WO2006098287A1 - Method and apparatus for recovering (rubber-reinforced) styrene resin composition - Google Patents

Method and apparatus for recovering (rubber-reinforced) styrene resin composition Download PDF

Info

Publication number
WO2006098287A1
WO2006098287A1 PCT/JP2006/304931 JP2006304931W WO2006098287A1 WO 2006098287 A1 WO2006098287 A1 WO 2006098287A1 JP 2006304931 W JP2006304931 W JP 2006304931W WO 2006098287 A1 WO2006098287 A1 WO 2006098287A1
Authority
WO
WIPO (PCT)
Prior art keywords
extruder
styrene
rubber
resin
styrene resin
Prior art date
Application number
PCT/JP2006/304931
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Urabe
Original Assignee
Techno Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Polymer Co., Ltd. filed Critical Techno Polymer Co., Ltd.
Priority to CN200680016218XA priority Critical patent/CN101175794B/en
Priority to KR1020077023421A priority patent/KR101279244B1/en
Publication of WO2006098287A1 publication Critical patent/WO2006098287A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for recovering a (rubber reinforced) styrene resin composition from a (rubber reinforced) styrene resin latex.
  • various types of high-quality (rubber reinforced) styrene resin compositions with good yields can be recovered with small energy that does not cause fine powder scattering or a large amount of drainage, or cause environmental pollution problems.
  • the method can be recovered with small energy that does not cause fine powder scattering or a large amount of drainage, or cause environmental pollution problems.
  • (Rubber-reinforced) Styrenic resin latex refers to rubber-reinforced styrene resin latex and / or styrene resin latex.
  • the (rubber reinforced) styrene resin composition represents a rubber reinforced styrene resin composition and / or a styrene resin composition.
  • Rubber-reinforced styrene-based resin compositions used in the manufacture of ABS resin pellets are conventionally manufactured by coagulating and slurrying rubber-reinforced styrene-based resin latex, washing and dehydrating, and drying. .
  • the conventional method has problems such as a large amount of drainage in the washing and dehydration process, a large amount of energy in the drying process, generation of exhaust gas, and generation of fine powder and scattering. There were problems such as poor productivity and high environmental pollution measures. For this reason, the following method has been proposed.
  • resins with high molecular weight and resins with high rubber components have high melt viscosity, so when processing these resins by this method, very high power is required for melt extrusion in the extruder 10X.
  • the resin temperature may increase due to large heat generation. As a result, there were cases where the impact strength of the resin discharged from the extruder 10X was lowered or the color tone deteriorated.
  • the solidified resin is washed and drained in a state where it is not sufficiently melted, the resin having a small particle size is discharged together with water through the mechanical filter 61, and the recovery is greatly enhanced. It may be necessary.
  • Patent Document 1 USP3993292
  • Patent Document 2 Japanese Patent No. 3597070
  • the present invention has a small yield that does not cause fine powder scattering and a large amount of drainage, and does not cause environmental pollution problems.
  • the present invention also has a separate solidification, dehydration, and washing process. It is an object of the present invention to provide a method for recovering high-quality (rubber reinforced) styrene resin compositions of various varieties.
  • the present invention is configured as the following [1] to [9].
  • (rubber reinforced) styrene resin latex (B) represents rubber reinforced styrene resin latex (B) and / or styrene resin latex (B).
  • (rubber reinforced) styrene resin composition represents a rubber reinforced styrene resin composition and / or a styrene resin composition. The same shall apply hereinafter.
  • Creamy substance (D) is a paste-like (rubber reinforced) styrene resin that does not separate into a solid and a liquid even when left at room temperature for a long time (eg 1 day).
  • Rubberer reinforced Use styrene resin.
  • a method for recovering a (rubber reinforced) styrene-based resin composition is provided.
  • This collection method can be realized by using the collection apparatus illustrated in FIG.
  • the plasticizing styrenic resin (A) is supplied into the extruder on the upstream side of the supply position of the cream-like substance (D) by performing the plasticizing step in a plasticizer.
  • a plasticizer Rubber Reinforcement
  • This collection method can be realized by the collection apparatus illustrated in FIG.
  • the coagulation temperature in the coagulation step is (Tm-70) ° C or more when the Vicat softening temperature of the resin of the (rubber reinforced) styrene resin latex (B) is Tm ° C.
  • a method for recovering a styrene-based resin composition (rubber reinforced).
  • the mixture of the styrene resin latex (B) and the coagulant (C) has many non-creamy parts, resulting in the plasticization process. There will be many parts that cannot be mixed well with the later styrenic resin (A).
  • the solid content concentration of the cream substance (D) obtained in the coagulation step and fed into the extruder is in the range of 15 to 40% by mass.
  • a method for recovering a (rubber reinforced) styrene-based resin composition is provided.
  • the solid content of the cream substance (D) is less than 15% by mass
  • the mixture of latex (B) and coagulant (C) there may be a lot of separated water that is not creamy. As a result, it can be mixed well with the styrenic resin (A) after the plasticization process. There are many parts that can't be heard.
  • the solid content concentration of the cream substance (D) exceeds 40%, the viscosity becomes too high, and the mixture of the styrene resin latex (B) and the coagulant (C) is mixed with the styrene resin after the plasticization process. It becomes difficult to supply the resin (A).
  • Wash water at 100 ° C. or more is supplied into the extruder downstream from the supply position of the cream substance (D), and the wash water and the mixture (E ) To discharge the moisture in the extruder,
  • a method for recovering a (rubber reinforced) styrene-based resin composition is provided.
  • a gas-liquid separation tank is provided at the subsequent stage of the mechanical filter, and drainage is performed while controlling the pressure of the gas phase in the gas-liquid separation tank.
  • a method for recovering a styrene-based resin composition (rubber reinforced).
  • the main extruder has a main extruder, an auxiliary extruder for plasticizing styrene resin, and a solidification device.
  • the main extruder has a first supply port for the auxiliary extruder at the most upstream position.
  • a discharge port of the auxiliary extruder is connected to the first supply port
  • a discharge port of the coagulation apparatus is connected to the second supply port
  • the styrenic resin plasticized in the auxiliary extruder is supplied to the first supply loci and the main extruder and creamed (rubber reinforced) styrene resin in the coagulation apparatus is supplied to the second supply loca.
  • the mixture is fed and mixed, and the mixture is melted in the main extruder and washed with washing water supplied from the water supply port. Drain through the Kal filter, devolatilize the mixture after water drainage under negative pressure, and discharge the volatile components to the devolatilization loca.
  • a (rubber reinforced) styrene-based resin composition recovery device A (rubber reinforced) styrene-based resin composition recovery device.
  • FIG. 1 An example of this collection device is shown in FIG. 1
  • a gas-liquid separation tank is provided downstream of the mechanical filter, and a drainage device is provided for draining water while controlling the pressure in the gas phase in the gas-liquid separation tank. (Rubber-reinforced) Styrenic resin composition Collecting device.
  • a plasticizing step for plasticizing the styrene resin (A), (rubber reinforcement) a styrene resin latex (B) and a coagulant (C) are mixed to obtain a cream substance (D)
  • Mixing to obtain the mixture (E) by supplying the tar-like substance (D) into the extruder in which the styrenic resin (A) after the coagulation step and the plasticizing step is present and mixing in the extruder
  • the (rubber reinforced) styrene-based resin composition is recovered from the inside of the extruder, so that even if a large-scale facility is not used, fine powder scattering and a large amount of wastewater are not generated, and environmental pollution problems do not occur.
  • the plasticizing styrene resin (A) is performed upstream of the supply position of the cream-like substance (D) by performing the plasticizing step in a plasticizer.
  • the plasticization of the styrene resin (A) and the mixing step of mixing and melting the plasticized styrene resin (A) and the slurry (D) are performed separately. Therefore, it is possible to operate by setting optimum conditions for each. This Therefore, it is possible to recover various types of high-quality (rubber strong) styrene resin compositions.
  • the solidification temperature in the solidification step is set to the Vicat softening temperature of the (rubber reinforced) styrene resin latex (B) as T m ° C. In this case, since it is set to (Tm_70) ° C. or more, the plasticized styrene resin (A) and the talium-like substance (D) can be mixed well.
  • the solid content concentration of the cream substance (D) obtained in the coagulation step and supplied into the extruder is in the range of 15 to 40% by mass. Therefore, it is possible to mix the plasticized styrene resin (A) and the cream substance (D) well.
  • wash water of 100 ° C. or more is supplied into the extruder downstream from the supply position of the cream substance (D).
  • the plasticized styrenic resin (A) and the creamy material (D) It is possible to satisfactorily remove moisture containing almost no resin component from the mixed melt.
  • a gas-liquid separation tank is provided after the mechanical filter, and drainage is performed while controlling the pressure in the gas phase in the gas-liquid separation tank.
  • the recovery device of configuration 8 can provide a specific example of a device that can implement the recovery method of configuration 3 (and configurations 4 to 6 that cite configuration 3).
  • the recovery device of configuration 9 can provide a specific example of a device that can implement the recovery method of configuration 7.
  • FIG. 1 is an explanatory diagram of a collecting apparatus used for producing pellets of an example. Corresponds to configuration 3.
  • FIG. 2 is an explanatory view of a recovery device of Configuration 2 of the present invention.
  • FIG. 3 is an explanatory view of a (or conventional) recovery device used for manufacturing pellets of a comparative example.
  • FIG. 4 In the apparatus of FIG. 1, the auxiliary extruder 20, the coagulator 30 and the main extruder 10 are shown in a simplified manner, the front part of the auxiliary extruder 20, the front part of the coagulator 30, and the mechanical filter. Explanatory drawing which shows the back
  • styrenic resin (A) examples include polystyrene, styrene monomethyl methacrylate (MS resin), styrene-acrylonitrile copolymer (AS resin), styrene-acrylonitrile trimethyl methacrylate (MAS resin), and styrene.
  • Rigid resin polymers such as monoacrylonitrile N-phenylmaleimide, acrylonitrile-butadiene-styrene copolymer (ABS resin), ethylene-propylene-modified styrene-acrylonitrile resin (AES resin), methyl methacrylate-butadiene Resinous polymers such as one styrene resin (MBS resin), methyl metatalylate one talironitrile butadiene styrene resin (MABS resin), high impact polystyrene resin (HIPS resin), acrylic rubber-based modified styrene-acrylonitrile resin (AAS resin) Can be mentioned.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • AES resin ethylene-propylene-modified styrene-acrylonitrile resin
  • MABS resin methyl methacrylate-butadiene Resinous polymers
  • MBS resin methyl metatalylate
  • the temperature of the plasticized AS resin is in the range of 100 to 200 ° C, preferably 110 to 160 ° C. is there.
  • Examples of the (rubber reinforced) styrene-based resin latex (B) include the following polymer latex obtained by emulsion polymerization.
  • rubbery polymers such as styrene butadiene rubber (SBR), polystyrene, styrene monomethyl methacrylate (MS resin), Acrylonitrile copolymer (AS resin), styrene acrylonitrile 1 methyl methacrylate (MAS resin), styrene acrylonitrile 1 N-phenylmaleimide and other hard resin polymers, acrylonitrile butadiene styrene copolymer (ABS) Resin), ethylene-propylene-modified styrene-acrylonitrile resin (AES resin), methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene resin (MABS resin), high impact Examples thereof
  • the (rubber reinforced) styrene resin composition recovery method of the present invention is a resin latex obtained by emulsion polymerization or a resin latex obtained by re-emulsification of the resin, and adjustment of physical properties, appearance, and other performances. It is useful when mixing with a resin compounded for improvement.
  • styrene resin (A) / (rubber reinforced) styrene resin latex (B) AS resin / ABS resin latex, MAS resin latex / MABS resin latex, AS resin / ASA resin latex, AS resin / AES resin latex, AS resin / AS resin latex, etc.
  • the resin concentration is 25 to 45% by mass, and the amount of coagulant added is 100 to 10 parts by weight of ABS resin:! A range of parts is preferred.
  • the solid content concentration of the cream-like substance (D) obtained by mixing (rubber-reinforced) styrene resin latex (B) and coagulant (C) and coagulating is 15 to 40% by mass, preferably 20 -40 mass%, more preferably 25-35 mass%.
  • the solid content concentration of the cream substance (D) is less than 15%, there may be a lot of non-creamy separated water in the mixture of styrene resin latus status (B) and coagulant (C), As a result, there are many portions that cannot be mixed well with the styrenic resin (A) after the plasticizing step.
  • the solid content concentration of the cream substance (D) exceeds 40%, the viscosity becomes too high, and the mixture of the styrene resin latex (B) and the coagulant (C) is mixed with styrene after the plasticizing step. It becomes difficult to supply into the resin (A).
  • the solid content concentration of the cream substance (D) is 20 to 40% by mass
  • the mixing with the styrenic resin (A) after the plasticizing step is good, and the more preferable range is 25 to 35% by mass. Percentage is acceptable Mixing with the styrenic resin (A) after the plasticizing process is even better.
  • coagulant (C) those usually used for coagulation of polymer latex can be used.
  • examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as acetic acid and formic acid, and metal salts of these acids.
  • the metal salt include inorganic salts such as calcium chloride, vinyl chloride, aluminum sulfate and magnesium sulfate, and organic salts such as calcium acetate and aluminum acetate.
  • the metal salt may be used as a solid or dissolved in water or the like, but is preferably used as a 3 to 25% by weight aqueous solution.
  • the above coagulants can be used singly or in combination of two or more.
  • the amount of coagulant (C) added is (rubber reinforced) solid content concentration of styrene resin latex (B), (rubber reinforced ) It is determined in consideration of the coagulation value of the styrene resin, but is usually 1 to 10 parts by weight, preferably 1 to 8 parts by weight with respect to 100 parts by weight of the (rubber reinforced) styrene resin. If the amount of the coagulant added is less than parts by weight, the (rubber reinforced) styrene resin latex (B) may not be sufficiently coagulated.
  • the above “coagulation value” refers to a mixture of a styrene resin latex (B) having a predetermined solid content concentration (rubber reinforcement) and a coagulant (C) having a different solid content concentration, and a certain time has elapsed. This is the lowest concentration at which precipitation occurs (concentration after mixing) when precipitation is confirmed.
  • the temperature of the mixture after supplying the quality (D) is from 13 ⁇ 4 to (13 ⁇ 4 + 100) ° 0 when the Vicat softening temperature of the styrene resin (A) is T n ° C. (8) and (Tm—70 0)
  • the high-temperature high-pressure water of 100 ° C or higher, or 100 Supplying steam at ⁇ 200 ° C can be used as washing water for washing polymerization aids such as emulsifiers, coagulants, etc., and separating the water in the mixture (E) together with the washing water in the subsequent drainage process 'It may be drained.
  • water or steam at a high temperature and high pressure is supplied in this way, the coagulated substance in the cream-like substance (D) can be heated to have an effect of promoting plasticization.
  • the supply amount (mass) of the high-temperature high-pressure water or steam is preferably 2 times or less that of the resin.
  • the temperature of the steam is ⁇ , preferably 110 to 180 ° C, and more preferably 120 to 160 ° C. Since the heat energy is low at temperatures lower than 110 ° C, there is a problem that the effect of plasticizing the resin is insufficient.At temperatures higher than 180 ° C, the steam pressure increases, so high-pressure equipment is required. There is a problem that handling becomes difficult.
  • the mixing ratio of styrene resin (A) to (rubber reinforced) styrene resin latex (B) is (B) force S rubber reinforced styrene resin latex contains the rubber component in the resin composition after mixing.
  • the amount is preferably 10 to 35% by mass.
  • the proportion of component (B) after mixing is preferably 10 to 80% by mass.
  • AS resin is exemplified as the styrene resin (A)
  • ABS resin latex is exemplified as the rubber-reinforced styrene resin latex (B).
  • AS resin is exemplified as the styrene resin (A)
  • ABS resin latex is exemplified as the rubber-reinforced styrene resin latex (B).
  • the present invention is not limited to this.
  • This recovery device comprises a main extruder 10, an auxiliary extruder 20 for plasticizing the styrene resin (A), a rubber-reinforced styrene resin latex (B) and a coagulant (C). And a coagulation device 30 for making a cream.
  • the main extruder 10 is a squeezing and twin screw system, with a screw diameter of 40 mm, a cylinder length Z cylinder diameter (L / D) of 40, a motor rating of 75 kw, and a maximum rotation speed of 700 rpm.
  • the auxiliary extruder 20 is a squeezing and twin screw system, with a screw diameter of 30 mm, cylinder length / cylinder diameter (L / D) of 18, motor rating of 37 kw, and maximum rotation speed of 900 rpm. Since the auxiliary extruder 20 has a small cylinder length / cylinder diameter (L / D) and a low indentation pressure to the main extruder, it can be operated at ultra high speed and high flow. A relatively small device is sufficient.
  • Coagulator 30 is a squeezing and twin screw extruder, screw diameter is 30mm, cylinder length / cylinder diameter (L / D) is 8, motor rating is 1.5kw, maximum rotation speed is 12 ( kpm.
  • the main extruder 10 is provided with a first supply port 101 for the auxiliary extruder 20 at a position on the most upstream side, and a second supply for the coagulator 30 on the downstream side of the first supply port 101.
  • a supply port 102 is provided.
  • a cleaning water supply port 103, a cleaning water drain port 104, and a plurality of devolatilization ports 105a and 105b for removing volatile components are provided in this order.
  • the die plate at the tip of the main extruder 10 is a 5 ⁇ * 20 hole die plate (having 20 through holes with a diameter of 5 mm (5 ⁇ )).
  • the discharge port of the auxiliary extruder 20 is connected to the first supply port 101, and the discharge port of the coagulation device 30 is connected to the second supply port 102. Further, a supply pipe for cleaning water (or steam) is connected to the water supply port 103, and a mechanical filter 41 is connected to the drain port 104. Also, vacuum suction devices (vents) 43 and 43 are connected to the devolatilization ports 105a and 105b. It is.
  • the drain port 104 and the mechanical filter 41 may have a plurality of stages. In other words, a plurality of resins may be arranged in order in the resin traveling direction in the main extruder 10. Further, the devolatilization ports 105a and 105b and the vacuum suction devices 43 and 43 may be provided in three or more stages, which is two stages in the illustrated example.
  • the auxiliary extruder 20 is injected with an AS resin, which is a styrene resin (A), and an additive, and is melted (plasticized).
  • AS resin which is a styrene resin (A)
  • A styrene resin
  • the plasticized molten or semi-molten matrix is supplied from the supply port 101 into the main extruder 10.
  • the pumps are sequentially supplied at the pressure of the pump 303. Further, the coagulant (C) is put into the coagulator 30 in order.
  • AS resin styrene resin (A)
  • solidified ABS resin latex cream-like substance (D)
  • AS resin styrene resin (A)
  • solidified ABS resin latex cream-like substance (D)
  • High-temperature and high-pressure washing water or steam is supplied to the molten mixture from the water supply port 103. This washing water is discharged by the mechanical filter 41 along with the water contained in the cream substance (D).
  • a gas-liquid separation tank 411 is provided downstream of the mechanical filter 41.
  • a control valve 412a is provided in the drain line of the gas-liquid separation tank 411, and the degree of opening and closing thereof, that is, the amount of drainage, is adjusted so that the liquid level in the gas-liquid separation tank 411 is maintained at a predetermined level. Controlled by controller 412.
  • a control valve 415a is provided in the exhaust line of the gas-liquid separation tank 411, and the pressure of the gas phase part in the gas-liquid separation tank 411 is maintained at a predetermined pressure with respect to the opening / closing degree, that is, the exhaust amount. Thus, it is controlled by the pressure controller 415.
  • the predetermined pressure that should be maintained in the gas phase section means that the mechanical filter 41 separates and removes water from the main extruder 10.
  • the pressure is maintained at a pressure equal to or higher than the vapor pressure of water at that temperature, which makes it possible to separate the liquid in a liquid state without evaporating it.
  • the resin slightly leaking is recovered by the auto filter 413, and returned to the inlet of the coagulation apparatus 30 by the pump through the fine powder recovery tank 414.
  • the filtrate from which the resin has been removed by the autofilter 413 is drained.
  • the mixture from which the water contained in the washing water and the cream-like substance (D) has been removed is further vacuumed by the vacuum suction device 43.
  • the volatile matter is discharged from the devolatilization ports 105 and 105b.
  • the recovery device in FIG. 2 is the same as the recovery device in FIG. 1. Therefore, the same components as those in FIG. 1 are denoted by the same reference numerals, and different configurations will be mainly described. It is to be noted that the mechanisms shown in FIG. 4 are attached to the coagulation apparatus 30 and the mechanical filter 41 as in the case of the recovery apparatus in FIG.
  • the recovery device in FIG. 2 does not have the auxiliary extruder 20 in FIG. That is, the system configuration is simplified.
  • the matrix body AS resin and additive
  • the supply for the coagulation device 30 is supplied to the area where the plasticized matrix body exists. Mouth 102 is provided. Because of this configuration, in FIG. 2, the cylinder length of the main extruder 10B is longer than the cylinder length of the main extruder 10 of FIG.
  • FIG. 3 recovery device (comparative recovery device):
  • the recovery device of FIG. 3 is not a device that performs the recovery method of the present invention, but will be briefly described because it is used in a comparative example described later.
  • the main extruder 10X is provided with a plurality of supply ports (not shown) for cleaning steam and a plurality of discharge ports (not shown) for discharging cleaning water, and a plurality of mechanical filters 61 and A vacuum suction device 43 is arranged.
  • the main extruder 10X is a non-combination twin-shaft system (the same type of non-combination system used in Patent Document 1), with a screw diameter of 40 mm, cylinder length / cylinder diameter (L / D) Is 72, the motor rating is 75kw, and the maximum speed is 900rpm.
  • the equipment shown in Fig. 3 feeds raw materials (ABS resin latex and coagulant) into the main extruder 10X and proceeds while plasticizing, supplying cleaning steam, cleaning and draining, and then devolatilizing. , A device for discharging. Since the raw materials are melted, washed and devolatilized in the same cylinder, it is not possible to select the optimum number of revolutions for each. For this reason, each process cannot be optimally controlled, and the quality of the discharged resin may not be sufficient. For example, when the temperature of the molten resin becomes too high, the deterioration of the resin (molecular cutting) progresses, the MFR increases, the impact strength decreases, and the color tone increases bL (yellowishness). was there. Since the amount of the rubber component cannot be adjusted by the matrix body, it may be complicated if it is necessary to adjust in a later process.
  • MFR IS 220, based on IS 0133. C, measured with a load of 98N.
  • the resulting ABS resin latex has a solid content of 33%, the rubber component in the resin is 50%, the matrix part (aceton soluble part) has an AN% of 27%, the intrinsic viscosity is 0.41 dl / g, graft The rate was 55%.
  • ABS resin latex 40 parts (in terms of solid content), 43.8 parts of styrene, and 16.2 parts of attalononitrile were used to produce an ABS resin latex according to a known method.
  • the obtained ABS resin latex had a solid content of 34.5%, a rubber component in the resin of 40%, and an AN% of the matrix part (aceton soluble part) was 27. / 0 , the intrinsic viscosity was 0.45 dl / g, and the graft ratio was 62%.
  • the pellets of Examples 1 to 3 were manufactured using the apparatus shown in FIG. Table 1 shows the components of Examples 1 to 3 and details of the manufacturing process (such as operating conditions).
  • Comparative Example Pellet 11 is a pellet in which the pellet of Comparative Example 1 has the same rubber content as Example 1,
  • Comparative Example Pellet 12 is a pellet in which the pellet of Comparative Example 1 has the same rubber content as Example 2,
  • Comparative Example Pellet 21 is a pellet in which the pellet of Comparative Example 2 has the same rubber content as Example 3.
  • the present invention produces high-quality (rubber-rich) styrene resin compositions of various varieties with low energy without causing environmental pollution problems that do not cause fine powder scattering and large amounts of wastewater, and can produce high yields. Can be used for any purpose.

Abstract

A method by which various kinds of rubber-reinforced styrene resin compositions of good quality can be recovered in a small amount of energy in a satisfactory yield without posing a problem concerning environmental pollution. The method for recovering a (rubber-reinforced) styrene resin composition is characterized by conducting: a plastication step in which a styrene resin (A) is plasticated; a coagulation step in which a (rubber-reinforced) styrene resin latex (B) is mixed with a coagulant (C) to obtain a creamy substance (D); a mixing step in which the creamy substance (D) is fed to an extruder in which the styrene resin (A) which has undergone the plastication step is present, and they are mixed in the extruder to obtain a mixture (E); a draining step in which water is removed from the mixture (E) and discharged from the extruder; and a volatilization step in which volatile matters are removed from the mixture which has undergone the water removal and discharged from the extruder, the (rubber-reinforced) styrene resin composition being recovered from the extruder.

Description

明 細 書  Specification
(ゴム強化)スチレン系樹脂組成物の回収方法及び装置  (Rubber reinforced) Recovery method and apparatus for styrene resin composition
技術分野  Technical field
[0001] 本発明は、(ゴム強化)スチレン系樹脂ラテックスから(ゴム強化)スチレン系樹脂組 成物を回収する方法に関する。詳しくは、微粉の飛散や大量の排水を生ずることなく 、また、環境汚染問題を生ずることなぐ小さなエネルギーで、収率良ぐ種々の品種 の良質の (ゴム強化)スチレン系樹脂組成物を回収する方法に関する。  The present invention relates to a method for recovering a (rubber reinforced) styrene resin composition from a (rubber reinforced) styrene resin latex. Specifically, various types of high-quality (rubber reinforced) styrene resin compositions with good yields can be recovered with small energy that does not cause fine powder scattering or a large amount of drainage, or cause environmental pollution problems. Regarding the method.
(ゴム強化)スチレン系樹脂ラテックスとは、ゴム強化スチレン系樹脂ラテックス、及 び/又は、スチレン系樹脂ラテックスを表す。同様に、(ゴム強化)スチレン系樹脂組 成物とは、ゴム強化スチレン系樹脂組成物、及び/又は、スチレン系樹脂組成物を 表す。  (Rubber-reinforced) Styrenic resin latex refers to rubber-reinforced styrene resin latex and / or styrene resin latex. Similarly, the (rubber reinforced) styrene resin composition represents a rubber reinforced styrene resin composition and / or a styrene resin composition.
背景技術  Background art
[0002] ABS樹脂ペレットの製造に用いられるゴム強化スチレン系樹脂組成物は、従来、ゴ ム強化スチレン系樹脂ラテックスを凝固させてスラリー化し、洗浄'脱水した後、乾燥 することにより製造されている。  [0002] Rubber-reinforced styrene-based resin compositions used in the manufacture of ABS resin pellets are conventionally manufactured by coagulating and slurrying rubber-reinforced styrene-based resin latex, washing and dehydrating, and drying. .
し力、しながら、従来の方法では、洗浄 ·脱水工程で大量の排水が出る、乾燥工程で 大量のエネルギーを要する、排ガスが発生する、微粉が生じて飛散する、等の問題 があり、結果、生産性が悪い、環境汚染対策費用が高くなる等の不具合があった。 このため、下記の方法が提案されている。  However, the conventional method has problems such as a large amount of drainage in the washing and dehydration process, a large amount of energy in the drying process, generation of exhaust gas, and generation of fine powder and scattering. There were problems such as poor productivity and high environmental pollution measures. For this reason, the following method has been proposed.
( 1 )凝固→洗浄'脱水→絞り脱水押出'ペレット化.  (1) Solidification → Washing 'Dehydration → Drawing dewatering extrusion' Pelletization.
ゴム強化スチレン系樹脂ラテックスを凝固させてスラリー化し、洗浄'脱水した後、押 出機に供給して絞り脱水し、そのまま押出機から押し出してペレットィヒする方法である この方法では、乾燥工程が無いため、乾燥のためのエネルギーを節約できる、排ガ スが少ない等の利点はあるが、別途に凝固、脱水、洗浄等の工程が必要であり、依 然として脱水 ·洗浄工程で排出される大量の排水処理が必要である。また、絞り脱水 に適した樹脂には制限があるため、幅広い品種の全てに適用することはできないとい う不具合もある。 This is a method in which a rubber-reinforced styrene resin latex is coagulated and slurried, washed and dehydrated, then supplied to an extruder, squeezed and dehydrated, and then extruded from the extruder as it is to pelletize.There is no drying process in this method. There are advantages such as saving energy for drying and less exhaust gas, but separate processes such as coagulation, dehydration, and washing are required, and a large amount of waste discharged in the dehydration and washing process is still required. Waste water treatment is necessary. In addition, there are restrictions on the resin that is suitable for squeezing and dewatering, so it cannot be applied to all types of products. There is also a problem.
(2)押出機凝固→脱水 ·乾燥→ぺレット化(図 3) .  (2) Extruder coagulation → dehydration · drying → pelletization (Figure 3).
押出機 10X内にてゴム強化スチレン系樹脂ラテックスを凝固させてスラリー化し、脱 水 ·乾燥してペレットィヒする方法である(特許文献 1参照)。  This is a method in which a rubber-reinforced styrene resin latex is coagulated in an extruder 10X to form a slurry, dehydrated, dried and pelletized (see Patent Document 1).
一般に分子量の高い樹脂やゴム成分の多い樹脂は溶融粘度が高くなるため、この 方法でこれらの樹脂を処理する場合、押出機 10X内での溶融押出しする際に非常 に大きな動力を要し、また発熱が大きいため樹脂温度が高くなることがあった。その 結果、押出機 10Xから吐出される樹脂の衝撃強度が低下したり、色調が悪化する等 の不具合を生じる場合があった。  In general, resins with high molecular weight and resins with high rubber components have high melt viscosity, so when processing these resins by this method, very high power is required for melt extrusion in the extruder 10X. The resin temperature may increase due to large heat generation. As a result, there were cases where the impact strength of the resin discharged from the extruder 10X was lowered or the color tone deteriorated.
また、凝固された樹脂が十分に溶融しない状態で洗浄'排水されるため、粒径の小 さな樹脂がメカニカルフィルタ 61を経て水とともに排出されてしまい、その回収に大が 力、りな設備が必要になる場合もある。  In addition, since the solidified resin is washed and drained in a state where it is not sufficiently melted, the resin having a small particle size is discharged together with water through the mechanical filter 61, and the recovery is greatly enhanced. It may be necessary.
また、押出機 10Xの筒径に対する筒長 (L/D)が長くなるため、運転操作性や機 械保守の面で難点がある。  In addition, since the length (L / D) of the extruder 10X with respect to the cylinder diameter becomes long, there are problems in terms of operation operability and machine maintenance.
さらに、凝固工程と溶融樹脂の押出工程を単一の押出機内で行なうため、両方に 適した最適回転数を選定できないことがあり、その場合は、或る妥協的な回転数で運 転せざるを得ない。結果、安定的な運転が困難であったり、過大な回転数のために 樹脂の物性を悪化させる不具合を生じることがあった。  In addition, since the coagulation process and the molten resin extrusion process are performed in a single extruder, it may not be possible to select an optimum rotation speed suitable for both, in which case operation may be performed at a certain compromise rotation speed. I do not get. As a result, stable operation may be difficult, or an excessive rotational speed may cause problems that deteriorate the physical properties of the resin.
(3)凝固→洗浄 ·脱水→可塑化樹脂混合 ·絞り脱水押出 *ぺレット化.  (3) Solidification → Cleaning · Dehydration → Plasticizing resin mixing · Drawing dewatering extrusion * Pelletization.
ゴム強化スチレン系樹脂ラテックスを凝固させてスラリー化し、洗浄 '脱水して湿粉と して回収した後、この湿粉を、スチレン系樹脂を可塑化している押出機内へ供給し、 該押出機内にて該可塑化したスチレン系樹脂と混合し、水分を脱水して排出し、揮 発分を脱揮して排出し、ペレット化する方法である(特許文献 2参照)。  After the rubber-reinforced styrene resin latex is coagulated and slurried, washed and dehydrated and recovered as a wet powder, this wet powder is fed into an extruder that is plasticizing a styrene resin, and is then put into the extruder. This is a method of mixing with the plasticized styrenic resin, dehydrating and discharging moisture, devolatilizing and discharging the volatile matter, and pelletizing (see Patent Document 2).
この方法では、上記(1)と同様、乾燥工程が無いため、乾燥のためのエネルギーを 節約できる、排ガスが少ない等の利点はあり、更に(1)に比べ絞り脱水操作の安定性 や自由度の点で優れる場合があるものの、依然として、別途、凝固、脱水洗浄等のェ 程が必要であり、また、該工程において大量の排水処理が必要であるという不具合 がある。 特許文献 1 : USP3993292号 Similar to (1) above, this method has advantages such as saving energy for drying and reducing exhaust gas, since there is no drying process. However, there is still a problem that a separate process such as coagulation and dehydration washing is necessary, and a large amount of wastewater treatment is necessary in the process. Patent Document 1: USP3993292
特許文献 2:特許第 3597070号  Patent Document 2: Japanese Patent No. 3597070
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明は、微粉の飛散や大量の排水を生ずることなぐまた、環境汚染問題を生ず ることなぐ小さなエネルギーで、収率良ぐまた、別途に凝固、脱水、洗浄の工程を 備えることなぐ種々の品種の良質の(ゴム強化)スチレン系樹脂組成物を回収する 方法を提供することを目的とする。 [0003] The present invention has a small yield that does not cause fine powder scattering and a large amount of drainage, and does not cause environmental pollution problems. The present invention also has a separate solidification, dehydration, and washing process. It is an object of the present invention to provide a method for recovering high-quality (rubber reinforced) styrene resin compositions of various varieties.
課題を解決するための手段  Means for solving the problem
[0004] 本発明は、下記 [1]〜[9]のように構成される。 [0004] The present invention is configured as the following [1] to [9].
[1]構成 1 :  [1] Configuration 1:
スチレン系樹脂 (A)を可塑化する可塑化工程、  A plasticizing process for plasticizing the styrene resin (A),
(ゴム強化)スチレン系樹脂ラテックス (B)と凝固剤(C)を混合してクリーム状物質( D)を得る凝固工程、  (Rubber Reinforcement) Coagulation process to obtain cream-like substance (D) by mixing styrene resin latex (B) and coagulant (C),
前記可塑化工程後のスチレン系樹脂 (A)が存在する押出機内へ前記クリーム状物 質 (D)を供給して該押出機内にて混合して混合物 (E)を得る混合工程、  A mixing step of supplying the cream-like substance (D) into an extruder in which the styrenic resin (A) after the plasticizing step is present and mixing in the extruder to obtain a mixture (E);
前記混合物 (E)から水分を除去して前記押出機内から排水する排水工程、 前記水分除去後の混合物を脱揮して揮発分を前記押出機内から排出する脱揮ェ 程、  A drainage step of removing water from the extruder by removing water from the mixture (E), a devolatilization step of devolatilizing the mixture after removing the water and discharging volatile matter from the extruder,
を実施して前記押出機内から (ゴム強化)スチレン系樹脂組成物を回収することを 特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  To recover the (rubber reinforced) styrene-based resin composition from within the extruder.
ここで、 (ゴム強化)スチレン系樹脂ラテックス(B)とは、ゴム強化スチレン系樹脂ラテ ックス(B)、及び/又は、スチレン系樹脂ラテックス(B)を表す。同様に、 (ゴム強化) スチレン系樹脂組成物とは、ゴム強化スチレン系樹脂組成物、及び/又は、スチレン 系樹脂組成物を表す。以下、同様とする。  Here, (rubber reinforced) styrene resin latex (B) represents rubber reinforced styrene resin latex (B) and / or styrene resin latex (B). Similarly, (rubber reinforced) styrene resin composition represents a rubber reinforced styrene resin composition and / or a styrene resin composition. The same shall apply hereinafter.
クリーム状物質 (D)とはペースト状の(ゴム強化)スチレン系樹脂をレ、い、室温条件 で長期間 (例: 1日間)静置しても固体と液体に分離しなレ、状態の (ゴム強化)スチレン 系樹脂をレ、う。 (ゴム強化)スチレン系樹脂ラテックス (B)を凝固させてクリーム状物質 (D)とし、その時点で分離している水が無いため、可塑化工程後のスチレン系樹脂( A)と押出機内にて良好に混合することができる。 Creamy substance (D) is a paste-like (rubber reinforced) styrene resin that does not separate into a solid and a liquid even when left at room temperature for a long time (eg 1 day). (Rubber reinforced) Use styrene resin. (Rubber reinforced) Creamy substance by coagulating styrene resin latex (B) Since there is no water separated at that time as (D), it can be well mixed in the extruder with the styrenic resin (A) after the plasticizing step.
[2]構成 2 : [2] Configuration 2:
構成 1に於いて、  In configuration 1,
前記クリーム状物質 (D)の供給位置よりも上流側の前記押出機内にて前記可塑化 工程を実施する、  Performing the plasticizing step in the extruder upstream of the supply position of the cream substance (D),
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a (rubber reinforced) styrene-based resin composition.
この回収方法は、図 2に例示する回収装置を用いて実現され得る。  This collection method can be realized by using the collection apparatus illustrated in FIG.
[3]構成 3 : [3] Configuration 3:
構成 1に於いて、  In configuration 1,
可塑化装置にて前記可塑化工程を実施して当該可塑化したスチレン系樹脂 (A)を 前記クリーム状物質 (D)の供給位置よりも上流側の前記押出機内へ供給する、 ことを特徴とする(ゴム強化)スチレン系樹脂組成物の回収方法。  The plasticizing styrenic resin (A) is supplied into the extruder on the upstream side of the supply position of the cream-like substance (D) by performing the plasticizing step in a plasticizer. (Rubber Reinforcement) A method for recovering a styrene resin composition.
この回収方法は、図 1に例示する回収装置で実現され得る。  This collection method can be realized by the collection apparatus illustrated in FIG.
[4]構成 4 : [4] Configuration 4:
構成 1から 3の何れかに於いて、  In any of configurations 1 to 3,
前記凝固工程での凝固温度が前記 (ゴム強化)スチレン系樹脂ラテックス(B)の樹 脂のビカット軟化温度を Tm°Cとしたとき、 (Tm- 70) °C以上である、  The coagulation temperature in the coagulation step is (Tm-70) ° C or more when the Vicat softening temperature of the resin of the (rubber reinforced) styrene resin latex (B) is Tm ° C.
ことを特徴とする(ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a styrene-based resin composition (rubber reinforced).
凝固温度が (Tm— 70) °C未満の場合には、スチレン系樹脂ラテックス(B)と凝固剤 (C)の混合物中にクリーム状でない部分が多く存在するようになり、結果、可塑化工 程後のスチレン系樹脂 (A)と良好に混合できない部分が多く存在するようになる。  When the coagulation temperature is less than (Tm-70) ° C, the mixture of the styrene resin latex (B) and the coagulant (C) has many non-creamy parts, resulting in the plasticization process. There will be many parts that cannot be mixed well with the later styrenic resin (A).
[5]構成 5 : [5] Configuration 5:
構成 1から 4の何れかに於いて、  In any of configurations 1 to 4,
前記凝固工程で得られて押出機内へ供給されるクリーム状物質 (D)の固形分濃度 は 15〜40質量%の範囲である、  The solid content concentration of the cream substance (D) obtained in the coagulation step and fed into the extruder is in the range of 15 to 40% by mass.
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a (rubber reinforced) styrene-based resin composition.
クリーム状物質 (D)の固形分濃度が 15質量%より少ない場合は、スチレン系樹脂 ラテックス (B)と凝固剤(C)の混合物中にクリーム状でない分離した水が多く存在す るようになる場合があり、結果、可塑化工程後のスチレン系樹脂 (A)と良好に混合で きない部分が多く存在するようになる。クリーム状物質 (D)の固形分濃度が 40%を越 えた場合は、粘性が大きくなり過ぎて、スチレン系樹脂ラテックス (B)と凝固剤(C)の 混合物を、可塑化工程後のスチレン系樹脂 (A)中へ供給することが困難となる。 When the solid content of the cream substance (D) is less than 15% by mass, In the mixture of latex (B) and coagulant (C), there may be a lot of separated water that is not creamy. As a result, it can be mixed well with the styrenic resin (A) after the plasticization process. There are many parts that can't be heard. When the solid content concentration of the cream substance (D) exceeds 40%, the viscosity becomes too high, and the mixture of the styrene resin latex (B) and the coagulant (C) is mixed with the styrene resin after the plasticization process. It becomes difficult to supply the resin (A).
[6]構成 6 : [6] Configuration 6:
構成 1から 4の何れかに於いて、  In any of configurations 1 to 4,
前記クリーム状物質 (D)の供給位置よりも下流側にて前記押出機内へ 100°C以上 の洗浄水を供給し、 2軸スクリュー方式のメカニカルフィルタを用いて前記洗浄水及 び前記混合物 (E)中の水分を前記押出機内から排出する、  Wash water at 100 ° C. or more is supplied into the extruder downstream from the supply position of the cream substance (D), and the wash water and the mixture (E ) To discharge the moisture in the extruder,
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a (rubber reinforced) styrene-based resin composition.
[7]構成 7 : [7] Configuration 7:
構成 6に於いて、  In configuration 6,
前記メカニカルフィルタの後段に気液分離槽を設け、該気液分離槽にて気相部の 圧力を制御しつつ排水する、  A gas-liquid separation tank is provided at the subsequent stage of the mechanical filter, and drainage is performed while controlling the pressure of the gas phase in the gas-liquid separation tank.
ことを特徴とする(ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a styrene-based resin composition (rubber reinforced).
[8]構成 8 : [8] Configuration 8:
主押出機と、スチレン系樹脂を可塑化するための補助押出機と、凝固装置とを有し 前記主押出機は、最上流側の位置に補助押出機用の第 1の供給口を有し、該第 1 の供給口の下流側に前記凝固装置用の第 2の供給口を有し、更にその下流側に、 順に、洗浄水の給水口、洗浄水の排水口、揮発分除去用の脱揮口を有し、  It has a main extruder, an auxiliary extruder for plasticizing styrene resin, and a solidification device.The main extruder has a first supply port for the auxiliary extruder at the most upstream position. A second supply port for the coagulation apparatus downstream of the first supply port, and further on the downstream side of the supply port for cleaning water, the drainage port for cleaning water, and Has a devolatilization outlet,
前記第 1の供給口には前記補助押出機の吐出口を連結し、  A discharge port of the auxiliary extruder is connected to the first supply port;
前記第 2の供給口には前記凝固装置の吐出口を連結し、  A discharge port of the coagulation apparatus is connected to the second supply port;
前記補助押出機内にて可塑化したスチレン系樹脂を前記第 1の供給ロカ 前記主 押出機に供給するとともに前記凝固装置内でクリーム化した (ゴム強化)スチレン系樹 脂を前記第 2の供給ロカ 供給して混合し、該混合物を前記主押出機内で溶融しつ つ前記給水口から供給する洗浄水で洗浄し、洗浄後の水分を前記排水口からメカ二 カルフィルタを介して排水し、水分排水後の混合物を負圧で脱揮して揮発分を前記 脱揮ロカ 排出する、 The styrenic resin plasticized in the auxiliary extruder is supplied to the first supply loci and the main extruder and creamed (rubber reinforced) styrene resin in the coagulation apparatus is supplied to the second supply loca. The mixture is fed and mixed, and the mixture is melted in the main extruder and washed with washing water supplied from the water supply port. Drain through the Kal filter, devolatilize the mixture after water drainage under negative pressure, and discharge the volatile components to the devolatilization loca.
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収装置。  A (rubber reinforced) styrene-based resin composition recovery device.
この回収装置の一例を図 1に示す。  An example of this collection device is shown in FIG.
[9]構成 9 : [9] Configuration 9:
構成 8に於いて、  In configuration 8,
前記メカニカルフィルタの後段に気液分離槽を設けるとともに、該気液分離槽にて 気相部の圧力を制御しつつ排水する排水装置を設けたことを特徴とする (ゴム強化) スチレン系樹脂組成物の回収装置。  A gas-liquid separation tank is provided downstream of the mechanical filter, and a drainage device is provided for draining water while controlling the pressure in the gas phase in the gas-liquid separation tank. (Rubber-reinforced) Styrenic resin composition Collecting device.
発明の効果 The invention's effect
構成 1の回収方法では、スチレン系樹脂 (A)を可塑化する可塑化工程、 (ゴム強化 )スチレン系樹脂ラテックス (B)と凝固剤(C)を混合してクリーム状物質 (D)を得る凝 固工程、前記可塑化工程後のスチレン系樹脂 (A)が存在する押出機内へ前記タリ ーム状物質 (D)を供給して該押出機内にて混合して混合物 (E)を得る混合工程、前 記混合物 (E)から水分を除去して前記押出機内力 排水する排水工程、前記水分 除去後の混合物を脱揮して揮発分を前記押出機内から排出する脱揮工程、を実施 して前記押出機内から (ゴム強化)スチレン系樹脂組成物を回収するため、大規模な 設備を用いなくても、微粉の飛散や大量の排水を生ずることなぐまた、環境汚染問 題を生ずることなぐ小さなエネルギーで、収率良ぐ種々の品種の良質の(ゴム強化 )スチレン系樹脂組成物を回収することができる。  In the collection method of Configuration 1, a plasticizing step for plasticizing the styrene resin (A), (rubber reinforcement) a styrene resin latex (B) and a coagulant (C) are mixed to obtain a cream substance (D) Mixing to obtain the mixture (E) by supplying the tar-like substance (D) into the extruder in which the styrenic resin (A) after the coagulation step and the plasticizing step is present and mixing in the extruder A drainage step of removing moisture from the mixture (E) and draining the internal force of the extruder, and a devolatilization step of devolatilizing the mixture after removing the moisture and discharging volatiles from the extruder. The (rubber reinforced) styrene-based resin composition is recovered from the inside of the extruder, so that even if a large-scale facility is not used, fine powder scattering and a large amount of wastewater are not generated, and environmental pollution problems do not occur. High quality (rubber reinforced) styrene of various varieties with low energy and good yield It can be recovered resin composition.
構成 2の回収方法では、構成 1に於いて、前記クリーム状物質 (D)の供給位置より も上流側の前記押出機内にて前記可塑化工程を実施するため、スチレン系樹脂 (A )を可塑化するための別途の設備を要しなレ、。  In the recovery method of Configuration 2, since the plasticizing step is performed in the extruder on the upstream side of the supply position of the cream substance (D) in Configuration 1, the styrenic resin (A) is plasticized. , Which requires a separate facility to convert.
構成 3の回収方法では、構成 1に於いて、可塑化装置にて前記可塑化工程を実施 して当該可塑化したスチレン系樹脂 (A)を前記クリーム状物質 (D)の供給位置よりも 上流側の前記押出機内へ供給するため、スチレン系樹脂 (A)の可塑化と、当該可塑 化したスチレン系樹脂 (A)とスラリー (D)とを混合'溶融する混合工程とを、別々の装 置内で行なうことができ、このため、それぞれに最適な条件を設定して運転できる。こ のため、更に多種の品種の良質の(ゴム強ィ匕)スチレン系樹脂組成物を回収すること ができる。 In the collection method of Configuration 3, in the configuration 1, the plasticizing styrene resin (A) is performed upstream of the supply position of the cream-like substance (D) by performing the plasticizing step in a plasticizer. In order to supply into the extruder on the side, the plasticization of the styrene resin (A) and the mixing step of mixing and melting the plasticized styrene resin (A) and the slurry (D) are performed separately. Therefore, it is possible to operate by setting optimum conditions for each. This Therefore, it is possible to recover various types of high-quality (rubber strong) styrene resin compositions.
構成 4の回収方法では、構成 1から 3の何れかに於いて、前記凝固工程での凝固 温度が前記(ゴム強化)スチレン系樹脂ラテックス(B)の樹脂のビカット軟化温度を T m°Cとしたとき、 (Tm_ 70) °C以上とするため、可塑化したスチレン系樹脂 (A)とタリ ーム状物質 (D)とを良好に混合することができる。  In the collection method of Configuration 4, in any of Configurations 1 to 3, the solidification temperature in the solidification step is set to the Vicat softening temperature of the (rubber reinforced) styrene resin latex (B) as T m ° C. In this case, since it is set to (Tm_70) ° C. or more, the plasticized styrene resin (A) and the talium-like substance (D) can be mixed well.
構成 5の回収方法では、構成 1から 4の何れかに於いて、前記凝固工程で得られて 押出機内へ供給されるクリーム状物質 (D)の固形分濃度は 15〜40質量%の範囲と するため、可塑化したスチレン系樹脂 (A)とクリーム状物質 (D)とを良好に混合する こと力 Sできる。  In the recovery method of Configuration 5, in any of Configurations 1 to 4, the solid content concentration of the cream substance (D) obtained in the coagulation step and supplied into the extruder is in the range of 15 to 40% by mass. Therefore, it is possible to mix the plasticized styrene resin (A) and the cream substance (D) well.
構成 6の回収方法では、構成 1から 4の何れかに於いて、前記クリーム状物質 (D) の供給位置よりも下流側にて前記押出機内へ 100°C以上の洗浄水を供給し、 2軸ス クリュー方式のメカニカルフィルタを用いて前記洗浄水及び前記混合物(E)中の水 分を前記押出機内から排出するため、可塑化したスチレン系樹脂 (A)とクリーム状物 質 (D)の混合'溶融物から、樹脂成分をほとんど含まない水分を良好に除去すること ができる。  In the recovery method of Configuration 6, in any of Configurations 1 to 4, wash water of 100 ° C. or more is supplied into the extruder downstream from the supply position of the cream substance (D). In order to discharge the water in the washing water and the mixture (E) from the inside of the extruder using a shaft screw type mechanical filter, the plasticized styrenic resin (A) and the creamy material (D) It is possible to satisfactorily remove moisture containing almost no resin component from the mixed melt.
構成 7の回収方法では、構成 6に於いて、前記メカニカルフィルタの後段に気液分 離槽を設け、該気液分離槽にて気相部の圧力を制御しつつ排水するため、押出機 内で樹脂と水を分離する際に、水を加圧下に保って蒸発させずに液として分離する ことが可能である。  In the recovery method of Configuration 7, in Configuration 6, a gas-liquid separation tank is provided after the mechanical filter, and drainage is performed while controlling the pressure in the gas phase in the gas-liquid separation tank. When separating the resin and water, it is possible to keep the water under pressure and separate it as a liquid without evaporating.
構成 8の回収装置は、構成 3 (及び構成 3を引用する構成 4から 6)の回収方法を実 現できる装置の具体例を提供することができる。  The recovery device of configuration 8 can provide a specific example of a device that can implement the recovery method of configuration 3 (and configurations 4 to 6 that cite configuration 3).
構成 9の回収装置は、構成 7の回収方法を実現できる装置の具体例を提供すること ができる。  The recovery device of configuration 9 can provide a specific example of a device that can implement the recovery method of configuration 7.
図面の簡単な説明 Brief Description of Drawings
[図 1]実施例のペレットの製造に用いた回収装置の説明図。構成 3に対応する。 FIG. 1 is an explanatory diagram of a collecting apparatus used for producing pellets of an example. Corresponds to configuration 3.
[図 2]本発明の構成 2の回収装置の説明図。 FIG. 2 is an explanatory view of a recovery device of Configuration 2 of the present invention.
[図 3]比較例のペレットの製造に用いた (又は従来の)回収装置の説明図。 [図 4]図 1の装置に於いて、補助押出機 20と凝固装置 30と主押出機 10を簡略化して 示すとともに、補助押出機 20の前段部分、凝固装置 30の前段部分、メカニカルフィ ルタの後段部分を併せて示す説明図。 FIG. 3 is an explanatory view of a (or conventional) recovery device used for manufacturing pellets of a comparative example. [FIG. 4] In the apparatus of FIG. 1, the auxiliary extruder 20, the coagulator 30 and the main extruder 10 are shown in a simplified manner, the front part of the auxiliary extruder 20, the front part of the coagulator 30, and the mechanical filter. Explanatory drawing which shows the back | latter stage part collectively.
符号の説明  Explanation of symbols
[0007] 10 本発明の回収装置の主押出機 [0007] 10 Main extruder of the recovery apparatus of the present invention
10B 本発明の回収装置の主押出機  10B Main extruder of the recovery apparatus of the present invention
10X 従来の回収装置の押出機  10X Conventional Recovery Equipment Extruder
20 補助押出機  20 Auxiliary extruder
30 凝固装置  30 Coagulator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 1.原料,条件: [0008] 1. Raw materials and conditions:
(ィ)スチレン系樹脂 (A) :  (I) Styrenic resin (A):
スチレン系樹脂 (A)としては、例えば、ポリスチレン、スチレン一メチルメタタリレート (MS樹脂)、スチレン—アクリロニトリル共重合体 (AS樹脂)、スチレン—アタリロニトリ ノレ一メチルメタタリレート(MAS樹脂)、スチレン一アクリロニトリル一 N—フエニルマレ イミド等の硬質樹脂状重合体、アクリロニトリル—ブタジエン—スチレン共重合体 (AB S樹脂)、エチレン一プロピレン系変性スチレン一アクリロニトリル樹脂 (AES樹脂)、メ チルメタタリレート一ブタジエン一スチレン樹脂(MBS樹脂)、メチルメタタリレート一ァ タリロニトリル ブタジエン スチレン樹脂(MABS樹脂)、ハイインパクトポリスチレン 樹脂 (HIPS樹脂)、アクリルゴム系変性スチレン—アクリロニトリル樹脂 (AAS樹脂) 等の樹脂状重合体を挙げることができる。  Examples of the styrenic resin (A) include polystyrene, styrene monomethyl methacrylate (MS resin), styrene-acrylonitrile copolymer (AS resin), styrene-acrylonitrile trimethyl methacrylate (MAS resin), and styrene. Rigid resin polymers such as monoacrylonitrile N-phenylmaleimide, acrylonitrile-butadiene-styrene copolymer (ABS resin), ethylene-propylene-modified styrene-acrylonitrile resin (AES resin), methyl methacrylate-butadiene Resinous polymers such as one styrene resin (MBS resin), methyl metatalylate one talironitrile butadiene styrene resin (MABS resin), high impact polystyrene resin (HIPS resin), acrylic rubber-based modified styrene-acrylonitrile resin (AAS resin) Can be mentioned.
製品物性調整のために、マトリックス体となるスチレン系樹脂 (A)として AS樹脂を用 いる場合、可塑化された AS樹脂の温度は 100〜200°C、好ましくは 110〜160°Cの 範囲である。  When AS resin is used as the styrenic resin (A) as a matrix to adjust the physical properties of the product, the temperature of the plasticized AS resin is in the range of 100 to 200 ° C, preferably 110 to 160 ° C. is there.
(口)(ゴム強化)スチレン系樹脂ラテックス (B):  (Mouth) (Rubber reinforced) Styrenic resin latex (B):
(ゴム強化)スチレン系樹脂ラテックス(B)としては、乳化重合により得られる下記の 重合体ラテックスを挙げることができる。例えば、スチレン ブタジエンゴム(SBR)等 のゴム状重合体や、ポリスチレン、スチレン一メチルメタクリレート(MS樹脂)、スチレ ン一アクリロニトリル共重合体 (AS樹脂)、スチレン一アクリロニトリル一メチルメタタリ レート(MAS樹脂)、スチレン一アクリロニトリル一 N—フエニルマレイミド等の硬質樹 脂状重合体、アクリロニトリル—ブタジエン—スチレン共重合体 (ABS樹脂)、ェチレ ン一プロピレン系変性スチレン一アクリロニトリル樹脂 (AES樹脂)、メチルメタクリレー ト一ブタジエン一スチレン樹脂(MBS樹脂)、メチルメタタリレート一アクリロニトリル一 ブタジエン一スチレン樹脂(MABS樹脂)、ハイインパクトポリスチレン樹脂(HIPS樹 脂)、アクリルゴム系変性スチレン—アクリロニトリル樹脂 (AAS樹脂)等の樹脂状重合 体等のラテックスを挙げることができる。 Examples of the (rubber reinforced) styrene-based resin latex (B) include the following polymer latex obtained by emulsion polymerization. For example, rubbery polymers such as styrene butadiene rubber (SBR), polystyrene, styrene monomethyl methacrylate (MS resin), Acrylonitrile copolymer (AS resin), styrene acrylonitrile 1 methyl methacrylate (MAS resin), styrene acrylonitrile 1 N-phenylmaleimide and other hard resin polymers, acrylonitrile butadiene styrene copolymer (ABS) Resin), ethylene-propylene-modified styrene-acrylonitrile resin (AES resin), methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene resin (MABS resin), high impact Examples thereof include latex such as polystyrene resin (HIPS resin) and resinous polymers such as acrylic rubber-based modified styrene-acrylonitrile resin (AAS resin).
本発明の(ゴム強化)スチレン系樹脂組成物の回収方法は、乳化重合法で得られ た樹脂ラテックス或いは樹脂を再乳化して得られた樹脂ラテックスと、物性、外観、そ の他性能の調整や改良のために配合される樹脂とを混合する際に有用である。具体 的には、スチレン系樹脂 (A) / (ゴム強化)スチレン系樹脂ラテックス(B)として、 AS 樹脂/ ABS樹脂ラテックス、 MAS樹脂ラテックス/ MABS樹脂ラテックス、 AS樹脂 /ASA樹脂ラテックス、 AS樹脂/ AES樹脂ラテックス、 AS樹脂/ AS樹脂ラテック ス、等が挙げられる。  The (rubber reinforced) styrene resin composition recovery method of the present invention is a resin latex obtained by emulsion polymerization or a resin latex obtained by re-emulsification of the resin, and adjustment of physical properties, appearance, and other performances. It is useful when mixing with a resin compounded for improvement. Specifically, as styrene resin (A) / (rubber reinforced) styrene resin latex (B), AS resin / ABS resin latex, MAS resin latex / MABS resin latex, AS resin / ASA resin latex, AS resin / AES resin latex, AS resin / AS resin latex, etc.
(ゴム強化)スチレン系樹脂ラテックス(B)として ABS樹脂ラテックスを用いる場合、 その樹脂濃度は 25〜45質量%、凝固剤の添力卩量は ABS樹脂 100重量部に対して :!〜 10重量部の範囲が好ましい。これにより、(ゴム強化)スチレン系樹脂ラテックス( B)と凝固剤(C)とを混合して凝固させて得られるクリーム状物質 (D)の固形分濃度を 15〜40質量%、好ましくは 20〜40質量%、更に好ましくは 25〜35質量%にできる 。クリーム状物質 (D)の固形分濃度が 15%より少ない場合は、スチレン系樹脂ラテツ タス (B)と凝固剤 (C)の混合物中にクリーム状でない分離した水が多く存在する場合 があり、結果、可塑化工程後のスチレン系樹脂 (A)と良好に混合できない部分が多く 存在するようになる。クリーム状物質 (D)の固形分濃度が 40%を越えた場合は、粘 性が大きくなり過ぎて、スチレン系樹脂ラテックス (B)と凝固剤(C)の混合物を、可塑 化工程後のスチレン系樹脂 (A)中へ供給することが困難となる。クリーム状物質 (D) の固形分濃度が好ましい範囲である 20〜40質量%では、可塑化工程後のスチレン 系樹脂 (A)との混合が良好であり、更に好ましい範囲である 25〜35質量%では、可 塑化工程後のスチレン系樹脂 (A)との混合が更に良好である。 (Rubber Reinforcement) When ABS resin latex is used as the styrene resin latex (B), the resin concentration is 25 to 45% by mass, and the amount of coagulant added is 100 to 10 parts by weight of ABS resin:! A range of parts is preferred. Thereby, the solid content concentration of the cream-like substance (D) obtained by mixing (rubber-reinforced) styrene resin latex (B) and coagulant (C) and coagulating is 15 to 40% by mass, preferably 20 -40 mass%, more preferably 25-35 mass%. If the solid content concentration of the cream substance (D) is less than 15%, there may be a lot of non-creamy separated water in the mixture of styrene resin latus status (B) and coagulant (C), As a result, there are many portions that cannot be mixed well with the styrenic resin (A) after the plasticizing step. When the solid content concentration of the cream substance (D) exceeds 40%, the viscosity becomes too high, and the mixture of the styrene resin latex (B) and the coagulant (C) is mixed with styrene after the plasticizing step. It becomes difficult to supply into the resin (A). When the solid content concentration of the cream substance (D) is 20 to 40% by mass, the mixing with the styrenic resin (A) after the plasticizing step is good, and the more preferable range is 25 to 35% by mass. Percentage is acceptable Mixing with the styrenic resin (A) after the plasticizing process is even better.
(ハ)凝固剤 (C) : (C) Coagulant (C):
凝固剤(C)としては、重合体ラテックスの凝固に通常用いられているものを使用でき る。例えば、塩酸、硫酸、硝酸等の無機酸、酢酸や蟻酸等の有機酸、これらの酸の 金属塩を挙げることができる。この金属塩としては、例えば、塩化カルシウム、塩化ァ ノレミニゥム、硫酸アルミニウム、硫酸マグネシウム等の無機塩、酢酸カルシウム、酢酸 アルミニウム等の有機塩を挙げることができる。金属塩は、固体のまま用いてもよいし 、水等に溶解させて用いてもょレ、が、 3〜25重量%の水溶液として用いるのが好まし レ、。上記凝固剤は、 1種単独であるいは 2種以上を組み合わせて用いることができる 凝固剤 (C)の添加量は、(ゴム強化)スチレン系樹脂ラテックス (B)の固形分濃度と 、 (ゴム強化)スチレン系樹脂の凝析値を考慮し決定されるが、通常、(ゴム強化)スチ レン系樹脂 100重量部に対して、 1〜: 10重量部、好ましくは 1〜8重量部である。凝 固剤の添加量力^重量部より少ない場合は、(ゴム強化)スチレン系樹脂ラテックス(B )を十分に凝固させることができない場合がある。その場合、前述のように、スチレン 系樹脂ラテックス (B)と凝固剤(C)の混合物中にクリーム状でない分離した水が多く 存在する場合があり、結果、可塑化工程後のスチレン系樹脂 (A)と良好に混合でき ない部分が多く存在するようになる。 10重量部超過の場合は、凝固剤の必要量を越 えるため、無駄を生じることがある。また、前述のように、スチレン系樹脂ラテックス(B) と凝固剤(C)の混合物の粘性が大きくなり過ぎて、スチレン系樹脂ラテックス (B)と凝 固剤 (C)の混合物を、可塑化工程後のスチレン系樹脂 (A)中へ供給することが困難 となることもある。ここで、上記「凝析値」とは、所定の固形分濃度を有する (ゴム強化) スチレン系樹脂ラテックス (B)と、異なる固形分濃度を有する凝固剤 (C)とを混合し、 一定時間経過した後に沈殿生成が確認された場合の、沈殿が生じる最低濃度 (混合 後の濃度)をいう。  As the coagulant (C), those usually used for coagulation of polymer latex can be used. Examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as acetic acid and formic acid, and metal salts of these acids. Examples of the metal salt include inorganic salts such as calcium chloride, vinyl chloride, aluminum sulfate and magnesium sulfate, and organic salts such as calcium acetate and aluminum acetate. The metal salt may be used as a solid or dissolved in water or the like, but is preferably used as a 3 to 25% by weight aqueous solution. The above coagulants can be used singly or in combination of two or more. The amount of coagulant (C) added is (rubber reinforced) solid content concentration of styrene resin latex (B), (rubber reinforced ) It is determined in consideration of the coagulation value of the styrene resin, but is usually 1 to 10 parts by weight, preferably 1 to 8 parts by weight with respect to 100 parts by weight of the (rubber reinforced) styrene resin. If the amount of the coagulant added is less than parts by weight, the (rubber reinforced) styrene resin latex (B) may not be sufficiently coagulated. In that case, as described above, there may be a large amount of separated water that is not creamy in the mixture of the styrene resin latex (B) and the coagulant (C), and as a result, the styrene resin (( There are many parts that cannot be mixed well with A). If the amount exceeds 10 parts by weight, the required amount of coagulant may be exceeded and waste may occur. In addition, as described above, the viscosity of the mixture of the styrene resin latex (B) and the coagulant (C) becomes too high, and the mixture of the styrene resin latex (B) and the coagulant (C) is plasticized. It may be difficult to supply into the styrene resin (A) after the process. Here, the above “coagulation value” refers to a mixture of a styrene resin latex (B) having a predetermined solid content concentration (rubber reinforcement) and a coagulant (C) having a different solid content concentration, and a certain time has elapsed. This is the lowest concentration at which precipitation occurs (concentration after mixing) when precipitation is confirmed.
(ュ)凝固温度: (U) Solidification temperature:
(ゴム強化)スチレン系樹脂ラテックス (B)と凝固剤(C)を混合してクリーム状物質( D)を得る凝固温度は、(ゴム強化)スチレン系樹脂ラテックス(B)の樹脂のビカット軟 化温度を Tm°Cとしたとき、(Tm— 70) °C以上である。凝固温度が(Tm— 70)でより 低温では、凝固物がペースト状に固まらず粘度の低い液状のままとなるため、可塑化 されているスチレン系樹脂 (A)と混合させることができない場合がある。凝固温度の 上限値は、(ゴム強化)スチレン系樹脂ラテックスを安定して加熱昇温できるという制 約で決まり、 90°C程度である。 (Rubber-reinforced) Styrenic resin latex (B) and coagulant (C) are mixed to obtain a cream-like substance (D). When the conversion temperature is Tm ° C, it is (Tm-70) ° C or higher. If the coagulation temperature is (Tm-70) and the temperature is lower, the coagulum does not solidify into a paste and remains in a low-viscosity liquid, so it may not be possible to mix it with the plasticized styrene resin (A). is there. The upper limit of the coagulation temperature is determined by the restriction that the (rubber reinforced) styrene resin latex can be heated and heated stably, and is about 90 ° C.
また、可塑化工程後のスチレン系樹脂 (A)が存在する押出機内へ (ゴム強化)スチ レン系樹脂ラテックス (B)と凝固剤(C)とを混合して凝固させて得られるクリーム状物 質 (D)を供給した後の混合物の温度は、スチレン系樹脂 (A)のビカット軟化温度を T n°Cとしたとき、 1¾で〜(1¾+ 100) °〇の可塑化したスチレン系樹脂(八)と、(Tm— 7 0) °C以上で凝固したクリーム状物質 (D)の配合比によって決定される力 Tn°Cより 下がらなレ、ようにすることが好ましレ、。  A cream-like product obtained by mixing and coagulating a styrene resin latex (B) and a coagulant (C) into an extruder in which the styrene resin (A) is present after the plasticization step. The temperature of the mixture after supplying the quality (D) is from 1¾ to (1¾ + 100) ° 0 when the Vicat softening temperature of the styrene resin (A) is T n ° C. (8) and (Tm—70 0) The force determined by the blending ratio of the cream-like substance (D) solidified above (° C) 70 ° C (D).
(ホ)洗浄水: (E) Wash water:
可塑化されてレ、るスチレン系樹脂 (A)にクリーム状物質 (D)を混合する混合工程で は、混合して溶融されている樹脂へ、 100°C以上の高温高圧水、又は、 100〜200 °Cの蒸気を供給し、乳化剤等の重合助剤、凝固剤等を洗浄する洗浄水とすることが でき、後段の排水工程にて当該洗浄水とともに混合物 (E)中の水分を分離'排水す るようにしてもよい。このように高温高圧の水又は蒸気を供給すると、クリーム状物質( D)中の凝固物を加熱し可塑化を促進する効果も持たせることができる。この高温高 圧水又は蒸気の供給量 (質量)は、樹脂の 2倍以下であることが好ましい。また、蒸気 の温度 ίま、好ましく ίま 110〜: 180°C、更に好ましく ίま 120〜: 160°Cである。 110°Cより 低温では熱エネルギーが小さいため、樹脂を可塑化させる効果が不十分であるとい う不具合があり、 180°Cより高温では蒸気の圧力が高くなるため、高圧の設備が必要 となり、取り扱レ、も難しくなるという不具合がある。  In the mixing step of mixing the creamy substance (D) with the styrene resin (A) that is plasticized, the high-temperature high-pressure water of 100 ° C or higher, or 100 Supplying steam at ~ 200 ° C can be used as washing water for washing polymerization aids such as emulsifiers, coagulants, etc., and separating the water in the mixture (E) together with the washing water in the subsequent drainage process 'It may be drained. When water or steam at a high temperature and high pressure is supplied in this way, the coagulated substance in the cream-like substance (D) can be heated to have an effect of promoting plasticization. The supply amount (mass) of the high-temperature high-pressure water or steam is preferably 2 times or less that of the resin. Further, the temperature of the steam is ί, preferably 110 to 180 ° C, and more preferably 120 to 160 ° C. Since the heat energy is low at temperatures lower than 110 ° C, there is a problem that the effect of plasticizing the resin is insufficient.At temperatures higher than 180 ° C, the steam pressure increases, so high-pressure equipment is required. There is a problem that handling becomes difficult.
(へ)混合比: (F) Mixing ratio:
スチレン系樹脂 (A)と(ゴム強化)スチレン系樹脂ラテックス (B)との混合比は、 (B) 力 Sゴム強化スチレン系樹脂ラテックスの場合、混合後の樹脂組成物中のゴム成分含 有量が 10〜35質量%であることが好ましい。 (B)がゴム成分を含有しない場合は、 混合後の(B)成分の割合が、 10〜80質量%であることが好ましい。 2.回収装置: The mixing ratio of styrene resin (A) to (rubber reinforced) styrene resin latex (B) is (B) force S rubber reinforced styrene resin latex contains the rubber component in the resin composition after mixing. The amount is preferably 10 to 35% by mass. When (B) does not contain a rubber component, the proportion of component (B) after mixing is preferably 10 to 80% by mass. 2. Collection device:
本発明を実施する回収装置を、図 1、 2、 4を用い、図 3を参照して具体的に説明す る力 本発明は、図 1、 2、 4に限定されるものではなレ、。また、説明に於いてはスチレ ン系樹脂 (A)として AS樹脂を挙げ、ゴム強化スチレン系樹脂ラテックス (B)として AB S樹脂ラテックスの例を挙げている力 これに限定されるものではない。  The force for specifically explaining the recovery apparatus for carrying out the present invention with reference to FIGS. 1, 2 and 4 and referring to FIG. 3 The present invention is not limited to FIGS. . In the description, AS resin is exemplified as the styrene resin (A), and ABS resin latex is exemplified as the rubber-reinforced styrene resin latex (B). However, the present invention is not limited to this.
図 1の回収装置: Fig. 1: Recovery device:
まず、図 1の回収装置を説明する。この回収装置は、後述の実施例:!〜 3に於いて 用いられる。この回収装置は、主押出機 10と、スチレン系樹脂 (A)を可塑ィ匕するため の補助押出機 20と、ゴム強化スチレン系樹脂ラテックス (B)と凝固剤 (C)とを混合し てクリーム状とするための凝固装置 30とを有する。  First, the collection device in FIG. 1 will be described. This recovery device is used in the following embodiments:! This recovery device comprises a main extruder 10, an auxiliary extruder 20 for plasticizing the styrene resin (A), a rubber-reinforced styrene resin latex (B) and a coagulant (C). And a coagulation device 30 for making a cream.
主押出機 10は、嚙み合レ、 2軸方式であり、スクリュー径が 40mm、筒長 Z筒径 (L /D)が 40、モータ定格が 75kw、最大回転数が 700rpmである。  The main extruder 10 is a squeezing and twin screw system, with a screw diameter of 40 mm, a cylinder length Z cylinder diameter (L / D) of 40, a motor rating of 75 kw, and a maximum rotation speed of 700 rpm.
補助押出機 20は、嚙み合レ、 2軸方式であり、スクリュー径が 30mm、筒長/筒径( L/D)が 18、モータ定格が 37kw、最大回転数が 900rpmである。補助押出機 20は 、筒長/筒径 (L/D)が小さぐ主押出機への押込圧も低いので、超高速回転'高フ ロー運転が可能である。また、比較的、小型の装置で足りる。  The auxiliary extruder 20 is a squeezing and twin screw system, with a screw diameter of 30 mm, cylinder length / cylinder diameter (L / D) of 18, motor rating of 37 kw, and maximum rotation speed of 900 rpm. Since the auxiliary extruder 20 has a small cylinder length / cylinder diameter (L / D) and a low indentation pressure to the main extruder, it can be operated at ultra high speed and high flow. A relatively small device is sufficient.
凝固装置 30は、嚙み合レ、 2軸方式の押出機であり、スクリュー径が 30mm、筒長/ 筒径(L/D)が 8、モータ定格が 1. 5kw、最大回転数が 12(kpmである。  Coagulator 30 is a squeezing and twin screw extruder, screw diameter is 30mm, cylinder length / cylinder diameter (L / D) is 8, motor rating is 1.5kw, maximum rotation speed is 12 ( kpm.
主押出機 10には、最上流側の位置に補助押出機 20用の第 1の供給口 101が設け られているとともに、第 1の供給口 101の下流側に凝固装置 30用の第 2の供給口 10 2が設けられている。更にその下流側に、順に、洗浄水の給水口 103、洗浄水の排 水口 104、揮発分除去用の複数の脱揮口 105a、 105bが設けられている。また、主 押出機 10の先端のダイプレートは、 5 φ * 20穴(直径 5mm (5 φ )の貫通孔を 20個 有する)ダイプレートである。  The main extruder 10 is provided with a first supply port 101 for the auxiliary extruder 20 at a position on the most upstream side, and a second supply for the coagulator 30 on the downstream side of the first supply port 101. A supply port 102 is provided. Further, on the downstream side, a cleaning water supply port 103, a cleaning water drain port 104, and a plurality of devolatilization ports 105a and 105b for removing volatile components are provided in this order. The die plate at the tip of the main extruder 10 is a 5φ * 20 hole die plate (having 20 through holes with a diameter of 5 mm (5 φ)).
第 1の供給口 101には補助押出機 20の吐出口が連結されており、第 2の供給口 10 2には凝固装置 30の吐出口が連結されている。また、給水口 103には洗浄水(又は 蒸気)の供給配管が連結されており、排水口 104にはメカニカルフィルタ 41が連結さ れている。また、脱揮口 105a、 105bには、真空吸引装置(ベント) 43、 43が連結さ れている。なお、上記排水口 104及びメカニカルフィルタ 41は複数段としてもよい。 即ち、主押出機 10内の樹脂の進行方向に順に複数個配設してもよい。また、上記脱 揮口 105a、 105b及び真空吸引装置 43、 43は、図示の例では 2段である力 3段以 上に設けてもよい。 The discharge port of the auxiliary extruder 20 is connected to the first supply port 101, and the discharge port of the coagulation device 30 is connected to the second supply port 102. Further, a supply pipe for cleaning water (or steam) is connected to the water supply port 103, and a mechanical filter 41 is connected to the drain port 104. Also, vacuum suction devices (vents) 43 and 43 are connected to the devolatilization ports 105a and 105b. It is. The drain port 104 and the mechanical filter 41 may have a plurality of stages. In other words, a plurality of resins may be arranged in order in the resin traveling direction in the main extruder 10. Further, the devolatilization ports 105a and 105b and the vacuum suction devices 43 and 43 may be provided in three or more stages, which is two stages in the illustrated example.
補助押出機 20には、スチレン系樹脂 (A)であるところの AS樹脂と、添加剤とが投 入されて、溶融(可塑化)される。この可塑化された溶融状態又は半溶融状態のマトリ ックス体が、供給口 101から主押出機 10内へ供給される。  The auxiliary extruder 20 is injected with an AS resin, which is a styrene resin (A), and an additive, and is melted (plasticized). The plasticized molten or semi-molten matrix is supplied from the supply port 101 into the main extruder 10.
図 4に示すように、凝固装置 30には、系外から供給されてリアクター 301にて乳化 重合されてタンク 302に一旦貯留された ABS樹脂ラテックス(=ゴム強化スチレン系 樹脂ラテックス(B) )力 ポンプ 303の圧力で順に供給される。また、凝固装置 30に は、凝固剤(C)が順に投入される。  As shown in FIG. 4, the ABS resin latex (= rubber reinforced styrene resin latex (B)) force supplied from outside the system to the coagulator 30 is emulsion-polymerized in the reactor 301 and temporarily stored in the tank 302. The pumps are sequentially supplied at the pressure of the pump 303. Further, the coagulant (C) is put into the coagulator 30 in order.
凝固装置 30内に供給された ABS樹脂ラテックスと凝固剤は、筒内をスクリューによ り押されて進行されることでクリーム状にされ、このクリーム状物質力 前記ポンプ 303 の圧力で主押出機 10内へ押し出される。即ち、可塑化されている AS樹脂(=スチレ ン系樹脂 (A) )と接触し混合される。  The ABS resin latex and the coagulant supplied into the coagulator 30 are made into a cream by being pushed by a screw in the cylinder and proceeded, and the main extruder is driven by the pressure of the pump 303. 10 is pushed into. That is, it is brought into contact with the plasticized AS resin (= styrene resin (A)) and mixed.
このようにして、 AS樹脂(=スチレン系樹脂 (A) )と、凝固された ABS樹脂ラテック ス(=クリーム状物質 (D) )とが、主押出機 10内にて混合されて溶融状態とされる。こ の溶融状態の混合物に、高温高圧の洗浄水(又は蒸気)が給水口 103から供給され る。この洗浄水は、上記クリーム状物質 (D)に含まれていた水分とともに、排水口 10 4力 メカニカルフィルタ 41により排出される。  In this way, the AS resin (= styrene resin (A)) and the solidified ABS resin latex (= cream-like substance (D)) are mixed in the main extruder 10 to obtain a molten state. Is done. High-temperature and high-pressure washing water (or steam) is supplied to the molten mixture from the water supply port 103. This washing water is discharged by the mechanical filter 41 along with the water contained in the cream substance (D).
メカニカルフィルタ 41の後段には、図 4に示すように、気液分離槽 411が設けられ ている。この気液分離槽 411の排水ラインにはコントロールバルブ 412aが設けられ ており、その開閉度合い即ち排水量を、気液分離槽 411内の液面レベルが所定レべ ノレに維持されるように、レベルコントローラ 412によって制御されている。また、気液分 離槽 411の排気ラインにはコントロールバルブ 415aが設けられており、その開閉度 合い即ち排気量を、気液分離槽 411内の気相部の圧力が所定圧力に維持されるよ うに、圧力コントローラ 415によって制御されている。ここで、気相部にて維持されるべ き所定圧力とは、メカニカルフィルタ 41により主押出機 10内から水を分離除去する際 の圧力を、その温度の水の蒸気圧以上の圧力に保つ圧力であり、これにより、水を蒸 発させずに液状で分離することが可能となる。なお、コントロールバルブ 412aを経て 排出された水からは、僅かに洩れてきた樹脂がオートフィルタ 413にて回収されて、 微粉回収タンク 414を経て、ポンプで凝固装置 30の入口へ戻される。また、オートフ ィルタ 413にて樹脂を除去された濾液は排水される。 As shown in FIG. 4, a gas-liquid separation tank 411 is provided downstream of the mechanical filter 41. A control valve 412a is provided in the drain line of the gas-liquid separation tank 411, and the degree of opening and closing thereof, that is, the amount of drainage, is adjusted so that the liquid level in the gas-liquid separation tank 411 is maintained at a predetermined level. Controlled by controller 412. In addition, a control valve 415a is provided in the exhaust line of the gas-liquid separation tank 411, and the pressure of the gas phase part in the gas-liquid separation tank 411 is maintained at a predetermined pressure with respect to the opening / closing degree, that is, the exhaust amount. Thus, it is controlled by the pressure controller 415. Here, the predetermined pressure that should be maintained in the gas phase section means that the mechanical filter 41 separates and removes water from the main extruder 10. The pressure is maintained at a pressure equal to or higher than the vapor pressure of water at that temperature, which makes it possible to separate the liquid in a liquid state without evaporating it. In addition, from the water discharged through the control valve 412a, the resin slightly leaking is recovered by the auto filter 413, and returned to the inlet of the coagulation apparatus 30 by the pump through the fine powder recovery tank 414. The filtrate from which the resin has been removed by the autofilter 413 is drained.
このようにして、前記洗浄水及びクリーム状物質 (D)に含まれていた水分を除去さ れた混合物は、さらに、真空吸引装置 43により真空吸引される。これにより、揮発分 は脱揮口 105, 105bから排出される。  In this way, the mixture from which the water contained in the washing water and the cream-like substance (D) has been removed is further vacuumed by the vacuum suction device 43. As a result, the volatile matter is discharged from the devolatilization ports 105 and 105b.
こうして水分を除去され、さらに脱揮された混合物が、主押出機 10の先端のダイプ レートからストランド状に吐出され、冷却水槽 71で冷却され、カッター 72でカッテイン グされてペレット化された後、振動フルィ 73で微細な付着物を除去されて、サイクロン で回収される。  After the water was removed in this way and the devolatilized mixture was discharged from the die plate at the tip of the main extruder 10 in a strand shape, cooled in the cooling water tank 71, cut by the cutter 72 and pelletized, Fine deposits are removed by vibration fluid 73 and recovered by a cyclone.
[0012] 図 2の回収装置: [0012] Figure 2 Recovery Device:
次に、図 2の回収装置を説明する。図 2の回収装置は、略図 1の回収装置と同じで あるため、図 1と同じ構成には同じ符号を付して示し、異なる構成を中心に説明する。 なお、凝固装置 30やメカニカルフィルタ 41に図 4に示す各機構が付設されていること も、図 1の回収装置の場合と同様である。  Next, the collection device of FIG. 2 will be described. The recovery device in FIG. 2 is the same as the recovery device in FIG. 1. Therefore, the same components as those in FIG. 1 are denoted by the same reference numerals, and different configurations will be mainly described. It is to be noted that the mechanisms shown in FIG. 4 are attached to the coagulation apparatus 30 and the mechanical filter 41 as in the case of the recovery apparatus in FIG.
図 2の回収装置には、図 1の補助押出機 20が無い。即ち、システム構成が簡易化さ れている。図 2の回収装置では、主押出機 10Bの最上流部域にてマトリックス体 (AS 樹脂と添加剤)を可塑化し、この可塑化したマトリックス体が存在する領域に、凝固装 置 30用の供給口 102を設けている。このように構成しているため、図 2では、主押出 機 10Bの筒長が、図 1の主押出機 10の筒長よりも長い。  The recovery device in FIG. 2 does not have the auxiliary extruder 20 in FIG. That is, the system configuration is simplified. In the recovery device of Fig. 2, the matrix body (AS resin and additive) is plasticized in the uppermost stream area of the main extruder 10B, and the supply for the coagulation device 30 is supplied to the area where the plasticized matrix body exists. Mouth 102 is provided. Because of this configuration, in FIG. 2, the cylinder length of the main extruder 10B is longer than the cylinder length of the main extruder 10 of FIG.
[0013] 図 3の回収装置(比較例の回収装置): [0013] FIG. 3 recovery device (comparative recovery device):
図 3の回収装置は、本発明の回収方法を行なう装置ではないが、後述の比較例に 於いて用いるため、簡単に説明する。  The recovery device of FIG. 3 is not a device that performs the recovery method of the present invention, but will be briefly described because it is used in a comparative example described later.
図 3の装置は、主押出機 10Xに、洗浄蒸気用の複数の供給口(不図示)と、洗浄水 排出用の複数の排水口(不図示)を設け、さらに、複数のメカニカルフィルタ 61や真 空吸引装置 43を配して成る。 主押出機 10Xは、非嚙み合い 2軸方式 (特許文献 1で採用されているものと同じタ イブの非嚙合方式)であり、スクリュー径が 40mm、筒長/筒径 (L/D)が 72、モータ 定格が 75kw、最大回転数が 900rpmである。 In the apparatus of FIG. 3, the main extruder 10X is provided with a plurality of supply ports (not shown) for cleaning steam and a plurality of discharge ports (not shown) for discharging cleaning water, and a plurality of mechanical filters 61 and A vacuum suction device 43 is arranged. The main extruder 10X is a non-combination twin-shaft system (the same type of non-combination system used in Patent Document 1), with a screw diameter of 40 mm, cylinder length / cylinder diameter (L / D) Is 72, the motor rating is 75kw, and the maximum speed is 900rpm.
図 3の装置は、原材料 (ABS樹脂ラテックスと凝固剤)を主押出機 10Xに投入して 可塑化しつつ進行させ、洗浄用の蒸気を供給して洗浄するとともに排水し、さらに、 脱揮して、吐出するようにした装置である。原材料の溶融と洗浄及び脱揮を同一の筒 内で行なうため、それぞれについて最適な回転数を選択することはできなレ、。このた め、各工程を最適に制御できず、吐出される樹脂の品質が十分でない場合がある。 例えば、溶融樹脂温度が高温に成り過ぎて樹脂の劣化 (分子切断)が進み、 MFRが 高くなるとともに衝撃強度が低下したり、色調で bL (黄色味)が強くなる等の問題があ る場合があった。マトリックス体によるゴム成分量の調整ができないため、後工程で調 整する必要があるとレヽぅ煩雑さを生じることもある。  The equipment shown in Fig. 3 feeds raw materials (ABS resin latex and coagulant) into the main extruder 10X and proceeds while plasticizing, supplying cleaning steam, cleaning and draining, and then devolatilizing. , A device for discharging. Since the raw materials are melted, washed and devolatilized in the same cylinder, it is not possible to select the optimum number of revolutions for each. For this reason, each process cannot be optimally controlled, and the quality of the discharged resin may not be sufficient. For example, when the temperature of the molten resin becomes too high, the deterioration of the resin (molecular cutting) progresses, the MFR increases, the impact strength decreases, and the color tone increases bL (yellowishness). was there. Since the amount of the rubber component cannot be adjusted by the matrix body, it may be complicated if it is necessary to adjust in a later process.
実施例 Example
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は以下に限定 されるものではない。また、実施例中、部、及び%は、特に断らない限り質量基準で ある。実施例中の各評価は次のようにして測定した値である。  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following. In the examples, parts and% are based on mass unless otherwise specified. Each evaluation in the examples is a value measured as follows.
[評価方法] [Evaluation methods]
(1) MFR: IS〇1133に基づいて、温度 220。C、荷重 98Nで測定した。  (1) MFR: IS 220, based on IS 0133. C, measured with a load of 98N.
(2)シャルピー衝撃強さ:得られた樹脂ペレットを射出成形機 (ニイガタ鉄工製 NN30 B)にて成形し、 IS〇179に基づいて測定した。  (2) Charpy impact strength: The obtained resin pellets were molded by an injection molding machine (NN30 B manufactured by Niigata Iron Works) and measured based on IS0179.
(3)色調:上記射出成形機にて、 3. 2 X 40 X 80mmの試験片を成形し、色差計(Ga rdner社製、 TCS— Π (光源 C、反射法 d_8) )を用いて評価した。  (3) Color tone: Using the above injection molding machine, a 3.2 X 40 X 80 mm test piece was molded and evaluated using a color difference meter (Gardner, TCS-Π (light source C, reflection method d_8)) did.
[原材料]  [Raw materials]
(1)スチレン系樹脂 (A) :  (1) Styrenic resin (A):
テクノポリマー社製、サンレックス SAN— C (メルトフローレート: 25g/10min (22 0°C、 98N)、 AN含量: 26%)を用いた。  Sanrex SAN-C (melt flow rate: 25 g / 10 min (220 ° C., 98 N), AN content: 26%) manufactured by Techno Polymer Co., Ltd. was used.
(2) (ゴム強化)スチレン系樹脂ラテックス (B) :  (2) (Rubber reinforced) Styrenic resin latex (B):
B— 1 :ブタジエンゴムラテックス 50部(固形分換算)、スチレン 36· 5部、アタリロニト リル 13. 5部を用い公知の方法に従って ABS樹脂ラテックスを製造した。得られた A BS樹脂ラテックスの固形分は 33%、樹脂中のゴム成分は 50%、マトリックス部(ァセ トン可溶部)の AN%は 27%、極限粘度は 0. 41dl/g、グラフト率は 55%であった。 B-1: Butadiene rubber latex 50 parts (solid content conversion), Styrene 36.5 parts, Atarylonite ABS resin latex was prepared according to a known method using 13.5 parts of ril. The resulting ABS resin latex has a solid content of 33%, the rubber component in the resin is 50%, the matrix part (aceton soluble part) has an AN% of 27%, the intrinsic viscosity is 0.41 dl / g, graft The rate was 55%.
B— 2 :ブタジエンゴムラテックス 40部(固形分換算)、スチレン 43. 8部、アタリロニト リル 16. 2部を用い公知の方法に従って ABS樹脂ラテックスを製造した。得られた A BS樹脂ラテックスの固形分 34. 5%、樹脂中のゴム成分 40%、マトリックス部(ァセト ン可溶部)の AN%は 27。/0、極限粘度は 0. 45dl/g、グラフト率は 62%であった。 B-2: A butadiene rubber latex 40 parts (in terms of solid content), 43.8 parts of styrene, and 16.2 parts of attalononitrile were used to produce an ABS resin latex according to a known method. The obtained ABS resin latex had a solid content of 34.5%, a rubber component in the resin of 40%, and an AN% of the matrix part (aceton soluble part) was 27. / 0 , the intrinsic viscosity was 0.45 dl / g, and the graft ratio was 62%.
[実施例:!〜 3、比較例 1、 2] [Examples:! To 3, Comparative Examples 1 and 2]
図 1の装置を用レ、て実施例 1〜 3のペレットを製造した。実施例 1〜 3の成分や製造 工程の詳細(運転条件等)を表 1に示す。  The pellets of Examples 1 to 3 were manufactured using the apparatus shown in FIG. Table 1 shows the components of Examples 1 to 3 and details of the manufacturing process (such as operating conditions).
図 3の装置を用いて比較例 1〜2のペレットを製造した。比較例:!〜 2の成分や製造 工程の詳細(運転条件等)を表 2に示す。  The pellets of Comparative Examples 1 and 2 were produced using the apparatus shown in FIG. Table 2 shows details of the comparative examples:! ~ 2 and details of the manufacturing process (operating conditions, etc.).
さらに、比較例 1、 2の各ペレットに、 ASペレットを配合して単軸押出機で混練、ぺ レット化し、ゴム含有量を実施例 1〜3と同じにした物性評価用の比較例ペレット 11、 12、 21を得た。ここで、  Furthermore, AS pellets were blended in each pellet of Comparative Examples 1 and 2 and kneaded and pelletized with a single screw extruder, and the Comparative Example Pellet for physical property evaluation was made to have the same rubber content as in Examples 1 to 3. 11 , 12, 21. here,
比較例ペレット 11は比較例 1のペレットを実施例 1と同じゴム含有量としたペレットで あり、  Comparative Example Pellet 11 is a pellet in which the pellet of Comparative Example 1 has the same rubber content as Example 1,
比較例ペレット 12は比較例 1のペレットを実施例 2と同じゴム含有量としたペレットで あり、  Comparative Example Pellet 12 is a pellet in which the pellet of Comparative Example 1 has the same rubber content as Example 2,
比較例ペレット 21は比較例 2のペレットを実施例 3と同じゴム含有量としたペレットで ある。  Comparative Example Pellet 21 is a pellet in which the pellet of Comparative Example 2 has the same rubber content as Example 3.
上記実施例 1、 2、 3と比較例 11、 12、 21の各ペレットの品質を評価した。評価結果 を表 3に示す。  The quality of each of the pellets of Examples 1, 2, and 3 and Comparative Examples 11, 12, and 21 was evaluated. Table 3 shows the evaluation results.
[評価の結果] [Assessment result]
1)比較例 1、 2は、表 1、表 2から明らかなように、水分同伴樹脂回収量の量が実施 例:!〜 3よりも多ぐ歩留りが悪い。  1) As is clear from Tables 1 and 2 in Comparative Examples 1 and 2, the amount of water-entrained resin recovered is higher than that in Examples:!
2)比較例 11、 12、 21は表 1、 2に見られるように、比較例 1、 2に於いて先端樹脂温 度が高くなる結果として、表 3に見られるように、 MFRが高くなり、シャルピー衝撃強さ が低下し、色調が黄色味が増し白色度が下がっている。 2) As seen in Tables 1 and 2 for Comparative Examples 11, 12, and 21, as a result of the higher tip resin temperature in Comparative Examples 1 and 2, the MFR increases as shown in Table 3. , Charpy impact strength The color tone decreases, the yellowness increases, and the whiteness decreases.
なお、図 2の装置を用いて実施例品を製造するとともに、上記と同様に比較例品を 製造した比較した場合も、上記と略同様の結果を得られた。  In addition, when the example product was manufactured using the apparatus of FIG. 2 and the comparative product was manufactured in the same manner as described above, the same results as above were obtained.
[表 1] [table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[表 2] [Table 2]
比較例 1 比較例 2 種類 B-1 B-2 固形分濃度 [質 Comparative Example 1 Comparative Example 2 Types B-1 B-2 Solid Concentration [Quality
33 34.5 量%]  33 34.5%]
(B) (ゴム強化)スチレン系樹脂ラ 樹脂中のゴム成分  (B) (Rubber reinforced) Styrenic resin rubber component in resin
50 40 テックス [質量 <½]  50 40 tex [mass <½]
ビカット軟化温度  Vicat softening temperature
101 106  101 106
[。c]  [. c]
フィード量 [L hr]  Feed amount [L hr]
300(99) 360(124. 2) (固形分 [kg hr])  300 (99) 360 (124. 2) (Solid content [kg hr])
硫酸マグネシウム  Magnesium sulfate
(C)凝固剤 フィード量 [L hr] 25 30  (C) Coagulant feed amount [L hr] 25 30
水溶液 (8質量%)  Aqueous solution (8% by mass)
120〜130。Cの高  120-130. C high
洗浄用高温水 1 フィード量 [L hr] 50 50  High temperature water for cleaning 1 Feed amount [L hr] 50 50
'皿 [BjCh水  'Dish [BjCh Water
120~130°Cの高  120 ~ 130 ° C high
洗浄用高温水 2 フィード量 [L hr] 30 30  High temperature water for cleaning 2 Feed amount [L hr] 30 30
½lIBj£t水  ½lIBj £ t water
バレルヒータ温度 [°c] 150〜200 150〜200 両フィルタ遊離水回収量 [L hr] 285 327 主押出機  Barrel heater temperature [° c] 150 to 200 150 to 200 Recovered water from both filters [L hr] 285 327 Main extruder
水分同伴樹脂回収量 [kgノ hr] 15 20  Amount of resin with moisture accompanying [kg no hr] 15 20
先端樹脂温度 [¾] 290 283  Tip resin temperature [¾] 290 283
[表 3] [Table 3]
Figure imgf000020_0001
産業上の利用可能性
Figure imgf000020_0001
Industrial applicability
本発明は、種々の品種の良質の(ゴム強ィヒ)スチレン系樹脂組成物を、微粉の飛散 や大量の排水を生ずることなぐ環境汚染問題を生ずることなぐ小さなエネルギーで 、収率良ぐ製造する用途に用レ、ることができる。  The present invention produces high-quality (rubber-rich) styrene resin compositions of various varieties with low energy without causing environmental pollution problems that do not cause fine powder scattering and large amounts of wastewater, and can produce high yields. Can be used for any purpose.

Claims

請求の範囲 The scope of the claims
[1] スチレン系樹脂 (A)を可塑化する可塑化工程、  [1] A plasticizing process for plasticizing the styrene resin (A),
(ゴム強化)スチレン系樹脂ラテックス (B)と凝固剤(C)を混合してクリーム状物質( D)を得る凝固工程、  (Rubber Reinforcement) Coagulation process to obtain cream-like substance (D) by mixing styrene resin latex (B) and coagulant (C),
前記可塑化工程後のスチレン系樹脂 (A)が存在する押出機内へ前記クリーム状物 質 (D)を供給して該押出機内にて混合して混合物 (E)を得る混合工程、  A mixing step of supplying the cream-like substance (D) into an extruder in which the styrenic resin (A) after the plasticizing step is present and mixing in the extruder to obtain a mixture (E);
前記混合物 (E)から水分を除去して前記押出機内から排水する排水工程、 前記水分除去後の混合物を脱揮して揮発分を前記押出機内から排出する脱揮ェ 程、  A drainage step of removing water from the extruder by removing water from the mixture (E), a devolatilization step of devolatilizing the mixture after removing the water and discharging volatile matter from the extruder,
を実施して前記押出機内から (ゴム強化)スチレン系樹脂組成物を回収することを 特徴とする(ゴム強化)スチレン系樹脂組成物の回収方法。  To recover the (rubber reinforced) styrene resin composition from the inside of the extruder.
[2] 請求項 1に於いて、 [2] In claim 1,
前記クリーム状物質 (D)の供給位置よりも上流側の前記押出機内にて前記可塑化 工程を実施する、  Performing the plasticizing step in the extruder upstream of the supply position of the cream substance (D),
ことを特徴とする(ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a styrene-based resin composition (rubber reinforced).
[3] 請求項 1に於いて、 [3] In claim 1,
可塑化装置にて前記可塑化工程を実施して当該可塑化したスチレン系樹脂 (A)を 前記クリーム状物質 (D)の供給位置よりも上流側の前記押出機内へ供給する、 ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  The plasticizing apparatus performs the plasticizing step and supplies the plasticized styrene resin (A) into the extruder on the upstream side of the supply position of the cream-like substance (D). (Rubber reinforced) A method for recovering a styrene resin composition.
[4] 請求項 1から請求項 3の何れかに於いて、 [4] In any one of claims 1 to 3,
前記凝固工程での凝固温度が前記 (ゴム強化)スチレン系樹脂ラテックス (B)の樹 脂のビカット軟化温度を Tm°Cとしたとき、 (Tm- 70) °C以上である、  The coagulation temperature in the coagulation step is (Tm-70) ° C or more when the Vicat softening temperature of the resin of the (rubber reinforced) styrene resin latex (B) is Tm ° C.
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a (rubber reinforced) styrene-based resin composition.
[5] 請求項 1から 4の何れかに於いて、 [5] In any one of claims 1 to 4,
前記凝固工程で得られて押出機内へ供給されるクリーム状物質 (D)の固形分濃度 は 15〜40質量%の範囲である、  The solid content concentration of the cream substance (D) obtained in the coagulation step and fed into the extruder is in the range of 15 to 40% by mass.
ことを特徴とする(ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a styrene-based resin composition (rubber reinforced).
[6] 請求項 1から 4の何れかに於いて、 前記クリーム状物質 (D)の供給位置よりも下流側にて前記押出機内へ 100°C以上 の洗浄水を供給し、 2軸スクリュー方式のメカニカルフィルタを用いて前記洗浄水及 び前記混合物 (E)中の水分を前記押出機内から排出する、 [6] In any one of claims 1 to 4, Wash water at 100 ° C. or more is supplied into the extruder downstream from the supply position of the cream substance (D), and the wash water and the mixture (E ) To discharge the moisture in the extruder,
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a (rubber reinforced) styrene-based resin composition.
[7] 請求項 6に於いて、 [7] In claim 6,
前記メカニカルフィルタの後段に気液分離槽を設け、該気液分離槽にて気相部の 圧力を制御しつつ排水する、  A gas-liquid separation tank is provided at the subsequent stage of the mechanical filter, and drainage is performed while controlling the pressure of the gas phase in the gas-liquid separation tank.
ことを特徴とする (ゴム強化)スチレン系樹脂組成物の回収方法。  A method for recovering a (rubber reinforced) styrene-based resin composition.
[8] 主押出機と、スチレン系樹脂を可塑化するための補助押出機と、凝固装置とを有し 前記主押出機は、最上流側の位置に補助押出機用の第 1の供給口を有し、該第 1 の供給口の下流側に前記凝固装置用の第 2の供給口を有し、更にその下流側に、 順に、洗浄水の給水口、洗浄水の排水口、揮発分除去用の脱揮口を有し、 [8] A main extruder, an auxiliary extruder for plasticizing a styrene resin, and a solidification device, wherein the main extruder is a first supply port for the auxiliary extruder at a position on the most upstream side. A second supply port for the coagulation apparatus on the downstream side of the first supply port, and further on the downstream side, in turn, a wash water supply port, a wash water drain port, and a volatile component. Has a devolatilization port for removal,
前記第 1の供給口には前記補助押出機の吐出口を連結し、  A discharge port of the auxiliary extruder is connected to the first supply port;
前記第 2の供給口には前記凝固装置の吐出口を連結し、  A discharge port of the coagulation apparatus is connected to the second supply port;
前記補助押出機内にて可塑化したスチレン系樹脂を前記第 1の供給ロカ 前記主 押出機に供給するとともに前記凝固装置内でクリーム化した (ゴム強化)スチレン系榭 脂を前記第 2の供給ロカ 供給して混合し、該混合物を前記主押出機内で溶融しつ つ前記給水口から供給する洗浄水で洗浄し、洗浄後の水分を前記排水口からメカ二 カルフィルタを介して排水し、水分排水後の混合物を負圧で脱揮して揮発分を前記 脱揮ロカ 排出する、  The styrenic resin plasticized in the auxiliary extruder is supplied to the first supply loci to the main extruder and creamed (rubber reinforced) styrene resin in the coagulator. The mixture is melted in the main extruder, washed with washing water supplied from the water supply port, and the washed water is drained from the drain port through a mechanical filter. The mixture after drainage is devolatilized under negative pressure, and the volatile components are discharged to the devolatilization locus.
ことを特徴とする(ゴム強化)スチレン系樹脂組成物の回収装置。  (Rubber-reinforced) styrene-based resin composition recovery device.
この回収装置の一例を図 1に示す。  An example of this collection device is shown in FIG.
[9] 請求項 8に於いて、 [9] In claim 8,
前記メカニカルフィルタの後段に気液分離槽を設けるとともに、該気液分離槽にて 気相部の圧力を制御しつつ排水する排水装置を設けたことを特徴とする (ゴム強化) スチレン系樹脂組成物の回収装置。  A gas-liquid separation tank is provided downstream of the mechanical filter, and a drainage device is provided for draining water while controlling the pressure in the gas phase in the gas-liquid separation tank. (Rubber-reinforced) Styrenic resin composition Collecting device.
PCT/JP2006/304931 2005-03-15 2006-03-13 Method and apparatus for recovering (rubber-reinforced) styrene resin composition WO2006098287A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680016218XA CN101175794B (en) 2005-03-15 2006-03-13 Method and apparatus for recovering (rubber-reinforced) styrenic resin composition
KR1020077023421A KR101279244B1 (en) 2005-03-15 2006-03-13 Method and apparatus for recovering (rubber-reinforced) styrene resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-072819 2005-03-15
JP2005072819 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098287A1 true WO2006098287A1 (en) 2006-09-21

Family

ID=36991630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304931 WO2006098287A1 (en) 2005-03-15 2006-03-13 Method and apparatus for recovering (rubber-reinforced) styrene resin composition

Country Status (4)

Country Link
JP (1) JP5064701B2 (en)
KR (1) KR101279244B1 (en)
CN (1) CN101175794B (en)
WO (1) WO2006098287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316439B2 (en) 2011-05-13 2016-04-19 Nfm Welding Engineers, Inc. Dewatering machine and process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157299B1 (en) * 2008-02-01 2012-06-15 주식회사 엘지화학 Device of preparing polymer slurry with high solid contents and method of preparing using the same
US20110146883A1 (en) * 2009-12-23 2011-06-23 Gary Robert Burg Continuous mixing system and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937021B2 (en) * 1980-03-19 1984-09-07 電気化学工業株式会社 ABS resin manufacturing method
JPH0742392B2 (en) * 1986-01-07 1995-05-10 東芝機械株式会社 ABS resin manufacturing method and apparatus
JP2000507176A (en) * 1996-09-26 2000-06-13 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing thermoplastic resin
JP2000210931A (en) * 1999-01-20 2000-08-02 Toshiba Mach Co Ltd Apparatus and method for manufacture of impact resistant thermoplastic resin
JP2004323847A (en) * 2003-04-22 2004-11-18 Bayer Ag Method and apparatus for producing thermoplastic resin modified with elastomer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133689C (en) * 2000-03-22 2004-01-07 范宸天 Method of foaming polystyrene to produce polystyrene products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937021B2 (en) * 1980-03-19 1984-09-07 電気化学工業株式会社 ABS resin manufacturing method
JPH0742392B2 (en) * 1986-01-07 1995-05-10 東芝機械株式会社 ABS resin manufacturing method and apparatus
JP2000507176A (en) * 1996-09-26 2000-06-13 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing thermoplastic resin
JP2000210931A (en) * 1999-01-20 2000-08-02 Toshiba Mach Co Ltd Apparatus and method for manufacture of impact resistant thermoplastic resin
JP2004323847A (en) * 2003-04-22 2004-11-18 Bayer Ag Method and apparatus for producing thermoplastic resin modified with elastomer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316439B2 (en) 2011-05-13 2016-04-19 Nfm Welding Engineers, Inc. Dewatering machine and process

Also Published As

Publication number Publication date
CN101175794A (en) 2008-05-07
KR101279244B1 (en) 2013-06-26
CN101175794B (en) 2011-02-09
JP2006291187A (en) 2006-10-26
KR20070110940A (en) 2007-11-20
JP5064701B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4653380B2 (en) Method for reducing polymer content in waste water by dewatering a plastic / water mixture
US6287470B1 (en) Two-step method for dehydrating plastic dispersions
JP3863581B2 (en) Method for dehydrating a two-phase liquid mixture comprising a thermoplastic melt and an aqueous phase
JP2004131654A (en) Method for recovery of polymer and recovering apparatus
JPH091546A (en) Preparation of a thermoplastic synthetic resin
WO2006098287A1 (en) Method and apparatus for recovering (rubber-reinforced) styrene resin composition
JP5855083B2 (en) Method for producing polymer free of water and solvent
JPH03193412A (en) Method for mixing elastic latex and asphalt
EP1471093B1 (en) Process and apparatus for producing thermoplastic resins modified with an elastomer
JPS58183235A (en) Manufacture of rubber carbon master batch
JP2895565B2 (en) Method and apparatus for producing thermoplastic resin
JPH01123853A (en) Production of rubber-modified thermoplastic resin
JPS5927776B2 (en) Molding resin composition
JP3987755B2 (en) Polymer recovery method
WO2005095496A1 (en) Method and apparatus for producing rubbery polymer
JPS621703A (en) Method of recovering polymer
US10525439B2 (en) Process for the production of thermoplastic moulding compounds
JP2970786B2 (en) Recovery method of polymer powder
JPS6230106A (en) Method of recovering polymer
EP1325061A2 (en) A process for making a thermoplastic molding composition
JP2005068385A (en) Method and apparatus for recovering polymer
JPS60229937A (en) Method for recovering polymer
JPS5827802B2 (en) Method for continuously recovering polymer from polymer latex
JPH03252404A (en) Method for continuously coagulating polymer latex
JPH1180495A (en) Preparation of rubber-modified vinyl polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016218.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7821/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077023421

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP