JP2006229799A - Solid-state image sensor, method of driving solid-state image sensor and imaging apparatus - Google Patents

Solid-state image sensor, method of driving solid-state image sensor and imaging apparatus Download PDF

Info

Publication number
JP2006229799A
JP2006229799A JP2005043356A JP2005043356A JP2006229799A JP 2006229799 A JP2006229799 A JP 2006229799A JP 2005043356 A JP2005043356 A JP 2005043356A JP 2005043356 A JP2005043356 A JP 2005043356A JP 2006229799 A JP2006229799 A JP 2006229799A
Authority
JP
Japan
Prior art keywords
pixel
opb
solid
signal
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005043356A
Other languages
Japanese (ja)
Other versions
JP4947908B2 (en
Inventor
Kazuhide Yokota
一秀 横田
Hisashi Kurebayashi
久 紅林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005043356A priority Critical patent/JP4947908B2/en
Publication of JP2006229799A publication Critical patent/JP2006229799A/en
Application granted granted Critical
Publication of JP4947908B2 publication Critical patent/JP4947908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image sensor capable of improving a frame rate, a method of driving the solid-state image sensor, and an imaging apparatus. <P>SOLUTION: In reading a signal from each pixel of a pixel array section 10, access is executed other than each pixel of OPB non-inquiry regions 103i, 103o and an effective non-inquiry region 101A under driving of a vertical driving circuit 20 and a horizontal driving circuit 40 to omit the reading of each of pixels of the OPB non-inquiry regions 103i, 103o and an effective non-inquiry region 101A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像素子、固体撮像素子の駆動方法および撮像装置に関し、特に光電変換素子を含む画素が行列状に2次元配置され、有効画素領域の周囲に遮光された画素が配置されてなるオプティカルブラック領域を有する固体撮像素子、当該固体撮像素子の駆動方法および当該固体撮像素子を撮像デバイスとして用いた撮像装置に関する。   The present invention relates to a solid-state imaging device, a driving method of the solid-state imaging device, and an imaging apparatus. In particular, pixels including photoelectric conversion elements are two-dimensionally arranged in a matrix and pixels that are shielded from light are arranged around an effective pixel region. The present invention relates to a solid-state imaging device having an optical black region, a driving method of the solid-state imaging device, and an imaging apparatus using the solid-state imaging device as an imaging device.

ここに、撮像装置とは、撮像デバイスとしての固体撮像素子、当該固体撮像素子の撮像面(受光面)上に被写体の像光を結像させる光学系および当該固体撮像素子の信号処理回路を含むカメラモジュールや、当該カメラモジュールを搭載したカメラシステムを言うものとする。   Here, the imaging apparatus includes a solid-state imaging device as an imaging device, an optical system that forms image light of a subject on an imaging surface (light-receiving surface) of the solid-state imaging device, and a signal processing circuit of the solid-state imaging device. A camera module or a camera system equipped with the camera module is referred to.

固体撮像素子では、図2に示す画素アレイ部10において、一般的に、黒レベルの基準を決めるために、画素の信号が実際に撮像した信号として用いられる画素、即ち有効画素(開口画素)が行列状に2次元配置されてなる有効画素領域101に対して当該有効画素領域101を取り囲むように、遮光された画素(無効画素)が配置されてなるオプティカルブラック(以下、「OPB」と略記する場合もある)領域(光学的黒領域)102を設けた構成が採られている(例えば、特許文献1参照)。   In the solid-state imaging device, in the pixel array unit 10 shown in FIG. 2, in general, in order to determine a black level reference, a pixel in which a pixel signal is used as a signal actually captured, that is, an effective pixel (aperture pixel) is used. Optical black (hereinafter abbreviated as “OPB”) in which light-shielded pixels (invalid pixels) are arranged so as to surround the effective pixel area 101 with respect to the effective pixel area 101 arranged two-dimensionally in a matrix. In some cases, a configuration in which an area (optical black area) 102 is provided (see, for example, Patent Document 1).

OPB領域102のうち、有効画素領域101の境界(内縁部)付近や最外周付近、即ちOPB領域102の内外の周縁部に位置する画素では、有効画素領域101あるいは素子チップの外部からの光の漏れ込みがあり、これら画素の信号レベルを黒レベルの基準として使うことができないために、有効画素領域101の境界付近や外縁部付近に位置する画素の領域については、OPB不問領域103(103i,103o)として、実際の画像処理には使用しないようにしている。   In the OPB region 102, in pixels located near the boundary (inner edge) or the outermost periphery of the effective pixel region 101, that is, at the inner and outer peripheral portions of the OPB region 102, light from the outside of the effective pixel region 101 or the element chip is transmitted. Since there is leakage and the signal level of these pixels cannot be used as a reference for the black level, the OPB unquestioned area 103 (103i, 103i, 103o), it is not used for actual image processing.

また、OPB不問領域103に接する有効画素領域101の外縁部の領域は、遮光されたOPB画素構造と開口された有効画素構造とが不連続に切り替わるために有効画素としての特性が安定せず、やはり画像処理には使用しないことが多い。   In addition, the area of the outer edge portion of the effective pixel area 101 that is in contact with the OPB unquestionable area 103 is not stable in characteristics as an effective pixel because the shielded OPB pixel structure and the opened effective pixel structure are discontinuously switched. Of course, it is often not used for image processing.

このように、有効不問領域101Aを含む有効画素領域101の周囲に、OPB不問領域103を含むOPB領域102が配置されてなる画素アレイ部10から、各画素の信号を行単位で読み出した際の信号出力のイメージを図5に示す。   As described above, when the signal of each pixel is read out in a row unit from the pixel array unit 10 in which the OPB area 102 including the OPB unquestion area 103 is arranged around the effective pixel area 101 including the effective unquestion area 101A. An image of signal output is shown in FIG.

行ごとに全ての画素の信号を読み出すには、先ず、有効画素領域101の下側の外縁のOPB不問領域103oにおける第1行目のOPB不問行の1H信号505が出力され、行が進むと、OPB領域102におけるOPB行の1H信号506が出力され、行が進むと、内縁のOPB不問領域103iのOPB不問行の1H信号505が出力され、さらに行が進むと、有効不問領域101Aの垂直の1H信号507が出力され、そして有効画素領域101における有効行の1H信号508が出力され、さらに進むに従い内縁のOPB不問行の1H信号505、OPB行の1H信号506、外縁のOPB不問行の1H信号505が出力される。   In order to read out the signals of all the pixels for each row, first, the 1H signal 505 of the OPB unquestioned row of the first row in the OPB unquestioned region 103o on the lower edge of the effective pixel region 101 is output, and the row advances. The OPB row 1H signal 506 in the OPB area 102 is output. When the line advances, the OPB unquestioned line 1H signal 505 in the inner OPB unquestion area 103i is output. The 1H signal 507 of the effective row in the effective pixel region 101 is output, and the 1H signal 505 of the OPB unrelated row at the inner edge, the 1H signal 506 of the OPB row, and the OPB unrelated row of the outer edge as the processing proceeds further. A 1H signal 505 is output.

有効行信号508は、水平OPB不問画素信号501、水平OPB画素信号502、水平OPB不問画素信号501、水平有効不問画素信号503、有効画素信号504、水平有効不問画素信号503、水平OPB不問画素信号501、水平OPB画素信号502、水平OPB不問画素信号501によって構成される。   The valid row signal 508 includes a horizontal OPB unquestioned pixel signal 501, a horizontal OPB pixel signal 502, a horizontal OPB unquestioned pixel signal 501, a horizontal valid unquestioned pixel signal 503, an effective pixel signal 504, a horizontal valid unquestioned pixel signal 503, and a horizontal OPB uncleared pixel signal. 501, a horizontal OPB pixel signal 502, and a horizontal OPB unrelated pixel signal 501.

このように、画素アレイ部10の各画素に対して、行ごとに左から右へ、また下の行から上の行へ、順次読み出してゆくのが一般的であるために、画像処理には使用しない有効不問画素領域101AおよびOPB不問領域103の各画素に対しても行単位で順にアクセスが行われ、有効不問画素信号101AやOPB不問画素信号501も出力されるようになっていた。   As described above, since it is common to sequentially read out each pixel of the pixel array unit 10 from the left to the right and from the lower row to the upper row for each row, the image processing includes The pixels in the valid unquestioned pixel area 101A and the OPB unquestioned area 103 that are not used are also accessed sequentially in units of rows, and the valid unquestioned pixel signal 101A and the OPB unquestioned pixel signal 501 are also output.

特開2003−000000号公報JP 2003-000000 A

上述したように、画像処理に使用しないOPB不問領域103の画素の信号も含めて、全画素に対して順次アクセスして各画素の信号を出力する構成を採る固体撮像素子では、全画素の信号を全て読み出さなければ1フレームを構成できないために、1フレーム期間の中に有効不問領域101AやOPB不問領域103の画素を読み出す無駄な期間が存在することになり、当該無駄な期間が固体撮像素子のフレームレートの向上を図る上で障害となっていた。   As described above, in a solid-state imaging device that is configured to sequentially access all pixels including the signals of pixels in the OPB unquestioned region 103 that are not used for image processing, the signals of all pixels are output. Since one frame cannot be formed unless all of the pixels are read out, there is a useless period for reading out the pixels of the valid unquestioned area 101A and the OPB unquestioned area 103 in one frame period. It was an obstacle to improve the frame rate.

本発明は、上記課題に鑑みてなされたものであって、その目的とするところは、フレームレートの向上を可能とした固体撮像素子、固体撮像素子の駆動方法および撮像装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid-state imaging device, a driving method of the solid-state imaging device, and an imaging apparatus capable of improving the frame rate. .

上記目的を達成するために、本発明では、光電変換素子を含む画素が行列状に2次元配置され、有効画素領域の周囲に遮光された画素が配置されてなるOPB領域を有する画素アレイ部を有する固体撮像素子において、前記画素アレイ部の各画素から信号を読み出す際に、前記OPB領域の周縁部に位置する画素領域と有効画素領域の周縁部それ以外の画素に対してアクセスを行って各画素から信号を読み出す構成を採っている。また、この固体撮像素子は、カメラシステムあるいはカメラモジュール等の撮像装置に、その撮像デバイスとして搭載されて用いられる。   In order to achieve the above object, according to the present invention, a pixel array unit having an OPB area in which pixels including photoelectric conversion elements are two-dimensionally arranged in a matrix and light-shielded pixels are arranged around an effective pixel area. When reading a signal from each pixel of the pixel array unit in the solid-state imaging device, the pixel region located at the peripheral portion of the OPB region and the peripheral portion of the effective pixel region are accessed to the other pixels. A configuration for reading a signal from a pixel is adopted. In addition, the solid-state imaging device is used as an imaging device mounted on an imaging apparatus such as a camera system or a camera module.

上記構成の固体撮像素子または当該固体撮像素子を撮像デバイスとして用いた撮像装置において、画素アレイ部の各画素から信号を読み出す際に、OPB領域の周縁部に位置する画素領域と有効画素領域の周縁部それ以外の画素、即ち画像処理には使用しないOPB不問領域と有効不問領域の各画素を除いてアクセスを行うことで(OPB不問領域および有効不問領域の各画素を読み飛ばすことで)、1フレーム期間の中にOPB不問領域と有効不問領域の画素を読み出す無駄な期間が存在しなくなる。したがって、この無駄な期間を1フレーム期間から排除できる分だけ1フレーム期間の時間を短縮でき、当該1フレーム期間の時間で決まる固体撮像素子のフレームレートを上げることができる。   In the imaging device using the solid-state imaging device having the above-described configuration or the solid-state imaging device as an imaging device, when reading a signal from each pixel of the pixel array unit, the pixel region located at the periphery of the OPB region and the periphery of the effective pixel region By accessing except the other pixels, that is, the pixels of the OPB unquestionable area and the effective unquestionable area not used for image processing (by skipping the pixels of the OPB unquestionable area and the effective unquestionable area), 1 There is no useless period for reading pixels in the OPB unquestioned area and the effective unquestioned area in the frame period. Therefore, the time of one frame period can be shortened by the amount that can eliminate this useless period from one frame period, and the frame rate of the solid-state imaging device determined by the time of the one frame period can be increased.

本発明によれば、OPB不問領域と有効不問領域の各画素を読み飛ばすことで、1フレーム期間の時間を短縮できるため、その分だけ固体撮像素子のフレームレートを向上できる。   According to the present invention, by skipping each pixel in the OPB unquestionable area and the effective unquestionable area, the time for one frame period can be shortened, and the frame rate of the solid-state imaging device can be improved accordingly.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係る線順次型固体撮像素子、例えばCMOS固体撮像素子の構成の概略を示すブロック図である。   FIG. 1 is a block diagram showing an outline of the configuration of a line-sequential solid-state image sensor, for example, a CMOS solid-state image sensor according to an embodiment of the present invention.

図1に示すように、本実施形態に係るCMOS固体撮像素子は、光電変換素子(図示せず)を含む画素1が行列状に2次元配置されてなる画素アレイ部10、当該画素アレイ部10の例えば一方側に配置された垂直駆動回路20、カラム信号処理回路部30および水平駆動回路40を有する構成となっている。   As shown in FIG. 1, the CMOS solid-state imaging device according to this embodiment includes a pixel array unit 10 in which pixels 1 including photoelectric conversion elements (not shown) are two-dimensionally arranged in a matrix, and the pixel array unit 10. For example, the vertical drive circuit 20, the column signal processing circuit unit 30, and the horizontal drive circuit 40 are arranged on one side.

なお、ここでは、垂直駆動回路20を画素アレイ部10の一方側にのみ配置するとしたが、画素アレイ部10の両側に配置する構成を採ることも可能である。   Here, the vertical drive circuit 20 is disposed only on one side of the pixel array unit 10, but a configuration in which the vertical drive circuit 20 is disposed on both sides of the pixel array unit 10 may be employed.

画素アレイ部10には、行列状の画素配列に対して、列ごとに垂直信号線11が配線され、行ごとに駆動線12が配線されている。ここでは、説明の都合上、駆動線12を1本のみ図示しているが、実際には、駆動線12として、画素1の構成に対応して、例えば画素1の選択駆動に用いる選択線、画素1の光電変換素子で光電変換された信号電荷のフローティングディフュージョン部への転送駆動に用いる転送線、フローティングディフュージョン部のリセット駆動に用いるリセット線などがある。   In the pixel array unit 10, a vertical signal line 11 is wired for each column and a drive line 12 is wired for each row with respect to the matrix-like pixel arrangement. Here, for convenience of explanation, only one drive line 12 is shown, but actually, as the drive line 12, for example, a selection line used for selective driving of the pixel 1 corresponding to the configuration of the pixel 1, There are a transfer line used for driving to transfer the signal charge photoelectrically converted by the photoelectric conversion element of the pixel 1 to the floating diffusion portion, a reset line used for reset driving the floating diffusion portion, and the like.

画素アレイ部10は、図2に示すように、画素の信号が実際に撮像した信号として用いられる有効画素(開口画素)が行列状に2次元配置されてなる有効画素領域101と、黒レベルの基準を決めるために、当該有効画素領域101を取り囲むように、遮光された画素(無効画素)が配置されてなるOPB領域102(光学的黒領域)とを有する構成となっている。   As shown in FIG. 2, the pixel array unit 10 includes an effective pixel region 101 in which effective pixels (opening pixels) used as signals obtained by actually capturing pixel signals are two-dimensionally arranged in a matrix, and a black level In order to determine a reference, an OPB area 102 (optical black area) in which light-shielded pixels (invalid pixels) are arranged so as to surround the effective pixel area 101 is provided.

OPB領域102のうち、有効画素領域101の境界(内縁部)付近や最外周付近、即ちOPB領域102の内外の周縁部に位置する画素では、有効画素領域101あるいは素子チップの外部からの光の漏れ込みがあり、これら画素の信号レベルを黒レベルの基準として使うことができないために、有効画素領域101の境界付近や外縁部付近に位置する画素の領域は、実際の画像処理には使用されないOPB不問領域103(103i,103o)となっている。また、有効画素領域101の周縁部も、実際の画像処理には使用されない有効不問領域101Aとなることが多い。   In the OPB region 102, in pixels located near the boundary (inner edge) or the outermost periphery of the effective pixel region 101, that is, at the inner and outer peripheral portions of the OPB region 102, light from the outside of the effective pixel region 101 or the element chip is transmitted. Since there are leaks and the signal level of these pixels cannot be used as a reference for the black level, the pixel region located near the boundary of the effective pixel region 101 or near the outer edge is not used for actual image processing. It is an OPB unquestionable area 103 (103i, 103o). Further, the peripheral portion of the effective pixel region 101 is often an effective unquestioned region 101A that is not used for actual image processing.

なお、図1では、図面の簡略化のために、OPB不問領域103i,103oのうち、内縁側のOPB不問領域103iのみを示している。また、OPB領域102およびOPB不問領域103iとして、有効画素領域101の上下共に1行ずつの画素行を、有効画素領域101の左右共に1列ずつの画素列をそれぞれ示している。   In FIG. 1, only the OPB unquestioned area 103 i on the inner edge side of the OPB unquestioned areas 103 i and 103 o is shown for simplification of the drawing. In addition, as the OPB region 102 and the OPB unquestioned region 103i, one pixel row is shown on each of the upper and lower sides of the effective pixel region 101, and one pixel column is shown on each of the left and right sides of the effective pixel region 101.

再び図1において、垂直駆動回路20は、垂直選択回路21、パルス線22、論理積回路群23、バッファ回路群24および固定電圧供給回路25を有する構成となっている。   In FIG. 1 again, the vertical drive circuit 20 includes a vertical selection circuit 21, a pulse line 22, a logical product circuit group 23, a buffer circuit group 24, and a fixed voltage supply circuit 25.

垂直選択回路21は、例えば、画素アレイ部10の行数(垂直画素数)に対応する段数のシフト段(転送段)が縦続接続されてなるシフトレジスタによって構成され、走査パルスを順次出力することによって画素アレイ部10の各行を順に選択走査する。ただし、垂直選択回路21は、OPB不問領域103と有効不問領域101Aの各行に対してはアクセスを行わないように、OPB不問領域103の各行に対応するシフト段を持たずに、あるいはシフト段は存在するがスキップするような構成にして、当該各行を飛ばして選択走査を行う構成となっている。   For example, the vertical selection circuit 21 is configured by a shift register in which shift stages (transfer stages) corresponding to the number of rows (vertical pixels) of the pixel array unit 10 are connected in cascade, and sequentially outputs scanning pulses. Thus, each row of the pixel array unit 10 is selectively scanned in order. However, the vertical selection circuit 21 does not have access to the rows of the OPB unquestionable area 103 and the effective unquestionable area 101A so that it does not have a shift stage corresponding to each row of the OPB unquestionable area 103, or The configuration is such that it exists but skips, and the selected scanning is performed by skipping each row.

なお、ここでは、垂直選択回路21をシフトレジスタによって構成した場合を例に挙げたが、垂直選択回路21をデコーダによって構成することも可能である。デコーダを用いて垂直選択回路21を構成する場合は、OPB不問領域103と有効不問領域101Aの各行を選択しないようにコントロール回路を組めば良い。   Here, the case where the vertical selection circuit 21 is configured by a shift register has been described as an example, but the vertical selection circuit 21 can also be configured by a decoder. When the vertical selection circuit 21 is configured using a decoder, a control circuit may be assembled so as not to select each row of the OPB unquestionable area 103 and the valid unquestionable area 101A.

パルス線22は、駆動線12を駆動するパルス(以下、「駆動パルス」と記す)を伝送する。論理積回路群23の各論理積回路は、垂直選択回路21によって選択された行に対して、パルス線22を介して入力される駆動パルスを供給する。バッファ回路群24の各バッファ回路は、論理積回路群23の各論理積回路から出力される駆動パルスにより、垂直選択回路21によって選択された行の駆動線12を駆動する。   The pulse line 22 transmits a pulse for driving the drive line 12 (hereinafter referred to as “drive pulse”). Each AND circuit in the AND circuit group 23 supplies a driving pulse input via the pulse line 22 to the row selected by the vertical selection circuit 21. Each buffer circuit of the buffer circuit group 24 drives the drive line 12 of the row selected by the vertical selection circuit 21 by a drive pulse output from each AND circuit of the AND circuit group 23.

固定電圧供給回路25は、OPB不問領域103の各行の画素に対して所定の固定電圧を供給し、当該画素をリセット状態に保つ手段を構成しており、OPB不問領域103の各行の画素をリセット状態に保つことで、OPB不問領域103の各行の画素で発生する電荷、即ち暗電流電荷を例えば画素1の電源に捨てる。   The fixed voltage supply circuit 25 constitutes means for supplying a predetermined fixed voltage to the pixels in each row of the OPB unquestioned area 103 and keeping the pixels in a reset state, and resets the pixels in each row of the OPB unquestioned area 103. By maintaining the state, the charge generated in the pixels in each row of the OPB unquestioned region 103, that is, the dark current charge, is discarded, for example, to the power source of the pixel 1.

一例として、光電変換素子の電荷をフローティングディフュージョン部に転送する電荷転送トランジスタと、当該フローティングディフュージョン部の電位を電源電位にリセットするとリセットトランジスタとを含む画素において、電荷転送トランジスタおよびリセットトランジスタの各ゲート電極に、固定電圧供給回路25から固定電圧を供給してこれらトランジスタをオン状態に保つことで、光電変換素子で発生した暗電流電荷を光電変換素子からフローティングディフュージョン部へ転送し、さらにフローティングディフュージョン部から画素の電源へ捨てる(リセットする)ようにする。   As an example, in a pixel including a charge transfer transistor that transfers a charge of a photoelectric conversion element to a floating diffusion portion and a reset transistor when the potential of the floating diffusion portion is reset to a power supply potential, each gate electrode of the charge transfer transistor and the reset transistor In addition, by supplying a fixed voltage from the fixed voltage supply circuit 25 to keep these transistors in an on state, dark current charges generated in the photoelectric conversion element are transferred from the photoelectric conversion element to the floating diffusion portion, and further from the floating diffusion portion. Discard (reset) the pixel power.

カラム信号処理回路部30は、垂直信号線11の各々の出力端に各入力端が接続された水平画素数分のカラム信号処理回路31によって構成されている。カラム信号処理回路31は、例えばS/H(サンプルホールド)回路およびCDS(Correlated Double Sampling;相関二重サンプリング)回路等によって構成されている。カラム信号処理回路41としては、A(アナログ)/D(デジタル)変換回路を含む回路構成のものを用いることも可能である。   The column signal processing circuit unit 30 includes column signal processing circuits 31 corresponding to the number of horizontal pixels, each input terminal being connected to each output terminal of the vertical signal line 11. The column signal processing circuit 31 includes, for example, an S / H (sample hold) circuit and a CDS (Correlated Double Sampling) circuit. As the column signal processing circuit 41, a circuit configuration including an A (analog) / D (digital) conversion circuit may be used.

水平駆動回路40は、水平信号線41と、カラム信号処理回路41の各出力端と水平信号線41との間に接続された水平選択スイッチ群42と、水平選択回路43とを有する構成となっている。   The horizontal drive circuit 40 includes a horizontal signal line 41, a horizontal selection switch group 42 connected between each output terminal of the column signal processing circuit 41 and the horizontal signal line 41, and a horizontal selection circuit 43. ing.

水平選択回路43は、シフトレジスタなどによって構成されており、水平選択スイッチ群42の各スイッチを順次選択駆動する。ただし、水平選択回路43は、OPB不問領域103と有効不問領域101Aの各列に対してはアクセスを行わないように、OPB不問領域103の各列に対応するシフト段を持たずに、あるいはシフト段は存在するがスキップするような構成にして、当該各列を飛ばして選択走査を行う構成となっている。   The horizontal selection circuit 43 includes a shift register and the like, and sequentially selects and drives each switch of the horizontal selection switch group 42. However, the horizontal selection circuit 43 does not have a shift stage corresponding to each column of the OPB unquestion area 103 or shifts so as not to access each column of the OPB unquestion area 103 and the valid unquestion area 101A. Although there are stages, the configuration is such that skipping is performed, and each column is skipped to perform selective scanning.

なお、ここでは、水平選択回路43をシフトレジスタによって構成した場合を例に挙げたが、水平選択回路43をデコーダによって構成することも可能である。デコーダを用いて水平選択回路43を構成する場合は、OPB不問領域103と有効不問領域101Aの各列を選択しないようにコントロール回路を組めば良い。   Here, the case where the horizontal selection circuit 43 is configured by a shift register is described as an example, but the horizontal selection circuit 43 can also be configured by a decoder. When the horizontal selection circuit 43 is configured using a decoder, a control circuit may be assembled so as not to select each column of the OPB unquestionable area 103 and the valid unquestionable area 101A.

水平選択スイッチ群42の各スイッチは、水平選択回路43による選択駆動により、カラム信号処理回路31から列ごとに出力される画素1の信号を順次水平信号線41を通して外部へ出力する。   Each switch of the horizontal selection switch group 42 sequentially outputs the signal of the pixel 1 output from the column signal processing circuit 31 for each column to the outside through the horizontal signal line 41 by the selection driving by the horizontal selection circuit 43.

続いて、上記構成の本実施形態に係るCMOS固体撮像素子の回路動作について説明する。ここでは、画素アレイ部10の各画素1に対して、行ごとに左から右へ、また下の行から上の行へ、順次画素1の信号を読み出してゆくものとする。   Subsequently, the circuit operation of the CMOS solid-state imaging device according to this embodiment having the above-described configuration will be described. Here, for each pixel 1 of the pixel array unit 10, the signal of the pixel 1 is sequentially read out from the left to the right for each row and from the lower row to the upper row.

垂直駆動回路20の垂直選択回路21による垂直方向(図の下から上へ)の選択走査により、有効画素領域101の下側の外縁のOPB不問領域103o(図1では省略)を飛び越して、先ず下側のOPB領域102の各行に対して順にアクセスが行われ、次いで内縁のOPB不問領域103iと有効不問領域101Aを飛び越して、有効画素領域101の各行に対して順にアクセスが行われる。   By the selective scanning in the vertical direction (from the bottom to the top) by the vertical selection circuit 21 of the vertical drive circuit 20, the OPB unquestioned region 103o (not shown in FIG. 1) on the lower outer edge of the effective pixel region 101 is skipped. Each row in the lower OPB area 102 is accessed sequentially, and then the rows in the effective pixel area 101 are accessed in turn, jumping over the inner OPB unquestioned area 103i and the valid unquestioned area 101A.

次いで、有効画素領域101の上側の有効不問領域101Aと内縁のOPB不問領域103iを飛び越して、上側のOPB領域102の各行に対して順にアクセスが行われ、次いで外縁のOPB不問領域103o(図1では省略)を飛び越すことにより、1フィールドにおける垂直走査が完了する。すなわち、各フィールドにおける垂直走査では、OPB不問領域103i,103oの各行と有効不問領域101Aの各行の画素を除いてアクセスが行われることで、OPB不問領域103i,103oおよび有効不問領域101Aの各画素の信号は読み飛ばされる。   Next, each row of the upper OPB area 102 is accessed in order by jumping over the upper unquestionable area 101A and the inner OPB unquestion area 103i of the effective pixel area 101, and then the outer OPB unquestion area 103o (FIG. 1). The vertical scanning in one field is completed. That is, in the vertical scanning in each field, access is performed except for the pixels in each row in the OPB unquestioned areas 103i and 103o and each row in the valid unquestioned area 101A, so that each pixel in the OPB unquestioned areas 103i and 103o and the valid unquestioned area 101A. This signal is skipped.

ここで、OPB不問領域103i,103oおよび有効不問領域101の各行に対してアクセスが行われず、常に選択が行われない画素では暗電流電荷が溜まり、その暗電流電荷が隣接画素に溢れ出すことで、画像信号を汚すことが懸念される。その対策として、本実施形態に係るCMOS固体撮像素子では、垂直駆動回路20に固定電圧供給回路25を設け、当該固定電圧供給回路25によってOPB不問領域103i,103oの各画素に対して固定電圧を与えるようにしている。   Here, the dark current charges are accumulated in the pixels where the OPB unquestioned areas 103i and 103o and the valid unquestioned area 101 are not accessed and are not always selected, and the dark current charges overflow to adjacent pixels. There is concern about dirtying the image signal. As a countermeasure, in the CMOS solid-state imaging device according to the present embodiment, the fixed voltage supply circuit 25 is provided in the vertical drive circuit 20, and the fixed voltage supply circuit 25 applies a fixed voltage to each pixel in the OPB unrelated regions 103i and 103o. To give.

一例として、先述したように、電荷転送トランジスタおよびリセットトランジスタを含む画素において、電荷転送トランジスタおよびリセットトランジスタの各ゲート電極に、固定電圧供給回路25から固定電圧を与えることで、これらトランジスタをオン状態に保ち、光電変換素子で発生した電荷を光電変換素子からフローティングディフュージョン部へ転送し、さらにフローティングディフュージョン部から画素の電源へ転送(リセット)するようにしている。   As an example, as described above, in a pixel including a charge transfer transistor and a reset transistor, by applying a fixed voltage from the fixed voltage supply circuit 25 to each gate electrode of the charge transfer transistor and the reset transistor, the transistors are turned on. The charge generated in the photoelectric conversion element is transferred from the photoelectric conversion element to the floating diffusion portion, and further transferred (reset) from the floating diffusion portion to the power source of the pixel.

これにより、OPB不問領域103i,103oと有効不問領域101Aの各行の画素、即ち常にアクセスされない行の画素でも、常にクリア(リセット)状態にあることにより、これら画素で暗電流電荷が発生したとしても、当該暗電流電荷が電源に捨てられ、溜まることはないため、暗電流電荷の漏れ出しによる隣接画素への悪影響を回避できる。   As a result, even if pixels in each row of the OPB unquestioned regions 103i and 103o and the valid unquestioned region 101A, that is, pixels in a row that is not always accessed, are always in a clear (reset) state, even if dark current charges are generated in these pixels. Since the dark current charge is discarded by the power source and does not accumulate, adverse effects on adjacent pixels due to leakage of the dark current charge can be avoided.

一方、垂直選択回路21による垂直方向の選択走査によって選択された行ごとに、水平駆動回路40の水平選択回路43による水平方向(図の左から右へ)の選択走査により、有効画素領域101の左側の外縁のOPB不問領域103oを飛び越して、先ず左側のOPB領域102の各列に対して順にアクセスが行われ、次いで内縁のOPB不問領域103iと有効不問領域101Aを飛び越して、有効画素領域101の各列に対して順にアクセスが行われる。   On the other hand, for each row selected by the vertical selection scan by the vertical selection circuit 21, the effective pixel region 101 is scanned by the horizontal selection circuit 43 of the horizontal drive circuit 40 in the horizontal direction (from left to right in the figure). The OPB unquestioned area 103o on the left outer edge is skipped, and each column of the left OPB area 102 is first accessed in order, and then the innermost OPB unquestionable area 103i and the effective unquestionable area 101A are jumped to the effective pixel area 101. Each column is accessed sequentially.

次に、有効画素領域101の右側の有効不問領域101AとOPB不問領域103iを飛び越して、右側のOPB領域102の各列に対して順にアクセスが行われ、次いでOPB不問領域103oを飛び越す。すなわち、各行ごとの水平走査では、OPB不問領域103i,103oの各列の画素を除いてアクセスが行われることで、OPB不問領域103i,103oの各画素の信号は読み飛ばされる。   Next, the valid unquestioned area 101A on the right side of the valid pixel area 101 and the OPB unquestioned area 103i are skipped, and each column of the OPB area 102 on the right side is accessed in order, and then the OPB unquestioned area 103o is jumped. That is, in the horizontal scanning for each row, access is performed except for the pixels in each column of the OPB unquestioned areas 103i and 103o, so that the signals of the pixels in the OPB unquestioned areas 103i and 103o are skipped.

この水平走査において、OPB不問領域103i,103oと有効不問領域101Aの各画素が読み飛ばされても、行単位でアクセスが行われる垂直走査の動作シーケンスの中で、暗電流電圧の光電変換素子からフローティングディフュージョン部への転送、そしてフローティングディフュージョン部から電源へのリセットが行われるために、アクセスされない列の画素でも、暗電流電荷の漏れ出しによる隣接画素への悪影響は起こらない。   In this horizontal scanning, even if each pixel in the OPB unquestioned areas 103i and 103o and the effective unquestioned area 101A is skipped, the dark current voltage photoelectric conversion element is used in the vertical scanning operation sequence in which access is performed in units of rows. Since the transfer to the floating diffusion portion and the reset from the floating diffusion portion to the power source are performed, even the pixels in the column that are not accessed do not adversely affect the adjacent pixels due to the leakage of dark current charges.

このようにして、垂直駆動回路20および水平駆動回路40による駆動により、OPB不問領域103i,103oおよび有効不問領域101Aの各画素に対してアクセスすることなく、それ以外の領域の画素、即ち有効不問領域101Aを除く有効画素領域101の各画素およびOPB不問領域103i,103oを除くOPB領域102の各画素の信号を順次読み出すことができる。   In this way, the pixels in the other regions, that is, the effective unrequired pixels, are accessed by the vertical drive circuit 20 and the horizontal drive circuit 40 without accessing the pixels in the OPB unrequired regions 103i, 103o and the effective unrequired region 101A. The signals of the pixels in the effective pixel area 101 excluding the area 101A and the pixels in the OPB area 102 excluding the OPB unquestioned areas 103i and 103o can be sequentially read.

図3に、本実施形態に係るCMOS固体撮像素子において、画素アレイ部10から各画素の信号を行単位で読み出した際の信号出力のイメージを示す。   FIG. 3 shows an image of signal output when the signal of each pixel is read from the pixel array unit 10 in units of rows in the CMOS solid-state imaging device according to the present embodiment.

行ごとの走査において、物理的には外縁のOPB不問領域103oの行が配置されているが、当該OPB不問領域103oの各行は読み飛ばすので、先ずOPB領域102のOPB行信号303が出力される。行が進むと、物理的には内縁のOPB不問領域103iの行と有効不問領域101Aの行が配置されているが、当該OPB不問領域103iの各行と有効不問領域101Aの各行は読み飛ばすので、次に有効画素領域101の有効行信号404が出力される。   In the scanning for each row, the rows of the OPB unrelated area 103o at the outer edge are physically arranged, but each row of the OPB unquestioned area 103o is skipped, so the OPB row signal 303 of the OPB area 102 is output first. . As the line advances, physically, the row of the OPB unquestioned area 103i and the line of the valid unquestioned area 101A on the inner edge are arranged, but each line of the OPB unquestioned area 103i and each line of the valid unquestioned area 101A are skipped. Next, an effective row signal 404 for the effective pixel region 101 is output.

有効画素領域101の行へのアクセスが終わると、物理的には有効不問領域101Aと内縁のOPB不問領域103iが配置されているが、ここも読み飛ばす。そして、OPB領域102のOPB行信号303が出力される。行が進むと、物理的には外縁のOPB不問領域103oの行が配置されているが、ここも読み飛ばす。結果的に、図3に示すような垂直期間信号のイメージとなる。また、有効行信号304は、OPB不問列と有効不問列と有効列の後ろのOPB列を読み飛ばすために、OPB行信号303に続く有効行信号304によって構成される。   When the access to the row of the effective pixel area 101 is finished, the effective unquestionable area 101A and the OPB unquestionable area 103i on the inner edge are physically arranged, but this is also skipped. Then, the OPB row signal 303 of the OPB area 102 is output. As the line advances, the line of the OPB unquestioned area 103o at the outer edge is physically arranged, but this is also skipped. As a result, an image of a vertical period signal as shown in FIG. 3 is obtained. The valid row signal 304 is constituted by the valid row signal 304 following the OPB row signal 303 in order to skip the OPB unquestioned column, the valid unquestioned column, and the OPB column after the valid column.

このように、画像処理に不必要なOPB不問領域103i,103oおよび有効不問領域101Aの各画素の信号を読み飛ばすことで、OPB不問領域103i,103oおよび有効不問領域101Aの各画素の信号を読み出す無駄な期間が存在しなくなり、その分だけ1行を構成する信号および1フレームを構成する信号が短くなるために、CMOS固体撮像素子のフレームレートが上昇することになる。   In this way, by skipping the signals of the pixels in the OPB unquestioned areas 103i and 103o and the effective unquestioned area 101A that are unnecessary for image processing, the signals of the pixels in the OPB unquestioned areas 103i and 103o and the valid unquestioned area 101A are read out. Since there is no useless period and the signal constituting one row and the signal constituting one frame are shortened by that amount, the frame rate of the CMOS solid-state imaging device is increased.

また、OPB不問領域103i,103oと有効不問領域101Aのサイズを大きくとっても、その部分については画素信号の読み出しが行われないためにフレームレートは変わらず、したがって、有効画素領域101からOPB領域102の各画素への光の漏れ込みが実質問題にならないレベルに低減可能な構造を容易に実現できるため、OPB領域102の各画素の信号レベルを黒レベルの基準として用いての安定した信号処理を行うことができることになる。   Further, even if the sizes of the OPB unquestioned areas 103i and 103o and the effective unquestioned area 101A are increased, the frame rate does not change because the pixel signal is not read out from that size, and therefore the effective pixel area 101 to the OPB area 102 are not changed. Since a structure capable of reducing light leakage to each pixel to a level that does not cause a substantial problem can be easily realized, stable signal processing is performed using the signal level of each pixel in the OPB region 102 as a black level reference. Will be able to.

なお、上記実施形態では、CMOS固体撮像素子に適用した場合を例に挙げて説明したが、この適用例に限られるものではなく、CMOS固体撮像素子以外のX−Yアドレス型固体撮像素子全般に適用可能である。また、X−Yアドレス型固体撮像素子に限らず、CCD(Charge Coupled Device)固体撮像素子に代表される電荷転送型固体撮像素子にも適用可能である。   In the above-described embodiment, the case where the present invention is applied to a CMOS solid-state image sensor has been described as an example. However, the present invention is not limited to this application example, and is applicable to XY address type solid-state image sensors other than CMOS solid-state image sensors. Applicable. Further, the present invention is not limited to an XY address type solid-state image pickup device, but is applicable to a charge transfer type solid-state image pickup device represented by a CCD (Charge Coupled Device) solid-state image pickup device.

CCD固体撮像素子に代表される電荷転送型固体撮像素子に適用する場合には、画素アレイ部の一方側に配される水平電荷転送部に隣接して電荷排出部を設けるとともに、当該電荷排出部と水平電荷転送部との間にゲート部を配置し、OPB不問領域103i,103oでの画素アレイ部から水平電荷転送部への行単位での信号電荷の転送の際に、その転送された1行分の電荷を、ゲート部を介して電荷排出部に捨てるようにすることで、1フレームを構成する信号を短くすることができる。   When applied to a charge transfer type solid-state image pickup device represented by a CCD solid-state image pickup device, a charge discharge portion is provided adjacent to a horizontal charge transfer portion arranged on one side of the pixel array portion, and the charge discharge portion 1 and the horizontal charge transfer unit, a gate unit is disposed, and when the signal charge is transferred in units of rows from the pixel array unit to the horizontal charge transfer unit in the OPB unquestioned regions 103i and 103o, the transferred 1 By discarding the charge for the row to the charge discharging portion via the gate portion, the signal constituting one frame can be shortened.

ただし、有効画素領域101の両側のOPB不問領域103i,103oについては、たとえその部分の電荷については電荷排出部に選択的に捨てることができたとしても、水平電荷転送部ではそれに対応した部分についても水平転送動作を行うことになるため、1行を構成する信号を短縮することは不可能である。   However, regarding the OPB unquestioned regions 103i and 103o on both sides of the effective pixel region 101, even if the charge of the portion can be selectively discarded to the charge discharging portion, the horizontal charge transfer portion has a portion corresponding thereto. Since a horizontal transfer operation is also performed, it is impossible to shorten a signal constituting one row.

[適用例]
以上説明した実施形態に係るCMOS固体撮像素子は、デジタルスチルカメラやビデオカメラ等の撮像装置(カメラモジュール)において、その撮像デバイスとして用いて好適なものである。
[Application example]
The CMOS solid-state imaging device according to the embodiment described above is suitable for use as an imaging device in an imaging apparatus (camera module) such as a digital still camera or a video camera.

図4は、本発明に係る撮像装置の構成の一例を示すブロック図である。図4に示すように、本例に係る撮像装置は、光学系の一部であるレンズ41、撮像デバイス42、信号処理回路43およびコントローラ44によって構成されている。   FIG. 4 is a block diagram showing an example of the configuration of the imaging apparatus according to the present invention. As shown in FIG. 4, the imaging apparatus according to this example includes a lens 41, an imaging device 42, a signal processing circuit 43, and a controller 44, which are part of an optical system.

レンズ41は被写体からの像光を撮像デバイス42の撮像面に結像する。撮像デバイス42は、レンズ41によって撮像面に結像された像光を画素単位で電気信号に変換して得られる画像信号を出力する。この撮像デバイス42として、先述した実施形態に係るCMOS固体撮像素子が用いられる。   The lens 41 forms image light from the subject on the imaging surface of the imaging device 42. The imaging device 42 outputs an image signal obtained by converting the image light imaged on the imaging surface by the lens 41 into an electrical signal in units of pixels. As the imaging device 42, the CMOS solid-state imaging device according to the above-described embodiment is used.

信号処理回路43は、撮像デバイス42から出力される画像信号の信号レベルを増幅するアンプ等を有し、当該画像信号に対して種々の信号処理を行う。コントローラ44は、ユーザによって設定される各動作モードに対応して撮像デバイス42や信号処理回路43の制御を行う。   The signal processing circuit 43 includes an amplifier that amplifies the signal level of the image signal output from the imaging device 42, and performs various signal processing on the image signal. The controller 44 controls the imaging device 42 and the signal processing circuit 43 in accordance with each operation mode set by the user.

上述したように、デジタルスチルカメラやビデオカメラ等の撮像装置において、その撮像デバイス42として先述した実施形態に係るCMOS固体撮像素子を搭載することで、当該CMOS固体撮像素子では画像処理に不必要なOPB不問領域の各画素に対してアクセスを行わず、これら画素の信号を読み飛ばす構成を採っているため、撮像デバイス42のフレームレートを上げることができる。   As described above, in the imaging apparatus such as a digital still camera or a video camera, the CMOS solid-state imaging device according to the above-described embodiment is mounted as the imaging device 42, so that the CMOS solid-state imaging device is unnecessary for image processing. Since the pixels of the OPB unquestioned area are not accessed and the signals of these pixels are skipped, the frame rate of the imaging device 42 can be increased.

本発明の一実施形態に係るCMOS固体撮像素子の構成の概略を示すブロック図である。It is a block diagram which shows the outline of a structure of the CMOS solid-state image sensor which concerns on one Embodiment of this invention. 画素アレイ部の構成の一例を示す図である。It is a figure which shows an example of a structure of a pixel array part. 本実施形態に係るCMOS固体撮像素子において、画素アレイ部から各画素の信号を行単位で読み出した際の信号出力のイメージを示す図である。In the CMOS solid-state imaging device according to the present embodiment, it is a diagram illustrating an image of signal output when a signal of each pixel is read from the pixel array unit in units of rows. 本発明に係る撮像装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the imaging device which concerns on this invention. 従来技術の課題の説明に供する信号出力のイメージを示す図である。It is a figure which shows the image of the signal output used for description of the subject of a prior art.

符号の説明Explanation of symbols

1…画素、10…画素アレイ部、11…垂直信号線、12…駆動線、20…垂直駆動回路、21…垂直選択回路、23…論理積回路群、24…バッファ回路群、30…カラム信号処理回路部、40…水平駆動回路、41…水平信号線、42…水平選択スイッチ群、43…水平選択回路、101…有効画素領域、101A…有効不問領域、102…OPB(オプティカルブラック)領域、103,103i,103o…OPB不問領域   DESCRIPTION OF SYMBOLS 1 ... Pixel, 10 ... Pixel array part, 11 ... Vertical signal line, 12 ... Drive line, 20 ... Vertical drive circuit, 21 ... Vertical selection circuit, 23 ... AND circuit group, 24 ... Buffer circuit group, 30 ... Column signal Processing circuit section 40 ... Horizontal drive circuit 41 ... Horizontal signal line 42 ... Horizontal selection switch group 43 ... Horizontal selection circuit 101 ... Effective pixel region 101A ... Effective unquestionable region 102 ... OPB (optical black) region 103, 103i, 103o ... OPB unquestioned area

Claims (5)

光電変換素子を含む画素が行列状に2次元配置され、有効画素領域の周囲に遮光された画素が配置されてなるオプティカルブラック領域を有する画素アレイ部と、
前記画素アレイ部の各画素から信号を読み出す際に、前記オプティカルブラック領域の周縁部に位置する画素領域以外の画素に対してアクセスを行って各画素から信号を読み出す駆動手段と
を備えたことを特徴とする固体撮像素子。
A pixel array unit having an optical black region in which pixels including photoelectric conversion elements are two-dimensionally arranged in a matrix and light-shielded pixels are arranged around the effective pixel region;
Driving means for accessing a pixel other than the pixel region located in the peripheral portion of the optical black region and reading the signal from each pixel when reading the signal from each pixel of the pixel array unit; A solid-state imaging device.
前記駆動手段は、前記オプティカルブラック領域の周縁部に位置する画素領域の各画素をリセット状態に保つ
ことを特徴とする請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the driving unit maintains each pixel in a pixel region located at a peripheral portion of the optical black region in a reset state.
前記画素は、前記光電変換素子の電荷をフローティングディフュージョン部に転送する電荷転送トランジスタと、当該フローティングディフュージョン部の電位を電源電位にリセットするとリセットトランジスタとを有し、
前記駆動手段は、前記電荷転送トランジスタおよび前記リセットトランジスタをオン状態に保持する
ことを特徴とする請求項2記載の固体撮像素子。
The pixel includes a charge transfer transistor that transfers the charge of the photoelectric conversion element to a floating diffusion portion, and a reset transistor that resets the potential of the floating diffusion portion to a power supply potential.
The solid-state imaging device according to claim 2, wherein the driving unit holds the charge transfer transistor and the reset transistor in an on state.
光電変換素子を含む画素が行列状に2次元配置され、有効画素領域の周囲に遮光された画素が配置されてなるオプティカルブラック領域を有する画素アレイ部を有する固体撮像素子の駆動方法であって、
前記画素アレイ部の各画素から信号を読み出す際に、前記オプティカルブラック領域の周縁部に位置する画素領域以外の画素に対してアクセスを行って各画素から信号を読み出す
ことを特徴とする固体撮像素子の駆動方法。
A method of driving a solid-state imaging device having a pixel array portion having an optical black region in which pixels including photoelectric conversion elements are arranged two-dimensionally in a matrix and light-shielded pixels are arranged around an effective pixel region,
When reading a signal from each pixel of the pixel array unit, a solid-state image pickup device that reads a signal from each pixel by accessing a pixel other than the pixel region located at a peripheral portion of the optical black region Driving method.
光電変換素子を含む画素が行列状に2次元配置され、有効画素領域の周囲に遮光された画素が配置されてなるオプティカルブラック領域を有する画素アレイ部を備え、前記画素アレイ部の各画素から信号を読み出す際に、前記オプティカルブラック領域の周縁部に位置する画素領域以外の画素に対してアクセスを行って各画素から信号を読み出す固体撮像素子と、
前記固体撮像素子の撮像面に被写体からの像光を結像する光学系と
を具備することを特徴とする撮像装置。
A pixel array unit having an optical black region in which pixels including photoelectric conversion elements are arranged two-dimensionally in a matrix and a light-shielded pixel is arranged around an effective pixel region, and a signal is transmitted from each pixel of the pixel array unit. A solid-state imaging device that accesses a pixel other than the pixel region located in the peripheral portion of the optical black region and reads a signal from each pixel,
An image pickup apparatus comprising: an optical system that forms image light from a subject on an image pickup surface of the solid-state image pickup element.
JP2005043356A 2005-02-21 2005-02-21 Solid-state imaging device, solid-state imaging device driving method, and imaging apparatus Expired - Fee Related JP4947908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043356A JP4947908B2 (en) 2005-02-21 2005-02-21 Solid-state imaging device, solid-state imaging device driving method, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043356A JP4947908B2 (en) 2005-02-21 2005-02-21 Solid-state imaging device, solid-state imaging device driving method, and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2006229799A true JP2006229799A (en) 2006-08-31
JP4947908B2 JP4947908B2 (en) 2012-06-06

Family

ID=36990725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043356A Expired - Fee Related JP4947908B2 (en) 2005-02-21 2005-02-21 Solid-state imaging device, solid-state imaging device driving method, and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4947908B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130398A (en) * 2008-11-28 2010-06-10 Sony Corp Solid-state imaging apparatus, method of driving solid-state imaging apparatus, and imaging apparatus
CN102143333A (en) * 2010-01-29 2011-08-03 索尼公司 Solid-state imaging device and imaging apparatus
JP2015207880A (en) * 2014-04-18 2015-11-19 キヤノン株式会社 Photoelectric conversion device, imaging system, and driving method of photoelectric conversion device
JP2019029694A (en) * 2017-07-25 2019-02-21 キヤノン株式会社 Imaging apparatus, imaging system, and mobile body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274366A (en) * 1991-03-01 1992-09-30 Nec Corp Solid-state image sensing device
JPH10322600A (en) * 1997-05-14 1998-12-04 Sony Corp Image pickup device
JP2000196055A (en) * 1998-12-24 2000-07-14 Toshiba Corp Solid-state image pickup device
JP2000196962A (en) * 1998-12-22 2000-07-14 Hyundai Electronics Ind Co Ltd Cmos image sensor and its driving method
JP2000350103A (en) * 1999-06-02 2000-12-15 Canon Inc Photoelectric converter
JP2001339643A (en) * 2000-05-30 2001-12-07 Nec Corp Black level generating circuit for solid-state image pickup device and solid-state image pickup device
JP2004112474A (en) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd Solid-state imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274366A (en) * 1991-03-01 1992-09-30 Nec Corp Solid-state image sensing device
JPH10322600A (en) * 1997-05-14 1998-12-04 Sony Corp Image pickup device
JP2000196962A (en) * 1998-12-22 2000-07-14 Hyundai Electronics Ind Co Ltd Cmos image sensor and its driving method
JP2000196055A (en) * 1998-12-24 2000-07-14 Toshiba Corp Solid-state image pickup device
JP2000350103A (en) * 1999-06-02 2000-12-15 Canon Inc Photoelectric converter
JP2001339643A (en) * 2000-05-30 2001-12-07 Nec Corp Black level generating circuit for solid-state image pickup device and solid-state image pickup device
JP2004112474A (en) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd Solid-state imaging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130398A (en) * 2008-11-28 2010-06-10 Sony Corp Solid-state imaging apparatus, method of driving solid-state imaging apparatus, and imaging apparatus
CN101753860B (en) * 2008-11-28 2012-07-11 索尼株式会社 Solid-state image pickup device, method for driving solid-state image pickup device, and image pickup apparatus
TWI425829B (en) * 2008-11-28 2014-02-01 Sony Corp Solid-state image pickup device, method for driving solid-state image pickup device, and image pickup apparatus
US9077920B2 (en) 2008-11-28 2015-07-07 Sony Corporation Solid-state image pickup device, method for driving solid-state image pickup device, and image pickup apparatus
KR101617887B1 (en) * 2008-11-28 2016-05-03 소니 주식회사 Solid-state image pickup device, method for driving solid-state image pickup device, and image pickup apparatus
CN102143333A (en) * 2010-01-29 2011-08-03 索尼公司 Solid-state imaging device and imaging apparatus
JP2011160116A (en) * 2010-01-29 2011-08-18 Sony Corp Solid-state image pickup element and imaging apparatus
US8922679B2 (en) 2010-01-29 2014-12-30 Sony Corporation Solid-state imaging device and imaging apparatus
JP2015207880A (en) * 2014-04-18 2015-11-19 キヤノン株式会社 Photoelectric conversion device, imaging system, and driving method of photoelectric conversion device
JP2019029694A (en) * 2017-07-25 2019-02-21 キヤノン株式会社 Imaging apparatus, imaging system, and mobile body
JP7066347B2 (en) 2017-07-25 2022-05-13 キヤノン株式会社 Imaging device, imaging system, moving object

Also Published As

Publication number Publication date
JP4947908B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US9749557B2 (en) Solid-state image pickup device in which charges overflowing a memory during a charge transfer period are directed to a floating diffusion and method of driving same
US10229941B2 (en) Solid-state imaging element, driving method, and electronic apparatus
JP5641287B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
KR101617887B1 (en) Solid-state image pickup device, method for driving solid-state image pickup device, and image pickup apparatus
US7550704B2 (en) Solid state imaging device, method of driving solid state imaging device, and image pickup apparatus
JP4858281B2 (en) Solid-state imaging device
JP5601001B2 (en) Solid-state imaging device, driving method, and electronic apparatus
JP4609092B2 (en) Physical information acquisition method and physical information acquisition device
JP5556199B2 (en) Solid-state imaging device and imaging device
JP2006310932A (en) Solid-state imaging apparatus, drive method of solid-state imaging apparatus, and imaging apparatus
JP3937716B2 (en) Solid-state imaging device and imaging system
US20110102622A1 (en) Solid-state imaging element and camera system
JP4947908B2 (en) Solid-state imaging device, solid-state imaging device driving method, and imaging apparatus
JP4336508B2 (en) Imaging device
US20090295965A1 (en) Method and circuit for driving active pixels in a cmos imager device
JP4391843B2 (en) Solid-state imaging device
JP4483422B2 (en) Pixel array device and driving method of pixel array device
JP2001016502A (en) Solid-state image pickup device
JP4232485B2 (en) Read address control method and apparatus, semiconductor system, and imaging device
JP2007312047A (en) Solid-state imaging device
JP2008300931A (en) Imaging device
JP5142694B2 (en) Imaging device, driving method of imaging device, and imaging system
JP4883192B2 (en) Pixel array device and driving method of pixel array device
JP2020031371A (en) Solid-state imaging element and electronic apparatus
JP2002199289A (en) Photoelectric converter and solid-state image pickup system with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees