Particularly preferred is an inert atmosphere such as nitrogen. The firing temperature is preferably 1000 to 1600 ° C, more preferably 1100 to 1500 ° C, and the firing time is preferably 3 to 10 hours, more preferably 5 to 8 hours.

本発明の製造方法によれば、例えば、各々下記一般式[1]、[2]、[3]及び[4]で表される組成物[1]、[2]、[3]及び[4]であって、光刺激、電子線刺激又は放射線刺激により、紫外、可視又は赤外領域で発光する結晶質を含む蛍光体組成物を得ることができる。これらの蛍光体組成物は、光刺激、電子線刺激及び放射線刺激の内、少なくとも1つの刺激によって、紫外、可視又は赤外領域で発光する。   According to the production method of the present invention, for example, the compositions [1], [2], [3] and [4] represented by the following general formulas [1], [2], [3] and [4], respectively. It is possible to obtain a phosphor composition containing a crystalline substance that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. These phosphor compositions emit light in the ultraviolet, visible, or infrared region by at least one of light stimulation, electron beam stimulation, and radiation stimulation.

蛍光体組成物[1]
(A23(B23(SiO2 [1]
(ただしx+y+z=1のとき、0<x<0.5、0<y<0.5、0<z<0.95であり、好ましくは0.44<x<0.495、0.005<y<0.06、0.2<z<0.8であり、より好ましくは0.455<x<0.485、0.015<y<0.045、0.4<z<0.6であり、AはGd、Y、Lu及びLaから選ばれる少なくとも1種の元素、BはA以外の少なくとも1種の希土類元素を示す。)
Phosphor composition [1]
(A 2 O 3 ) x (B 2 O 3 ) y (SiO 2 ) z [1]
(However, when x + y + z = 1, 0 <x <0.5, 0 <y <0.5, 0 <z <0.95, preferably 0.44 <x <0.495, 0.005 < y <0.06, 0.2 <z <0.8, more preferably 0.455 <x <0.485, 0.015 <y <0.045, 0.4 <z <0.6. A represents at least one element selected from Gd, Y, Lu and La, and B represents at least one rare earth element other than A.)

蛍光体組成物[2]
(A23(B23(Al23 [2]
(ただしa+b+c=1のとき、0<a<0.375、0<b<0.375、0<c<0.85であり、好ましくは0.3375<a<0.37125、0.00375<b<0.0375、0.2<c<0.75であり、より好ましくは0.3525<a<0.3675、0.0075<b<0.0225、0.4<c<0.65であり、AはGd、Y、Lu及びLaから選ばれる少なくとも1種の元素、BはA以外の少なくとも1種の希土類元素を示す。)
Phosphor composition [2]
(A 2 O 3 ) a (B 2 O 3 ) b (Al 2 O 3 ) c [2]
(However, when a + b + c = 1, 0 <a <0.375, 0 <b <0.375, 0 <c <0.85, preferably 0.3375 <a <0.37125, 0.00375 < b <0.0375, 0.2 <c <0.75, more preferably 0.3525 <a <0.3675, 0.0075 <b <0.0225, 0.4 <c <0.65 A represents at least one element selected from Gd, Y, Lu and La, and B represents at least one rare earth element other than A.)

蛍光体組成物[3]
(QO)(BO)(RO)(SiO [3]
(ただし、d+e+f+g=1のとき、0<d<0.25、0<e<0.25、0<f<0.4、0<g<0.95であり、好ましくは0.2125<d<0.2475、0.0025<e<0.0375、0.1<f<0.35、0.2<g<0.8であり、より好ましくは0.2225<d<0.2375、0.0125<e<0.0275、0.2<f<0.3、0.4<g<0.6であり、Bは希土類元素から選ばれる少なくとも1種の元素、QはMg、Ca、Sr、Ba及びRaから選ばれる少なくとも1種の元素、RはQ以外の少なくとも1種のアルカリ土類元素を示す。)
Phosphor composition [3]
(QO) d (BO) e (RO) f (SiO z ) g [3]
(However, when d + e + f + g = 1, 0 <d <0.25, 0 <e <0.25, 0 <f <0.4, 0 <g <0.95, preferably 0.2125 <d. <0.2475, 0.0025 <e <0.0375, 0.1 <f <0.35, 0.2 <g <0.8, more preferably 0.2225 <d <0.2375, 0.0125 <e <0.0275, 0.2 <f <0.3, 0.4 <g <0.6, B is at least one element selected from rare earth elements, Q is Mg, Ca And at least one element selected from Sr, Ba and Ra, and R represents at least one alkaline earth element other than Q.)

蛍光体組成物[4]
(QO)(BO)(RO)(Al23 [4]
(ただし、h+i+k+m=1のとき、0<h<0.143、0<i<0.143、0<k<0.3、0<m<0.95であり、好ましくは0.12155<h<0.14157、0.00143<i<0.02145、0.05<k<0.25、0.2<m<0.8であり、より好ましくは0.12727<h<0.13585、0.00715<i<0.01573、0.1<k<0.2、0.5<m<0.75であり、Bは希土類元素から選ばれる少なくとも1種の元素、QはMg、Ca、Sr、Ba及びRaから選ばれる少なくとも1種の元素、RはQ以外の少なくとも1種のアルカリ土類元素を示す。)
Phosphor composition [4]
(QO) h (BO) i (RO) k (Al 2 O 3 ) m [4]
(However, when h + i + k + m = 1, 0 <h <0.143, 0 <i <0.143, 0 <k <0.3, 0 <m <0.95, preferably 0.12155 <h. <0.14157, 0.00143 <i <0.02145, 0.05 <k <0.25, 0.2 <m <0.8, more preferably 0.12727 <h <0.13585, 0.00715 <i <0.01573, 0.1 <k <0.2, 0.5 <m <0.75, B is at least one element selected from rare earth elements, Q is Mg, Ca And at least one element selected from Sr, Ba and Ra, and R represents at least one alkaline earth element other than Q.)

蛍光体組成物[1]としては、上記結晶質の結晶構造がY2SiO5と同タイプである蛍光体組成物[5]が好ましい。
蛍光体組成物[2]としては、上記結晶質の結晶構造がY3Al512と同タイプである蛍光体組成物[6]が好ましい。
蛍光体組成物[3]としては、上記結晶質の結晶構造がCaMgSi26と同タイプである蛍光体組成物[7]が好ましい。
蛍光体組成物[4]としては、上記結晶質の結晶構造がBaMgAl1017と同タイプである蛍光体組成物[8]が好ましい。
As the phosphor composition [1], the phosphor composition [5] having the same crystalline crystal structure as that of Y 2 SiO 5 is preferable.
As the phosphor composition [2], the phosphor composition [6] in which the crystalline crystal structure is the same type as that of Y 3 Al 5 O 12 is preferable.
As the phosphor composition [3], a phosphor composition [7] having the same crystalline crystal structure as that of CaMgSi 2 O 6 is preferable.
As the phosphor composition [4], the phosphor composition [8] having the same crystalline crystal structure as that of BaMgAl 10 O 17 is preferable.

なお、上記の蛍光体組成物[5]〜[8]において、「結晶構造が、それぞれ、Y2SiO5、Y3Al512、CaMgSi26及びBaMgAl1017と同タイプである」とは、各蛍光体組成物が、それぞれ、[5]〜[8]に示されると構造と同タイプの結晶構造のみによって形成されていることを意味する。例えば、式[1]においてAがY、BがTbである蛍光体組成物の場合、従来の蛍光体組成物の場合、Y2SiO5と同タイプの結晶構造の他に、Y2Si27構造、Y23構造等が含まれることがあるが、本発明の蛍光体組成物[5]は、Y2SiO5構造と同タイプの結晶構造のみによって構成されている。 In the phosphor compositions [5] to [8], “the crystal structures are the same type as Y 2 SiO 5 , Y 3 Al 5 O 12 , CaMgSi 2 O 6 and BaMgAl 10 O 17 , respectively. "" Means that each phosphor composition is formed only by the same type of crystal structure as the structure shown in [5] to [8]. For example, in the case of the phosphor composition in which A is Y and B is Tb in the formula [1], in the case of the conventional phosphor composition, in addition to the crystal structure of the same type as Y 2 SiO 5 , Y 2 Si 2 Although the O 7 structure and the Y 2 O 3 structure may be included, the phosphor composition [5] of the present invention is constituted only by the same type of crystal structure as the Y 2 SiO 5 structure.

さらに、これらの蛍光体組成物[1]〜[8]の中でも、一般式[1]〜[4]中でAがYであり、BがTb、Ce又はEuであり、QがBa又はCaであり、RがMgである蛍光体組成物が好ましい。
特に、蛍光体の母材を構成する希土類元素Aは、電子線刺激や紫外線刺激の蛍光体用途にはYが好ましく、シンチレータ用途にはGd、Lu、Laなども効率よく適用できる。
同様に蛍光体の母材を構成するアルカリ土類元素Qは蛍光体用途にはBaが好ましく、Ca、Srも効率よく適用できる。
また、付活材として働くB元素は可視領域あるいは赤外領域に発光波長を有するPr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ybなどが好適に適用できる。
Further, among these phosphor compositions [1] to [8], A is Y in the general formulas [1] to [4], B is Tb, Ce or Eu, and Q is Ba or Ca. A phosphor composition in which R is Mg is preferable.
In particular, the rare earth element A constituting the phosphor base material is preferably Y for use in phosphors for electron beam stimulation or ultraviolet light stimulation, and Gd, Lu, La, etc. can be efficiently applied for use in scintillators.
Similarly, the alkaline earth element Q constituting the phosphor base material is preferably Ba for phosphor applications, and Ca and Sr can also be efficiently applied.
Further, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and the like having a light emission wavelength in the visible region or the infrared region can be suitably applied as the B element that functions as an activator.

[実施例1]
一般式[1]に記載の蛍光体組成物の構成元素としてA=Y、B=Tbを選び、組成x=0.465、y=0.035、z=0.5として以下の方法で合成した。
Y、Tb、及びSi成分の原料として、それぞれ硝酸イットリウム水溶液(濃度:19.2重量%)、硝酸テルビウム水溶液(濃度:4.5重量%)、テトラエトキシシランを用意した。
テトラエトキシシランを塩酸触媒下で予め加水分解して得られるシリカゾル液(固形分濃度:20.8重量%)に上記Y及びTbの原料水溶液を所定の組成になるように混合し、蛍光体組成物原料溶液を調製した。
なお、シリカゾル液は、次のように調製した。すなわち、テトラエトキシシラン20.8gに1mol/lHCL 5ml及び超純水2.5mlを加え、発熱がおさまるまで5分間撹拌を続けた。その後、濃度20.8重量%となるまでエタノールにより希釈した。
ついで25重量%アンモニア水60mlに、温度20℃で撹拌しながら上記原料溶液60mlを滴下し、滴下終了後、同温度で15分間撹拌を続け、蛍光体組成物前駆体(沈殿物)を調製した。
蛍光体組成物前駆体の水(500ml、15℃)による洗浄と遠心分離(回転半径20cm、回転数3000rpm、分離時間5分)による固液分離を、5回繰り返し、アンモニア臭がなくなり、洗浄後の水のpHが7.8になったのを確認したのち、150℃で2時間乾燥し、粉末試料3.4gを得た。
ついで同試料を空気中1500℃で8時間熱処理し、蛍光体組成物の粉末試料2.5gを得た。
作製した試料に紫外線ランプを照射したところ、緑色の発光が観察された。
次に熱処理後に得られた蛍光体組成物の粉末試料のX線回折による結晶構造を評価した。
その結果を図1及び図2に示した。各図のX線回折の測定条件は、下記のとおりである。
図1: 測定範囲10〜80゜、ステップ幅0.05゜、計数時間2秒
図2: 測定範囲27〜30゜、ステップ幅0.02゜、計数時間5秒
[Example 1]
A = Y, B = Tb are selected as constituent elements of the phosphor composition described in the general formula [1], and composition x = 0.465, y = 0.035, and z = 0.5 are synthesized by the following method. did.
Yttrium nitrate aqueous solution (concentration: 19.2% by weight), terbium nitrate aqueous solution (concentration: 4.5% by weight), and tetraethoxysilane were prepared as raw materials for Y, Tb, and Si components, respectively.
Phosphor composition is mixed with silica sol liquid (solid content concentration: 20.8% by weight) obtained by pre-hydrolyzing tetraethoxysilane under a hydrochloric acid catalyst so as to have a predetermined composition. A raw material solution was prepared.
The silica sol solution was prepared as follows. Specifically, 5 ml of 1 mol / l HCL and 2.5 ml of ultrapure water were added to 20.8 g of tetraethoxysilane, and stirring was continued for 5 minutes until the exotherm subsided. Then, it diluted with ethanol until it became a density | concentration of 20.8 weight%.
Next, 60 ml of the raw material solution was added dropwise to 60 ml of 25 wt% aqueous ammonia while stirring at a temperature of 20 ° C. After completion of the dropwise addition, stirring was continued for 15 minutes at the same temperature to prepare a phosphor composition precursor (precipitate). .
Washing of the phosphor composition precursor with water (500 ml, 15 ° C.) and solid-liquid separation by centrifugation (rotation radius 20 cm, rotation speed 3000 rpm, separation time 5 minutes) are repeated 5 times to eliminate ammonia odor and after washing After confirming that the pH of the water became 7.8, it was dried at 150 ° C. for 2 hours to obtain 3.4 g of a powder sample.
The sample was then heat-treated in air at 1500 ° C. for 8 hours to obtain 2.5 g of a powder sample of the phosphor composition.
When the produced sample was irradiated with an ultraviolet lamp, green light emission was observed.
Next, the crystal structure by X-ray diffraction of the powder sample of the phosphor composition obtained after the heat treatment was evaluated.
The results are shown in FIG. 1 and FIG. The measurement conditions for X-ray diffraction in each figure are as follows.
Fig. 1: Measuring range 10-80 °, step width 0.05 °, counting time 2 seconds Fig. 2: Measuring range 27-30 °, step width 0.02 °, counting time 5 seconds

X線回折の結果、150℃乾燥粉末は非晶質のパターンを示したが、1500℃焼成品は図1に示すように結晶相の存在を示す多数のピークから成る回折パターンを示した。
同回折パターンは図1に示すようにY2SiO5の回折パターン(JCPDSカードNo.21−1458)に一致するものであった。
また、不純物相としてY23が存在する場合、2θ=29.16°にピークを示すが(JCPDSカードNo.25−1200)、図2に示すように前記角度位置にピークはみられず、結晶構造としてY2SiO5のみ存在することが確認できた。
As a result of X-ray diffraction, the 150 ° C. dry powder showed an amorphous pattern, while the 1500 ° C. fired product showed a diffraction pattern consisting of a number of peaks indicating the presence of a crystalline phase as shown in FIG.
The diffraction pattern coincided with the diffraction pattern of Y 2 SiO 5 (JCPDS card No. 21-1458) as shown in FIG.
When Y 2 O 3 is present as an impurity phase, a peak is shown at 2θ = 29.16 ° (JCPDS card No. 25-1200), but no peak is observed at the angular position as shown in FIG. It was confirmed that only Y 2 SiO 5 exists as a crystal structure.

[実施例2]
実施例1と同様の構成元素、組成、方法により蛍光体組成物前駆体を調製した。
本発明の方法を行い、乾燥させて得られた粉末試料3.4gを窒素雰囲気中1300℃で8時間熱処理し蛍光体組成物の粉末試料2.5gを得た。
作製した試料に紫外線ランプを照射したところ、緑色の発光が観察された。
次に各粉末試料のX線回折による結晶構造を評価した。
X線回折の結果、実施例1と同様、結晶構造としてY2SiO5のみ存在することが確認できた。
[Example 2]
A phosphor composition precursor was prepared by the same constituent elements, composition, and method as in Example 1.
A powder sample 3.4 g obtained by carrying out the method of the present invention and dried was heat-treated at 1300 ° C. for 8 hours in a nitrogen atmosphere to obtain 2.5 g of a powder sample of the phosphor composition.
When the produced sample was irradiated with an ultraviolet lamp, green light emission was observed.
Next, the crystal structure of each powder sample by X-ray diffraction was evaluated.
As a result of X-ray diffraction, as in Example 1, it was confirmed that only Y 2 SiO 5 was present as a crystal structure.

[比較例1]
実施例1と同じ構成元素、組成(x=0.465、y=0.035、z=0.5)を選択し、実施例1と同じ方法で蛍光体組成物原料溶液を調製した。
ついで上記原料溶液60ml中に25重量%アンモニア水60mlを、温度20℃で撹拌しながら滴下し、滴下終了後、同温度で15分間撹拌を続け、蛍光体組成物前駆体(沈殿物)を調製した。
蛍光体組成物前駆体の水(500ml、15℃)による洗浄と遠心分離(回転半径20cm、回転数3000rpm、分離時間5分)による固液分離を、5回繰り返し、アンモニア臭がなくなり、洗浄後の水のpHが7.8になったのを確認したのち、150℃で2時間乾燥し、粉末試料3.4gを得た。
ついで同試料を空気中1500℃で8時間熱処理し、蛍光体組成物の粉末試料2.5gを得た。
作製した試料に紫外線ランプを照射したところ、緑色の発光が観察された。
次に各粉末試料のX線回折による結晶構造を評価した。
X線回折の結果、2θ=29.16°にY23に帰属するピークがみられ、結晶構造としてY2SiO5のほかにY23が存在することが確認された。
[Comparative Example 1]
The same constituent elements and compositions (x = 0.465, y = 0.035, z = 0.5) as in Example 1 were selected, and a phosphor composition raw material solution was prepared in the same manner as in Example 1.
Next, 60 ml of 25 wt% ammonia water was dropped into 60 ml of the raw material solution while stirring at a temperature of 20 ° C. After completion of the dropping, stirring was continued for 15 minutes at the same temperature to prepare a phosphor composition precursor (precipitate). did.
Washing of the phosphor composition precursor with water (500 ml, 15 ° C.) and solid-liquid separation by centrifugation (rotation radius 20 cm, rotation speed 3000 rpm, separation time 5 minutes) are repeated 5 times to eliminate ammonia odor and after washing After confirming that the pH of the water became 7.8, it was dried at 150 ° C. for 2 hours to obtain 3.4 g of a powder sample.
The sample was then heat-treated in air at 1500 ° C. for 8 hours to obtain 2.5 g of a powder sample of the phosphor composition.
When the produced sample was irradiated with an ultraviolet lamp, green light emission was observed.
Next, the crystal structure of each powder sample by X-ray diffraction was evaluated.
Results of X-ray diffraction peaks were observed attributable to the Y 2 O 3 in the 2 [Theta] = 29.16 °, it was confirmed that there is in addition to Y 2 O 3 of Y 2 SiO 5 as a crystal structure.

[実施例3]
一般式[2]に記載の蛍光体組成物の構成元素としてA=Y、B=Ceを選び、組成a=0.36、b=0.015、c=0.625として以下の方法で合成した。
Y、Ce、及びAl成分の原料として、それぞれ硝酸イットリウム水溶液(濃度:19.2重量%)、硝酸セリウム水溶液(濃度:4.3重量%)、硝酸アルミニウム水溶液(濃度:37.5重量%)を用意した。
上記Y、Ce、Al原料水溶液を所定の組成になるように混合し、蛍光体組成物原料溶液を調製した。
ついで4重量%アンモニア水60mlに、温度20℃で撹拌しながら上記原料溶液60mlを滴下し、滴下終了後、同温度で15分間撹拌を続け、蛍光体組成物前駆体(沈殿物)を調製した。
蛍光体組成物前駆体の水(500ml、20℃)による洗浄と遠心分離(回転半径20cm、回転数3000rpm、分離時間5分)による固液分離を、3回繰り返し、アンモニア臭がなくなり、洗浄後の水のpHが7.7になったのを確認したのち、150℃で2時間乾燥し、粉末試料3.6gを得た。
ついで同試料を空気中1200℃で5時間熱処理し、蛍光体組成物の粉末試料2.7gを得た。
作製した試料に470nmの光を照射したところ、黄色の発光が観察された。
次に各粉末試料のX線回折による結晶構造を評価した。
その結果を図3、及び図4に示した。各図のX線回折の測定条件は、下記のとおりである。
図3: 測定範囲10〜80゜、ステップ幅0.05゜、計数時間1秒
図4: 測定範囲26〜30゜、ステップ幅0.02゜、計数時間10秒
[Example 3]
A = Y and B = Ce are selected as constituent elements of the phosphor composition described in the general formula [2], and the composition a = 0.36, b = 0.015, c = 0.625 is synthesized by the following method did.
As raw materials for Y, Ce, and Al components, yttrium nitrate aqueous solution (concentration: 19.2% by weight), cerium nitrate aqueous solution (concentration: 4.3% by weight), and aluminum nitrate aqueous solution (concentration: 37.5% by weight), respectively. Prepared.
The Y, Ce, and Al raw material aqueous solutions were mixed so as to have a predetermined composition to prepare a phosphor composition raw material solution.
Next, 60 ml of the raw material solution was added dropwise to 60 ml of 4 wt% aqueous ammonia while stirring at a temperature of 20 ° C. After completion of the dropwise addition, stirring was continued for 15 minutes at the same temperature to prepare a phosphor composition precursor (precipitate). .
Washing of the phosphor composition precursor with water (500 ml, 20 ° C.) and solid-liquid separation by centrifugation (rotation radius 20 cm, rotation speed 3000 rpm, separation time 5 minutes) are repeated three times, the ammonia odor disappears, and after washing After confirming that the pH of the water became 7.7, it was dried at 150 ° C. for 2 hours to obtain 3.6 g of a powder sample.
The sample was then heat-treated in air at 1200 ° C. for 5 hours to obtain 2.7 g of a powder sample of the phosphor composition.
When the prepared sample was irradiated with light of 470 nm, yellow light emission was observed.
Next, the crystal structure of each powder sample by X-ray diffraction was evaluated.
The results are shown in FIG. 3 and FIG. The measurement conditions for X-ray diffraction in each figure are as follows.
Fig. 3: Measurement range 10-80 °, step width 0.05 °, counting time 1 second Fig. 4: Measurement range 26-30 °, step width 0.02 °, counting time 10 seconds

X線回折の結果、150℃乾燥粉末は非晶質のパターンを示したが、1200℃焼成品は図3に示すように結晶相の存在を示す多数のピークから成る回折パターンを示した。
同回折パターンは図3に示すようにY3Al512の回折パターン(JCPDSカードNo.8−178)に一致するものであった。
また、不純物相として実施例1と同様、Y23が存在することが考えられるが、図4に示すように2θ=29.16°にピークはみられなかった。
同様に不純物相としてY4Al29(JCPDSカードNo.22−987)、もしくはYAlO3(JCPDSカードNo.11−662)、もしくはAl23(JCPDSカードNo.10−173)が存在することが考えられるが、これらのピークはみられず、結晶構造としてY3Al512のみ存在することが確認できた。
As a result of X-ray diffraction, the 150 ° C. dry powder showed an amorphous pattern, while the 1200 ° C. fired product showed a diffraction pattern consisting of a number of peaks indicating the presence of a crystalline phase as shown in FIG.
The diffraction pattern coincided with the diffraction pattern of Y 3 Al 5 O 12 (JCPDS card No. 8-178) as shown in FIG.
Further, it is conceivable that Y 2 O 3 is present as the impurity phase as in Example 1, but no peak was observed at 2θ = 29.16 ° as shown in FIG.
Similarly, Y 4 Al 2 O 9 (JCPDS card No. 22-987), YAlO 3 (JCPDS card No. 11-662), or Al 2 O 3 (JCPDS card No. 10-173) exists as an impurity phase. However, these peaks were not observed, and it was confirmed that only Y 3 Al 5 O 12 was present as the crystal structure.

[比較例1]
実施例1と同じ構成元素、組成(x=0.465、y=0.035、z=0.5)を選択し、実施例1と同じ方法で蛍光体組成物原料溶液を調製した。
ついで上記原料溶液60ml中に25重量%アンモニア水60mlを、温度20℃で撹拌しながら滴下し、滴下終了後、同温度で15分間撹拌を続け、蛍光体組成物前駆体(沈殿物)を調製した。
蛍光体組成物前駆体の水(500ml、15℃)による洗浄と遠心分離(回転半径20cm、回転数3000rpm、分離時間5分)による固液分離を、5回繰り返し、アンモニア臭がなくなり、洗浄後の水のpHが7.8になったのを確認したのち、150℃で2時間乾燥し、粉末試料3.4gを得た。
ついで同試料を空気中1500℃で8時間熱処理し、蛍光体組成物の粉末試料2.5gを得た。
作製した試料に紫外線ランプを照射したところ、緑色の発光が観察された。
次に各粉末試料のX線回折による結晶構造を評価した。
X線回折の結果、2θ=29.16°にY23に帰属するピークがみられ、結晶構造としてY2SiO5のほかにY23が存在することが確認された。
[Comparative Example 1]
The same constituent elements and compositions (x = 0.465, y = 0.035, z = 0.5) as in Example 1 were selected, and a phosphor composition raw material solution was prepared in the same manner as in Example 1.
Next, 60 ml of 25 wt% ammonia water was dropped into 60 ml of the raw material solution while stirring at a temperature of 20 ° C. After completion of the dropping, stirring was continued for 15 minutes at the same temperature to prepare a phosphor composition precursor (precipitate). did.
Washing of the phosphor composition precursor with water (500 ml, 15 ° C.) and solid-liquid separation by centrifugation (rotation radius 20 cm, rotation speed 3000 rpm, separation time 5 minutes) are repeated 5 times to eliminate ammonia odor and after washing After confirming that the pH of the water became 7.8, it was dried at 150 ° C. for 2 hours to obtain 3.4 g of a powder sample.
The sample was then heat-treated in air at 1500 ° C. for 8 hours to obtain 2.5 g of a powder sample of the phosphor composition.
When the produced sample was irradiated with an ultraviolet lamp, green light emission was observed.
Next, the crystal structure of each powder sample by X-ray diffraction was evaluated.
Results of X-ray diffraction peaks were observed attributable to the Y 2 O 3 in the 2 [Theta] = 29.16 °, it was confirmed that there is in addition to Y 2 O 3 of Y 2 SiO 5 as a crystal structure.

[比較例2]
実施例1と同じ構成元素、組成、方法により蛍光体組成物前駆体を調製した。
この蛍光体前駆体を、本発明の方法である、水による洗浄を行わずに遠心分離し、150℃で乾燥して粉末試料3.4gを得た。
ついで同試料を空気中1500℃で8時間熱処理し、蛍光体組成物の粉末試料2.5gを得た。
作製した試料に紫外線ランプを照射したところ、緑色の発光が観察された。
次に各粉末試料のX線回折による結晶構造を評価した。
その結果を図5、及び図6に示した。各図のX線回折の測定条件は、下記のとおりである。
図5: 測定範囲10〜80゜、ステップ幅0.05゜、計数時間2秒
図6: 測定範囲27〜30゜、ステップ幅0.02゜、計数時間5秒
[Comparative Example 2]
A phosphor composition precursor was prepared by the same constituent elements, composition, and method as in Example 1.
The phosphor precursor was centrifuged without washing with water, which is the method of the present invention, and dried at 150 ° C. to obtain 3.4 g of a powder sample.
The sample was then heat-treated in air at 1500 ° C. for 8 hours to obtain 2.5 g of a powder sample of the phosphor composition.
When the produced sample was irradiated with an ultraviolet lamp, green light emission was observed.
Next, the crystal structure of each powder sample by X-ray diffraction was evaluated.
The results are shown in FIG. 5 and FIG. The measurement conditions for X-ray diffraction in each figure are as follows.
Fig. 5: Measurement range 10-80 °, step width 0.05 °, counting time 2 seconds Fig. 6: Measurement range 27-30 °, step width 0.02 °, counting time 5 seconds

X線回折の結果、150℃乾燥粉末は非晶質のパターンを示したが、1500℃焼成品は図5に示すように結晶相の存在を示す多数のピークから成る回折パターンを示した。
同回折パターンは図5に示すようにY2SiO5の回折パターンに一致するものであった。
一方、実施例1で述べた不純物相について、図6に示すように2θ=29.16°にY23に帰属するピークがみられ、結晶構造としてY2SiO5のほかにY23が存在することが確認された。
As a result of X-ray diffraction, the 150 ° C. dry powder showed an amorphous pattern, while the 1500 ° C. fired product showed a diffraction pattern consisting of a number of peaks indicating the presence of a crystalline phase as shown in FIG.
The diffraction pattern coincided with the diffraction pattern of Y 2 SiO 5 as shown in FIG.
On the other hand, the impurity phase as described in Example 1, a peak attributable to Y 2 O 3 in the 2 [Theta] = 29.16 ° is observed as shown in FIG. 6, in addition to Y 2 O of Y 2 SiO 5 as a crystal structure 3 was confirmed to exist.

実施例1〜3及び比較例1〜2についての考察
蛍光体組成物前駆体を合成したとき、アンモニア及び硝酸イオンが前記前駆体内に残留成分として残留していると考えられる。前記残留成分を含む蛍光体組成物前駆体を焼成した場合、残留成分の影響によりSi成分が消失し、蛍光体組成物内のSiが不足することによりY23相が生成すると考えられる。したがって、実施例1に示すように、本発明の方法により蛍光体組成物前駆体を合成し、更に蛍光体組成物前駆体内の残留成分を除去することで、高純度な結晶構造で構成され、前記の蛍光体組成物[1]又は[5]を得られることが分かった。
Consideration about Examples 1-3 and Comparative Examples 1-2 When the phosphor composition precursor is synthesized, it is considered that ammonia and nitrate ions remain as residual components in the precursor. When the phosphor composition precursor containing the residual component is baked, it is considered that the Si component disappears due to the influence of the residual component, and the Y 2 O 3 phase is generated due to the lack of Si in the phosphor composition. Therefore, as shown in Example 1, the phosphor composition precursor is synthesized by the method of the present invention, and further, the residual component in the phosphor composition precursor is removed, so that a high-purity crystal structure is formed. It was found that the phosphor composition [1] or [5] can be obtained.

実施例2に示したように、前記の蛍光体組成物[2]又は[6]についても、本発明の方法により高純度な結晶構造で構成される蛍光体組成物を得られることが分かった。   As shown in Example 2, it was found that the phosphor composition [2] or [6] can also be obtained by the method of the present invention. .

また、実施例1及び実施例2の方法による合成が可能な前記の蛍光体組成物[3]、[4]、[7]、[8]についても、本発明の方法により高純度な結晶構造で構成される蛍光体組成物を得られることは明らかである。   Further, the phosphor compositions [3], [4], [7], and [8] that can be synthesized by the methods of Example 1 and Example 2 also have a high-purity crystal structure by the method of the present invention. It is clear that a phosphor composition comprising:

比較例1のようにアルカリ系沈殿剤を蛍光体組成物原料溶液中に滴下した場合、均一な蛍光体組成物前駆体が生成しないと考えられ、蛍光体組成物前駆体を水で洗浄してもSi成分消失を抑制できないと考えられる。したがって、高純度な結晶構造で構成される蛍光体組成物を得るためには、蛍光体組成物原料溶液をアルカリ系沈殿剤溶液に滴下する方法が好ましい。   When the alkaline precipitant is dropped into the phosphor composition raw material solution as in Comparative Example 1, it is considered that a uniform phosphor composition precursor is not generated, and the phosphor composition precursor is washed with water. It is considered that the disappearance of the Si component cannot be suppressed. Therefore, in order to obtain a phosphor composition composed of a high-purity crystal structure, a method of dropping the phosphor composition raw material solution into an alkaline precipitant solution is preferable.

実施例1で得られた蛍光体組成物の2θ=10°〜80°の粉末X線回折パターン。FIG. 2 is a powder X-ray diffraction pattern of 2θ = 10 ° to 80 ° of the phosphor composition obtained in Example 1. FIG. 実施例1で得られた蛍光体組成物の2θ=27°〜30°の粉末X線回折パターン。FIG. 2 is a powder X-ray diffraction pattern of 2θ = 27 ° to 30 ° of the phosphor composition obtained in Example 1. FIG. 実施例3で得られた蛍光体組成物の2θ=10°〜80°の粉末X線回折パターン。FIG. 2 is a powder X-ray diffraction pattern of 2θ = 10 ° to 80 ° of the phosphor composition obtained in Example 3. FIG. 実施例3で得られた蛍光体組成物の2θ=26°〜30°の粉末X線回折パターン。The powder X-ray-diffraction pattern of 2 (theta) = 26 degrees-30 degrees of the fluorescent substance composition obtained in Example 3. FIG. 比較例2で得られた蛍光体組成物の2θ=10°〜80°の粉末X線回折パターン。FIG. 2 is a powder X-ray diffraction pattern of 2θ = 10 ° to 80 ° of the phosphor composition obtained in Comparative Example 2. FIG. 比較例2で得られた蛍光体組成物の2θ=27°〜30°の粉末X線回折パターン。2 is a powder X-ray diffraction pattern of 2θ = 27 ° to 30 ° of the phosphor composition obtained in Comparative Example 2. FIG.

Claims (14)

蛍光体組成物原料溶液中の蛍光体組成物原料をアルカリ系沈殿剤溶液中に滴下して蛍光体組成物前駆体を沈殿させ、得られた蛍光体組成物前駆体を水で洗浄し、次いで焼成することを特徴とする蛍光体組成物の製造方法。   The phosphor composition raw material in the phosphor composition raw material solution is dropped into the alkaline precipitant solution to precipitate the phosphor composition precursor, and the obtained phosphor composition precursor is washed with water, A method for producing a phosphor composition, comprising firing. 蛍光体組成物前駆体の水による洗浄を、洗浄後の水のpHが7〜8となるまで行うことを特徴とする請求項1に記載の蛍光体組成物の製造方法。   The method for producing a phosphor composition according to claim 1, wherein the phosphor composition precursor is washed with water until the pH of the washed water becomes 7-8. 蛍光体組成物前駆体を調製する際、蛍光体組成物原料溶液をアルカリ系沈殿剤溶液に滴下することを特徴とする請求項1又は2に記載の蛍光体組成物の製造方法。   The method for producing a phosphor composition according to claim 1 or 2, wherein when preparing the phosphor composition precursor, the phosphor composition raw material solution is dropped into an alkaline precipitant solution. 蛍光体組成物原料が、少なくとも1種のアルカリ土類元素、少なくとも1種の希土類元素、アルミニウム及び珪素からなる群から選ばれる少なくとも2種類の元素の各々の化合物を含有することを特徴とする請求項1〜3のいずれかに記載の蛍光体組成物の製造方法。   The phosphor composition raw material contains at least one element of at least one element selected from the group consisting of at least one alkaline earth element, at least one rare earth element, aluminum and silicon. Item 4. A method for producing a phosphor composition according to any one of Items 1 to 3. アルカリ土類元素の化合物がアルカリ土類元素の硝酸塩、塩化物又は硫酸塩であり、希土類元素の化合物が希土類元素の硝酸塩、塩化物又は硫酸塩であり、アルミニウムの化合物が硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム又はアルミニウムアルコキシドであり、珪素の化合物がテトラアルコキシシラン又はシリカゾルである請求項1〜4のいずれかに記載の蛍光体組成物の製造方法。   The alkaline earth element compound is an alkaline earth element nitrate, chloride or sulfate, the rare earth element compound is a rare earth element nitrate, chloride or sulfate, and the aluminum compound is aluminum nitrate, aluminum chloride, It is aluminum sulfate or aluminum alkoxide, and the compound of silicon is tetraalkoxysilane or silica sol, The manufacturing method of the fluorescent substance composition in any one of Claims 1-4. 蛍光体組成物が、一般式[1]
(A23(B23(SiO2 [1]
(ただしx+y+z=1のとき、0<x<0.5、0<y<0.5、0<z<0.95であり、AはGd、Y、Lu及びLaから選ばれる少なくとも1種の元素、BはA以外の少なくとも1種の希土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激又は放射線刺激により、紫外、可視又は赤外領域で発光する結晶質を含む請求項1〜5のいずれかに記載の蛍光体組成物の製造方法。
The phosphor composition has the general formula [1]
(A 2 O 3 ) x (B 2 O 3 ) y (SiO 2 ) z [1]
(However, when x + y + z = 1, 0 <x <0.5, 0 <y <0.5, 0 <z <0.95, and A is at least one selected from Gd, Y, Lu and La. The element B represents at least one rare earth element other than A.)
The phosphor composition according to claim 1, comprising a crystalline material that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. Manufacturing method.
上記結晶質の結晶構造がY2SiO5と同タイプである請求項6に記載の蛍光体組成物の製造方法。 The method for producing a phosphor composition according to claim 6, wherein the crystalline crystal structure is the same type as that of Y 2 SiO 5 . 蛍光体組成物が、一般式[2]
(A23(B23(Al23 [2]
(ただしa+b+c=1のとき、0<a<0.375、0<b<0.375、0<c<0.85であり、AはGd、Y、Lu及びLaから選ばれる少なくとも1種の元素、BはA以外の少なくとも1種の希土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激、及び放射線刺激により紫外、可視もしくは赤外領域で発光する結晶質を含む請求項1〜5のいずれかに記載の蛍光体組成物の製造方法。
The phosphor composition has the general formula [2]
(A 2 O 3 ) a (B 2 O 3 ) b (Al 2 O 3 ) c [2]
(However, when a + b + c = 1, 0 <a <0.375, 0 <b <0.375, 0 <c <0.85, and A is at least one selected from Gd, Y, Lu and La. The element B represents at least one rare earth element other than A.)
The phosphor composition according to claim 1, comprising a crystalline substance that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, and radiation stimulation. Manufacturing method.
上記結晶質の結晶構造がY3Al512と同タイプである請求項8に記載の蛍光体組成物の製造方法。 The method for producing a phosphor composition according to claim 8, wherein the crystalline crystal structure is the same type as that of Y 3 Al 5 O 12 . 蛍光体組成物が、一般式[3]
(QO)(BO)(RO)(SiO [3]
(ただし、d+e+f+g=1のとき、0<d<0.25、0<e<0.25、0<f<0.4、0<g<0.95であり、Bは希土類元素から選ばれる少なくとも1種の元素、QはMg、Ca、Sr、Ba及びRaから選ばれる少なくとも1種の元素、RはQ以外の少なくとも1種のアルカリ土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激又は放射線刺激により紫外、可視もしくは赤外領域で発光する結晶質を含む請求項1〜5のいずれかに記載の蛍光体組成物の製造方法。
The phosphor composition has the general formula [3]
(QO) d (BO) e (RO) f (SiO z ) g [3]
(However, when d + e + f + g = 1, 0 <d <0.25, 0 <e <0.25, 0 <f <0.4, 0 <g <0.95, and B is selected from rare earth elements. (At least one element, Q represents at least one element selected from Mg, Ca, Sr, Ba and Ra, and R represents at least one alkaline earth element other than Q.)
The phosphor composition according to claim 1, comprising a crystalline material that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. Production method.
上記結晶質の結晶構造がCaMgSi26と同タイプである請求項10に記載の蛍光体組成物の製造方法。 The method for producing a phosphor composition according to claim 10, wherein the crystalline crystal structure is the same type as CaMgSi 2 O 6 . 蛍光体組成物が、一般式[4]
(QO)(BO)(RO)(Al23 [4]
(ただし、h+i+k+m=1のとき、0<h<0.143、0<i<0.143、0<k<0.3、0<m<0.95であり、Bは希土類元素から選ばれる少なくとも1種の元素、QはMg、Ca、Sr、Ba及びRaから選ばれる少なくとも1種の元素、RはQ以外の少なくとも1種のアルカリ土類元素を示す。)
で表される組成物であって、光刺激、電子線刺激又は放射線刺激により紫外、可視もしくは赤外領域で発光する結晶質を含む請求項1〜5のいずれかに記載の蛍光体組成物の製造方法。
The phosphor composition has the general formula [4].
(QO) h (BO) i (RO) k (Al 2 O 3 ) m [4]
(However, when h + i + k + m = 1, 0 <h <0.143, 0 <i <0.143, 0 <k <0.3, 0 <m <0.95, and B is selected from rare earth elements. (At least one element, Q represents at least one element selected from Mg, Ca, Sr, Ba and Ra, and R represents at least one alkaline earth element other than Q.)
The phosphor composition according to claim 1, comprising a crystalline material that emits light in the ultraviolet, visible, or infrared region by light stimulation, electron beam stimulation, or radiation stimulation. Production method.
上記結晶質の結晶構造がBaMgAl1017と同タイプである請求項12に記載の蛍光体組成物の製造方法。 The method for producing a phosphor composition according to claim 12, wherein the crystalline crystal structure is the same type as that of BaMgAl 10 O 17 . 請求項1〜13のいずれかに記載の蛍光体組成物の製造方法により製造された蛍光体組成物。   The fluorescent substance composition manufactured by the manufacturing method of the fluorescent substance composition in any one of Claims 1-13.
JP2005053432A 2005-02-28 2005-02-28 Method for producing phosphor composition and phosphor composition obtained by the method Pending JP2006233136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053432A JP2006233136A (en) 2005-02-28 2005-02-28 Method for producing phosphor composition and phosphor composition obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053432A JP2006233136A (en) 2005-02-28 2005-02-28 Method for producing phosphor composition and phosphor composition obtained by the method

Publications (1)

Publication Number Publication Date
JP2006233136A true JP2006233136A (en) 2006-09-07

Family

ID=37041140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053432A Pending JP2006233136A (en) 2005-02-28 2005-02-28 Method for producing phosphor composition and phosphor composition obtained by the method

Country Status (1)

Country Link
JP (1) JP2006233136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032766A (en) * 2017-04-21 2017-08-11 常州梦泰照明科技有限公司 A kind of preparation method of LED package specifics ceramic powder material
CN113563769A (en) * 2021-09-27 2021-10-29 江苏博云塑业股份有限公司 Infrared radiation refrigeration optical coating and optical film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032766A (en) * 2017-04-21 2017-08-11 常州梦泰照明科技有限公司 A kind of preparation method of LED package specifics ceramic powder material
CN113563769A (en) * 2021-09-27 2021-10-29 江苏博云塑业股份有限公司 Infrared radiation refrigeration optical coating and optical film

Similar Documents

Publication Publication Date Title
KR100858269B1 (en) Method of producing aluminate fluorescent substance, a fluorescent substance and a device containing a fluorescent substance
Jung et al. Luminescent properties of (Ba, Sr) MgAl10O17: Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation
JP2004143408A (en) Alkaline earth metal silicate phosphor and light emitting element
JP2006233136A (en) Method for producing phosphor composition and phosphor composition obtained by the method
EP2540799B1 (en) Green luminescent material of terbiuim doped gadolinium borate and preparing method thereof
US6689292B2 (en) Method of producing aluminate phosphor
WO2010137247A1 (en) Fluorescent substance, process for producing same, and luminescent device
KR20010062527A (en) Phosphor for vacuum ultraviolet excited light emitting device
JP3915504B2 (en) Method for producing silicate phosphor
CN103370394B (en) Method for producing fluorescent substance
JP5330684B2 (en) Blue-emitting phosphor particles
JP2002180041A (en) Fluorescent particle
JP4222099B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4325364B2 (en) Method for manufacturing phosphor
EP3243889A1 (en) Fluorescent material, light-emitting device, and method for producing fluorescent material
JP2003213254A (en) Method for producing silicate phosphor
JP2006206619A (en) Phosphor
JP4023222B2 (en) Method for producing silicate phosphor
JP2003003166A (en) Phosphor for vacuum ultraviolet light excitation luminescent element and method for producing the same
KR100725312B1 (en) Zinc silicate green phosphor and method for preparing thereof
JP2003261868A (en) Manufacturing method for silicate fluorescent material
JP3994775B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device
JP2001181627A (en) Fluorescent material for light-emitting element excitable by vacuum ultraviolet ray
JP2003155479A (en) Phosphor and vacuum ultraviolet-excited light-emitting element obtained by using the same
JP4147915B2 (en) Blue phosphor for vacuum ultraviolet light-emitting device