JP2006231311A - Method of depositing inorganic foam layer - Google Patents

Method of depositing inorganic foam layer Download PDF

Info

Publication number
JP2006231311A
JP2006231311A JP2005087048A JP2005087048A JP2006231311A JP 2006231311 A JP2006231311 A JP 2006231311A JP 2005087048 A JP2005087048 A JP 2005087048A JP 2005087048 A JP2005087048 A JP 2005087048A JP 2006231311 A JP2006231311 A JP 2006231311A
Authority
JP
Japan
Prior art keywords
heated
foamed
siloxane
molecular weight
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087048A
Other languages
Japanese (ja)
Inventor
Takami Onuma
孝己 大沼
Shinichiro Ando
眞一郎 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANDO SHOTEN KK
Original Assignee
ANDO SHOTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANDO SHOTEN KK filed Critical ANDO SHOTEN KK
Priority to JP2005087048A priority Critical patent/JP2006231311A/en
Publication of JP2006231311A publication Critical patent/JP2006231311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of depositing an inorganic foam layer by spraying, heating and foaming a siloxane/silanol salt-high molecular weight solution and forming a fusion deposition layer on a target surface with the heat-fusion property. <P>SOLUTION: The siloxane/silanol salt-high molecular weight solution of a molecular weight of 4,000 to 8,000 containing solid content of 20 to 35 wt% and water of 65 to 80 wt% is mixed with a heated/pressurized air heated and pressurized at 300°C or more, is sprayed from an orifice of a desired diameter, and is heated and foamed to a desired grain size, and is fused and deposited on the target surface with the heat-fusion property to coat and form the inorganic foam layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は耐火性や不燃性と且優れた断熱性を保持する無機質発泡層を簡便且安価に融着塗着形成できる無機質発泡層の塗着形成方法に関するものである。  The present invention relates to a coating formation method for an inorganic foam layer, which can easily and inexpensively form an inorganic foam layer having fire resistance, nonflammability and excellent heat insulation.

現状における建物や施設等の外壁若しくは内壁、或いは各種装置とりわけ冷熱装置等の外面には、冷熱エネルギーの漏失や逸散を防止し省エネルギー化を図ること、及びこれら壁面や外面に適応して施工しえるよう屈撓性を有し加工が容易で且安価なうえ断熱性に優れる断熱板材や断熱シート材として、ポリスチレンを初めポリエチレン、ポリプロピレン、ポリウレタン若しくはポリフェノール樹脂等の合成樹脂素材を用いた発泡板材や発泡シート材が主として用いられてきた。  The outer wall or inner wall of the current building or facility, etc., or the outer surface of various devices, particularly the cooling and heating device, is designed to prevent the loss and dissipation of cooling energy and to save energy, and to adapt to these walls and outer surfaces. As a heat-insulating plate material or heat-insulating sheet material that is flexible, easy to process, inexpensive, and excellent in heat insulation, a foamed plate material using a synthetic resin material such as polystyrene, polyethylene, polypropylene, polyurethane, or polyphenol resin Foamed sheet materials have been mainly used.

然るに今日の如く一方においては環境保護が強く要請され、且他方においては建物や施設の高層化と大型化に加えて高令化に伴う安全性が強く要求される状況下においては、これら合成樹脂素材からなる発泡板材や発泡シート材では、耐用使用後においても廃棄が出来ず且その焼却には分別回収と特別な焼却手段を用いねばならぬため、これに伴う多大な費用が強いられるばかりか建物や施設の断熱板材として使用された場合にも一旦火災が発生した場合には猛烈な火陥とともに煤煙と有害ガスが発生し、毎年多くの人命が失われる結果ともなっている。  However, as in today's environment, there is a strong demand for environmental protection on one side, and on the other hand, these synthetic resins are required to have high-rise and large-sized buildings and facilities, as well as the safety associated with increasing age. Foamed plate materials and foam sheet materials cannot be disposed of even after use, and incineration must be carried out using separate collection and special incineration means. Even when it is used as a heat insulating plate for buildings and facilities, once a fire breaks out, smoke and harmful gases are generated along with a severe fire, resulting in the loss of many lives every year.

かかる状況に際して発明者等は、無機質産業廃棄物中の石炭灰や鋳造廃砂或いは自然噴出物としての火山灰等には、その組成中に多量の酸化珪素が含有されていること及び該酸化珪素はアルカリ剤により容易に溶解されて珪酸ナトリウム所謂水ガラスが生成しえることをもとに、該水ガラスのシラノール基の縮合作用によって多分子量を図ることにより、固形分が20乃至35重量%及び水分が65乃至80重量%で且その分子量が4,000乃至8,000程度のシロキサン及びシラノール塩多分子量溶液が生成できることを確認した。  In such a situation, the inventors have found that coal ash, cast waste sand, volcanic ash as natural ejected matter, etc. in inorganic industrial waste contains a large amount of silicon oxide in its composition and the silicon oxide is Based on the fact that sodium silicate so-called water glass can be easily dissolved by an alkali agent, and the molecular weight is increased by the condensation action of silanol groups of the water glass. Of siloxane and silanol salts having a molecular weight of about 4,000 to 8,000 and a molecular weight of about 4,000 to 8,000 can be produced.

そして該シロキサン及びシラノール塩多分子量溶液においては100℃以上の加熱により水分蒸散に伴う発泡構造を生成しえること、並びに少なくとも300℃以上の高温度では短時に加熱発泡し且加熱融着性が発揮されるため、建物や施設の壁面若しくは冷熱装置外面に吹付けることにより、無機質発泡層が適宜の形状及び厚さで且能率的に塗着形成しえることを究明し本発明に至った。  In the siloxane and silanol salt multi-molecular weight solution, it is possible to produce a foam structure due to moisture evaporation by heating at 100 ° C. or higher, and at the high temperature of at least 300 ° C., the foam is heated and foamed in a short time and exhibits heat fusion properties. Therefore, the present inventors have found that the inorganic foam layer can be applied and formed efficiently with an appropriate shape and thickness by spraying on the wall surface of the building or facility or the outer surface of the cooling / heating device.

その固形分が20乃至35重量%で水分が65乃至80重量%で、その分子量が4,000乃至8,000のシロキサン及びシラノール塩多分子量溶液を噴散し加熱発泡させ且その加熱融着性を以って被着面に簡便且安価に融着塗着形成しえる、無機質発泡層の塗着形成方法を提供する。  A siloxane and silanol salt multimolecular weight solution having a solid content of 20 to 35% by weight, a water content of 65 to 80% by weight and a molecular weight of 4,000 to 8,000 is sprayed and foamed by heating, and its heat fusion property Thus, the present invention provides a coating formation method for an inorganic foam layer, which can be easily and inexpensively formed by fusion coating on a surface to be coated.

上述の課題を解決するために本発明が用いた技術的手段は、その固形分が20乃至35重量%で水分が65乃至80重量%のシロキサン及びシラノール塩溶液のシラノール基を縮合作用させて、その分子量が4,000乃至8,000に多分子量化させたシロキサン及びシラノール塩多分子量溶液を、少なくとも300℃以上に加熱され且加圧された加熱加圧空気中に、所要の孔径を有するオリフィス前面で混合させたうえオリフィスより噴散させて所要の粒径に加熱発泡させるとともに、その加熱融着性を以って建物や施設の壁面或いは冷熱装置外面等の被着面に吹付けながら融着塗着させ且降温により発泡倍率を抑制させて所要の形状及び厚さの無機質発泡層を塗着形成させる方法に存する。  The technical means used by the present invention in order to solve the above-mentioned problem is to cause the silanol groups of the siloxane and silanol salt solution having a solid content of 20 to 35% by weight and moisture of 65 to 80% by weight to condense, An orifice having a required pore size in heated and pressurized air in which a siloxane and silanol salt multimolecular weight solution having a molecular weight of 4,000 to 8,000 is heated to at least 300 ° C. or higher. The mixture is mixed on the front surface and sprayed from the orifice to be heated and foamed to the required particle size, and with its heat-fusibility, it melts while spraying on the adherend surface such as the wall surface of buildings or facilities or the outer surface of the cooling device. The present invention resides in a method of coating and forming an inorganic foam layer having a required shape and thickness by suppressing the foaming ratio by lowering the temperature.

更にはオリフィスより噴散させた後、外気の影響を排して十分に加熱発泡させ且加熱融着性を保持させて強固な塗着と被着面への能率的な融着塗着をなすために、オリフィスより噴散されるシロキサン及びシラノール塩多分子量溶液を、その噴散角より広角に形成された噴散保護コーン内に噴散させる方法に存する。  Furthermore, after spraying from the orifice, the effect of outside air is eliminated, the foam is sufficiently heated and foamed, and the heat-fusing property is maintained to achieve strong coating and efficient fusion coating on the adherend surface. For this purpose, the siloxane and silanol salt multi-molecular weight solution sprayed from the orifice lies in a method of spraying into a spray protection cone formed at a wider angle than the spray angle.

本発明はかかる技術的手段を用いてなるもので、使用素材がシロキサン及びシラノール塩多分子量溶液からなり、且その組成がシロキサン及びシラノール塩の固形分が20乃至35重量%に水分が55乃至80重量%の比較的低粘度であるから加熱加圧空気に混合されて細孔径のオリフィスより噴散させても、更には噴散のための加熱加圧空気が少なくとも300℃以上の高温度に加熱され且オリフィス直前でシロキサン及びシラノール塩多分子量溶液と混合され噴散されるため、オリフィス通過後の噴散時に加熱発泡される結果オリフィスが閉塞されることもなく、而も高温度で加熱発泡され噴散される発泡粒は略同一の発泡粒径を有するとともに融着性をも保持するため、建物や施設等の壁面若しくは冷熱装置の外面等の被着体表面に吹付けられることによりその形状に沿って融着塗着され、且吹付時間の調整如何でその厚さも簡便自在に調整されて無機質発泡層の塗着形成ができる。  The present invention uses such technical means, and the material used is composed of a siloxane and silanol salt multi-molecular weight solution, and the composition thereof is 20 to 35% by weight of siloxane and silanol salt solids, and moisture is 55 to 80%. Since it has a relatively low viscosity of wt%, even if it is mixed with heated and pressurized air and sprayed from an orifice with a pore diameter, the heated and pressurized air for spraying is heated to a high temperature of at least 300 ° C or higher. In addition, since it is mixed with siloxane and silanol salt multi-molecular weight solution and squirted immediately before the orifice, it is heated and foamed at the time of squirting after passing through the orifice. Since the foamed particles to be ejected have substantially the same foamed particle size and retain the fusion property, the foamed particles are blown on the surface of the adherend such as the wall of a building or facility or the outer surface of a cooling device. Are fusion Chakunuri wear along the shape by being kicked, the thickness adjustment whether the 且吹 with time be adjusted conveniently freely can the coating formed of the inorganic foamed layer.

更に噴散させるオリフィスの後方に、噴散角より広角に形成された噴散保護コーンを設けて噴散させることにより外気の影響が排除されるため、加熱発泡された発泡粒が保熱されて十分な発泡がなされるとともに加熱融着性も十分に保持されて被着体に吹付けられるため、強固な融着塗着による無機質発泡層が形成され而も噴散された発泡粒も拡散されぬため被着面へ能率良く且正確に融着塗着がなされる。  Furthermore, the effect of the outside air is eliminated by providing a squirting protection cone formed at a wider angle than the squirting angle behind the orifice to be squirted. Since sufficient foaming is achieved and the heat-fusibility is sufficiently maintained and sprayed onto the adherend, an inorganic foam layer is formed by strong melt-coating, and the foam particles that have been ejected are also diffused. Therefore, it can be efficiently and accurately applied to the surface to be adhered.

以下に本発明実施例を図とともに説明すれば、図1は混合原理の説明図、図2は本発明のレイアウト図であって、本発明に用いる素材としては耐火性や不燃性並びに廃棄性をも具備するとともに、加熱により所要粒径で多数の発泡粒を形成し且その加熱に伴う融着性により被着面に融着塗着させて無機質発泡層を塗着形成させるため、シロキサン及びシラノール塩多分子量溶液1が用いられる。  In the following, the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of the mixing principle, FIG. 2 is a layout diagram of the present invention, and the materials used in the present invention are fireproof, nonflammable and disposable. In addition, siloxane and silanol are formed by forming a large number of foamed particles with the required particle size by heating and forming an inorganic foamed layer by fusing and applying to the adherend surface due to the fusing property associated with the heating. A salt multimolecular weight solution 1 is used.

即ちこのシロキサン及びシラノール塩多分子量溶液1は無機質産業廃棄物である石炭灰や火山灰の如き自然噴出物中に多量に含有されてなる酸化珪素分を一旦アルカリ剤で溶解させて珪酸ナトリウム所謂水ガラスとなしたうえ、この珪酸ナトリウム中の水分蒸散に伴う発泡生成をなすうえから、多分子量化させて粘性や弾性を付与せしめることが望まれる。  That is, the siloxane and silanol salt multi-molecular weight solution 1 is a so-called water glass of sodium silicate by once dissolving a silicon oxide component contained in a large amount in a natural ejected product such as coal ash and volcanic ash, which are inorganic industrial wastes, with an alkali agent. In addition, it is desirable to increase viscosity and give elasticity by increasing the molecular weight of the sodium silicate in order to generate foam accompanying water evaporation.

そこで珪酸ナトリウム中のシラノール基を縮合させることにより、その分子量を4,000乃至8,000程度に多分子量化させてシロキサン及びシラノール塩多分子量溶液1として用いるもので、当然に該シロキサン及びシラノール塩多分子量溶液1は噴散により加熱発泡させるうえからはあまり高粘度のものでは不適となるため、その組成割合としてはシロキサン及びシラノール塩からなる固形分が20乃至35重量%と水分が65乃至80重量%程度のものが使用される。  Therefore, by condensing silanol groups in sodium silicate, the molecular weight thereof is increased to about 4,000 to 8,000 to be used as siloxane and silanol salt multimolecular weight solution 1, and naturally the siloxane and silanol salt are used. Since the multi-molecular weight solution 1 is not suitable when heated and foamed by eruption, it is not suitable if it has a very high viscosity. Therefore, the composition ratio is 20 to 35% by weight of a solid content composed of siloxane and silanol salt and 65 to 80% of water. A weight percent is used.

かくしてなるシロキサン及びシラノール塩多分子量溶液1は、その組成中の水分蒸散に伴い発泡構造が生成されるものであるために、少なくとも100℃以上の加熱により発泡し且その発泡倍率としては最大略50倍にまで発泡するものである。
反面実用使用に供する無機質発泡層は使用目的によっても異なるが、耐圧縮強度としては少なくとも3kg/cm程度から30kg/cm以上程度のものまで要請されるため、その発泡倍率としてはせいぜい6乃至30倍程度に制限することが望まれる。
Since the siloxane and silanol salt multi-molecular weight solution 1 thus formed has a foamed structure as the water evaporates in its composition, it is foamed by heating at least at 100 ° C. and the foaming ratio is about 50 at most. It expands to double.
On the other hand, the inorganic foam layer used for practical use varies depending on the purpose of use, but the compression strength is required to be at least about 3 kg / cm 2 to about 30 kg / cm 2 or more, so the foaming ratio is at most 6 to 6 It is desirable to limit to about 30 times.

これがためには高温度で短時に加熱発泡させるとともに、その加熱融着性を以って被着面に融着塗着させて融着塗着に伴う降温により発泡倍率を抑制し所望の耐圧縮強度の無機質発泡層を形成させる技術思想を用いている。
かかるためにはシロキサン及びシラノール塩多分子量溶液1を少なくとも300℃以上、望ましくは330乃至380℃に加熱させ且オリフィス2の細孔径から多数の霧滴状に噴散しえるよう加圧された加熱加圧空気3と、オリフィス2の直前において混合させたうえオリフィス2より霧滴状に噴散させ且加熱発泡により発泡粒4となすものである。
For this purpose, heat foaming is performed at a high temperature in a short time, and the desired surface is bonded to the surface to be adhered with its heat-fusibility and the desired expansion resistance is controlled by the temperature drop caused by the fusion coating. The technical idea of forming a strong inorganic foam layer is used.
For this purpose, the siloxane and silanol salt multimolecular weight solution 1 is heated to at least 300 ° C. or higher, preferably 330 to 380 ° C. and pressurized so that it can be ejected from the pore diameter of the orifice 2 into a large number of mist droplets. The compressed air 3 is mixed immediately before the orifice 2 and is then sprayed in the form of mist droplets from the orifice 2 to form foamed particles 4 by heating and foaming.

かかる場合に加熱加圧空気3の圧力は、シロキサン及びシラノール塩多分子量溶液1の粘性やオリフィス2の孔径及び噴散量においても異なるが、少なくともオリフィス2で噴散し加熱発泡させた発泡粒4を能率的且正確に融着塗着させるうえからは、略0.5乃至1.0m程度の距離から被着面5Aに吹付けて融着塗着させて所望の無機質発泡層5を形成させる必要上、その空気圧としては少なくとも1.5kg/cm以上、望ましくは3.0乃至5.0kg/cmの圧力が要請されるもので、当然に該加熱加圧空気3は調節弁32Cにより適宜に調節される。In such a case, the pressure of the heated and pressurized air 3 varies depending on the viscosity of the siloxane and silanol salt polymolecular weight solution 1 and the pore diameter and the amount of squirting of the orifice 2, but at least the foamed particles 4 squirted and heated and foamed at the orifice 2. In order to efficiently and accurately apply the coating material, the desired inorganic foamed layer 5 is formed by spraying the coating surface 5A from a distance of about 0.5 to 1.0 m and applying the coating material. As necessary, the air pressure is required to be at least 1.5 kg / cm 2 or more, preferably 3.0 to 5.0 kg / cm 2. Naturally, the heated and pressurized air 3 is controlled by the control valve 32C. Adjust as appropriate.

シロキサン及びシラノール塩多分子量溶液1を加熱加圧空気3と混合させるには、該加熱加圧空気3をその加熱送風管3A先端よりオリフィス2内を高速で流通させることにより発生する吸引力により所謂エゼクタの原理により供給混合させるもので、これがためには所要容量のホッパー1Aに貯留させたシロキサン及びシラノール塩多分子量溶液1を吸引力の働くオリフィス2の直前に供給管32Fで誘導供給させてやれば良い。
かかる場合に留意すべきは、シロキサン及びシラノール塩多分子量溶液1を誘導供給する場合において、加熱加圧空気3に吸引混合されるまでは加熱加圧空気3の温度で、シロキサン及びシラノール塩多分子量溶液1が最大でも100℃以上に加熱されぬよう加熱送風管3Aに適宜断熱手段を講ずることにある。
In order to mix the siloxane and silanol salt multi-molecular weight solution 1 with the heated pressurized air 3, the so-called suction force generated by circulating the heated pressurized air 3 through the orifice 2 from the tip of the heated air pipe 3A at a high speed is so-called. In order to achieve this, the siloxane and silanol salt multi-molecular weight solution 1 stored in the required volume of the hopper 1A is inductively supplied through the supply pipe 32F immediately before the orifice 2 where the suction force acts. It ’s fine.
In such a case, it should be noted that when the siloxane and silanol salt multimolecular weight solution 1 is supplied by induction, the siloxane and silanol salt multimolecular weight is maintained at the temperature of the heated and pressurized air 3 until it is sucked and mixed with the heated and pressurized air 3. In order to prevent the solution 1 from being heated to 100 ° C. or higher at the maximum, a heat insulating means is appropriately provided in the heated air blowing pipe 3A.

加熱加圧空気3と混合されオリフィス2より噴散されながら加熱発泡される発泡粒4の発泡粒径は、オリフィス2の孔径並びに噴散圧力及び加熱発泡に要する加熱温度及び時間により具体的に決定されるもので、耐圧縮強度の強い無機質発泡層5を形成させるうえからは、発泡倍率が低く且発泡粒径の小さな発泡粒4を高い融着性を以って融着塗着形成されることであり、反面安価で且高い断熱性を発揮せしめる無機質発泡層5の形成には高発泡倍率で発泡粒径の大きな発泡粒4を融着塗着させることにある。  The foamed particle diameter of the foamed particles 4 mixed with the heated and pressurized air 3 and heated and foamed while being squirted from the orifice 2 is specifically determined by the hole diameter of the orifice 2, the squirting pressure and the heating temperature and time required for heating and foaming. Therefore, in order to form the inorganic foamed layer 5 having a strong compressive strength, the foamed particles 4 having a low foaming ratio and a small foamed particle size are formed by fusion-coating with high fusing properties. On the other hand, the formation of the inorganic foamed layer 5 which is inexpensive and exhibits high heat insulation involves fusion-coating the foamed grains 4 having a high foaming ratio and a large foamed particle diameter.

かかる場合に耐圧縮強度の強い無機質発泡層5の形成のための発泡粒4の粒径としては、一般的使用目的の場合では略0.5乃至2.0mm程度で、更に安価で高断熱性を望む場合には略3.0乃至8.0mm程度のものが好都合である。
してみると低発泡倍率では略6乃至15倍発泡程度で、且高発泡倍率では略15乃至30倍程度の加熱発泡させれば良い。従って低発泡倍率で且発泡粒径が0.5乃至2.0mm程度の発泡粒4を6倍の加熱発泡倍率で発泡形成する場合には、シロキサン及びシラノール塩多分子量溶液1の噴散に係る霧滴の滴径としては略0.14乃至0.55mm程度、更に発泡粒径が3.0乃至8.0mm程度で発泡粒4を15倍の加熱発泡倍率で発泡形成する場合には略0.6乃至1.7mm程度で噴散させれば良い。
In such a case, the particle diameter of the foamed particles 4 for forming the inorganic foamed layer 5 having a high compressive strength is about 0.5 to 2.0 mm for general use purposes, and is more inexpensive and highly heat-insulating. When it is desired to be approximately 3.0 to 8.0 mm, it is convenient.
As a result, it is only necessary to heat and foam about 6 to 15 times at a low expansion ratio and about 15 to 30 times at a high expansion ratio. Accordingly, when foamed particles 4 having a low foaming ratio and a foamed particle size of about 0.5 to 2.0 mm are foamed at a heating foaming ratio of 6 times, the siloxane and silanol salt multimolecular weight solution 1 is affected by eruption. The droplet diameter of the mist is about 0.14 to 0.55 mm, and the foamed particle size is about 3.0 to 8.0 mm. What is necessary is just to make it scatter by about.

ところでシロキサン及びシラノール塩多分子量溶液1は、100℃以上の加熱により発泡し且十分な加熱条件下では略50倍程度にまで発泡するものの、その熱示差曲線のうえからは安定した加熱発泡には、少なくとも200℃以上とりわけ短時に加熱発泡させ且加熱融着性を保持せしめるには300乃至550℃が適性温度域と考えられている。
しかしながら本発明における無機質発泡層5はオリフィス2により噴散され加熱発泡されて融着塗着される場合に、その発泡倍率は耐圧縮強度の強い無機質発泡層5の場合には略6乃至15倍程度、高断熱性が要請される高発泡倍率でも略15乃至30倍である。従って加熱発泡された発泡粒4は直ちに被着面5Aに融着塗着させて降温化させ過剰な発泡を抑制させることが望まれ、且あまり高温度では作業時における危険性と被着面5Aの素材如何では熱劣化や熱損傷を惹起させる危険もあることから、好ましくは330乃至380℃程度の温度が使用されるべきである。
By the way, the siloxane and silanol salt multi-molecular weight solution 1 foams by heating at 100 ° C. or higher and foams up to about 50 times under sufficient heating conditions. It is considered that a suitable temperature range is 300 to 550 ° C. for heating and foaming at a temperature of at least 200 ° C. or more, particularly in order to maintain heat-fusibility.
However, when the inorganic foamed layer 5 in the present invention is sprayed through the orifice 2, heated and foamed and fusion-coated, the foaming ratio is about 6 to 15 times in the case of the inorganic foamed layer 5 having high compression strength. Even at a high expansion ratio that requires a high degree of heat insulation, it is about 15 to 30 times. Accordingly, it is desired that the foamed foam 4 heated and foamed immediately be applied to the adherend surface 5A to lower the temperature and suppress excessive foaming, and if the temperature is too high, the danger of working and the adherend surface 5A are desired. Depending on the material, there is a risk of causing thermal deterioration and thermal damage, so a temperature of about 330 to 380 ° C. should be used.

かくして加熱加圧空気3と混合されオリフィス2より噴散され且所要の発泡倍率に加熱発泡され而も加熱融着性が創出された発泡粒4は、所要の被着面5Aにその噴散圧力により吹付られその加熱融着性により被着面5Aに融着され塗着がなされるとともに、この融着塗着に伴い発泡粒4の温度が急速に降温し発泡倍率の抑制と且固着して、無機質発泡層5の形成がなされる。
かかる場合に被着面5Aの融着塗着に際して建物や施設等の壁面或いは冷熱装置の外面等は広大な面積を有するものから比較的小面積で且融着塗着厚も多様に亘るため、これらに対処しえる融着塗着のための施工手段が要請される。
Thus, the foamed particles 4 mixed with the heated and pressurized air 3 and sprayed from the orifice 2 and heated and foamed to the required foaming ratio to create the heat fusion property are applied to the required adherend surface 5A. Is applied to the adherend surface 5A due to its heat-fusibility, and the temperature of the foamed particles 4 is rapidly lowered by the fusion-coating, thereby suppressing the expansion ratio and fixing. The inorganic foam layer 5 is formed.
In such a case, since the wall surface of the building or facility, etc. or the outer surface of the cooling / heating device has a vast area from a relatively small area and has a variety of fusion coating thicknesses when the adhesion surface 5A is fusion-coated, Construction means for fusion coating that can cope with these is required.

これがためには図3に示すように、所要の加熱温度に加熱し且所要の送風圧力を以って加熱加圧空気3を加熱送風しえる加熱送風機30を予め用意し、この加熱送風機30からの加熱加圧空気3を、適宜施工作業位置まで移送しえる加熱移送管31を設けるとともに、他方において該加熱移送管31と連結できる連結部32Aを有した把持部32Bには、加熱加圧空気3の噴散量を調節するための調節弁32Cと連動するノブ32Dが設けられ、且把持部32Bの上部には適宜容量を以ってシロキサン及びシラノール塩多分子量溶液1を貯留しえるホッパー32Eが設けられたうえ供給管32Fを介して、把持部32Bの他端に設けられたオリフィス2の直前で加熱加圧空気3の吸引力により混合されるよう構成された噴散具32を用いて、被着体5Aに吹付け融着塗着させることが提案される。  For this purpose, as shown in FIG. 3, a heating blower 30 that can be heated to a required heating temperature and can heat and blow the heated pressurized air 3 with a required blowing pressure is prepared in advance. Is provided with a heat transfer pipe 31 that can appropriately transfer the heated and pressurized air 3 to the construction work position, and on the other hand, the holding part 32B having a connecting part 32A that can be connected to the heat transfer pipe 31 has a heated and pressurized air. A hopper 32E capable of storing the siloxane and silanol salt multi-molecular weight solution 1 with an appropriate capacity is provided at the upper portion of the gripping portion 32B. And a squirting tool 32 configured to be mixed by the suction force of the heated and pressurized air 3 immediately before the orifice 2 provided at the other end of the gripping part 32B through the supply pipe 32F. , It is proposed to spray fusing coating wear adherend 5A.

更に図4は噴散コーン6の説明図であって、本発明により無機質発泡層5を融着塗着させる建物や施設の壁面或いは冷熱装置の外面等屋外における被着面5Aへの施工においては、融着塗着に際して噴散され加熱発泡された発泡粒4が、外気温の影響を受けて加熱融着性が損われ被着面5Aへの強固な融着塗着が出来ぬ危険や、発泡粒4が風の影響を受け易く、これにより被着面5Aへの能率的且正確な吹付けが阻害されて融着塗着が良好になされぬ問題も発生する。  Further, FIG. 4 is an explanatory view of the eruption cone 6. In the construction on the surface 5A to be attached outdoors such as a wall surface of a building or facility to which the inorganic foam layer 5 is fusion-coated according to the present invention or the outer surface of a cooling / heating device. The danger that the foamed particles 4 squirted and heated and foamed at the time of fusion coating is affected by the outside air temperature and the heat fusion property is impaired, and a strong fusion coating on the adherend surface 5A cannot be performed, The foamed particles 4 are easily affected by the wind, which prevents efficient and accurate spraying on the adherend surface 5A, resulting in a problem that the fusion coating is not satisfactorily performed.

そこでオリフィス2より噴散されるシロキサン及びシラノール塩多分子量溶液1を、該オリフィス2からの噴散角より広角に形成された噴散コーン6内に噴散させることにより、加熱発泡された発泡粒4が外気に直接晒されぬため加熱融着性を保持したまま被着面5Aへの吹付けがなされ融着塗着がなされるとともに、該噴散保持コーン6により発泡粒4が風の影響を受けることなく被着面5Aに正確に吹付けがなされ、能率良く融着塗着がなされ無機質発泡層5が形成される。  Therefore, the siloxane and silanol salt polymolecular weight solution 1 squirted from the orifice 2 is sprayed into a squirting cone 6 formed at a wider angle than the squirting angle from the orifice 2, thereby heating and foaming foamed particles. Since 4 is not directly exposed to the outside air, it is sprayed onto the adherend surface 5A while maintaining the heat-fusibility, and the melt-coating is performed. Without spraying, the sprayed surface 5A is accurately sprayed, and the fused foam is efficiently applied to form the inorganic foamed layer 5.

以下に本発明における無機質発泡層5の融着塗着施工例を述べれば、加熱送風機30により350℃に加熱され且送風圧力3kg/cmに加熱加圧された加熱加圧空気3を、気温20℃無風状態の建物内においてそのオリフィス2の孔径が1.0mmの噴散具32を用い、シロキサン及びシラノール塩多分子量溶液1を2.4ml/秒の割合で加熱加圧空気3と混合のうえ噴散させ、発泡倍率が略30倍、発泡粒径6.0mmに加熱発泡させたうえオリフィス2より1.5mの距離からベニヤ板よりなる被着体5Aの表面に吹付け、厚さ20mmの無機質発泡層5を融着塗着させた場合の融着塗着施工性は、1m当り略4分程度で融着塗着形成ができる。In the following, an example of fusion coating of the inorganic foamed layer 5 according to the present invention will be described. Heated and pressurized air 3 heated to 350 ° C. by a heated blower 30 and heated and pressurized to a blowing pressure of 3 kg / cm 2 In a building at 20 ° C. in a windless state, a siloxane and silanol salt multi-molecular weight solution 1 was mixed with heated pressurized air 3 at a rate of 2.4 ml / second using a squirting tool 32 having a orifice diameter of 1.0 mm. It was sprayed and heated and foamed to a foaming ratio of about 30 times and a foamed particle size of 6.0 mm, and sprayed onto the surface of the adherend 5A made of a plywood plate from a distance of 1.5 m from the orifice 2, and the thickness was 20 mm. When the inorganic foamed layer 5 is fusion-coated, the fusion-coating workability can be formed in about 4 minutes per 1 m 2 .

混合原理の説明図である。  It is explanatory drawing of a mixing principle. 本発明のレイアウト図である。  It is a layout diagram of the present invention. 噴散具の説明図である。  It is explanatory drawing of a scatter tool. 噴散コーンの説明図である。  It is explanatory drawing of an ejection cone.

符号の説明Explanation of symbols

1 シロキサン及びシラノール塩多分子量溶液
2 オリフィス
3 加熱加圧空気
3A 加熱送風管
30 加熱送風機
31 加熱移送管
32 噴散具
32A 連結部
32B 把持部
32C 調節弁
32D ノブ
32E ホッパー
32F 供給管
4 発泡粒
5 無機質発泡層
5A 被着体
6 噴散保持コーン
DESCRIPTION OF SYMBOLS 1 Polysiloxane and silanol salt molecular weight solution 2 Orifice 3 Heating pressurization air 3A Heating air blower 30 Heating air blower 31 Heating transfer pipe 32 Ejection tool 32A Connection part 32B Grasping part 32C Control valve 32D Knob 32E Hopper 32F Supply pipe 4 Foamed grain 5 Inorganic foam layer 5A adherend 6 eruption holding cone

Claims (2)

シロキサン及びシラノール塩からなり、固形分が20乃至35重量%、水分が65乃至80重量%で分子量が4,000乃至8,000のシロキサン及びシラノール塩多分子量溶液を、少なくとも300℃以上に加熱され且加圧された加熱加圧空気と混合したうえ所要孔径のオリフィスより噴散させて所要粒径に加熱発泡させ、且その加熱融着性により被着面に融着塗着させ、以って所要の厚さに無機質発泡層を形成させることを特徴とする無機質発泡層の塗着形成方法。  A siloxane and silanol salt multi-molecular weight solution consisting of siloxane and silanol salt, having a solid content of 20 to 35% by weight, moisture of 65 to 80% by weight and a molecular weight of 4,000 to 8,000 is heated to at least 300 ° C or higher. Then, it is mixed with pressurized pressurized air and sprayed from the orifice of the required pore size, heated and foamed to the required particle size, and by the heat-fusibility, the coated surface is fused and applied. A method for forming an inorganic foam layer, wherein the inorganic foam layer is formed to a required thickness. オリフィスより噴散されるシロキサン及びシラノール塩多分子量溶液を、その噴散角より広角に形成された噴散保護コーン内に噴散させ、十分な加熱発泡と加熱融着性を保持せしめて強固な融着塗着と且高い施工性で融着塗着をなす、請求項1記載の無機質発泡層の塗着形成方法。  The siloxane and silanol salt multi-molecular weight solution sprayed from the orifice is sprayed into a spray protection cone formed at a wider angle than the spray angle to maintain a sufficient heat foaming and heat fusion property. The method for forming an inorganic foam layer according to claim 1, wherein the fusion coating is performed with fusion coating and high workability.
JP2005087048A 2005-02-24 2005-02-24 Method of depositing inorganic foam layer Pending JP2006231311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087048A JP2006231311A (en) 2005-02-24 2005-02-24 Method of depositing inorganic foam layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087048A JP2006231311A (en) 2005-02-24 2005-02-24 Method of depositing inorganic foam layer

Publications (1)

Publication Number Publication Date
JP2006231311A true JP2006231311A (en) 2006-09-07

Family

ID=37039536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087048A Pending JP2006231311A (en) 2005-02-24 2005-02-24 Method of depositing inorganic foam layer

Country Status (1)

Country Link
JP (1) JP2006231311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article

Similar Documents

Publication Publication Date Title
JP6997925B2 (en) Foam as an adhesive for composites for insulation
JPH0234897B2 (en)
RU2668753C1 (en) Solid foam fire extinguisher
RU183035U1 (en) Solid Extinguishing Extinguisher
WO2016153385A1 (en) Foam silica gel, method for applying and producing same
HRP20201739T1 (en) Mineral fiber based ceiling tile
JP6681272B2 (en) Composition and non-combustible material
US20150283577A1 (en) Water spray applied loose-fill insulation
RU2668749C1 (en) Fire extinguisher for explosion and fire fighting and solid foam extinguishment
JPH0446910B2 (en)
CN106590233B (en) A kind of aqueous anti-fogging coating and preparation method thereof
CN107988851A (en) Soluble ceramic fiber plate and preparation method thereof
JP2006231311A (en) Method of depositing inorganic foam layer
US20230256706A1 (en) Aerogel-containing insulation layer
RU2318782C1 (en) Heat-insulating coat
KR20090084773A (en) Fire-resistant coating material composite
KR102175376B1 (en) Quaci-noncombustible heat insulator and manufacturing method of the same
RU2668747C1 (en) Chemical foam fire extinguisher with ejector mixture-foam generator
JP4502739B2 (en) Fireproof and heat insulating structure and construction method thereof
US7744783B2 (en) Method of making non-flammable thermal insulatiion foam and products made by the method
US10407346B1 (en) Non-flamable materials, products, and method of manufacture
KR100846812B1 (en) Manufacturing method of non flammable expanded plastic sheet and manufacturing method of metal plastic composite panel with core part made of non flammable expanded plastic sheet
RU183793U1 (en) Chemical fire extinguisher with an ejector mixer-foam generator
RU183049U1 (en) Fire extinguisher for fire prevention and solid extinguishing
JP2008260876A (en) Low-toxic, silicone rubber-based, heat-resistant insulating material