JP2008260876A - Low-toxic, silicone rubber-based, heat-resistant insulating material - Google Patents

Low-toxic, silicone rubber-based, heat-resistant insulating material Download PDF

Info

Publication number
JP2008260876A
JP2008260876A JP2007105694A JP2007105694A JP2008260876A JP 2008260876 A JP2008260876 A JP 2008260876A JP 2007105694 A JP2007105694 A JP 2007105694A JP 2007105694 A JP2007105694 A JP 2007105694A JP 2008260876 A JP2008260876 A JP 2008260876A
Authority
JP
Japan
Prior art keywords
heat
insulating material
heat insulating
silicone rubber
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007105694A
Other languages
Japanese (ja)
Inventor
Matsumi In
松美 因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007105694A priority Critical patent/JP2008260876A/en
Publication of JP2008260876A publication Critical patent/JP2008260876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To amend the lightweight insulating material for a cosmic rocket to a safe heat-resistant insulating material for general use. <P>SOLUTION: The polysiloxane polymer used in the reference patent 1 has achieved a highly heat-resistant (500°C) insulating material (0.1 w/mk) by making it a highly pure material. This is switched to a general-purpose silicone rubber to reduce the manufacturing cost sharply and to permit the product to be used generally. Next, the average particle size of the microballoons is changed to 95-150 μm to improve the heat conductivity to 0.06 w/mk. Further, by changing the flame retardant to a low-toxic material there is provided a silicone rubber-based heat-resistant insulating material that is high in safety and versatility and has low toxicity and flame retardancy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低毒性で難燃性のシリコーンゴム系耐熱性断熱材に関する。さらに詳しくは、建材、蓄熱槽やタンク、化学プラント、自動車、食品機械、試験機、電気炉等に使用される、低毒性で、難燃性のシリコーンゴム系耐熱性断熱材に関する。   The present invention relates to a low-toxic and flame-retardant silicone rubber heat-resistant heat insulating material. More specifically, the present invention relates to a low-toxic and flame-retardant silicone rubber heat-resistant heat insulating material used for building materials, heat storage tanks and tanks, chemical plants, automobiles, food machinery, testing machines, electric furnaces, and the like.

従来、汎用断熱材としては、種々の材料よりなるものが知られており、代表的なものとして、例えば、グラスウールや発泡ウレタン等が挙げられる。グラスウールは、束状又は綿状にされた繊維とそれに含まれる空気層が断熱層として機能をする。しかし、グラスウールの空気層や空隙に水が浸入した場合は、この水を飛散、蒸発させることが困難で、グラスウールの断熱性能は大幅に低下する。又、一般の蒸気配管、熱交換器、ダクトなどに、グラスウール製の断熱材が保温のために使用され、断熱材の外側に、鋼板やステンレス板などによって保護する外装工事(ラッキング)を行うが、保護外装工事には大変な手間と費用がかかる。しかし、保護外装材を施工しても水分の浸入を完全には防止できず、浸入した水分による保護外装材の腐食や断熱機能の低下が生じる場合がある。   Conventionally, as a general-purpose heat insulating material, those made of various materials are known. Typical examples include glass wool and urethane foam. In glass wool, bundled or cotton-like fibers and an air layer contained therein function as a heat insulating layer. However, when water enters the air layer or gap of glass wool, it is difficult to scatter and evaporate the water, and the heat insulating performance of glass wool is greatly reduced. Glass wool insulation is used for heat insulation in general steam pipes, heat exchangers, ducts, etc., and exterior work (racking) is performed on the outside of the insulation to protect it with steel plates, stainless steel plates, etc. Protective exterior construction is very laborious and expensive. However, even if the protective exterior material is applied, the ingress of moisture cannot be completely prevented, and the protective exterior material may be corroded or the heat insulating function may be deteriorated due to the infiltrated moisture.

次に、発泡ウレタン系樹脂よりなる断熱材は、優れた断熱性により建築設備関係に広く使用されている。発泡ウレタン樹脂断熱材は、グラスウールに比べ吸湿性は改善されるが、燃え易く火災による建屋、設備機器等の延焼や、大量の黒煙が生じ、この黒煙が消火活動の妨げになる場合がある。   Next, a heat insulating material made of urethane foam resin is widely used for building facilities due to its excellent heat insulating property. Foamed urethane resin insulation has improved moisture absorption compared to glass wool, but it is easy to burn, spreads fires in buildings and equipment due to fire, and generates a lot of black smoke, which may hinder fire fighting activities. is there.

以上のような吸湿性や耐熱性や難燃性の問題を解決した断熱材として、特許文献1に記載されているような、軽量断熱性ゴム組成物が提案されている。この特許文献1の断熱材は、軽量、耐圧強度、断熱性、耐熱温度500℃(汎用断熱材グラスウールは180℃)などの特性を有し、優れた性能を発揮した。この優れた機能を発揮させるために、高純度の縮合型ジオルガノポリシロキサン重合体を使用している。しかし、この重合体を高純度に精製するために、多くの労力とエネルギーがかかり高価であることと、熱伝導率が0.1w/mkであり、汎用断熱材(0.05w/mk)と比較して断熱性が悪く、宇宙ロケット用以外には、普及していない。   As a heat insulating material that solves the problems of hygroscopicity, heat resistance, and flame retardance as described above, a lightweight heat insulating rubber composition as described in Patent Document 1 has been proposed. The heat insulating material of Patent Document 1 has characteristics such as light weight, pressure resistance, heat insulating property, heat resistant temperature of 500 ° C. (general heat insulating material glass wool is 180 ° C.), and exhibited excellent performance. In order to exhibit this excellent function, a high-purity condensed diorganopolysiloxane polymer is used. However, in order to purify this polymer to high purity, it takes a lot of labor and energy and is expensive, and the thermal conductivity is 0.1 w / mk, compared with general-purpose insulation (0.05 w / mk). It has poor thermal insulation and is not widely used except for space rockets.

更に、断熱材の耐熱性、難燃性向上のために、酸化アンチモンや臭素系燐酸エステル化合物が使用されているが、この2種類の化合物の相乗効果による難燃性と耐熱性は、特許文献1断熱材の必須条件であった。しかし、酸化アンチモンや臭素系燐酸エステル化合物は、毒性や環境汚染問題が指摘されており、アンチモンやハロゲン化合物を含まない、安全な難燃剤を含有する断熱材の開発が望まれている。最近の難燃剤開発は、放熱性を重視した熱伝導率の高い材料が多く提案されているが、低い熱伝導率を必要とする本発明の耐熱性断熱材とは、相反した目標であった。又、低発煙系難燃剤として、水酸化アルミが提案されているが、この材料も熱伝導率が高く断熱性は期待できない。以上のような背景の中で、シリコーンゴムとガラスバルーンと難燃剤の組み合わせと、更に、安全性と汎用性を有する断熱材の開発は、容易ではなかった。
特許第2990534号公報
Furthermore, antimony oxide and bromine phosphate compounds are used to improve the heat resistance and flame retardancy of heat insulation materials. The flame retardancy and heat resistance due to the synergistic effect of these two types of compounds are described in the patent literature. It was an essential condition for 1 heat insulating material. However, antimony oxide and bromine phosphate compounds have been pointed out to be toxic and environmental pollution problems, and development of a heat insulating material containing a safe flame retardant containing no antimony or halogen compound is desired. Recent development of flame retardants has proposed many materials with high thermal conductivity that emphasize heat dissipation, but it was a conflicting goal with the heat-resistant insulation of the present invention that requires low thermal conductivity. . Also, aluminum hydroxide has been proposed as a low-smoke flame retardant, but this material also has high thermal conductivity and cannot be expected to have heat insulation. In the background as described above, it has not been easy to develop a combination of a silicone rubber, a glass balloon and a flame retardant, and a heat insulating material having safety and versatility.
Japanese Patent No. 2990534

本発明の目的は、耐熱性断熱材(熱伝導率0.06w/mk)を提供することで、次の通りである。
1.有害な難燃剤を含まず、安全かつ汎用性の高い、耐熱性断熱材を提供すること。
2.荷重の負荷がかかり圧縮された時に空気層が大幅に減少せず、かつ吸湿による断熱性能低下が少ない耐熱性断熱材を提供すること。
3.保護外装材工事(ラッキング)を必須としない耐熱性断熱材を提供すること。
The object of the present invention is to provide a heat-resistant heat insulating material (thermal conductivity 0.06 w / mk) as follows.
1. To provide heat-resistant insulation that is safe and versatile without harmful flame retardants.
2. To provide a heat-resistant heat insulating material in which an air layer is not significantly reduced when a load is applied and compressed, and the heat insulation performance is not deteriorated due to moisture absorption.
3. To provide heat-resistant insulation that does not require protective exterior construction (racking).

上記の目的を達成するために、本発明では、室温硬化性のシリコーンゴム100重量部に対して、平均粒径95〜150μmのガラスバルーンを70〜100重量部、Mg化合物、Ca化合物、シリカ化合物から選ばれた1種又は2種を2〜20重量部、硬化剤を5〜10重量部配合されてなることを特徴とする、低毒性で難燃性のシリコーンゴム系耐熱性断熱材を提供する。   To achieve the above object, in the present invention, 100 to 100 parts by weight of a room temperature curable silicone rubber, 70 to 100 parts by weight of a glass balloon having an average particle size of 95 to 150 μm, an Mg compound, a Ca compound, and a silica compound A low-toxic and flame-retardant silicone rubber-based heat-resistant heat insulating material comprising 2 to 20 parts by weight of one or two selected from 5 and 10 parts by weight of a curing agent To do.

本発明は、以下に詳細に説明する通りであり、次のような特別に優れた効果を奏する。
1.本発明に係る耐熱性断熱材は、ハロゲン、アンチモンなどを含まないので、環境汚染の問題が少なく、毒性も低いので安全性が高く、かつ特別な原料は使用していないので汎用性が高い。
2.本発明に係る耐熱性断熱材は、シリコーンゴムとガラスバルーンとの界面密着性が良く、グラスウールよりなる断熱材のように多量の空気層が無いので、荷重の負荷により圧縮されても大幅な空気層の減少がなく、かつ外気からの水分の浸入による断熱性能の低下は少ない。
3.本発明に係る耐熱性断熱材は、耐圧強度のある緻密な構造であるため、外気からの水分が侵入し難く、保護外装工事(ラッキング)を必要としない。
4.本発明に係る耐熱性断熱材は、無機系のシロキサン結合を有する耐熱200℃のシリコーンゴムと、耐熱性と断熱性を有するガラスバルーンの組成からなり、優れた耐熱性と断熱性を発揮する。
The present invention is as described in detail below, and has the following particularly excellent effects.
1. Since the heat-resistant heat insulating material according to the present invention does not contain halogen, antimony, etc., there are few problems of environmental pollution, low toxicity, high safety, and no special raw materials are used, so it is highly versatile.
2. The heat-resistant heat insulating material according to the present invention has good interfacial adhesion between the silicone rubber and the glass balloon, and does not have a large air layer like the heat insulating material made of glass wool. There is no decrease in the number of layers, and there is little deterioration in the heat insulation performance due to the ingress of moisture from outside air.
3. Since the heat-resistant heat insulating material according to the present invention has a dense structure with pressure resistance, it is difficult for moisture from outside air to enter and does not require protective exterior construction (racking).
4). The heat-resistant heat insulating material according to the present invention comprises a composition of a heat-resistant 200 ° C. silicone rubber having an inorganic siloxane bond and a glass balloon having heat resistance and heat insulating properties, and exhibits excellent heat resistance and heat insulating properties.

以下、本発明を詳細に説明する。
本発明に係る断熱材は、汎用のシリコーンゴムとガラスバルーンを主剤として、補助剤に難燃剤及び硬化剤からなるシリコーンゴム組成物である。構成物は、全て低毒性で安全性の高い原料からなり、構成物のシリコーンゴムとガラスバルーンに親和性があり、界面密着性の良い緻密な構造であることから、外圧による大幅な体積の減少(挫屈)や水分の影響を受け難く、長期間安定した断熱性能を提供できる。
Hereinafter, the present invention will be described in detail.
The heat insulating material according to the present invention is a silicone rubber composition comprising a general-purpose silicone rubber and a glass balloon as main components and a flame retardant and a curing agent as auxiliary agents. All the components are made of low-toxic and highly safe raw materials, and the silicone rubber and glass balloon of the components have a close structure with good interfacial adhesion, so the volume is greatly reduced by external pressure. It is difficult to be affected by (bending) and moisture, and can provide stable heat insulation performance for a long time.

本発明におけるシリコーンゴムは、主鎖が無機質のシロキサン結合(-Si-O-)と側鎖にメチル基を有する、高分子材料を言う。シリコーンゴムの主鎖のシロキサン結合は、有機高分子のC-C結合に見られない耐熱性、耐候性、可撓性など、多くの特性を有している。この特性は、Si-Oの結合エネルギー(444KJ/mol)がC-Cの結合エネルギー(356KJ/mol)に比べ安定していることや、立体的らせん構造(ヘリックス構造)などの理由が挙げられる。本発明の断熱材に使用するシリコーンゴムは、シロキサン結合単位が数千の重合したものからなり、Siに結合した基によって、生成物の物性が変わる。耐熱性を向上するためにはフェニル基を導入することがある。末端にはアルコキシ基やアセトキシ基を有し、空気中の水分と反応して硬化可能なもの又は水酸基やアルキル基、アルコキシシラン基などの多官能基とが、錫、白金などの触媒で縮合するもの等があるが、これらに限定されるものではない。尚、シリコーンゴムは、常温で硬化する製品や加熱により硬化するもの、又硬化剤を別途に添加するものや、必要な硬化剤が予め投入された製品などがある。   The silicone rubber in the present invention refers to a polymer material having a main chain having an inorganic siloxane bond (—Si—O—) and a side chain having a methyl group. The siloxane bond in the main chain of silicone rubber has many characteristics such as heat resistance, weather resistance, and flexibility that are not found in the C—C bond of organic polymers. This characteristic can be attributed to the fact that the Si—O bond energy (444 KJ / mol) is more stable than the C—C bond energy (356 KJ / mol), and the three-dimensional helical structure (helix structure). The silicone rubber used in the heat insulating material of the present invention consists of a polymer of several thousand siloxane bond units, and the physical properties of the product vary depending on the group bonded to Si. In order to improve heat resistance, a phenyl group may be introduced. The terminal has an alkoxy group or an acetoxy group and can be cured by reacting with moisture in the air or a polyfunctional group such as a hydroxyl group, an alkyl group or an alkoxysilane group is condensed with a catalyst such as tin or platinum. Although there is a thing etc., it is not limited to these. Silicone rubber includes products that cure at room temperature, those that cure by heating, those that add a curing agent separately, and products that are pre-loaded with the necessary curing agent.

シリコーンゴムの機能は、多量(体積比で8〜10倍)のガラスバルーンと接合して、断熱材の耐熱性や可撓性や形状維持などがあり、更には、被施工体に対し接着するように働く。シリコーンゴムは、シロキサン結合や末端シラノール基(Si-OH)を有し、ガラスバルーン表面のシラノール基との間で化学的に結合し、優れた接着性と耐候性を発揮する。シリコーンゴムの立体的らせん構造は、本発明の耐熱性断熱材に可撓性を付与し、荷重による衝撃に弱いガラスバルーンを守る機能をしている。   The function of silicone rubber is to join with a large amount (8 to 10 times by volume) of glass balloons, heat resistance, flexibility and shape maintenance of the heat insulating material, and further to adhere to the workpiece. To work. Silicone rubber has a siloxane bond and a terminal silanol group (Si-OH), and chemically bonds with the silanol group on the surface of the glass balloon to exhibit excellent adhesion and weather resistance. The three-dimensional helical structure of silicone rubber imparts flexibility to the heat-resistant heat insulating material of the present invention, and functions to protect a glass balloon that is weak against impact by a load.

次に、ガラスバルーンは、硼珪酸を主成分とした汎用性の高い安全な原料からなり、減圧中空状に粒状体を構成したもので、加熱減量が小さく、優れた耐熱性、断熱性、形状保持性を発揮する。   Next, the glass balloon is made of a highly versatile and safe raw material mainly composed of borosilicate, and is composed of granular material in the form of a hollow vacuum, with low heat loss, excellent heat resistance, heat insulation, and shape. Demonstrate retention.

ガラスバルーンは、減圧中空の粒状をなし断熱機能を発揮し、密接するシリコーンゴムと化学的な結合した緻密構造により、断熱材の主要な成分をなす。この構造に水分は、殆ど浸入することが出来ない。ガラスバルーンの粒径は、小さいと熱伝導率が上昇して断熱性能が低下する。逆に、粒径が大きいと、熱伝導率は良くなるが耐圧強度は低くなる。本発明で使用されるガラスバルーンの平均粒径は、95μm〜150μmの範囲とする。ガラスバルーンの平均粒度が、95μm以下の場合は熱伝導率が0.06w/mkを超えてしまい、150μm以上の場合は、断熱材をスプレーガンで吹き付ける時及び製造時での攪拌により、ガラスバルーンの破壊される割合が多くなり、断熱性が低下する。   Glass balloons form a vacuum hollow granule, exhibit a heat insulating function, and constitute a major component of a heat insulating material due to a dense structure chemically bonded to an intimate silicone rubber. Almost no moisture can enter this structure. If the particle size of the glass balloon is small, the thermal conductivity increases and the heat insulating performance decreases. On the contrary, when the particle size is large, the thermal conductivity is improved, but the pressure strength is lowered. The average particle size of the glass balloon used in the present invention is in the range of 95 μm to 150 μm. When the average particle size of the glass balloon is 95 μm or less, the thermal conductivity exceeds 0.06 w / mk, and when it is 150 μm or more, the insulation of the glass balloon is caused by spraying the heat insulating material with a spray gun and stirring during production. The rate of destruction is increased, and the heat insulation is reduced.

シリコーンゴムとガラスバルーンの配合比は、シリコーンゴム100重量部に対してガラスバルーン70〜100重量部で選ぶものとする。ガラスバルーン70重量部以下の場合、目標の熱伝導率0.06w/mkが得られなくなり、ガラスバルーン100重量部以上の場合は、断熱材の強度を保てない。必要条件に合わせ、強度と断熱性のバランスを取りながら配合を決める。尚、本発明の断熱材の耐圧強度は、汎用断熱材として使用されているグラスウールより高い。   The compounding ratio of the silicone rubber and the glass balloon is selected from 70 to 100 parts by weight of the glass balloon with respect to 100 parts by weight of the silicone rubber. When the glass balloon is 70 parts by weight or less, the target thermal conductivity of 0.06 w / mk cannot be obtained, and when the glass balloon is 100 parts by weight or more, the strength of the heat insulating material cannot be maintained. In accordance with the requirements, determine the formulation while balancing strength and heat insulation. In addition, the pressure resistance strength of the heat insulating material of this invention is higher than the glass wool currently used as a general purpose heat insulating material.

Mg化合物、Ca化合物は、シラノール基および結晶水を持った毬藻状粒子の難燃剤である。またシリカ化合物(ホワイトカーボン)は、シラノール基および遊離水をもち50ミクロン前後の粒子を形成する難燃剤である。これらの難燃剤は、シラノール基および結晶水を持ち、毬藻状など複雑な構造を有する。   Mg compounds and Ca compounds are flame retardants of diatomaceous particles having silanol groups and crystal water. Silica compounds (white carbon) are flame retardants that have silanol groups and free water to form particles of around 50 microns. These flame retardants have a silanol group and crystal water, and have a complicated structure such as a diatom.

難燃剤の機能は、燃えやすいプラスチック、樹脂、ゴムなどに添加することにより、難燃性を付与する働きがある。従来使用されているハロゲンやアンチモン系難燃剤は、この材料自身が燃焼する時の吸熱反応により、難燃性を付与する働きがあるが、燃焼により生成したハロゲンやアンチモン化合物に、毒性や環境汚染の問題が指摘されている。この問題解決の要求に対して、本発明の断熱材に使用した難燃剤は、安全性が高く環境汚染を発生させない特長がある。難燃性の機能は、これら化合物の中に結晶水を有し、加熱されると約300℃付近から吸熱反応を生じ、難燃性を付与する働きがある。また、この化合物は、毬藻状の複雑な構造からなり、熱が伝わり難い特徴を有する。   The function of the flame retardant has the function of imparting flame retardancy when added to flammable plastics, resins, rubbers and the like. The halogen and antimony flame retardants used in the past have the function of imparting flame retardancy by the endothermic reaction when the material itself burns. However, the halogen and antimony compounds produced by combustion are toxic and environmental pollutants. Problems have been pointed out. In response to this problem solving requirement, the flame retardant used in the heat insulating material of the present invention has a feature that it is highly safe and does not cause environmental pollution. The flame retardant function has a function of imparting flame retardancy by having crystal water in these compounds and generating an endothermic reaction from around 300 ° C. when heated. Further, this compound has a diatom-like complex structure and has a feature that heat is not easily transmitted.

難燃剤としては、Mgの化合物(例えばMOS)、Caの化合物(例えばゾノトライト)、シリカ化合物(例えばホワイトカーボン)等を例示することが出来るが、これに限定されるものではない。これら難燃剤の1種又は2種をシリコーンゴム100重量部に対し2〜20重量部を配剤した時、難燃性や強度の確保が出来るが、2重量部以下の時は難燃性を保てず、20重量部を超えると強度が不足する。尚、難燃性は、本発明の断熱材に使用したガラスバルーンが、600℃前後より熔融しガラスの皮膜となり、酸素の供給を遮断する働きがあり、上記難燃剤との相乗効果により形成している。難燃剤の配合比は表1に、断熱性能試験結果は表2の試料実施例(1)(2)(3)に示す。   Examples of the flame retardant include, but are not limited to, Mg compounds (for example, MOS), Ca compounds (for example, zonotlite), silica compounds (for example, white carbon), and the like. When 2 to 20 parts by weight of one or two of these flame retardants are dispensed with respect to 100 parts by weight of silicone rubber, flame retardancy and strength can be ensured, but flame retardancy is maintained at 2 parts by weight or less. If it exceeds 20 parts by weight, the strength is insufficient. In addition, the flame retardancy is a glass balloon used in the heat insulating material of the present invention melted from around 600 ° C. to become a glass film, and has a function of blocking the supply of oxygen, and is formed by a synergistic effect with the above flame retardant. ing. The blending ratio of the flame retardant is shown in Table 1, and the heat insulation performance test results are shown in Sample Examples (1), (2) and (3) in Table 2.

その他の難燃剤としては、MgO、CaOなどの酸化物、水酸化アルミ、マイカ(試料比較例5)、タルク等には難燃性はあるが、断熱材に使用すると熱伝導率が0.06w/mkを超えて、断熱性に問題がある。火山灰(シラス)を1000℃で焼成し製造されたシラスバルーンは、試料比較例(4)に示す。   As other flame retardants, oxides such as MgO and CaO, aluminum hydroxide, mica (sample comparison example 5), talc, etc. are flame retardant, but when used as heat insulation, the thermal conductivity is 0.06w / Beyond mk, there is a problem with heat insulation. A shirasu balloon produced by firing volcanic ash (shirasu) at 1000 ° C. is shown in sample comparison example (4).

硬化剤は、有機系金属塩、有機過酸化物からなるシリコーンゴム硬化の調整剤である。   The curing agent is a silicone rubber curing regulator composed of an organic metal salt and an organic peroxide.

硬化剤の機能は、シリコーンゴムに含まれる官能基と反応するか又は触媒として働き、軟質なシリコーンゴムを硬質な構造にする働きがある。その他の硬化方法としては、塗布後に断熱材を加熱して硬化する付加型、及び空気中の湿気と反応して硬化するタイプなどがある。本発明の断熱材に使用する硬化剤は、シリコーンゴム100重量部に対して、硬化剤5〜10重量部使用するが、硬化剤5重量部未満では強度が満足できず、10重量部以上では無駄な使用となる。   The function of the curing agent has the function of reacting with a functional group contained in the silicone rubber or acting as a catalyst to make the soft silicone rubber a hard structure. As other curing methods, there are an addition type in which a heat insulating material is heated and cured after application, and a type in which it is cured by reacting with moisture in the air. The curing agent used in the heat insulating material of the present invention is used in an amount of 5 to 10 parts by weight with respect to 100 parts by weight of the silicone rubber. It becomes useless use.

試料の作成方法は、シリコーンゴム100重量部をステンレス容器に入れ、300〜400重量部の溶剤にて希釈し攪拌する。溶剤には、メチルエチルケトン、アセトン、シクロヘキサン等の溶剤を使用する。又、作業環境が充分安全を保てる場合には、トルエン、キシレンなども使用できる。次に、シリコーンゴム100重量部に対して、ガラスバルーン100重量部、難燃剤10重量部を投入して攪拌し、最後に硬化剤5重量部を投入し攪拌する。溶剤を追加して、粘度を15cp前後に調整する。攪拌は、高速で行うとガラスバルーンが破壊されるので、低速攪拌で行う。溶剤は、調整や施工時に飛散、蒸発するので取り扱いには十分注意をする。   The sample is prepared by putting 100 parts by weight of silicone rubber into a stainless steel container, diluting with 300 to 400 parts by weight of solvent and stirring. A solvent such as methyl ethyl ketone, acetone or cyclohexane is used as the solvent. In addition, if the work environment is sufficiently safe, toluene, xylene or the like can be used. Next, 100 parts by weight of a glass balloon and 10 parts by weight of a flame retardant are added and stirred with respect to 100 parts by weight of silicone rubber, and finally 5 parts by weight of a curing agent is added and stirred. Add solvent to adjust viscosity to around 15 cp. Stirring is performed at a low speed because the glass balloon is broken when it is performed at a high speed. Be careful when handling the solvent as it will scatter and evaporate during adjustment and construction.

耐熱性断熱材の施工は、先ず被施工体の下地の処理を行い油分やゴミなどを除去する。耐熱性断熱材は、鋼板、アルミ、セラミック、エポキシ樹脂などへの接着性は良いが、ナイロン、ポリエチレン、ポリプロピレン等は、接着性が悪い。接着性を向上するには、下地処理としてシリコーン系塗料やセラミック系(珪素含有)塗料を使用する。次にスプレーガンでの施工は、B型粘度計などで粘度13〜14cpに調整して吹き付けをする。スプレーガンには、明治機械製F100型又はアネスト岩田製のリシンガンを使用して、圧力0.2〜0.3MPaにて施工を行う。1回の塗布厚は、約2mmまで可能であり、2時間乾燥すると次の施工ができる。又、耐熱性断熱材は、不織布やアルミ板などに流し込み(キャスティング)板状の製品にすることも出来る。   In the construction of the heat-resistant heat insulating material, first, the base of the workpiece is processed to remove oil and dust. The heat-resistant heat insulating material has good adhesion to steel plates, aluminum, ceramics, epoxy resins, etc., but nylon, polyethylene, polypropylene, etc. have poor adhesion. In order to improve adhesiveness, a silicone-based paint or a ceramic-based (silicon-containing) paint is used as a base treatment. Next, the spray gun is sprayed after adjusting the viscosity to 13 to 14 cp with a B-type viscometer or the like. For the spray gun, use an M100 machine F100 type or Anest Iwata lysine gun, and perform the construction at a pressure of 0.2 to 0.3 MPa. The coating thickness for one application can be up to about 2 mm, and the next construction can be performed after drying for 2 hours. Further, the heat-resistant heat insulating material can be cast into a non-woven fabric or an aluminum plate to form a plate-like product.

以下、本発明の低毒性シリコーンゴム系耐熱性断熱材の試験実施例について詳しく述べる。
表1に示した配合割合(重量部)の原料を用いて、断熱材実施例(1)(2)(3)と同比較例(4)(5)を作成した。表2は、同上断熱材例(1)〜(5)の簡易断熱性試験結果、デュロメーターA硬度、簡易熱伝導率を示す。表3は、断熱材実施例(1)の熱伝導率の詳細な測定結果を示す。
Hereinafter, test examples of the low toxicity silicone rubber heat resistant heat insulating material of the present invention will be described in detail.
Using the raw materials of the blending ratio (parts by weight) shown in Table 1, thermal insulation material examples (1), (2) and (3) and comparative examples (4) and (5) were prepared. Table 2 shows the results of the simple heat insulation test, the durometer A hardness, and the simple thermal conductivity of the same heat insulating material examples (1) to (5). Table 3 shows the detailed measurement results of the thermal conductivity of the heat insulating material example (1).

実施例は、シリコーンゴムを100重量部に対して、300〜400重量部の溶剤を加え、ステンレス容器にて溶解する。次にシリコーンゴム100重量部に対してガラスバルーン100重量部、難燃剤を10重量部投入し攪拌する。予めガラスバルーンと難燃剤は、混合しておいても良い。ここでの攪拌は、断熱材の性能に影響が出るので十分に行う。最後に硬化剤は、シリコーンゴム100重量部に対して5重量部投入し、十分に攪拌を行い、溶剤にて粘度13〜14cpに調整をする。   In the embodiment, 300 to 400 parts by weight of a solvent is added to 100 parts by weight of silicone rubber, and dissolved in a stainless steel container. Next, 100 parts by weight of glass balloon and 10 parts by weight of flame retardant are added to 100 parts by weight of silicone rubber and stirred. The glass balloon and the flame retardant may be mixed in advance. Stirring here is sufficiently performed because it affects the performance of the heat insulating material. Finally, 5 parts by weight of the curing agent is added with respect to 100 parts by weight of the silicone rubber, sufficiently stirred, and adjusted to a viscosity of 13 to 14 cp with a solvent.

施工は、ゴミや油脂除去等の下地処理をした被施工体に、口径1.5mmの明治機械F100型スプレーガンにより、吐出圧0.2〜0.3MPaの条件で施工する。スプレーガンの場合は、圧力の調整と被施工体との距離が重要で、圧力が高いと付着量が少なくなり、圧力が低いとダレやダマを生じて付着が悪い。被施工体との距離は、圧力との関係もあるが、20cm前後がよい。又、アネスト岩田製MG-2D型リシンガンによる塗布テストを行ったが、やや調整が難しいものの、大量に施工する場合には有効と判断される。前述のように、スプレーガンで塗布する場合は、B型粘度計で粘度13〜14cp程度に、低く調整すると良いが、キャスティングやコテ塗りの場合は、粘度をやや高く調整する。被施工体が鋼板、アルミ、セラミックなどは、塗布面の油やごみを除去して、下地処理にはシリコーン系又はセラミック系塗料を塗布する。断熱材塗布直後の凹凸は、コテなどでも調整できるが、硬化剤投入後1時間以上径過すると硬化が進むので調整は出来ない。上塗り塗装には、シリコーン系、セラミック系などの塗料を選択する。   The work is performed on the work to be grounded, such as removing dust and oil, using a Meiji machine F100 spray gun with a caliber of 1.5 mm under a discharge pressure of 0.2 to 0.3 MPa. In the case of a spray gun, the adjustment of the pressure and the distance from the workpiece are important. When the pressure is high, the amount of adhesion decreases, and when the pressure is low, sagging and lumps occur, resulting in poor adhesion. The distance from the workpiece is preferably around 20 cm, although it is related to pressure. In addition, an application test using an MG-2D type lysine gun manufactured by Anest Iwata was conducted, but although it is somewhat difficult to adjust, it is judged to be effective for large-scale construction. As described above, when applying with a spray gun, it is preferable to adjust the viscosity to about 13 to 14 cp with a B-type viscometer, but when casting or troweling, the viscosity is adjusted to be slightly higher. If the workpiece is a steel plate, aluminum, ceramic, etc., oil or dust on the coated surface is removed, and a silicone or ceramic coating is applied to the base treatment. The unevenness immediately after application of the heat insulating material can be adjusted with a trowel or the like, but cannot be adjusted because curing proceeds when the diameter exceeds 1 hour after the addition of the curing agent. For the top coat, a silicone or ceramic paint is selected.

簡易断熱性試験は、多くの材料の性能又は量又は組み合わせを早く判断する試験方法で、熱伝導率の測定値と比較しながら試験を進めた。同試験機の外観斜視図は、図1の通りで、耐熱の防錆塗料をしたテスト鋼板11(15cm×15cm)、試験機本体12、加熱器電球13からなる。耐熱性断熱材を3mm厚に塗布したテスト鋼板を24時間室温で乾燥後、試験機に乗せて下部より100W電熱球13にて加熱し、表面温度を赤外線温度計で測定した。断熱材の表面温度の測定結果は、表2の通りであった。ブランクテストは、断熱材を施工しないテスト鋼板で同様に加熱した結果、60分後200℃となった。これに対して、試料実施例(1)〜(3)の断熱材塗布面は98〜105℃であったので、表面温度は95℃〜102℃に下がったことになり、断熱性能の確認ができた。比較例(4)は、シラスバルーンとガラスバルーンを混合した試験、試料比較例(5)は、耐熱性の高いマイカを試験したが、いずれも断熱性能は試料実施例(1)Mg化合物より劣った。尚、試験中のテスト鋼板の下部の温度は、210℃であったが、断熱材の表面は、加熱による黄変や亀裂などの変化は見られなかった。   The simple thermal insulation test is a test method for quickly judging the performance, quantity or combination of many materials, and the test was advanced while comparing with the measured value of thermal conductivity. An external perspective view of the testing machine is as shown in FIG. 1, and includes a test steel plate 11 (15 cm × 15 cm) coated with a heat-resistant rust-proof paint, a testing machine body 12 and a heater bulb 13. A test steel plate coated with a heat-resistant heat insulating material to a thickness of 3 mm was dried at room temperature for 24 hours, then placed on a testing machine, heated from below with a 100 W electric heating bulb 13, and the surface temperature was measured with an infrared thermometer. The measurement results of the surface temperature of the heat insulating material were as shown in Table 2. In the blank test, as a result of heating in the same manner with a test steel plate without applying a heat insulating material, the temperature became 200 ° C. after 60 minutes. On the other hand, since the heat insulating material application surface of the sample examples (1) to (3) was 98 to 105 ° C., the surface temperature was lowered to 95 ° C. to 102 ° C., and the heat insulating performance was confirmed. did it. Comparative Example (4) was a test in which shirasu balloons and glass balloons were mixed, and Sample Comparative Example (5) was tested on mica having high heat resistance, but both of them were inferior in thermal insulation performance to Sample Example (1) Mg compound. It was. In addition, although the temperature of the lower part of the test steel plate under test was 210 degreeC, the surface of the heat insulating material did not show changes such as yellowing and cracks due to heating.

熱伝導率の試験結果は、耐熱性断熱材の試料(2)〜(5)を埼玉県産業センターにて測定を実施し、表2の通り0.06〜0.08w/mkであった。又、表3は、試料実施例(1)を公共機関で詳細に熱伝導率測定したところ、27度の時0.056w/mk、76℃の時0.063w/mkであった。   The heat conductivity test results were 0.06 to 0.08 w / mk as shown in Table 2 when the heat-resistant insulation samples (2) to (5) were measured at the Saitama Industrial Center. Table 3 shows that the thermal conductivity of Sample Example (1) was measured in detail by a public institution, and it was 0.056 w / mk at 27 degrees and 0.063 w / mk at 76 ° C.

以上の断熱性能の試験結果より、実施例試料(1)のMg化合物(通称MOS)を使用した時、簡易断熱性試験の結果が最も良い値であり、熱伝導率も目標の0.06w/mkをクリアーした。このMg化合物は、安全性が高く有害物質を含まない製品であり、断熱性に優れた性能を発揮する。   From the above test results of heat insulation performance, when the Mg compound (commonly known as MOS) of the example sample (1) is used, the result of the simple heat insulation test is the best value, and the thermal conductivity is also the target of 0.06 w / mk. Cleared. This Mg compound is a product that is highly safe and does not contain harmful substances, and exhibits excellent heat insulation performance.

難燃性の試験は、UL-94(プラスチックの水平燃焼試験法)を参考にして行った。試験方法は、幅5cm長さ15cm厚さ3mmの試料を水平に設置し、ガスバーナーで着火して、消炎までの時間と燃えた試料の距離を測定した。難燃剤の入っていない試料は、約10cmを20秒間燃えたが、下記の試料例(1)〜(5)は、5秒以内に自己消炎し、燃えた距離は約5〜8cmの範囲であった。尚、この試験方法は、難燃性の規格UL-94を参考にしたもので、難燃性を判断する目安とした。   The flame retardancy test was conducted with reference to UL-94 (Plastic horizontal combustion test method). In the test method, a sample having a width of 5 cm, a length of 15 cm, and a thickness of 3 mm was placed horizontally, ignited with a gas burner, and the time to extinction and the distance of the burned sample were measured. The sample without flame retardant burned about 10 cm for 20 seconds, but the following sample examples (1) to (5) self-extinguished within 5 seconds, and the burned distance was in the range of about 5 to 8 cm. there were. This test method was based on the flame retardancy standard UL-94 and was used as a standard for judging the flame retardancy.

硬度試験は、シリコーンゴムの製造会社の試験方法に準じて、デュロメーターA法にて測定した。試験結果は、硬度50〜52Aであった。メーカーの標準硬度は、40Aであった。本発明の耐熱性断熱材に使用したガラスバルーンとの化学結合により、硬度が向上したと考えられる。   The hardness test was measured by the durometer A method according to the test method of the silicone rubber manufacturer. The test result was hardness 50-52A. The manufacturer's standard hardness was 40A. It is thought that the hardness was improved by the chemical bond with the glass balloon used in the heat-resistant heat insulating material of the present invention.

以上の実施例から、本発明の耐熱性断熱材の断熱性能は、引用文献1断熱材の熱伝導率0.10w/mk(80℃の時)に対し、約0.063w/mk(76℃の時)であり、断熱性能が優れていた。又、簡易断熱性試験に於いて200℃で1時間加熱したが、断熱材の黄変や亀裂などの変化は認められなかった。本発明の耐熱性断熱材は、シリカを含有するガラスバルーンとシリコーンゴムとの化学結合が徐々に進行して、耐熱性と硬度が向上する。以上の通り、本発明の耐熱性断熱材は、断熱性、難燃性、耐熱性、安全性が高く、低毒性であることから汎用断熱材として提供できる。次に、表1に本発明の耐熱性断熱材の配合比について記す。   From the above examples, the heat insulation performance of the heat-resistant heat insulating material of the present invention is about 0.063 w / mk (at 76 ° C.), compared to the thermal conductivity 0.10 w / mk (at 80 ° C.) of the cited reference 1. ) And the heat insulation performance was excellent. Moreover, in the simple heat insulation test, although it heated at 200 degreeC for 1 hour, changes, such as yellowing of a heat insulating material and a crack, were not recognized. In the heat-resistant heat insulating material of the present invention, the chemical bonding between the glass balloon containing silica and the silicone rubber proceeds gradually, and the heat resistance and hardness are improved. As described above, the heat-resistant heat insulating material of the present invention can be provided as a general-purpose heat insulating material because of its high heat insulating properties, flame retardancy, heat resistance, safety, and low toxicity. Next, Table 1 describes the blending ratio of the heat-resistant heat insulating material of the present invention.

Figure 2008260876
Figure 2008260876

Figure 2008260876
Figure 2008260876

Figure 2008260876
Figure 2008260876

実施例2は、蒸気を使用し耐熱性断熱材の性能を測定した。図2に示す20Lペール缶全体15に、耐熱性断熱材試料例(1)をスプレーガンで約3mmの厚さに吹き付けた。ペール缶に蓋をして高圧蒸気17を入れ、排気口18より蒸気を排出し、缶内を100℃に維持した。この時のペール缶外側壁16の温度は57℃であった。次に、同じ場所16の測定点を20mm*20mm剥ぎ取り温度を測定したら98℃であり、断熱材使用前後の温度差は41度であった。前記と同様に別のペール缶に耐熱性断熱材を、2mmの厚さに吹き付けた。ペール缶外側壁の温度は67℃であり、断熱材使用前後の温度差が31℃であった。このように、蒸気を使用する機器等に対して断熱材を吹き付け、放熱の削減が出来る。   In Example 2, the performance of the heat-resistant heat insulating material was measured using steam. A heat-resistant heat insulating material sample example (1) was sprayed to a thickness of about 3 mm with a spray gun on the entire 20L pail 15 shown in FIG. The pail can was covered and high-pressure steam 17 was put in, the steam was discharged from the exhaust port 18, and the inside of the can was maintained at 100 ° C. The temperature of the pail can outer wall 16 at this time was 57 ° C. Next, when the measurement temperature at the same place 16 was measured by peeling off 20 mm * 20 mm, it was 98 ° C., and the temperature difference before and after using the heat insulating material was 41 degrees. In the same manner as described above, a heat-resistant heat insulating material was sprayed to a thickness of 2 mm on another pail can. The temperature of the outer wall of the pail can was 67 ° C, and the temperature difference before and after using the heat insulating material was 31 ° C. In this way, heat insulation can be sprayed on equipment that uses steam to reduce heat dissipation.

本発明のシリコーンゴム系耐熱型断熱材は、下記の設備又は機械に利用できる。
1.洗浄水や蒸気を頻繁に使用する食品製造機械へ、吹きつけ施工できる断熱材として
2.蒸気配管や小型熱交換器などには、板状又は円筒状に成型した断熱材として
3.電気炉、加熱炉などの外壁へ、吹き付け施工できる断熱材として
4.自動車、各種試験機、冷熱設備、電化品等への、吹き付け又は成型した断熱材として
5.各種のタンクやコンクリート蓄熱槽や給排気ダクトの保温又は結露防止対策として
6.合板、アルミ板、不織布などに塗布した耐熱性断熱建材として
The silicone rubber heat-resistant insulating material of the present invention can be used for the following equipment or machine.
1. 1. Insulation material that can be sprayed onto food manufacturing machines that frequently use cleaning water and steam. As a heat insulating material molded into a plate or cylinder for steam pipes and small heat exchangers, etc. 3. As a heat insulating material that can be sprayed onto the outer wall of an electric furnace, heating furnace, etc. 4. As a heat insulating material sprayed or molded on automobiles, various testing machines, cooling equipment, electrical appliances, etc. As a measure to keep heat or prevent condensation in various tanks, concrete heat storage tanks and air supply / exhaust ducts. As heat-resistant insulation building material applied to plywood, aluminum plate, non-woven fabric, etc.

本発明の実施例1にある各種断熱材の性能を測るための、簡易断熱性能試験器の外観斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external perspective view of a simple heat insulation performance tester for measuring the performance of various heat insulating materials in Example 1 of the present invention. 本発明の実施例2の蒸気使用現場での断熱性能試験の外観斜視図である。It is an external appearance perspective view of the heat insulation performance test in the steam use field of Example 2 of the present invention.

符号の説明Explanation of symbols

11 断熱材のテスト鋼板
12 簡易断熱性能試験器
13 100W電球
14 100V電源
15 20L鋼板製ペール缶
16 外壁温度測定点
17 高圧蒸気
18 蒸気排出口
DESCRIPTION OF SYMBOLS 11 Test steel plate 12 of heat insulation material Simple heat insulation performance tester 13 100W light bulb 14 100V power supply 15 20L steel-made pail can 16 Outer wall temperature measuring point 17 High pressure steam 18 Steam outlet

Claims (1)

室温硬化性のシリコーンゴム100重量部に対して、平均粒径95〜150μmのガラスバルーンを70〜100重量部、Mg化合物、Ca化合物、シリカ化合物から選ばれた1種又は2種を2〜20重量部、硬化剤を5〜10重量部配合されてなることを特徴とする、低毒性で難燃性のシリコーンゴム系耐熱型断熱材。
70 to 100 parts by weight of a glass balloon having an average particle size of 95 to 150 μm, 2 or 20 selected from Mg compound, Ca compound and silica compound to 100 parts by weight of room temperature curable silicone rubber. A low-toxic and flame-retardant heat-resistant silicone rubber heat-insulating material, comprising 5 parts by weight and 5 parts by weight of a curing agent.
JP2007105694A 2007-04-13 2007-04-13 Low-toxic, silicone rubber-based, heat-resistant insulating material Pending JP2008260876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105694A JP2008260876A (en) 2007-04-13 2007-04-13 Low-toxic, silicone rubber-based, heat-resistant insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105694A JP2008260876A (en) 2007-04-13 2007-04-13 Low-toxic, silicone rubber-based, heat-resistant insulating material

Publications (1)

Publication Number Publication Date
JP2008260876A true JP2008260876A (en) 2008-10-30

Family

ID=39983599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105694A Pending JP2008260876A (en) 2007-04-13 2007-04-13 Low-toxic, silicone rubber-based, heat-resistant insulating material

Country Status (1)

Country Link
JP (1) JP2008260876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057250A1 (en) * 2015-09-30 2017-04-06 マツダ株式会社 Thermal insulation structure of engine combustion chamber
JP2017066996A (en) * 2015-09-30 2017-04-06 マツダ株式会社 Heat insulation structure for engine combustion chamber
CN113195616A (en) * 2018-12-19 2021-07-30 Ppg工业俄亥俄公司 Sprayable silicone polymer dispersions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057250A1 (en) * 2015-09-30 2017-04-06 マツダ株式会社 Thermal insulation structure of engine combustion chamber
JP2017066995A (en) * 2015-09-30 2017-04-06 マツダ株式会社 Heat insulation structure for engine combustion chamber
JP2017066996A (en) * 2015-09-30 2017-04-06 マツダ株式会社 Heat insulation structure for engine combustion chamber
US10260451B2 (en) 2015-09-30 2019-04-16 Mazda Motor Corporation Heat insulation structure of combustion chamber of engine
CN113195616A (en) * 2018-12-19 2021-07-30 Ppg工业俄亥俄公司 Sprayable silicone polymer dispersions
JP2022514376A (en) * 2018-12-19 2022-02-10 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Sprayable silicone polymer dispersion
US12084593B2 (en) 2018-12-19 2024-09-10 Ppg Industries Ohio, Inc. Sprayable silicone polymer dispersion

Similar Documents

Publication Publication Date Title
RU2349618C2 (en) Coating, filled with hollow microspheres, preventing ice-covering of surfaces of different objects
KR101573230B1 (en) Solvent-free epoxy fire resistive paint composition having improved gas toxicity on fire
JP4369239B2 (en) Heat resistant airgel insulating composite material and method for producing the same, airgel binder composition and method for producing the same
KR100791052B1 (en) Fireproof Paint Composition and Manufacturing Method of using thereof for Fireproof Paint
CA2928916C (en) Hot melt intumescent materials for fire protection
JP2006504543A5 (en)
ES2936275T3 (en) Curable mix to provide an intumescent coating material
ES2282877T3 (en) INTUMESCENT COATING COMPOSITIONS.
KR101431002B1 (en) Non-flammable coating composition for expanded polystyrene foam
KR101258400B1 (en) Heat-resisting and Fire-resistant Paint
KR20170078934A (en) Sealant composition for fireproofing materials and the manufacturing method thereof
RU2374281C1 (en) Anticorrosion and heat-insulating coating based on hollow microspheres
JPH0126339B2 (en)
MX2008011502A (en) Intumescent coatings.
RU2523818C1 (en) Fire-resistant thermal-protective coating and method for production thereof
JP2008260876A (en) Low-toxic, silicone rubber-based, heat-resistant insulating material
US20220259439A1 (en) Coating Composition and Method of its Application
LT6283B (en) Thermal insulation composition
WO2006038681A1 (en) Aqueous suspension composition, aqueous coating composition and coated article
CN111635686A (en) Fireproof paint for interior wall and processing method thereof
KR102355547B1 (en) Non-flammable paint composition for coating ceiling-type warmer with excellent deodorization, antibacterial, anti-condensation and adhesion properties, ans method of manufacturing the same
CN105694468A (en) Phenylene silicone putty and preparation method thereof
JP2000186238A (en) Thick film type elastic insulating coating material
KR101751000B1 (en) Composition of Moisture-preventing agent for inorganic thermal insulation materials, Inorganic thermal insulation materials improved thermal conductivity and Manufacturing method thereof
KR20230090651A (en) Method of manufacturing 1000 degree non-combustion, fire resistance functional adhesive coating agent for fire hydrant and fire safety zone