JP2006231363A - Method for cutting-off steel plate by laser beam - Google Patents

Method for cutting-off steel plate by laser beam Download PDF

Info

Publication number
JP2006231363A
JP2006231363A JP2005048479A JP2005048479A JP2006231363A JP 2006231363 A JP2006231363 A JP 2006231363A JP 2005048479 A JP2005048479 A JP 2005048479A JP 2005048479 A JP2005048479 A JP 2005048479A JP 2006231363 A JP2006231363 A JP 2006231363A
Authority
JP
Japan
Prior art keywords
mass
less
cutting
laser beam
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005048479A
Other languages
Japanese (ja)
Other versions
JP4696592B2 (en
Inventor
Kenji Oi
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005048479A priority Critical patent/JP4696592B2/en
Publication of JP2006231363A publication Critical patent/JP2006231363A/en
Application granted granted Critical
Publication of JP4696592B2 publication Critical patent/JP4696592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cutting-off steel plates by a laser beam, wherein the method is suitable for cutting-off thick steel plates to be used in welded structures, such as ship-building, civil engineering, architecture, bridges, construction machines, tanks, and steel pipes. <P>SOLUTION: A horizontally placed steel plate is cut-off by a laser beam with a sweepback angle of 5 to 30°, wherein the steel plate preferably contains the following chemical components: 0.01 to 0.20 mass% of C, 0.80 mass% or less of Si, 0.4 to 2.5 mass% of Mn, 0.03 mass% or less of P, 0.01 mass% or less of S, 0.15 mass% or less of Al, 0.01 mass% or less of N, 0.007 mass% or less of O, and if necessary, one or two elements of Ti, Cu, Ni, Cr, Mo, Nb, V, B, Ca, Mg, and rare earth metals (REM). Further, the steel plate preferably has a selective oxidation layer with a thickness of 0.5 μm or more from a scale interface to a base metal, and contains 0.35 to 0.80 mass% of Si. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼板のレーザ切断法に関し、造船,土木,建築,橋梁,建設機械,タンク,鋼管等の溶接構造物に用いられる厚鋼板の切断法として好適なものに関する。   The present invention relates to a laser cutting method for steel plates, and more particularly to a method for cutting thick steel plates used for welded structures such as shipbuilding, civil engineering, architecture, bridges, construction machines, tanks, steel pipes and the like.

近年、ガス切断やプラズマ切断に代わって高能率で切断面の形状や自動化が容易なレーザ切断の適用が盛んになっている。また、レーザ出力の増大とともに厚鋼板へ適用される切断限界板厚や切断速度も増大する傾向にある。   In recent years, instead of gas cutting and plasma cutting, application of laser cutting with high efficiency and easy cutting surface shape and automation has become popular. Further, as the laser output increases, the cutting limit plate thickness and cutting speed applied to the thick steel plate tend to increase.

しかしながら、厚鋼板のレーザ切断性は切断時の安定性や厚肉材への適用限界において十分ではなく、ハード面での高出力化や鋼板表面の高機能化によって切断性を向上させる試みがなされてきた。   However, the laser cutting performance of thick steel plates is not sufficient in terms of stability at the time of cutting and application limits to thick materials, and attempts have been made to improve cutting performance by increasing the output on the hard surface and enhancing the functionality of the steel plate surface. I came.

例えば、特許文献1には、スケール厚み、組成をコントロールする方法が開示され、特許文献2には鋼板成分の調整による酸化発熱反応の制御と溶鋼の粘性制御や、表面の光沢を抑えることでレーザ切断性を良好にする方法が開示されている。   For example, Patent Document 1 discloses a method of controlling scale thickness and composition, and Patent Document 2 discloses a laser by controlling oxidation exothermic reaction by adjusting steel plate components, controlling viscosity of molten steel, and suppressing surface gloss. A method for improving cutability is disclosed.

更に、特許文献3にはスケール厚さおよびスケールと地鉄界面の剥離率とスケール内の空孔面積を規定することが開示されている。   Further, Patent Document 3 discloses that the scale thickness, the peeling rate at the scale-base metal interface, and the pore area in the scale are defined.

一方、特許文献4には、高出力レーザによるレーザ切断の際、大気を巻き込み、アシストガスの純度が低下し、切断不良が発生することを防止するため、切断用ノズル内に光軸を中心として同心環状のアシストガス溜りを設けたり、円筒形状にガス噴出し口を設けることが開示されている。
特開平5-195055号公報 特開平9-20962号公報 特開2002-332540号公報 特開2000-225487号公報
On the other hand, in Patent Document 4, in order to prevent the atmosphere from being involved in the laser cutting with a high-power laser, the purity of the assist gas being lowered, and the occurrence of cutting failure, the optical axis is centered in the cutting nozzle. It is disclosed that a concentric annular assist gas reservoir is provided or a gas ejection port is provided in a cylindrical shape.
Japanese Patent Laid-Open No. 5-195055 Japanese Patent Laid-Open No. 9-20962 JP 2002-332540 A JP 2000-225487 A

しかしながら、特許文献1〜3に記載されている方法は、いずれもスケール表面のレーザ吸収性を向上させたり、スケールの剥離および割れを防止することで切断性を向上させる技術であるため、部分的に、レーザの熱応力によって切断先行部でのスケールの剥離が起こることにより、切断性が不安定になることを完全に解決できない。   However, all of the methods described in Patent Documents 1 to 3 are techniques for improving the laser absorbability of the scale surface and improving the cutting performance by preventing the peeling and cracking of the scale. In addition, it cannot be completely solved that the cutting performance becomes unstable due to the peeling of the scale at the cutting leading portion due to the thermal stress of the laser.

すなわち、これらの技術は、スケールと地鉄との強固な密着性や鋼板表面でのレーザの吸収性のみに着眼し、切断性が低下しないように改善がなされていたため、本質的に切断性を阻害している因子を取り除くことができず、根本的な切断性向上に繋がらなかった。   In other words, these technologies focused on only the strong adhesion between the scale and the steel and the absorption of the laser beam on the steel sheet surface. The inhibiting factor could not be removed, and the fundamental cutting ability could not be improved.

また、特許文献4記載の技術もレーザ切断時におけるシールドガスの安定化を目的とするもので、鋼板とレーザ光線の係わりに起因する本質的な切断性向上をもたらすものではない。   The technique described in Patent Document 4 is also intended to stabilize the shield gas at the time of laser cutting, and does not bring about an essential improvement in cutting performance due to the relationship between the steel plate and the laser beam.

本発明は、鋼板の表面状態に影響されることなく、優れたレーザ切断性が得られる方法を提供することを目的とする。   An object of this invention is to provide the method of obtaining the outstanding laser cutting property, without being influenced by the surface state of a steel plate.

本発明者等は、レーザ切断性を良好にするため、切断性を阻害する要因を詳細に調査し、その結果、溶融プールから放出されるガスのプラズマ化による投入熱量の低下、切断雰囲気の酸素濃度の低下、さらには溶融したドロスの湯流れ性不良によりレーザ切断性が低下すること、及びこれらが、主に、レーザ光線の進行方向前面に形成される溶融池の大きさ(以下、先行メタルの幅)によって影響を受けることを見出した。   In order to improve the laser cutting performance, the present inventors have investigated in detail the factors that hinder cutting performance. As a result, the amount of heat input due to the plasma of the gas released from the molten pool is reduced, and the oxygen in the cutting atmosphere is reduced. The laser cutting performance is lowered due to the decrease in concentration and the poor flowability of molten dross, and these are mainly the size of the molten pool formed in front of the traveling direction of the laser beam (hereinafter referred to as the leading metal). It was found to be influenced by the width of

図4は、レーザ光線10を、鋼板20に対し、垂直に照射した場合を模式的に示し、レーザ光線10の進行方向aの前面に、溶融池30がまわりこんで、先行メタルの幅lが大きい。   FIG. 4 schematically shows a case where the laser beam 10 is irradiated perpendicularly to the steel plate 20, and the molten pool 30 wraps around the front surface in the traveling direction a of the laser beam 10, and the width l of the preceding metal is large.

更に、レーザ光線を斜めに照射した場合、レーザ光線が貫通する実質の板厚が大きくなるため懸念される切断性の悪化が生じないことを新たに見出した。   Further, it has been newly found that when the laser beam is irradiated obliquely, the substantial plate thickness through which the laser beam penetrates is increased, so that the cutting property is not deteriorated.

本発明は得られた知見をもとに更に検討を加えてなされたもので、すなわち、本発明は、
1 水平に載置した鋼板を、後退角5°〜30°でレーザ切断することを特徴とする鋼板のレーザ切断方法。
2 鋼板の成分組成がC:0.01-0.20mass%
Si:0.80mass%以下
Mn:0.4-2.5mass%
P:0.03mass%以下
S:0.01mass%以下
Al:0.15mass%以下
N:0.01mass%以下
O:0.007mass%以下
を含有し残部がFeおよび不可避不純物からなることを特徴とする1記載の鋼板のレーザ切断方法。
The present invention has been made based on further studies based on the knowledge obtained, that is, the present invention,
1 A laser cutting method for a steel sheet, characterized by laser cutting a horizontally placed steel sheet at a receding angle of 5 ° to 30 °.
2 The component composition of the steel sheet is C: 0.01-0.20 mass%
Si: 0.80mass% or less
Mn: 0.4-2.5mass%
P: 0.03 mass% or less
S: 0.01 mass% or less
Al: 0.15 mass% or less
N: 0.01 mass% or less
2. The laser cutting method for steel sheets according to 1, wherein the content of O is 0.007 mass% or less, and the balance is Fe and inevitable impurities.

3 成分組成に更に、
Ti:0.005-0.20mass%
Cu:0.01-2.0mass%
Ni:0.01-4.0mass%
Cr:0.01-2.0mass%
Mo:0.01-2.0mass%
Nb:0.003-0.1mass%
V:0.003-0.5mass%
B:0.0005-0.0040mass%
Ca:0.0001-0.0060mass%
Mg:0.0001-0.0060mass%
REM:0.0001-0.0200mass%
の1種または2種以上を含有することを特徴とする2記載の鋼板のレーザ切断方法。
In addition to the three component composition,
Ti: 0.005-0.20mass%
Cu: 0.01-2.0mass%
Ni: 0.01-4.0mass%
Cr: 0.01-2.0mass%
Mo: 0.01-2.0mass%
Nb: 0.003-0.1mass%
V: 0.003-0.5mass%
B: 0.0005-0.0040mass%
Ca: 0.0001-0.0060mass%
Mg: 0.0001-0.0060mass%
REM: 0.0001-0.0200mass%
The method of laser cutting of a steel sheet according to 2, wherein one or more of the above are contained.

4 鋼板が、スケール界面から地鉄中に0.5μm以上の選択酸化厚みを有し、成分組成におけるSi含有量が、0.35mass%以上、0.80mass%以下である、1乃至3の何れか一つに記載の鋼板のレーザ切断方法。   4 The steel sheet has a selective oxidation thickness of 0.5 μm or more from the scale interface to the ground iron, and the Si content in the component composition is 0.35 mass% or more and 0.80 mass% or less, any one of 1 to 3 The laser cutting method of the steel plate as described in 2.

本発明によれば、厚鋼板を欠陥なくレーザ切断することが可能で産業上極めて有用である。   According to the present invention, a thick steel plate can be laser-cut without a defect, which is extremely useful industrially.

本発明は、切断の進行方向に対して後退角を取るようにレーザ光線を照射して切断することを特徴とする。   The present invention is characterized by cutting by irradiating a laser beam so as to take a receding angle with respect to the cutting traveling direction.

図1は、本発明に係るレーザ切断法を模式的に説明する図で、図において1はレーザ光線、2はレーザ切断される鋼板、3は溶融池、lはレーザ光線1の前方で、熱伝導により溶融される先行メタルの幅、aはレーザ光線1の進行方向、θは後退角を示す。   FIG. 1 is a diagram schematically illustrating a laser cutting method according to the present invention, in which 1 is a laser beam, 2 is a steel plate to be laser-cut, 3 is a molten pool, and 1 is in front of the laser beam 1, The width of the preceding metal melted by conduction, a is the traveling direction of the laser beam 1, and θ is the receding angle.

レーザ光線1は、(1)レーザの照射によって発生し、鉛直上方に放出されるガスとレーザ光線1の干渉を防止し、(2)レーザ照射部に形成されるキーホール前方において、熱伝導によって溶融するメタル量を少なくするため、後退角θを5°〜30°とし、鋼板2を切断する。   The laser beam 1 (1) is generated by laser irradiation, prevents interference between the gas emitted vertically upward and the laser beam 1, and (2) by heat conduction in front of the keyhole formed in the laser irradiation unit. In order to reduce the amount of molten metal, the steel sheet 2 is cut with a receding angle θ of 5 ° to 30 °.

後退角θは、5°以下の場合、ガスとレーザ光の干渉を防止する効果が得られず、キーホール前方の溶融メタルも通常の切断と差がない。   When the receding angle θ is 5 ° or less, the effect of preventing the interference between the gas and the laser beam cannot be obtained, and the molten metal in front of the keyhole is not different from normal cutting.

一方、30°以上になると実質的な板厚が大きくなりすぎて切断性を低下させるとともにドロスが切断面に残るようになり著しく切断性を低下させるため、5°〜30°とする。   On the other hand, if it is 30 ° or more, the substantial plate thickness becomes too large to reduce the cutting property and dross remains on the cut surface, so that the cutting property is remarkably lowered.

後退角5°〜30°により、溶融池3へのレーザ入力を低下させるプラズマ化が防止され、切断雰囲気において酸素濃度も低下しにくくなる。   The receding angle of 5 ° to 30 ° prevents plasma formation that lowers the laser input to the molten pool 3, and makes it difficult to reduce the oxygen concentration in the cutting atmosphere.

また、レーザ光線が直接切断面に照射されやすくなり溶融部の温度の上昇と裏面でのドロス量の減少が達成され、切断部後方に回り込んだ溶融メタルも切断ガス圧によって容易に吹き飛ばされるために切断性が極めて向上する。   In addition, the laser beam is easily irradiated directly on the cut surface, the temperature of the melted part is increased and the dross amount on the back surface is reduced, and the molten metal that wraps around the cut part is easily blown away by the cutting gas pressure. In addition, cutting performance is greatly improved.

更に、溶融部を極めて少なくできるので、先行メタルの幅lが小さく、切断部の前方において熱応力が小さくなり、切断性を不安定とするスケールの剥離や割れが減少する。   Furthermore, since the melted portion can be extremely reduced, the width l of the preceding metal is small, the thermal stress is reduced in front of the cut portion, and the peeling and cracking of the scale that makes the cutability unstable is reduced.

図2は、角度α(α=θ)だけ進行方向上下に傾けた鋼板2に、鉛直上方からレーザ光線1を照射した場合を模式的に示し、溶融池3の鉛直上方から、レーザ光線1が照射されるため、上述したメカニズム(1)、(2)は機能せず、鋼板とレーザビームの相対角を制御しても本発明の効果は得られない。   FIG. 2 schematically shows a case where a laser beam 1 is irradiated from above vertically on a steel plate 2 tilted up and down by an angle α (α = θ). Since the irradiation is performed, the mechanisms (1) and (2) described above do not function, and the effect of the present invention cannot be obtained even if the relative angle between the steel plate and the laser beam is controlled.

本発明は鋼板の成分組成によらずレーザ切断性の向上に有効であるが、以下の成分組成が好ましい。
C:0.01-0.20mass%
Cは厚鋼板における重要な元素であるが、0.01mass%より少ないと切断時の溶融メタルやドロスの湯流れ性が低下する。0.20mass%を越えて添加するとレーザ切断面に割れが発生する恐れがあるため、0.01-0.20mass%とする。
The present invention is effective for improving the laser cutting property regardless of the component composition of the steel sheet, but the following component composition is preferable.
C: 0.01-0.20mass%
C is an important element in a thick steel plate, but if it is less than 0.01 mass%, the molten metal and dross flow during cutting will decrease. If added over 0.20 mass%, cracks may occur on the laser cut surface, so 0.01 to 0.20 mass%.

Si:0.80mass%以下 好ましくは0.35mass%以上
Siは本発明にとって重要な元素であり、含有量の適正化によってドロスの湯流れ性や地鉄界面でのスケールの密着性を向上させ、より有効に切断性を良好にすることが可能である。0.80mass%を越えて添加するとドロスの量が増えて切断性を阻害する恐れがあるため、0.80mass%以下とする。但し、0.35mass%以上の添加では地鉄−スケール界面の選択酸化を促進し、密着性のよいスケールの性状が得られる。
Si: 0.80 mass% or less, preferably 0.35 mass% or more
Si is an important element for the present invention, and by optimizing the content, it is possible to improve the flowability of the dross and the adhesion of the scale at the interface of the iron base, and to improve the cutting performance more effectively. . If added over 0.80mass%, the amount of dross increases and the cutting ability may be hindered. However, addition of 0.35 mass% or more promotes selective oxidation at the base metal-scale interface, and scale properties with good adhesion can be obtained.

図3は選択酸化厚みを説明する図で、板厚tの鋼板に厚みts1のスケール、厚みts2の選択酸化が生じている状態を示す。選択酸化厚みが0.5μm以上で、スケールの密着性が良好となり、レーザ切断性が向上する。 FIG. 3 is a diagram for explaining the selective oxidation thickness, and shows a state in which a selective oxidation of a scale of thickness t s1 and a thickness of t s2 has occurred on a steel plate of thickness t. When the selective oxidation thickness is 0.5 μm or more, the adhesion of the scale is improved and the laser cutting property is improved.

Mn:0.4-2.0mass%
Mnは切断時の溶融メタルおよびドロスの粘性を適正にするために添加量を0.4-2.0mass%の範囲に限定した。
Mn: 0.4-2.0mass%
In order to make the molten metal and dross viscous at the time of cutting, the amount of Mn was limited to the range of 0.4-2.0 mass%.

P:0.03mass%以下、S:0.01mass%以下
P、Sは不純物として鋼中に不可避的に含有される元素であり鋼の靭性を劣化させるため、できるだけ低減する事が好ましい。P:0.03mass%、S:0.01mass%を超えると溶接熱影響部の靭性が劣化する。
P: 0.03 mass% or less, S: 0.01 mass% or less
P and S are elements inevitably contained in the steel as impurities, and deteriorate the toughness of the steel, so it is preferable to reduce it as much as possible. When P: 0.03 mass% and S: 0.01 mass% are exceeded, the toughness of the weld heat affected zone deteriorates.

Al:0.15mass%以下
AlはSi,Tiとともに切断時の湯流れ性に影響を与え、本発明における重要な構成元素である。0.15mass%を越えて添加すると切断時の湯流れ性を著しく低下させる。
Al: 0.15 mass% or less
Al, together with Si and Ti, affects the hot water flow during cutting and is an important constituent element in the present invention. If added over 0.15 mass%, the hot water flow during cutting will be significantly reduced.

以上が好ましい成分組成の基本系で、更に特性を向上させる場合、選択元素として、Ti、Cu、Ni、Cr、Mo、Nb、V、B、Ca、Mg、REMの一種または二種以上を添加することができる。   The above is a basic system with a preferable component composition. When further improving the characteristics, one or more of Ti, Cu, Ni, Cr, Mo, Nb, V, B, Ca, Mg, and REM are added as selective elements. can do.

Ti:0.005-0.20mass%
Tiは選択元素であるが上記Al,Siとともに湯流れ性に影響を与える元素であり、選択酸化性の点からは必須ではないものの所定の範囲を逸脱すると切断時の湯流れ性を著しく低下させる。
Ti: 0.005-0.20mass%
Ti is an optional element, but it is an element that affects the flow of molten metal together with the above Al and Si. Although it is not essential from the point of selective oxidation, it detracts from the flow of molten metal when it departs from the specified range. .

Cu:0.01-2.0mass%
Cuは鋼板のスケール密着性を向上させる元素で0.01mass%以上でその効果を発揮し、2.0%を越えて添加するとかえって地鉄とスケール界面の剥離が起こり易くなる。
Cu: 0.01-2.0mass%
Cu is an element that improves the scale adhesion of the steel sheet and exerts its effect at 0.01 mass% or more. If it is added in excess of 2.0%, peeling of the interface between the steel and the scale tends to occur.

Ni:0.01-4.0mass%
Niも鋼板のスケール密着性を向上させる元素で0.01mass%以上で効果を発揮し、4.0mass%以上では溶融メタルの粘性が著しく上昇して、湯流れ性を悪くする。
Ni: 0.01-4.0mass%
Ni is an element that improves the scale adhesion of the steel sheet, and is effective at 0.01 mass% or more. At 4.0 mass% or more, the viscosity of the molten metal is remarkably increased and the molten metal flow is deteriorated.

Cr:0.01-2.0mass%、Mo:0.01-2.0mass%
Cr,Moもスケールの密着性を向上させる元素であり、0.01mass%以上でその効果を発揮し、それぞれ2.0mass%を越えて添加しても効果は飽和する。
Cr: 0.01-2.0mass%, Mo: 0.01-2.0mass%
Cr and Mo are elements that improve the adhesion of the scale. The effect is exhibited at 0.01 mass% or more, and the effect is saturated even if added in excess of 2.0 mass%.

Nb:0.003-0.1mass%、V:0.003-0.5mass%
Nb、Vは地鉄−スケール界面の強度に影響を与え、0.003mass%以上の添加で効果を発揮する。またそれぞれ0.1mass%,0.5mass%を超えるとかえってスケールの剥離を招くおそれがある。
Nb: 0.003-0.1mass%, V: 0.003-0.5mass%
Nb and V affect the strength of the ground iron-scale interface, and the effect is exhibited when added in an amount of 0.003 mass% or more. Moreover, when it exceeds 0.1 mass% and 0.5 mass%, respectively, there exists a possibility of causing peeling of a scale.

B:0.0005-0.0040mass%
Bは地鉄−スケール界面に濃化し、界面強度に影響を与える。この効果は0.0005mass%以上で顕著になり0.0040mass%を越えて添加しても効果は飽和する。
B: 0.0005-0.0040mass%
B concentrates at the earth iron-scale interface and affects the interface strength. This effect becomes prominent at 0.0005 mass% or more, and the effect is saturated even if added over 0.0040 mass%.

Ca:0.0001-0.0060mass%,Mg:0.0001-0.0060mass%,REM:0.0001-0.0200mass%
Ca,Mg,REMは鋼中のSを固定することで溶融メタルの湯流れ性に影響を与える。0.0001%以上の添加で良好になるが、それぞれ0.0060mass%、0.0060mass%、0.0200mass%を越えて添加すると湯流れ性をかえって劣化させる。
Ca: 0.0001-0.0060mass%, Mg: 0.0001-0.0060mass%, REM: 0.0001-0.0200mass%
Ca, Mg, and REM affect the molten metal flow by fixing S in the steel. Addition of 0.0001% or more improves, but adding more than 0.0060mass%, 0.0060mass%, and 0.0200mass% respectively deteriorates the hot water flow.

以下、実施例を用いて本発明を説明する。
表1に示す組成にて板厚20mmtの鋼板を作製した。選択酸化厚みts2は、鋼板断面を光学顕微鏡で観察して測定した。鋼No.4,15,22,23は請求項2,3記載の発明範囲外の比較鋼である。
Hereinafter, the present invention will be described using examples.
Steel sheets having a thickness of 20 mmt were prepared with the compositions shown in Table 1. The selective oxidation thickness ts2 was measured by observing the cross section of the steel sheet with an optical microscope. Steel No. Reference numerals 4, 15, 22, and 23 are comparative steels outside the scope of the inventions of claims 2 and 3.

評価はそれぞれの組成の鋼板において3.5kWのCO2レーザ切断機を用いて切断試験を行い、後退角の効果および鋼板組成、選択酸化厚みによる影響を評価した。   For the evaluation, the steel sheets of each composition were subjected to a cutting test using a 3.5 kW CO2 laser cutting machine, and the effects of the receding angle, the steel composition, and the selective oxidation thickness were evaluated.

表2に結果を示す。試験No.1,4,5,9,11〜13,15,17,19,22,23は、鋼板の成分組成、選択酸化厚みの少なくとも一つが好ましい範囲を外れており、試験No.3,7,8,14,24〜29は、レーザ光線を後退角5°〜30°の範囲を外れた方向から鋼板に照射して切断した比較例である。
表2より、後退角および鋼板の成分組成、選択酸化厚みのいずれもが本発明範囲内の場合は、ドロスの発生もなく良好な切断面が得られた。鋼板の成分組成、選択酸化厚みの少なくとも一つが好ましい範囲を外れた場合は、ドロスは少量発生したが切断面は良好であった。
一方、後退角5°〜30°の範囲を外れてレーザ切断を行った比較例ではドロスの発生が多く切断が途中停止した。
Table 2 shows the results. Test No. 1, 4, 5, 9, 11 to 13, 15, 17, 19, 22, and 23, at least one of the component composition and the selective oxidation thickness of the steel sheet is out of the preferred range. Nos. 3, 7, 8, 14, and 24 to 29 are comparative examples in which the steel sheet was irradiated with a laser beam from a direction outside the range of the receding angle of 5 ° to 30 ° and cut.
From Table 2, when all of the receding angle, the component composition of the steel sheet, and the selective oxidation thickness are within the scope of the present invention, no good dross was generated and a good cut surface was obtained. When at least one of the component composition and the selective oxidation thickness of the steel sheet was outside the preferred range, a small amount of dross was generated, but the cut surface was good.
On the other hand, in the comparative example in which the laser cutting was performed outside the range of the receding angle of 5 ° to 30 °, dross was frequently generated and the cutting was stopped halfway.

Figure 2006231363
Figure 2006231363

  ★

Figure 2006231363
Figure 2006231363

  ★

本発明例を示す図。The figure which shows the example of this invention. 比較例を示す図。The figure which shows a comparative example. 選択酸化を説明する図。The figure explaining selective oxidation. 従来例。Conventional example.

符号の説明Explanation of symbols

1 レーザ光線
2 レーザ切断される鋼板
3 溶融池
l 先行メタルの幅
a 切断進行方向
θ 後退角
α 鋼板を上下に傾けた角度
t 板厚
s1 スケール厚み
s2 選択酸化厚み
DESCRIPTION OF SYMBOLS 1 Laser beam 2 Steel plate to be laser-cut 3 Molten pool l Lead metal width a Cutting direction θ Receding angle α Angle in which steel plate is tilted up and down t Plate thickness t s1 Scale thickness t s2 Selective oxidation thickness

Claims (4)

水平に載置した鋼板を、後退角5°〜30°でレーザ切断することを特徴とする鋼板のレーザ切断方法。 A laser cutting method for a steel sheet, characterized by laser cutting a horizontally placed steel sheet at a receding angle of 5 ° to 30 °. 鋼板の成分組成がC:0.01-0.20mass%
Si:0.80mass%以下
Mn:0.4-2.5mass%
P:0.03mass%以下
S:0.01mass%以下
Al:0.15mass%以下
N:0.01mass%以下
O:0.007mass%以下
を含有し残部がFeおよび不可避的不純物からなることを特徴とする請求項1記載の鋼板のレーザ切断方法。
The component composition of the steel sheet is C: 0.01-0.20 mass%
Si: 0.80mass% or less
Mn: 0.4-2.5mass%
P: 0.03 mass% or less
S: 0.01 mass% or less
Al: 0.15 mass% or less
N: 0.01 mass% or less
The laser cutting method for a steel sheet according to claim 1, wherein O: 0.007 mass% or less is contained, and the balance is Fe and inevitable impurities.
成分組成に更に、
Ti:0.005-0.20mass%
Cu:0.01-2.0mass%
Ni:0.01-4.0mass%
Cr:0.01-2.0mass%
Mo:0.01-2.0mass%
Nb:0.003-0.1mass%
V:0.003-0.5mass%
B:0.0005-0.0040mass%
Ca:0.0001-0.0060mass%
Mg:0.0001-0.0060mass%
REM:0.0001-0.0200mass%
の1種または2種以上を含有することを特徴とする請求項2に記載の鋼板のレーザ切断方法。
In addition to the component composition,
Ti: 0.005-0.20mass%
Cu: 0.01-2.0mass%
Ni: 0.01-4.0mass%
Cr: 0.01-2.0mass%
Mo: 0.01-2.0mass%
Nb: 0.003-0.1mass%
V: 0.003-0.5mass%
B: 0.0005-0.0040mass%
Ca: 0.0001-0.0060mass%
Mg: 0.0001-0.0060mass%
REM: 0.0001-0.0200mass%
1 or 2 types or more of these are contained, The laser cutting method of the steel plate of Claim 2 characterized by the above-mentioned.
鋼板が、スケール界面から地鉄中に0.5μm以上の選択酸化厚みを有し、成分組成におけるSi含有量が、0.35mass%以上、0.80mass%以下である、請求項1乃至3の何れかに記載の鋼板のレーザ切断方法。 The steel sheet according to any one of claims 1 to 3, wherein the steel sheet has a selective oxidation thickness of 0.5 µm or more from the scale interface to the ground iron, and the Si content in the component composition is 0.35 mass% or more and 0.80 mass% or less. The method of laser cutting of the steel sheet described.
JP2005048479A 2005-02-24 2005-02-24 Laser cutting method of steel sheet Expired - Fee Related JP4696592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048479A JP4696592B2 (en) 2005-02-24 2005-02-24 Laser cutting method of steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048479A JP4696592B2 (en) 2005-02-24 2005-02-24 Laser cutting method of steel sheet

Publications (2)

Publication Number Publication Date
JP2006231363A true JP2006231363A (en) 2006-09-07
JP4696592B2 JP4696592B2 (en) 2011-06-08

Family

ID=37039583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048479A Expired - Fee Related JP4696592B2 (en) 2005-02-24 2005-02-24 Laser cutting method of steel sheet

Country Status (1)

Country Link
JP (1) JP4696592B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101951A1 (en) * 2008-02-12 2009-08-20 Sumitomo Metal Industries, Ltd. Steel material for thermal cutting with oxygen
JP2010508149A (en) * 2006-10-30 2010-03-18 オルセン,フレミング・オベ・エルホルム Laser processing method and system
WO2012014851A1 (en) * 2010-07-29 2012-02-02 住友金属工業株式会社 Steel material for thermal cutting using oxygen
JP2014055899A (en) * 2012-09-13 2014-03-27 Mitsubishi Heavy Ind Ltd Method for cutting heat exchanger trunk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070403B2 (en) 2013-05-13 2017-02-01 トヨタ自動車株式会社 Laser surface treatment method and laser surface treatment apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285662A (en) * 1993-04-07 1994-10-11 Fanuc Ltd Device and method for laser beam machining
JPH0920962A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Thick steel plate excellent in laser cuttability and its production
JPH10263869A (en) * 1997-03-26 1998-10-06 Nippon Steel Corp Laser beam machine
JP2003147486A (en) * 2002-11-05 2003-05-21 Kawasaki Steel Corp High-strength cold rolled steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285662A (en) * 1993-04-07 1994-10-11 Fanuc Ltd Device and method for laser beam machining
JPH0920962A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Thick steel plate excellent in laser cuttability and its production
JPH10263869A (en) * 1997-03-26 1998-10-06 Nippon Steel Corp Laser beam machine
JP2003147486A (en) * 2002-11-05 2003-05-21 Kawasaki Steel Corp High-strength cold rolled steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508149A (en) * 2006-10-30 2010-03-18 オルセン,フレミング・オベ・エルホルム Laser processing method and system
US9044824B2 (en) 2006-10-30 2015-06-02 Flemming Ove Olsen Method and system for laser processing
WO2009101951A1 (en) * 2008-02-12 2009-08-20 Sumitomo Metal Industries, Ltd. Steel material for thermal cutting with oxygen
JP4435289B2 (en) * 2008-02-12 2010-03-17 住友金属工業株式会社 Steel for thermal cutting using oxygen
JPWO2009101951A1 (en) * 2008-02-12 2011-06-09 住友金属工業株式会社 Steel for thermal cutting using oxygen
WO2012014851A1 (en) * 2010-07-29 2012-02-02 住友金属工業株式会社 Steel material for thermal cutting using oxygen
CN102712976A (en) * 2010-07-29 2012-10-03 住友金属工业株式会社 Steel material for thermal cutting using oxygen
JP5382203B2 (en) * 2010-07-29 2014-01-08 新日鐵住金株式会社 Steel for thermal cutting using oxygen
KR101393809B1 (en) 2010-07-29 2014-05-12 신닛테츠스미킨 카부시키카이샤 Steel material for thermal cutting using oxygen
JP2014055899A (en) * 2012-09-13 2014-03-27 Mitsubishi Heavy Ind Ltd Method for cutting heat exchanger trunk

Also Published As

Publication number Publication date
JP4696592B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP6627343B2 (en) Austenitic stainless steel and equipment for high-pressure hydrogen gas or liquid hydrogen
JP4696592B2 (en) Laser cutting method of steel sheet
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP6477181B2 (en) Austenitic stainless steel
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP2007260696A (en) Submerged arc weld metal of high tensile strength steel
JP2003340592A (en) Wire for large heat input electroslag welding
JP2007290032A (en) Electric arc welded steel joint with excellent fatigue strength, welding method therefor and steel structure
JP2006075853A (en) Laser-welded joint of austenitic alloy steel and its production method
JP3765761B2 (en) Bond flux for submerged arc welding
JP2008264812A (en) Groove filler for submerged-arc welding
JP2002332541A (en) Thick steel plate having good laser cuttability
JP2004136329A (en) Ferrous filler metal for laser beam welding
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JP2010228000A (en) Laser-arc hybrid welding method which attains long fatigue life
JP3351139B2 (en) Welding method for low alloy high strength steel
JPH10193173A (en) Welding filler wire for damping alloy, and welding method
JP2007144429A (en) Bond flux for downward fillet submerged arc welding
JP2007313558A (en) Solid wire for gas-shielded arc welding
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JP2006281303A (en) Submerged arc welding method for high strength steel sheet
JP2002332540A (en) Thick steel plate having excellent laser cuttability
JP6747032B2 (en) Thick steel plate
JP2011020163A (en) Single pass high heat input welding joint with excellent high temperature property and toughness for fire resistant construction, and manufacturing method therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Ref document number: 4696592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees