JP2006233103A - Method for recovering polymer from polymer latex and apparatus for recovering polymer - Google Patents

Method for recovering polymer from polymer latex and apparatus for recovering polymer Download PDF

Info

Publication number
JP2006233103A
JP2006233103A JP2005052354A JP2005052354A JP2006233103A JP 2006233103 A JP2006233103 A JP 2006233103A JP 2005052354 A JP2005052354 A JP 2005052354A JP 2005052354 A JP2005052354 A JP 2005052354A JP 2006233103 A JP2006233103 A JP 2006233103A
Authority
JP
Japan
Prior art keywords
polymer
polymer latex
recovering
paste
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005052354A
Other languages
Japanese (ja)
Other versions
JP4673085B2 (en
Inventor
Tetsuya Yamamoto
哲矢 山本
Hiroshi Kojima
洋 小島
Seiji Tamai
清二 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2005052354A priority Critical patent/JP4673085B2/en
Publication of JP2006233103A publication Critical patent/JP2006233103A/en
Application granted granted Critical
Publication of JP4673085B2 publication Critical patent/JP4673085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering a polymer, by which the polymer can be recovered from a polymer latex obtained by an emulsion polymerization in the form of easily handleable uniform granules in a state little producing fine particles, and to provide an apparatus for recovering the polymer. <P>SOLUTION: This method for recovering the polymer from the polymer latex is characterized by comprising mixing the polymer latex with the aqueous solution of a coagulating agent to prepare the paste, and then extruding the paste from a thin hole into a hot water tank heated to ≥70°C and directly connected to the thin hole, and disposing a continuously drivable cutting blade on the exit of the thin hole. The apparatus for recovering the polymer is characterized by having a mixer for mixing the polymer latex with the aqueous solution of a coagulating agent to prepare the paste, and a hot water tank heated to ≥70°C and directly connected to the thin hole of the exit of the mixer, and disposing a continuously drivable cutting blade on the exit of the thin hole. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、乳化重合にて得られた重合体ラテックスから重合体を効率よく回収する方法に関するものであり、さらに詳しくは、特定の手段にて重合体ラテックスと凝固剤とを接触させたペーストを処理することにより、微粉がほとんどなく、かつ取り扱いやすい形状が均一な顆粒として回収することのできる重合体の回収方法および重合体回収装置に関するものである。 The present invention relates to a method for efficiently recovering a polymer from a polymer latex obtained by emulsion polymerization, and more specifically, a paste obtained by contacting a polymer latex and a coagulant with a specific means. The present invention relates to a polymer recovery method and a polymer recovery apparatus that can be recovered as a uniform granule having a uniform shape with little fine powder and easy to handle.

アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)に代表されるゴム強化樹脂は、乳化重合にて製造されるのが一般的であるが、この重合法においては、得られたラテックス中から重合体を回収するに際し、通常凝固剤にて析出させてスラリー状とした後、脱水、洗浄、乾燥工程を経て重合体を回収する。
この方法で重合体を回収する場合、ラテックスの凝固は、熱水を満たした凝固槽に重合体ラテックスと凝固剤水溶液とを供給し、該凝固槽内にて攪拌することによって行なわれることが多いが、この方法では回収される重合体粒子の粒子径分布が広く、かつ微粉粒子が多く存在するため、(1)脱水工程での脱水性が悪い、(2)分離・乾燥工程で微粉粒子が目詰まりして生産性が低下する、(3)微粉粒子による粉塵爆発を防止するための設備が必要となる、(4)押出機に投入する際に微粉粒子が飛散したり、パウダーがホッパー内でブリッジングして押出機内にフィードしない等の不具合がある。
これを解決するため、例えば、特許文献1(特開2003−321547号公報)には、重合体ラテックスと凝固剤液を混合して凝固クリームとした後、細孔から熱水に投入して攪拌/固化/分断することにより微粉粒子の少ない重合体を回収する方法が提案されているが、攪拌での剪断作用が均一でなく、その結果固化分断後の形態が不揃いとなることが多く、また微粉粒子を少なくする効果も十分とは言えなかった。
特開2003−321547号公報
Rubber-reinforced resins represented by acrylonitrile-butadiene-styrene resin (ABS resin) are generally produced by emulsion polymerization. In this polymerization method, the polymer is recovered from the obtained latex. In doing so, it is usually precipitated with a coagulant to form a slurry, and then the polymer is recovered through dehydration, washing, and drying steps.
When the polymer is recovered by this method, the latex is often coagulated by supplying the polymer latex and the coagulant aqueous solution to a coagulation tank filled with hot water and stirring in the coagulation tank. However, in this method, the recovered polymer particles have a wide particle size distribution and a large amount of fine particles are present, so that (1) the dehydration process is poor in the dehydration process, and (2) the fine powder particles are separated in the separation / drying process. Productivity is reduced due to clogging. (3) Equipment to prevent dust explosion caused by fine powder particles is required. (4) Fine powder particles are scattered when put into the extruder or powder is in the hopper. There are problems such as bridging and not feeding into the extruder.
In order to solve this, for example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-321547), a polymer latex and a coagulant liquid are mixed to form a coagulated cream, and then stirred into hot water through pores. A method for recovering a polymer with few fine particles by solidifying / dividing has been proposed, but the shearing action with stirring is not uniform, and as a result, the form after solidification is often uneven. The effect of reducing the fine particles was not sufficient.
JP 2003-321547 A

本発明の目的は、上述の諸問題を解決し、乳化重合にて得られる重合体ラテックスから、微粉がほとんどなく、かつ取り扱いやすい形状が均一な顆粒として回収することができる重合体の回収方法および重合体回収装置を提供することにある。 The object of the present invention is to solve the above-mentioned problems, and from a polymer latex obtained by emulsion polymerization, a method for recovering a polymer that can be recovered as a uniform granule having almost no fine powder and easy to handle, and It is to provide a polymer recovery apparatus.

微粉をほとんど含まず、かつ均一な形態で重合体を回収することができ、移送や充填が容易で保管時にもブロッキングを生ずることなく、かつ造粒時における取り扱いも容易な顆粒状重合体を回収することができるという効果を奏するものである。 Recovers a granular polymer that contains almost no fine powder and can be recovered in a uniform form, is easy to transport and fill, does not block during storage, and is easy to handle during granulation The effect that it can be done is produced.

本発明者らは、重合体ラテックスと凝固剤の水溶液とを混合して該重合体ラテックスを固化した後の重合体の処理手法について鋭意研究した結果、重合体ラテックスと凝固剤の水溶液とを混合機中にてペーストとした後、該混合機出口の細孔から直接連結した70℃以上の温水槽へ押出すに際し、細孔出口に連続駆動可能な切断刃を設置することにより、本発明の目的を達成することができることを見出し、本発明に到達した。
即ち本発明は、重合体ラテックスから重合体を回収する方法であって、該重合体ラテックスと凝固剤の水溶液とを混合機中にてペーストとした後、該混合機出口の細孔から直接連結した70℃以上の温水槽へ押出すに際し、細孔出口に連続駆動可能な切断刃を設置することを特徴とする重合体ラテックスからの重合体回収方法および、重合体ラテックスから重合体を回収する装置であって、該重合体ラテックスと凝固剤の水溶液とを混合してペーストとする混合機と、該混合機出口の細孔から直接連結した70℃以上の温水槽を有し、かつ、該細孔出口に連続駆動可能な切断刃を設置すること特徴とする重合体ラテックスからの重合体回収装置を提供するものである。
As a result of earnest research on the processing method of the polymer after mixing the polymer latex and the aqueous solution of the coagulant and solidifying the polymer latex, the present inventors mixed the polymer latex and the aqueous solution of the coagulant. After forming into a paste in the machine, when extruding to a hot water tank of 70 ° C. or higher directly connected from the pores at the outlet of the mixer, by installing a cutting blade capable of being continuously driven at the outlet of the pores, The inventors have found that the object can be achieved and have reached the present invention.
That is, the present invention is a method for recovering a polymer from a polymer latex, wherein the polymer latex and an aqueous solution of a coagulant are made into a paste in a mixer and then directly connected through pores at the outlet of the mixer. A polymer recovery method from a polymer latex, and a polymer recovered from the polymer latex, characterized in that a cutting blade capable of being continuously driven is installed at the pore outlet when extruding into a hot water bath of 70 ° C. or higher An apparatus comprising: a mixer for mixing the polymer latex and an aqueous solution of a coagulant to form a paste; a hot water bath of 70 ° C. or higher directly connected from pores at the outlet of the mixer; and The present invention provides an apparatus for recovering a polymer from a polymer latex, characterized in that a cutting blade capable of being continuously driven is installed at the outlet of a pore.

以下、本発明につき詳細に説明する。
本発明の回収方法が適用される重合体ラテックスとしては、乳化重合により製造される重合体ラテックスを挙げることができる。例えば、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリルゴム等のゴム状重合体ラテックス、該ゴム状重合体ラテックスにアクリロニトリル、スチレン、α−メチルスチレン、メチルメタアクリレート等の共重合可能なビニル系単量体をグラフト重合してなるグラフト重合体ラテックスや、上記ビニル系単量体を乳化重合して得られたポリスチレン、スチレン−アクリロ二トリル共重合体、スチレン−メチルメタクリレート共重合体、α−メチルスチレン−アクリロ二トリル共重合体等の硬質樹脂重合体ラテックスを挙げることができる。
また、他の方法として、別途重合された固体のゴム状重合体を、例えばホモジナイザー等を用い、界面活性剤を用いて乳化することにより得られたゴム質重合体及び該ゴム質重合体ラテックスにアクリロニトリル、スチレン、α−メチルスチレン、メチルメタアクリレート等の共重合可能なビニル系単量体をグラフト重合して得られたグラフト重合体ラテックスにも適用することができる。
なお、乳化重合するに際しては特に制限はなく、公知の技術、重合助剤を採用することができる。
Hereinafter, the present invention will be described in detail.
Examples of polymer latex to which the recovery method of the present invention is applied include polymer latex produced by emulsion polymerization. For example, rubber-like polymer latex such as butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), acrylic rubber, etc., acrylonitrile, styrene, α-methylstyrene, Graft polymer latex obtained by graft polymerization of a copolymerizable vinyl monomer such as methyl methacrylate, or polystyrene or styrene-acrylonitrile copolymer obtained by emulsion polymerization of the vinyl monomer. And hard resin polymer latexes such as styrene-methyl methacrylate copolymer and α-methylstyrene-acrylonitryl copolymer.
As another method, a separately polymerized solid rubber-like polymer is emulsified using a surfactant, for example, using a homogenizer or the like, and the rubber polymer obtained by emulsifying the rubber polymer latex. The present invention can also be applied to a graft polymer latex obtained by graft polymerization of a copolymerizable vinyl monomer such as acrylonitrile, styrene, α-methylstyrene, or methyl methacrylate.
In addition, there is no restriction | limiting in particular in emulsion polymerization, A well-known technique and a polymerization adjuvant can be employ | adopted.

本発明の回収方法で用いられる凝固剤としては、例えば、硫酸、リン酸、硝酸等の鉱酸、酢酸、硫酸マグネシウム、塩化カルシウム等のアルカリ土類金属の硫酸塩または塩化物から選ばれた1種以上を用いることができる。
該凝固剤の使用量には特に制限はないが、重合体ラテックス(固形分)100重量部に対し、0.1〜10重量部が好ましく、さらに好ましくは0.5〜8重量部である。
また、本発明においては、必要に応じて上記凝固剤に対して予め水溶性高分子(ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリアルキレンオキサイド、ポリビニルアルコール、ヒドロキシエチルセルロース、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリアクリルアミド、ポリジメチルアミノエチルメタクリレート等)を混合することも可能である。
The coagulant used in the recovery method of the present invention is, for example, 1 selected from mineral acids such as sulfuric acid, phosphoric acid and nitric acid, sulfates or chlorides of alkaline earth metals such as acetic acid, magnesium sulfate and calcium chloride. More than seeds can be used.
Although there is no restriction | limiting in particular in the usage-amount of this coagulant, 0.1-10 weight part is preferable with respect to 100 weight part of polymer latex (solid content), More preferably, it is 0.5-8 weight part.
In the present invention, if necessary, water-soluble polymers (polyalkylene oxides such as polyethylene oxide and polypropylene oxide, polyvinyl alcohol, hydroxyethyl cellulose, sodium polyacrylate, polyvinyl pyrrolidone, polyacrylamide are previously used for the above-mentioned coagulant. , Polydimethylaminoethyl methacrylate, etc.) can also be mixed.

本発明の重合体ラテックスから重合体を回収するに際しては、まず重合体ラテックスと凝固剤の水溶液とを接触混合させる必要があり、例えばスタティックミキサーあるいはスクリュ−ポンプ等の混合機中に連続的に導入して接触混合することができるが、特にスタティックミキサーを使用することが好ましい。
その際、連続的に供給される重合体ラテックスや凝固剤水溶液については、重合体ラテックスの性状に応じて固形分濃度や凝固剤量を調整することにより、流動性を保持した所望の粘度を有するペーストとすることが望ましい。
When the polymer is recovered from the polymer latex of the present invention, it is necessary to first contact and mix the polymer latex and an aqueous solution of a coagulant, and for example, continuously introduced into a mixer such as a static mixer or a screw pump. However, it is particularly preferable to use a static mixer.
At that time, the continuously supplied polymer latex and coagulant aqueous solution have a desired viscosity that maintains fluidity by adjusting the solid content concentration and the amount of coagulant according to the properties of the polymer latex. It is desirable to use a paste.

次に、上記ペーストは、該混合機出口の細孔から直接連結した70℃以上の温水槽へ押出されるが、該温水槽の温度は70℃以上であることが必要である。該温水槽の温度が70℃より低い場合には、ペーストを細孔から押し出した際に凝固が不十分となることがあり、その結果微粉の発生が増加するため好ましくない。また該温水槽は、温水が連続供給可能で、かつ回収重合体と一緒に連続排出できる構造であることが望ましい。
なお、回収重合体の形状保持効率をさらに高めるため、必要に応じて温水槽に攪拌機を設置してもよい。
Next, the paste is extruded into a hot water tank of 70 ° C. or higher directly connected from the pores at the outlet of the mixer, and the temperature of the hot water tank needs to be 70 ° C. or higher. When the temperature of the hot water tank is lower than 70 ° C., solidification may be insufficient when the paste is extruded from the pores, and as a result, generation of fine powder is increased, which is not preferable. Further, it is desirable that the hot water tank has a structure in which hot water can be continuously supplied and can be continuously discharged together with the recovered polymer.
In addition, in order to further improve the shape retention efficiency of the recovered polymer, a stirrer may be installed in the hot water tank as necessary.

本発明においては、形状の揃った顆粒状の重合体を回収するため、上記の混合機でペーストとした後、該混合機出口の細孔から直接連結した70℃以上の温水槽へ押出すに際し、該細孔出口に連続駆動可能な切断刃を設置することが重要である。
該切断刃は押出されてくるペーストを連続的に切断できるものであればよく、回転式や上下式または左右往復式などが例示される。
また、該切断刃の駆動速度は、得ようとする顆粒の大きさやペーストの粘度等に合わせ、最適な速度を選択することができる。さらに、細孔の数に応じ、切断刃を複数個設置してもよい。
In the present invention, in order to recover a granular polymer having a uniform shape, the mixture is made into a paste by the above mixer and then extruded into a hot water tank of 70 ° C. or higher directly connected from the pores at the outlet of the mixer. It is important to install a cutting blade that can be continuously driven at the outlet of the pore.
The cutting blade only needs to be capable of continuously cutting the extruded paste, and examples thereof include a rotary type, an up-down type, and a left-right reciprocating type.
Further, the driving speed of the cutting blade can be selected in accordance with the size of the granules to be obtained, the viscosity of the paste, and the like. Furthermore, a plurality of cutting blades may be installed according to the number of pores.

本発明の重合体ラテックスからの重合体回収装置は、該重合体ラテックスと凝固剤の水溶液とを混合してペーストとする混合機と、該混合機出口の細孔から直接連結した70℃以上の温水槽を有し、かつ、該細孔出口に連続駆動可能な切断刃を設置してなる重合体回収装置である。
該混合機としては、例えばスタティックミキサーあるいはスクリュ−ポンプ等を挙げることができるが、特にスタティックミキサーを使用することが好ましい
また、該混合機出口の細孔から直接連結してなる温水槽としては、温水が連続供給可能で、かつ回収重合体と一緒に連続排出できる構造であることが望ましい。
本発明においては、形状の揃った顆粒状の重合体を回収するため、上記ペーストとした後、細孔から直接連結した70℃以上の温水槽へ押出すに際し、細孔出口に連続駆動可能な切断刃を設置することが重要である。
該切断刃は押出されてくるペーストを連続的に切断できるものであればよく、回転式や上下式または左右往復式などが例示される。
また、該切断刃の駆動速度は、得ようとする顆粒の大きさやペーストの粘度等に合わせ、最適な速度を選択することができる。さらに、細孔の数に応じ、切断刃を複数個設置してもよい。
The polymer recovery device from the polymer latex of the present invention comprises a mixer that mixes the polymer latex and an aqueous solution of a coagulant to form a paste, and a temperature of 70 ° C. or higher directly connected from the pores at the mixer outlet. This is a polymer recovery device having a hot water tank and having a cutting blade that can be continuously driven at the outlet of the pores.
Examples of the mixer include a static mixer or a screw pump, but it is particularly preferable to use a static mixer. Moreover, as a hot water tank directly connected from the pore at the outlet of the mixer, It is desirable that the hot water can be continuously supplied and can be continuously discharged together with the recovered polymer.
In the present invention, in order to recover a granular polymer having a uniform shape, it is possible to continuously drive to the outlet of the pore when extruding into a hot water tank of 70 ° C. or higher directly connected from the pore after forming the paste. It is important to install a cutting blade.
The cutting blade only needs to be capable of continuously cutting the extruded paste, and examples thereof include a rotary type, an up-down type, and a left-right reciprocating type.
Further, the driving speed of the cutting blade can be selected in accordance with the size of the granules to be obtained, the viscosity of the paste, and the like. Furthermore, a plurality of cutting blades may be installed according to the number of pores.

この後、公知の方法、例えば遠心脱水機、流動乾燥機を使用して、脱水・乾燥されて重合体を回収することができる。なお、この際、必要に応じて、重合体ラテックスに予め各種酸化防止剤、各種安定剤を添加しても良く、さらにこれらを乳化して添加しても良い。
〔実施例〕
本発明をさらに具体的に説明するために以下に実施例及び比較例を挙げて説明するが、これらによって本発明は何ら制限されるものではない。なお、部および%は重量に基づくものである。
Thereafter, the polymer can be recovered by dehydration and drying using a known method such as a centrifugal dehydrator or a fluid dryer. At this time, if necessary, various antioxidants and various stabilizers may be added to the polymer latex in advance, and these may be further emulsified and added.
〔Example〕
In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited by these. Parts and% are based on weight.

−グラフト重合体ラテックスの調製−
グラフト重合体ラテックス(a−1):窒素置換した攪拌機付き反応器にポリブタジエンラテックス(重量平均粒子径0.3μm、ゲル含有量85%)60部(固形分)、水140部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.4部を入れ、65℃に加熱後、アクリロニトリル10部、スチレン30部からなる混合物およびオレイン酸カリウム1.0部、キュメンハイドロパーオキサイド0.2部からなる混合物をそれぞれ3時間に亘り連続的に添加し、更に65℃で2時間重合して、固形分41.0%のグラフト重合体ラテックス(a−1)を得た。
-Preparation of graft polymer latex-
Graft polymer latex (a-1): Nitrogen substituted reactor equipped with stirrer, polybutadiene latex (weight average particle size 0.3 μm, gel content 85%) 60 parts (solid content), water 140 parts, ethylenediaminetetraacetic acid diacetate Sodium salt 0.1 part, ferrous sulfate 0.001 part, sodium formaldehyde sulfoxylate 0.4 part were added, heated to 65 ° C., then a mixture of acrylonitrile 10 parts, styrene 30 parts and potassium oleate A mixture of 0 part and 0.2 part of cumene hydroperoxide was continuously added over 3 hours each, and further polymerized at 65 ° C. for 2 hours to give a graft polymer latex (a- 1) was obtained.

−硬質樹脂重合体ラテックスの調製−
硬質樹脂重合体ラテックス(a−2):窒素置換した攪拌機付き反応器に水120部、過硫酸カリウム0.3部を入れ、70℃に加熱後アクリロ二トリル25部、スチレン75部からなる混合物およびオレイン酸カリウム1.5部をそれぞれ4時間に亘り連続的に添加し、更に70℃で2時間重合して、固形分45.0%の硬質樹脂重合体ラテックス(a−2)を得た。
-Preparation of hard resin polymer latex-
Rigid resin polymer latex (a-2): A mixture of 120 parts of water and 0.3 part of potassium persulfate in a nitrogen-replaced reactor equipped with a stirrer, heated to 70 ° C. and then 25 parts of acrylonitrile and 75 parts of styrene And 1.5 parts of potassium oleate were continuously added over 4 hours, and further polymerized at 70 ° C. for 2 hours to obtain a hard resin polymer latex (a-2) having a solid content of 45.0%. .

〔実施例−1〕
図1に示すスタティックミキサーの先端が温水槽に直接連結し、その出口に連続駆動可能な回転式切断刃を備えた装置を用い、グラフト重合体ラテックス(a−1)100部(固形分)と硫酸マグネシウムの5%水溶液80部(硫酸マグネシウム含有量4部)をそれぞれ混合機に連続的に添加してペーストとし、混合機出口に設けた細孔から90℃に加温された温水槽中にペーストを押し出した。その際、スタティックミキサー出口には直径2mmの円状細孔が10箇所ある円板を取り付け、各細孔から20mm/秒の速度でペーストが出るように調節し、かつ細孔出口にはそれに接して4枚刃を有する切断器具を設け、その回転数を2回転/秒に調節した。
得られたスラリーを遠心脱水機、流動乾燥機を使用してグラフト重合体粒子(A−1)を回収した。回収重合体はその90%以上が長さ3.35〜5.6mmの円筒状もしくは楕円状顆粒であり、微粉量も0.5%と少なかった。顆粒の大きさや微粉量は、回収重合体40gをセイシン企業製音波振動式篩い分け機ソニックシフターL−200Pで8分間篩い分け、各目開きのJIS標準篩上に残存した量を全体に占める比率(%)で示した。微粉は100メッシュ(目開き0.15mm)の篩を通過した量で表した(以下同様の方法で測定)。なお、得られた回収重合体の性状は他の実施例及び比較例とともに表1にまとめて示した。
[Example-1]
Using a device in which the tip of the static mixer shown in FIG. 1 is directly connected to the hot water tank and is equipped with a rotary cutting blade that can be continuously driven at the outlet, 100 parts (solid content) of the graft polymer latex (a-1) 80 parts of a 5% aqueous solution of magnesium sulfate (magnesium sulfate content: 4 parts) was continuously added to the mixer to form a paste, which was placed in a hot water tank heated to 90 ° C. from the pores provided at the outlet of the mixer. Extruded paste. At that time, a disk with 10 circular pores with a diameter of 2 mm is attached to the outlet of the static mixer, and the paste is adjusted so that the paste comes out from each pore at a speed of 20 mm / sec. A cutting tool having four blades was provided, and the rotation speed was adjusted to 2 rotations / second.
Graft polymer particles (A-1) were recovered from the resulting slurry using a centrifugal dehydrator and a fluid dryer. 90% or more of the recovered polymer was a cylindrical or elliptical granule having a length of 3.35 to 5.6 mm, and the amount of fine powder was as small as 0.5%. Granule size and fine powder amount are the ratio of 40g of recovered polymer to the remaining amount on the JIS standard sieve of each mesh by sieving for 8 minutes with Sonic Shifter L-200P, a sonic vibration sieving machine manufactured by Seishin Enterprise. (%). The fine powder was expressed by the amount that passed through a sieve of 100 mesh (aperture 0.15 mm) (hereinafter measured by the same method). The properties of the obtained recovered polymer are shown in Table 1 together with other examples and comparative examples.

〔実施例−2〕
実施例−1と同じ装置を用い、硬質樹脂重合体ラテックス(a−2)100部(固形分)と、硫酸マグネシウムの5%水溶液80部(硫酸マグネシウム含有量4部)をそれぞれ混合機に連続的に添加してペーストとし、混合機出口に設けた細孔から98℃に加温された温水槽中にペーストを押し出した。その際、ペーストの押出しや切断刃の使用条件も実施例−1と同一にした。
得られたスラリーを遠心脱水機、流動乾燥機を使用して硬質樹脂重合体粒子(A−2)を回収した。結果は表1に示したが、ほぼ大きさが均一で、かつ微粉の少ないものであった。
Example-2
Using the same apparatus as in Example 1, 100 parts (solid content) of the hard resin polymer latex (a-2) and 80 parts of a 5% aqueous solution of magnesium sulfate (4 parts of magnesium sulfate content) were continuously connected to the mixer. The paste was pushed out into a hot water bath heated to 98 ° C. from the pores provided at the mixer outlet. At that time, the extrusion of the paste and the use conditions of the cutting blade were also the same as those in Example-1.
Hard resin polymer particles (A-2) were recovered from the resulting slurry using a centrifugal dehydrator and a fluid dryer. The results are shown in Table 1, and were almost uniform in size and small in fine powder.

〔実施例−3〕
実施例−1と同じ装置を用い、予めグラフト重合体ラテックス(a−1)50部(固形分)と硬質樹脂重合体ラテックス(a−2)50部(固形分)とを混合したラテックスと、硫酸マグネシウムの5%水溶液60部(硫酸マグネシウム含有量3部)及び5%硫酸水溶液10部(硫酸含有量0.5部)とをそれぞれ混合機に連続的に添加してペーストとし、混合機出口に設けた細孔から95℃に加温された温水槽中にペーストを押し出した。その際、ペーストの押出しや切断刃の使用条件も実施例−1と同一にした。
得られたスラリーを遠心脱水機、流動乾燥機を使用して重合体粒子(A−3)を回収した。結果は表1に示したが、ほぼ大きさが均一で、かつ微粉の少ないものであった。
Example-3
Using the same apparatus as in Example-1, a latex in which 50 parts (solid content) of the graft polymer latex (a-1) and 50 parts (solid content) of the hard resin polymer latex (a-2) were previously mixed, 60 parts of magnesium sulfate 5% aqueous solution (magnesium sulfate content 3 parts) and 5% sulfuric acid aqueous solution 10 parts (sulfuric acid content 0.5 parts) were continuously added to the mixer to obtain a paste, and the outlet of the mixer The paste was extruded through a pore provided in the hot water tank heated to 95 ° C. At that time, the extrusion of the paste and the use conditions of the cutting blade were also the same as those in Example-1.
From the resulting slurry, polymer particles (A-3) were recovered using a centrifugal dehydrator and a fluid dryer. The results are shown in Table 1, and were almost uniform in size and small in fine powder.

〔比較例−1〕
攪拌機付き凝固槽を用い、予め150部の水を入れ90℃に加温した後、グラフト重合体ラテックス(a−1)100部(固形分)と5%硫酸マグネシウム水溶液80部(硫酸マグネシウム含有量4部)とを凝固槽内で接触するようにそれぞれ連続的に送液した。その際、凝固槽の温度は90℃に維持した。
得られたスラリーを遠心脱水機、流動乾燥機を使用してグラフト重合体粒子(B−1)を回収した。得られた回収体は不定形で、大きさもまちまちであり、微粉も36%と非常に多かった。結果は表1に示した。
[Comparative Example-1]
Using a coagulation tank equipped with a stirrer, 150 parts of water was previously added and heated to 90 ° C., and then 100 parts (solid content) of the graft polymer latex (a-1) and 80 parts of 5% magnesium sulfate aqueous solution (magnesium sulfate content) 4 parts) were continuously fed so as to come into contact with each other in the coagulation tank. At that time, the temperature of the coagulation tank was maintained at 90 ° C.
Graft polymer particles (B-1) were recovered from the resulting slurry using a centrifugal dehydrator and a fluid dryer. The obtained recovered body was irregular in shape, varied in size, and very fine with 36%. The results are shown in Table 1.

〔比較例2〕
スタティックミキサーを混合機として用い、グラフト重合体ラテックス(a−1)100部(固形分)と硫酸マグネシウムの5%水溶液80部(硫酸マグネシウム含有量4部)をそれぞれ混合機に連続的に添加してペーストとし、混合機出口に設けた細孔から90℃に加温された温水槽へ攪拌下に押し出した。得られたスラリーを遠心脱水機、流動乾燥機を使用してグラフト重合体粒子(B−2)を回収した。得られた回収体は、微粉は5%と比較的少ないものの、形状のばらつきが大きかった。結果は表1に示した。
[Comparative Example 2]
Using a static mixer as a mixer, 100 parts of graft polymer latex (a-1) (solid content) and 80 parts of a 5% magnesium sulfate aqueous solution (magnesium sulfate content of 4 parts) were continuously added to the mixer. A paste was then extruded from the pores provided at the mixer outlet into a hot water bath heated to 90 ° C. with stirring. Graft polymer particles (B-2) were recovered from the resulting slurry using a centrifugal dehydrator and a fluid dryer. The obtained recovered body had a large variation in shape although the fine powder was relatively small at 5%. The results are shown in Table 1.

〔比較例−3〕
ペーストが押出される温水槽の温度を50℃とした以外は、実施例−1と同じ条件でペーストを押し出した。得られたスラリーを遠心脱水機、流動乾燥機を使用してグラフト重合体粒子(B−3)を回収した。得られた回収体は固化不十分のため、微粉が25%と多く、また全体に形状が破壊され、小さい粒子側にシフトした。結果は表1に示した。
[Comparative Example-3]
The paste was extruded under the same conditions as in Example 1 except that the temperature of the hot water tank into which the paste was extruded was 50 ° C. Graft polymer particles (B-3) were recovered from the resulting slurry using a centrifugal dehydrator and a fluid dryer. Since the obtained recovered material was insufficiently solidified, the amount of fine powder was as high as 25%, and the shape was totally destroyed and shifted to the small particle side. The results are shown in Table 1.

Figure 2006233103
Figure 2006233103

上記のとおり、本発明の回収方法を適用すると微粉をほとんど含まない重合体粒子を回収することができ、粉末取り扱い時に問題を起こすことがなく、重合体を効率的に回収することができるものであり、産業上有用である。 As described above, when the recovery method of the present invention is applied, polymer particles containing almost no fine powder can be recovered, and the polymer can be recovered efficiently without causing problems during powder handling. Yes, it is industrially useful.

重合体回収装置を示す図である。It is a figure which shows a polymer collection | recovery apparatus.

符号の説明Explanation of symbols

1:凝固剤水溶液投入口
2:重合体ラテックス投入口
3:混合機(スタティックミキサー)
4:細孔ノズル(ストランド出口)
5:切断刃
6:温水槽
7:脱水機
8:乾燥機
9:重合体顆粒取出し口
1: Coagulant aqueous solution inlet 2: Polymer latex inlet 3: Mixer (static mixer)
4: Pore nozzle (strand outlet)
5: Cutting blade 6: Hot water tank 7: Dehydrator 8: Dryer 9: Polymer granule outlet

Claims (4)

重合体ラテックスから重合体を回収する方法であって、該重合体ラテックスと凝固剤の水溶液とを混合機中にてペーストとした後、該混合機出口の細孔から直接連結した70℃以上の温水槽へ押出すに際し、該細孔出口に連続駆動可能な切断刃を設置することを特徴とする重合体ラテックスからの重合体回収方法。   A method of recovering a polymer from a polymer latex, wherein the polymer latex and an aqueous solution of a coagulant are made into a paste in a mixer, and then directly connected through pores at the outlet of the mixer. A method for recovering a polymer from a polymer latex, characterized in that a cutting blade capable of being continuously driven is installed at the outlet of the pore when extruding into a hot water tank. 重合体ラテックスが、ゴム質重合体ラテックスの存在下にビニル系単量体を乳化グラフト重合して得られたグラフト重合体ラテックス及び/又はビニル系単量体を乳化重合して得られた硬質樹脂重合体ラテックスである請求項1記載の重合体回収方法。   Rigid resin obtained by emulsion polymerization of graft polymer latex and / or vinyl monomer obtained by emulsion graft polymerization of vinyl monomer in the presence of rubbery polymer latex The polymer recovery method according to claim 1, which is a polymer latex. 重合体ラテックスから重合体を回収する装置であって、該重合体ラテックスと凝固剤の水溶液とを混合してペーストとする混合機と、該混合機出口の細孔から直接連結した70℃以上の温水槽を有し、かつ、該細孔出口に連続駆動可能な切断刃を設置すること特徴とする重合体ラテックスからの重合体回収装置。   An apparatus for recovering a polymer from a polymer latex, wherein the polymer latex and an aqueous solution of a coagulant are mixed to form a paste, and a temperature of 70 ° C. or higher directly connected from a pore at the outlet of the mixer An apparatus for recovering a polymer from a polymer latex, comprising a hot water tank and a cutting blade capable of being continuously driven at an outlet of the pore. 重合体ラテックスが、ゴム質重合体ラテックスの存在下にビニル系単量体を乳化グラフト重合して得られたグラフト重合体ラテックス及び/又はビニル系単量体を乳化重合して得られた硬質樹脂重合体ラテックスである請求項3記載の重合体回収装置。
Rigid resin obtained by emulsion polymerization of graft polymer latex and / or vinyl monomer obtained by emulsion graft polymerization of vinyl monomer in the presence of rubbery polymer latex The polymer recovery apparatus according to claim 3, which is a polymer latex.
JP2005052354A 2005-02-28 2005-02-28 Polymer recovery method and polymer recovery apparatus from polymer latex Expired - Fee Related JP4673085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005052354A JP4673085B2 (en) 2005-02-28 2005-02-28 Polymer recovery method and polymer recovery apparatus from polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005052354A JP4673085B2 (en) 2005-02-28 2005-02-28 Polymer recovery method and polymer recovery apparatus from polymer latex

Publications (2)

Publication Number Publication Date
JP2006233103A true JP2006233103A (en) 2006-09-07
JP4673085B2 JP4673085B2 (en) 2011-04-20

Family

ID=37041109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052354A Expired - Fee Related JP4673085B2 (en) 2005-02-28 2005-02-28 Polymer recovery method and polymer recovery apparatus from polymer latex

Country Status (1)

Country Link
JP (1) JP4673085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420438A (en) * 2017-08-23 2019-03-05 抚顺伊科思新材料有限公司 Coacervation device and method applied to rubber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139887A (en) * 1974-04-27 1975-11-08
WO2001016196A1 (en) * 1999-08-31 2001-03-08 Mitsubishi Rayon Co., Ltd. Process for producing polymer particles
JP2003321547A (en) * 2002-04-26 2003-11-14 Techno Polymer Co Ltd Method of recovering polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139887A (en) * 1974-04-27 1975-11-08
WO2001016196A1 (en) * 1999-08-31 2001-03-08 Mitsubishi Rayon Co., Ltd. Process for producing polymer particles
JP2003321547A (en) * 2002-04-26 2003-11-14 Techno Polymer Co Ltd Method of recovering polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420438A (en) * 2017-08-23 2019-03-05 抚顺伊科思新材料有限公司 Coacervation device and method applied to rubber

Also Published As

Publication number Publication date
JP4673085B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4929618B2 (en) Method for producing rubbery polymer
JPH0643499B2 (en) Method and device for dissolving polymer in water
JP2001507056A (en) Method and apparatus for continuous coagulation of aqueous graft rubber dispersion
JP2008106099A (en) Protein-degraded natural rubber, method for producing the same and composition containing the same
JP2004507393A (en) Method for reducing polymer content in wastewater by dewatering a plastic / water mixture
US4429114A (en) Method for treating emulsified latex
JPS62149726A (en) Powdery polymer and its production
JP4673085B2 (en) Polymer recovery method and polymer recovery apparatus from polymer latex
JPS5821644B2 (en) ABS type resin manufacturing method
WO2015146549A1 (en) Method for producing emulsion-polymerized latex aggregate particles, emulsion-polymerized latex aggregates, and emulsion-polymerized latex aggregate particles
JPS63264636A (en) Process and apparatus for producing coagulated particle from polymer latex
JP3987755B2 (en) Polymer recovery method
JP4676216B2 (en) Polymer recovery method from polymer latex
JP2977589B2 (en) Method for producing powdery granular polymer
EP1739117A1 (en) Method and apparatus for producing rubbery polymer
JP4081510B2 (en) Regeneration treatment system for reclaimable polystyrene resin particles and treatment method thereof
EP1229056B1 (en) Process for producing polymer particles
JP3469007B2 (en) Grinding method of adhesive hydrogel polymer
JPH0457374B2 (en)
WO2006098287A1 (en) Method and apparatus for recovering (rubber-reinforced) styrene resin composition
JPH01230605A (en) Method and apparatus for production of coagulated resin
JPH0959390A (en) Spherical polymer particle and its production
CA1107883A (en) Process for recovering graft copolymer latex solids wherin a fines fraction is recycled and incorporated in said solids
JPS5991103A (en) Recovery of thermoplastic resin
JP4980676B2 (en) Polymer recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4673085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees