JP2006231847A - Regeneration method of fluorine resin film, and fluorine resin film obtained using it - Google Patents

Regeneration method of fluorine resin film, and fluorine resin film obtained using it Download PDF

Info

Publication number
JP2006231847A
JP2006231847A JP2005053039A JP2005053039A JP2006231847A JP 2006231847 A JP2006231847 A JP 2006231847A JP 2005053039 A JP2005053039 A JP 2005053039A JP 2005053039 A JP2005053039 A JP 2005053039A JP 2006231847 A JP2006231847 A JP 2006231847A
Authority
JP
Japan
Prior art keywords
fluorine resin
fluororesin
resin film
resin
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053039A
Other languages
Japanese (ja)
Other versions
JP2006231847A5 (en
JP4517890B2 (en
Inventor
Atsushi Okamoto
岡本  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005053039A priority Critical patent/JP4517890B2/en
Publication of JP2006231847A publication Critical patent/JP2006231847A/en
Publication of JP2006231847A5 publication Critical patent/JP2006231847A5/ja
Application granted granted Critical
Publication of JP4517890B2 publication Critical patent/JP4517890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a fluorine resin film used as a water treating film without incinerating or landfilling. <P>SOLUTION: The fluorine resin film is regenerated by the step of removing impurities contained in the fluorine resin film, the step of crushing the fluorine resin film after removing the impurities to make a fluorine resin, and the step of performing extrusion molding by supplying the fluorine resin after being crushed into an extruder while heating it near the melting temperature of the fluorine resin. Further, a part or the whole of the fluorine resin regenerated by this method is used to make the fluorine resin film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水処理用膜およびモジュールに利用されるフッ素樹脂製膜の再生方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for regenerating a fluororesin film used for a water treatment membrane and a module.

フッ素樹脂は一般にその融点が著しく高く、耐薬品性が良好であり,樹脂表面の摩擦係数が小さいことから、様々な分野で広く利用されている。例えば耐熱電線の被覆材や半導体製造材料、電子部品、パイプ、バルブなどに使われるフッ素樹脂は、熱分解時に発生するガスの取り扱いが難しいため、リサイクルすることは極めて困難とされ、再生利用不可能なものについては、これまでは産業廃棄物として処理されていた。   In general, a fluororesin has a remarkably high melting point, good chemical resistance, and a low coefficient of friction on the surface of the resin, so that it is widely used in various fields. For example, fluororesins used in heat-resistant wire coating materials, semiconductor manufacturing materials, electronic components, pipes, valves, etc. are difficult to handle because of the difficulty in handling the gas generated during thermal decomposition, and cannot be recycled. Until now, it was treated as industrial waste.

水処理分野において、従来から急速砂ろ過後に塩素殺菌を実施して飲料水を得る方法が一般的に行われてきたが、耐塩素性を有する病原性原虫クリプトスポリジウムの除去を目的として、浄水場において分離膜の導入が最近急増している。特に膜の機械的強度や耐薬品性からフッ素樹脂からなる分離膜が多く用いられるようになってきた。このフッ素樹脂製の膜は使用年数が長期間になると性能が次第に低下してしまうために新しい膜モジュールに交換しなければならなくなり、その結果、性能低下した膜モジュールは廃棄されることになる。フッ素樹脂膜の廃棄方法としては埋没処分がこれまでに行われてきたが、このままフッ素樹脂膜の使用量が増加していくとその廃棄物量も膨大になってしまい、環境に与える影響が非常に大きくなり、今後大きな社会問題になることが予想される。   In the field of water treatment, a method of obtaining drinking water by chlorination after rapid sand filtration has been generally used. However, for the purpose of removing the pathogenic protozoa Cryptosporidium having chlorine resistance, In recent years, the introduction of separation membranes has increased rapidly. In particular, a separation membrane made of a fluororesin has come to be frequently used because of the mechanical strength and chemical resistance of the membrane. Since the performance of the fluororesin membrane gradually deteriorates over a long period of use, it must be replaced with a new membrane module. As a result, the membrane module with degraded performance is discarded. The disposal of fluororesin membranes has been carried out until now, but as the amount of fluororesin membranes increases, the amount of waste becomes enormous and the impact on the environment is extremely high. It is expected to grow and become a major social problem in the future.

樹脂のリサイクル方法としては樹脂を溶剤に溶解した後に押出機に供給する方法(特許文献1)や、フッ素樹脂を熱分解することによってケミカルリサイクルする方法(特許文献2)が考案されている。また、樹脂をリサイクルするためには樹脂表面に付着した不純物などを除去するために樹脂表面を研磨する方法(特許文献3)が行われてきた。
特開2000−351869号公報 特開2004−346000号公報 特開2001−145920号公報
As a resin recycling method, a method in which a resin is dissolved in a solvent and then supplied to an extruder (Patent Document 1) and a method in which a fluorine resin is thermally decomposed by thermal decomposition (Patent Document 2) have been devised. Further, in order to recycle the resin, a method (Patent Document 3) of polishing the resin surface in order to remove impurities attached to the resin surface has been performed.
JP 2000-351869 A JP 2004-346000 A JP 2001-145920 A

しかしながら、溶剤に溶解した後に押出機に供給する場合は溶剤量の制御が困難であり、押出機内での過度の加熱による熱劣化や押出後の樹脂中に含まれる溶剤を除去することが困難である。また、ケミカルリサイクルした場合は、熱分解前の同じ樹脂に再生しようとする場合には多段階の煩雑な工程が必要となるため製造コストの上昇や製造時に発生する二酸化炭素排出量の増大など多くの問題を抱えている。不純物除去を目的とした研磨によって発生する樹脂の粉末には多くの不純物を含むために別途処分しなければならなくなる問題がある。本発明は、産業廃棄物として処理することなく、上述の問題点を回避し、フッ素系樹脂を再生する方法を確立することを目的とするものである。   However, it is difficult to control the amount of the solvent when it is supplied to the extruder after being dissolved in the solvent, and it is difficult to remove the solvent contained in the resin after extrusion due to excessive heat in the extruder. is there. In addition, when chemical recycling is performed, if it is desired to regenerate the same resin before thermal decomposition, a multi-step complicated process is required, which increases production costs and increases the amount of carbon dioxide generated during production. Have problems. The resin powder generated by polishing for the purpose of removing impurities has a problem that it must be disposed of separately because it contains many impurities. An object of the present invention is to establish a method for regenerating a fluorine-based resin by avoiding the above-mentioned problems without being treated as industrial waste.

上記課題を解決するための本発明は、次の(1)〜(5)の構成を特徴とするものである。   The present invention for solving the above-described problems is characterized by the following configurations (1) to (5).

(1)水処理用途に用いられるフッ素系樹脂膜を形成するフッ素樹脂を化学変化させることなく再生するフッ素系樹脂膜の再生方法であって、前記フッ素系樹脂膜に含まれる不純物を除去する工程と、前記不純物を除去した後のフッ素系樹脂膜を破砕してフッ素系樹脂とする工程と、前記破砕した後のフッ素系樹脂膜を該フッ素系樹脂の融点近傍に加熱しながら押出成形機内に供給して押出成形を行う工程を有することを特徴とするフッ素系樹脂膜の再生方法。   (1) A method for regenerating a fluororesin film that regenerates a fluororesin that forms a fluororesin film used for water treatment without chemically changing the process, and removing impurities contained in the fluororesin film And crushing the fluororesin film after removing the impurities into a fluororesin; and heating the crushed fluororesin film near the melting point of the fluororesin in the extruder. A method for regenerating a fluororesin film, comprising a step of supplying and performing extrusion molding.

(2)前記フッ素系樹脂膜が、多孔質であることを特徴とする(1)記載のフッ素系樹脂膜の再生方法。   (2) The method for regenerating a fluororesin film according to (1), wherein the fluororesin film is porous.

(3)前記フッ素系樹脂膜を形成するフッ素樹脂が、ポリフッ化ビニリデンからなる樹脂であることを特徴とする(1)または(2)記載のフッ素系樹脂膜の再生方法。   (3) The method for regenerating a fluororesin film according to (1) or (2), wherein the fluororesin forming the fluororesin film is a resin made of polyvinylidene fluoride.

(4)前記フッ素系樹脂膜の形状が中空糸状であることを特徴とする(1)〜(3)のいずれかに記載のフッ素系樹脂膜の再生方法。   (4) The method for regenerating a fluorine resin film according to any one of (1) to (3), wherein the fluorine resin film has a hollow fiber shape.

(5)一部または全部に、(1)〜(4)のいずれかに記載のフッ素系樹脂膜の再生方法により再生されたフッ素系樹脂を用いて得られるフッ素系樹脂膜。   (5) A fluororesin film obtained using a fluororesin regenerated by the fluororesin film regeneration method according to any one of (1) to (4) in part or in whole.

本発明によれば、膜素材がフッ素系樹脂からなる水処理用膜において、多孔質からなるフッ素系樹脂は不純物の除去が容易なこと、また熱伝導率が高いために過度な熱をかけることなく押出成形が可能なことにより、フッ素系樹脂の物性を変化させることなく容易にマテリアルリサイクルすることができる。特に、前記水処理用膜が中空糸状である場合には、連続して安定的に再生することが可能であり、かつ、フッ素系樹脂以外の樹脂素材をほとんど含んでいないため、不純物含有率の低いフッ素系樹脂への再生が可能となる。   According to the present invention, in a water treatment membrane whose membrane material is made of a fluororesin, the porous fluororesin is easy to remove impurities and has a high thermal conductivity so that it applies excessive heat. Therefore, the material can be easily recycled without changing the physical properties of the fluororesin. In particular, when the water treatment membrane is in the form of a hollow fiber, it can be continuously and stably regenerated, and contains almost no resin material other than the fluororesin. Regeneration to a low fluorine resin is possible.

本発明は膜素材がフッ素系樹脂からなる水処理用膜およびモジュールにおいて、フッ素系樹脂膜を再生するために、溶剤で溶解させることなく、またフッ素樹脂が化学変化することなく再生する方法として該フッ素系樹脂膜から不純物を除去する工程とフッ素系樹脂膜を破砕する工程と破砕したフッ素樹脂膜を加熱しながら押出成形機内に供給して押出成形を行う工程からなることを特徴とするフッ素系樹脂膜を再生する方法である。 The present invention relates to a method and a method for regenerating a fluororesin film without dissolving it in a solvent and without chemically changing the fluororesin film in a water treatment membrane and module in which the membrane material is made of a fluororesin. fluorine characterized by comprising the step of by fluoric supplied from resin film into the extruder while heating the fluorocarbon resin film was crushed with a step of crushing the step and the fluorine-based resin film to remove impurities perform extrusion This is a method for regenerating a resin film.

本発明で用いられるフッ素系樹脂膜は、その表面や内部に無数のミクロサイズの孔や隙間がある多孔質であることが好ましく、フッ素系樹脂膜の素材としては、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル、トリフルオロ塩化エチレン樹脂、テトラフルオロエチレン樹脂、溶融フッ素樹脂複合剤などが挙げられる。その中でも特にポリフッ化ビニリデンが、押出成型時に低温で融解するために熱分解しにくく安定であるために好ましい。   The fluororesin film used in the present invention is preferably porous with countless micro-sized holes and gaps on the surface and inside thereof. Examples of the material of the fluororesin film include polytetrafluoroethylene, Tetrafluoroethylene-perfluorovinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, trifluoroethylene chloride resin, tetrafluoroethylene resin, Examples thereof include a molten fluororesin composite agent. Among them, polyvinylidene fluoride is particularly preferable because it is melted at a low temperature during extrusion molding and is not easily thermally decomposed and is stable.

フッ素系樹脂は、フッ素樹脂単独で用いても良いが、他の樹脂との組成物として用いても良い。しかしながら他の樹脂を用いる場合、再生後のフッ素系樹脂の物性が再生前と大きく変わらない方がよいため、フッ素系樹脂中に含まれる他の樹脂は、フッ素系樹脂中に10質量%以下が望ましく、5質量%以下がより望ましい。したがって、水処理用の膜は中空糸型、管状型、モノリス型などの円筒状膜や、スパイラル型、プリーツ型、円盤形、平膜などの形状があるが、中空糸型以外はフッ素系樹脂以外に膜を支持するための基材が使用されているためにフッ素系樹脂以外の樹脂素材を多く含み、再生するには好ましくなく、中空糸型が好ましい。   The fluororesin may be used alone or as a composition with other resins. However, when other resins are used, it is better that the physical properties of the fluorinated resin after the regeneration are not significantly different from those before the regeneration. Therefore, the other resin contained in the fluorinated resin is 10% by mass or less in the fluorinated resin. Desirably, 5 mass% or less is more desirable. Therefore, membranes for water treatment include cylindrical membranes such as hollow fiber type, tubular type and monolith type, and spiral type, pleated type, disc type, flat membrane, etc. In addition to this, since a base material for supporting the membrane is used, it contains a large amount of resin materials other than fluororesin, which is not preferable for regeneration, and a hollow fiber type is preferable.

本発明によって再生されるフッ素系樹脂膜は、実際に水処理用に使用したものでも、フッ素系樹脂膜を生産する際に発生する規格外品でも良い。   The fluorine resin film regenerated by the present invention may be one actually used for water treatment or a non-standard product generated when producing a fluorine resin film.

実際に水処理用に使用したものはフッ素系樹脂膜の表面や内部にろ過原水中に含まれる有機物や無機物の不純物が付着しているために、酸やアルカリなどで薬品洗浄する必要がある。膜が多孔質であれば膜の内部まで付着した不純物は酸やアルカリによって容易に溶解させることができる。酸としては希塩酸、希硫酸、リン酸、硝酸、亜硫酸水素ナトリウムなどの無機酸やシュウ酸水溶液、クエン酸水溶液などの有機酸を単独または2種類以上の混合物として用いることができる。アルカリとしては水酸化ナトリウム水溶液や次亜塩素酸ナトリウム水溶液、炭酸ナトリウム水溶液などを単独または2種類以上の混合物として用いることができる。薬品洗浄では多孔質からなるフッ素系樹脂膜を酸またはアルカリの水溶液に単独または交互に一定時間浸漬させる方法や、多孔質膜モジュール内に酸やアルカリを循環させて膜に付着した不純物を除去する方法を用いることができる。   What is actually used for water treatment must be cleaned with chemicals such as acid or alkali, because organic and inorganic impurities contained in the raw filter water adhere to the surface and inside of the fluororesin membrane. If the membrane is porous, impurities adhering to the inside of the membrane can be easily dissolved by acid or alkali. As the acid, inorganic acids such as dilute hydrochloric acid, dilute sulfuric acid, phosphoric acid, nitric acid, and sodium hydrogen sulfite, and organic acids such as an aqueous oxalic acid solution and an aqueous citric acid solution can be used alone or as a mixture of two or more. As the alkali, an aqueous sodium hydroxide solution, an aqueous sodium hypochlorite solution, an aqueous sodium carbonate solution or the like can be used alone or as a mixture of two or more. In chemical cleaning, porous fluororesin membranes are immersed in acid or alkali aqueous solutions alone or alternately for a certain period of time, or acids and alkalis are circulated in the porous membrane module to remove impurities attached to the membrane. The method can be used.

フッ素系樹脂膜の生産時に規格外となったフッ素系樹脂膜は、様々な有機溶剤などの不純物が混入していることが考えられるため、水溶性の有機溶剤等で洗浄後、水ですすぐなどの操作による除去工程が必要となる。   Fluorine resin films that were out of specification during the production of fluorine resin films may contain impurities such as various organic solvents, so rinse with water after washing with water-soluble organic solvents, etc. The removal process by this operation is required.

本発明が適用される押出成形機は特に限定されるものではなく、単軸押出成形機、二軸押出成形機等いずれでもよい。押出成型機ではヒーターによって温度を制御したシリンダー内をモーターでスクリューを回転させながら前記フッ素系樹脂を供給してフッ素系樹脂を溶解させ、押出成型機のノズルから再生されたフッ素系樹脂を得ることができる。   The extrusion molding machine to which the present invention is applied is not particularly limited, and may be any of a single screw extruder, a twin screw extruder, and the like. In an extrusion molding machine, the fluorine resin is dissolved by rotating the screw in a cylinder whose temperature is controlled by a heater to dissolve the fluorine resin, and a regenerated fluorine resin is obtained from the nozzle of the extrusion molding machine. Can do.

フッ素系樹脂膜が樹脂の塊のような形状であればフッ素系樹脂の内部まで溶解させるために融点よりもかなり高い温度をかけなければ完全に溶解させることは難しいが、多孔質で中空糸状の樹脂膜であれば樹脂の融点近傍で容易に溶解させることができるため、過度の加熱により樹脂が化学変化することを防ぐことができる。   If the fluororesin film has a shape like a lump of resin, it is difficult to completely dissolve unless a temperature considerably higher than the melting point is applied in order to dissolve it to the inside of the fluororesin. Since the resin film can be easily dissolved in the vicinity of the melting point of the resin, the resin can be prevented from being chemically changed by excessive heating.

フッ素系樹脂を溶解させるための温度は、前記フッ素系樹脂の融点近傍が好ましく、特に溶解させる樹脂の融点よりも20℃程度高い温度であれば化学変化を引き起こさずに再生することができ、より好ましくは樹脂の融点よりも10℃高い温度である。   The temperature for dissolving the fluororesin is preferably in the vicinity of the melting point of the fluororesin, and can be regenerated without causing a chemical change if the temperature is higher by about 20 ° C. than the melting point of the resin to be dissolved. The temperature is preferably 10 ° C. higher than the melting point of the resin.

また、フッ素系樹脂の熱劣化により化学変化の有無を測定する方法としては、分子量分布測定や元素分析、融点測定、示差走査熱量測定、加熱重量減分析、核磁気共鳴分光法、赤外分光法、紫外分光法などで行うことができるが、再生したフッ素系樹脂を元の形状に加工した後に、再生処理前後の物性を比較することで確認することもできる。ただし、いずれの方法で確認しても、測定誤差が生じてしまうために、分子量分布測定や元素分析、融点測定、示差走査熱量測定、加熱重量減分析、核磁気共鳴分光法、赤外分光法、紫外分光法などの分析では誤差は5%以内、再生したフッ素系樹脂を元の形状に加工し、フッ素系樹脂の再生処理前後の物性を比較する場合は10%程度の誤差は化学変化していないとみなすことができる。   Methods for measuring the presence or absence of chemical changes due to thermal degradation of fluoropolymers include molecular weight distribution measurement, elemental analysis, melting point measurement, differential scanning calorimetry, heating weight loss analysis, nuclear magnetic resonance spectroscopy, infrared spectroscopy. Although it can be performed by ultraviolet spectroscopy or the like, it can also be confirmed by comparing the physical properties before and after the regeneration treatment after processing the regenerated fluororesin into the original shape. However, measurement errors occur regardless of which method is used, so molecular weight distribution measurement, elemental analysis, melting point measurement, differential scanning calorimetry, heating weight loss analysis, nuclear magnetic resonance spectroscopy, infrared spectroscopy In the analysis such as ultraviolet spectroscopy, the error is within 5%. When the regenerated fluororesin is processed into the original shape and the physical properties of the fluororesin before and after regeneration are compared, the error of about 10% changes chemically. It can be regarded as not.

押出成形機内へ前記フッ素系樹脂膜を安定的に供給するためは、前記フッ素系樹脂膜を破砕する工程が必要となり、特に前記フッ素系樹脂膜を連続して安定的に供給するためには、フッ素系樹脂膜が中空糸状であることが好ましい。フッ素系樹脂の破砕には通常ボールミルや高速カッターミル、ロールクラッシャー、ロータリーカッター、油圧切断機などの破砕機や粉砕機を用いるが、中空状のフッ素系樹脂を多軸の破砕機や粉砕機で破砕する場合、延伸してしまい上手く破砕することができないため、単軸の粉砕機を用いるのが好ましく、特にロータリーカッターや油圧切断機などで粉砕手段を用いると細かく破砕できることから好ましい。これらの破砕工程で中空状のフッ素系樹脂を処理することにより、押出成型機に供給する際にスムーズに導入することができ、フッ素系樹脂の溶融温度が均一化できるために好ましい。再生して得られたフッ素系樹脂は耐熱電線の被覆材や半導体製造材料、電子部品、パイプ、バルブ等の他に水処理用の膜としても利用することができる。   In order to stably supply the fluorine-based resin film into the extrusion molding machine, a step of crushing the fluorine-based resin film is required. In particular, in order to stably supply the fluorine-based resin film continuously, The fluororesin membrane is preferably in the form of a hollow fiber. For crushing fluorine-based resins, crushers and crushers such as ball mills, high-speed cutter mills, roll crushers, rotary cutters, and hydraulic cutters are usually used. In the case of crushing, since it is stretched and cannot be crushed well, it is preferable to use a uniaxial crusher, and it is particularly preferable to use a crushing means with a rotary cutter or a hydraulic cutting machine because it can be finely crushed. By treating the hollow fluororesin in these crushing steps, it can be introduced smoothly when supplied to the extruder, and the melting temperature of the fluororesin can be made uniform, which is preferable. The fluorinated resin obtained by regeneration can be used as a film for water treatment in addition to a coating material for heat-resistant wires, semiconductor manufacturing materials, electronic parts, pipes, valves, and the like.

そして、以上の様にして再生されたフッ素系樹脂を一部または全部に用いてフッ素系中空糸膜とすることにより、フッ素系樹脂の物性を変化させることなく容易にマテリアルリサイクルすることができるのである。   And, by using a part or all of the fluorine resin regenerated as described above to form a fluorine hollow fiber membrane, material recycling can be easily performed without changing the physical properties of the fluorine resin. is there.

本発明で測定した中空糸膜の内径および外径は割断面の走査電子顕微鏡写真から求めた。純水透過量(m/m2・h)は、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製し、温度25℃、ろ過差圧16kPaの条件下に、実質的に微粒子などの固形分を含まない純水の外圧全ろ過を30分間行い、その透過量(m)を単位時間(h)及び有効膜面積(m2)あたりの値に圧力(100kPa)換算した値とした。 The inner diameter and outer diameter of the hollow fiber membrane measured in the present invention were determined from a scanning electron micrograph of a broken section. A pure water permeation amount (m 3 / m 2 · h) was produced by producing a miniature module having a length of 200 mm consisting of four hollow fiber membranes, substantially under conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. The total pressure of pure water containing no solids is filtered for 30 minutes, and the permeation amount (m 3 ) is converted into a value per unit time (h) and effective membrane area (m 2 ) as pressure (100 kPa) and did.

破断強度および破断伸度は、引張り試験機(TENSILON/RTM−100)(東洋ボールドウィン社製)を用いて、長さ50mmの試料を引張り速度50mm/分で試料を代えて30回測定し、その平均を測定値とした。   The breaking strength and breaking elongation were measured 30 times using a tensile tester (TENSILON / RTM-100) (manufactured by Toyo Baldwin) by changing the sample at a pulling speed of 50 mm / min 30 times. The average was taken as the measured value.

[実施例1]
ポリフッ化ビニリデン製精密ろ過中空糸膜(東レ株式会社製、型番HFM−2020)用に製造したポリフッ化ビニリデン中空糸膜(内径0.90mm、外径1.42mm、純水透過量3.7m/(m2・h)、破断強度11.0MPa、破断伸度97%)を水で水洗後、120℃に加温した乾燥機内で3時間加熱乾燥し、水分を除去した。次に乾燥した中空糸膜をロータリーカッター((株)奈良機械製作所製、型式RCM−400)を用いて長さ1〜5mmの範囲に破砕した。次に単軸の押出成型機(日立造船社製、型番SLM50)に破砕した中空糸膜を投入してヒーターでシリンダ部分を180℃に加熱しながら破砕した中空糸膜を溶融させ、スクリューを回転させて溶融した樹脂を押出した。押し出された樹脂はノズル部分で徐冷されて固化し、ポリフッ化ビニリデン樹脂を得た。得られた樹脂を用いて、精密ろ過中空糸膜を再度製造した。得られた中空糸膜は内径0.82mm、外径1.42mm、純水透過量3.6m/(m2・h)、破断強度10.4MPa、破断伸度91%であり、現行の製品物性を満足していることが確認できた。
[Example 1]
A polyvinylidene fluoride hollow fiber membrane (inner diameter 0.90 mm, outer diameter 1.42 mm, pure water permeation amount 3.7 m 3 ) manufactured for a polyvinylidene fluoride microfiltration hollow fiber membrane (manufactured by Toray Industries, Inc., model number HFM-2020) / (M 2 · h), breaking strength 11.0 MPa, breaking elongation 97%) was washed with water and then dried by heating in a dryer heated to 120 ° C. for 3 hours to remove moisture. Next, the dried hollow fiber membrane was crushed into a length of 1 to 5 mm using a rotary cutter (manufactured by Nara Machinery Co., Ltd., model RCM-400). Next, the crushed hollow fiber membrane is put into a single-screw extruder (model number SLM50, manufactured by Hitachi Zosen), and the crushed hollow fiber membrane is melted while heating the cylinder part to 180 ° C. with a heater, and the screw is rotated. The molten resin was extruded. The extruded resin was gradually cooled at the nozzle portion and solidified to obtain a polyvinylidene fluoride resin. Using the obtained resin, a microfiltration hollow fiber membrane was produced again. The obtained hollow fiber membrane has an inner diameter of 0.82 mm, an outer diameter of 1.42 mm, a pure water permeation amount of 3.6 m 3 / (m 2 · h), a breaking strength of 10.4 MPa, and a breaking elongation of 91%. It was confirmed that the product physical properties were satisfied.

[比較例1]
ポリフッ化ビニリデン中空糸膜の代わりにポリアクリロニトリル中空糸膜を用いた以外は実施例1と同じ操作を行った。押出成型機で加熱溶融させるためにヒーター温度を400℃まで加熱したがポリアクリロニトリル中空糸膜は溶解せず、押出成形することができなかった。
[Comparative Example 1]
The same operation as in Example 1 was performed except that a polyacrylonitrile hollow fiber membrane was used instead of the polyvinylidene fluoride hollow fiber membrane. In order to heat and melt with an extrusion molding machine, the heater temperature was heated to 400 ° C., but the polyacrylonitrile hollow fiber membrane did not dissolve and could not be extruded.

[比較例2]
ポリフッ化ビニリデン中空糸膜の代わりに酢酸セルロース中空糸膜を用いた以外は実施例1と同じ操作を行った。押出成型機で加熱溶融する際にヒーター温度を250℃まで加熱すると樹脂が溶解したが、樹脂の一部が酸化分解して炭化してしまった。
[Comparative Example 2]
The same operation as in Example 1 was performed except that a cellulose acetate hollow fiber membrane was used instead of the polyvinylidene fluoride hollow fiber membrane. When the heater temperature was heated to 250 ° C. during melting with an extruder, the resin was dissolved, but part of the resin was oxidized and carbonized.

本発明は水処理用に利用されるフッ素樹脂膜を廃棄する場合に、焼却処分や埋没処分することなく樹脂を再生する方法として好適に利用される。 The present invention in the case of discarding the fluorine-based resin film which is used for water treatment, is preferably used as a method for reproducing resin without incineration or burial disposal.

Claims (5)

水処理用途に用いられるフッ素系樹脂膜を形成するフッ素樹脂を化学変化させることなく再生するフッ素系樹脂膜の再生方法であって、前記フッ素系樹脂膜に含まれる不純物を除去する工程と、前記不純物を除去した後のフッ素系樹脂膜を破砕してフッ素系樹脂とする工程と、前記破砕した後のフッ素系樹脂を該フッ素系樹脂の融点近傍に加熱しながら押出成形機内に供給して押出成形を行う工程を有することを特徴とするフッ素系樹脂膜の再生方法。 A method for regenerating a fluororesin film that regenerates a fluororesin that forms a fluororesin film used for water treatment without chemically changing, the step of removing impurities contained in the fluororesin film, A step of crushing the fluorine resin film after removing impurities to obtain a fluorine resin, and supplying the extruded fluorine resin into the extrusion machine while heating near the melting point of the fluorine resin. A method for regenerating a fluororesin film, comprising a step of molding. 前記フッ素系樹脂膜が、多孔質であることを特徴とする請求項1記載のフッ素系樹脂膜の再生方法。 2. The method for regenerating a fluorine resin film according to claim 1, wherein the fluorine resin film is porous. 前記フッ素系樹脂膜を形成するフッ素樹脂が、ポリフッ化ビニリデンからなる樹脂であることを特徴とする請求項1または2記載のフッ素系樹脂膜の再生方法。 The method for regenerating a fluororesin film according to claim 1 or 2, wherein the fluororesin forming the fluororesin film is a resin made of polyvinylidene fluoride. 前記フッ素系樹脂膜の形状が中空糸状であることを特徴とする請求項1〜3のいずれかに記載のフッ素系樹脂膜の再生方法。 The method for regenerating a fluorine resin film according to any one of claims 1 to 3, wherein the fluorine resin film has a hollow fiber shape. 一部または全部に、請求項1〜4のいずれかに記載のフッ素系樹脂膜の再生方法により再生されたフッ素系樹脂を用いて得られるフッ素系樹脂膜。 A fluorine-based resin film obtained by partially or entirely using a fluorine-based resin regenerated by the method for regenerating a fluorine-based resin film according to claim 1.
JP2005053039A 2005-02-28 2005-02-28 Recycling method of hollow fiber membrane made of polyvinylidene fluoride resin Expired - Fee Related JP4517890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053039A JP4517890B2 (en) 2005-02-28 2005-02-28 Recycling method of hollow fiber membrane made of polyvinylidene fluoride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053039A JP4517890B2 (en) 2005-02-28 2005-02-28 Recycling method of hollow fiber membrane made of polyvinylidene fluoride resin

Publications (3)

Publication Number Publication Date
JP2006231847A true JP2006231847A (en) 2006-09-07
JP2006231847A5 JP2006231847A5 (en) 2008-04-10
JP4517890B2 JP4517890B2 (en) 2010-08-04

Family

ID=37040012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053039A Expired - Fee Related JP4517890B2 (en) 2005-02-28 2005-02-28 Recycling method of hollow fiber membrane made of polyvinylidene fluoride resin

Country Status (1)

Country Link
JP (1) JP4517890B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107661A1 (en) * 2020-03-02 2021-09-03 Suez Groupe Process for separating polymeric materials
EP4215330A1 (en) * 2022-01-21 2023-07-26 Sartorius Stedim Biotech GmbH Method for recycling and sterilizing thermoplastics from filters having same heterogenous composition, and installation for implementing such method
KR102641990B1 (en) * 2023-09-27 2024-02-29 에이치디현대오일뱅크 주식회사 Method of preparing fluorine-based resin porous membrane and fluorine-based resin porous membrane prepared thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300741A (en) * 1998-04-15 1999-11-02 Asahi Glass Co Ltd Reclaimed treatment method of waste fluororesin molding
JP2001253969A (en) * 2000-03-09 2001-09-18 Dowa Mining Co Ltd Method for cold defluorination of fluororesin
JP2002036237A (en) * 2000-07-24 2002-02-05 Daikin Ind Ltd Method for manufacturing regenerated fluororesin and regenerated fluororesin product
JP2004000886A (en) * 2002-04-26 2004-01-08 Toray Ind Inc Method for washing separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300741A (en) * 1998-04-15 1999-11-02 Asahi Glass Co Ltd Reclaimed treatment method of waste fluororesin molding
JP2001253969A (en) * 2000-03-09 2001-09-18 Dowa Mining Co Ltd Method for cold defluorination of fluororesin
JP2002036237A (en) * 2000-07-24 2002-02-05 Daikin Ind Ltd Method for manufacturing regenerated fluororesin and regenerated fluororesin product
JP2004000886A (en) * 2002-04-26 2004-01-08 Toray Ind Inc Method for washing separation membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107661A1 (en) * 2020-03-02 2021-09-03 Suez Groupe Process for separating polymeric materials
WO2021176175A1 (en) * 2020-03-02 2021-09-10 Suez Groupe Method for separating polymeric materials
EP4215330A1 (en) * 2022-01-21 2023-07-26 Sartorius Stedim Biotech GmbH Method for recycling and sterilizing thermoplastics from filters having same heterogenous composition, and installation for implementing such method
WO2023138981A1 (en) * 2022-01-21 2023-07-27 Sartorius Stedim Biotech Gmbh Method for recycling and sterilizing thermoplastics from filters having same heterogenous composition, and installation for implementing such method
KR102641990B1 (en) * 2023-09-27 2024-02-29 에이치디현대오일뱅크 주식회사 Method of preparing fluorine-based resin porous membrane and fluorine-based resin porous membrane prepared thereby

Also Published As

Publication number Publication date
JP4517890B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP6911757B2 (en) Fluid Separation Membrane, Fluid Separation Membrane Module and Porous Carbon Fiber
KR100517855B1 (en) Method for Producing Hollow Yarn Film
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
US7459108B2 (en) Method for preparing metallic membrane
WO2005123234A1 (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
JP5154784B2 (en) filter
JP6274642B2 (en) Porous hollow fiber membrane and method for producing the same
JP5856887B2 (en) Method for producing porous membrane
JPWO2006001528A1 (en) Porous membrane for water treatment and method for producing the same
JP2006169497A (en) Porous body and manufacturing method thereof
JP4517890B2 (en) Recycling method of hollow fiber membrane made of polyvinylidene fluoride resin
JP5292890B2 (en) Composite hollow fiber membrane
JP4978829B2 (en) Method for producing fluororesin porous body
JP4864707B2 (en) Method for producing vinylidene fluoride resin porous water treatment membrane
KR101939328B1 (en) Hollow Fiber Membrane Having Novel Structure and Method of Preparing the Same
WO2007123004A1 (en) Porous hollow-fiber membrane of vinylidene fluoride resin and process for producing the same
JP2012236178A (en) Method for producing vinylidene fluoride resin porous membrane
JP2013144264A (en) Method for producing porous polysulfone-based membrane
JP3265678B2 (en) Method for producing porous membrane of ethylene-tetrafluoroethylene copolymer
JP2011079879A (en) Method for producing porous polytetrafluoroethylene body
JP2014025166A (en) Method for manufacturing polyphenylene sulfide fiber
JP2024053941A (en) Method for regenerating porous membrane
CN109930170B (en) Ion exchange membrane for alkali chloride electrolysis, method for producing same, and alkali chloride electrolysis device
CN114133619B (en) Recovery and purification method of sulfone polymer
JP5201638B2 (en) Porous material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees