JP2006222087A - Secondary battery device for hybrid rail vehicle - Google Patents

Secondary battery device for hybrid rail vehicle Download PDF

Info

Publication number
JP2006222087A
JP2006222087A JP2006057747A JP2006057747A JP2006222087A JP 2006222087 A JP2006222087 A JP 2006222087A JP 2006057747 A JP2006057747 A JP 2006057747A JP 2006057747 A JP2006057747 A JP 2006057747A JP 2006222087 A JP2006222087 A JP 2006222087A
Authority
JP
Japan
Prior art keywords
battery
power
voltage
battery device
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057747A
Other languages
Japanese (ja)
Other versions
JP4907197B2 (en
Inventor
Masahito Suzuki
優人 鈴木
Eiichi Toyoda
瑛一 豊田
Motomi Shimada
基巳 嶋田
Takashi Kaneko
貴志 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006057747A priority Critical patent/JP4907197B2/en
Publication of JP2006222087A publication Critical patent/JP2006222087A/en
Application granted granted Critical
Publication of JP4907197B2 publication Critical patent/JP4907197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

<P>PROBLEM TO BE SOLVED: To realize a small size and large capacity battery device applied to a hybrid rail vehicle, wherein the cooling efficiency and the safety of the battery device is improved. <P>SOLUTION: The hybrid rail vehicle provided with a power device for generating dc power using the power of engine, an inverter device for supplying ac power to an ac motor for driving the vehicle by transferring the dc power generated from the power source into the ac power of variable voltage and variable frequency, and a secondary battery device connected parallel to the out put of the power source to supply the dc power to the inverter device. The secondary battery device gives the practical voltage of about 750 V in rail vehicle by connecting 108 unit batteries from 69121 to 6912n in series, while each unit batteries provides the voltage of about 7 V. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エンジン発電機と二次電池を併用したハイブリッド鉄道車両用二次
電池装置に関する。
The present invention relates to a secondary battery device for a hybrid railway vehicle using an engine generator and a secondary battery in combination.

最近、ディーゼルエンジン式鉄道車両(以下、気動車と呼ぶ。)においては、
騒音、排気等の環境問題への対応やシステムのメンテナンス性向上のため、電気
式鉄道車両(以下、電気車と呼ぶ。)と部品の共通化を図ったハイブリッド化が
検討されている。
このシステムでは、エンジンで発電機を駆動して交流電力を発生し、これをコ
ンバータ装置で一旦直流電力に変換する。この直流電力を更にインバータ装置で
可変電圧、可変周波数の交流電力に再変換して誘導電動機を駆動する。
このようなシステムと同様のシステムとしてハイブリッド電気自動車用システ
ムが報告されている(例えば、特許文献1)。
Recently, in diesel engine type railway vehicles (hereinafter referred to as diesel vehicles)
In order to deal with environmental problems such as noise and exhaust, and to improve the maintainability of the system, a hybrid system in which parts are shared with an electric railway vehicle (hereinafter referred to as an electric vehicle) is being studied.
In this system, a generator is driven by an engine to generate AC power, which is once converted into DC power by a converter device. This DC power is further converted back to variable voltage and variable frequency AC power by an inverter device to drive the induction motor.
A hybrid electric vehicle system has been reported as a system similar to such a system (for example, Patent Document 1).

特開平10−191503号記載JP-A-10-191503

上記特許文献1に記載のシステムでは、エンジン発電機出力を直流電力に変換
するコンバータ装置の出力側(インバータ装置の入力側)に更にバッテリを接続し、
過渡的な電力の変化をバッテリで補うようにしている。
鉄道車両において同様にバッテリを用いる場合、上記電気自動車に対して10
倍程度の電力が必要となるため、複数のバッテリモジュールが必要となり、装置
が大型化してしまう。
また、電気自動車では1回の充放電時間が数秒程度であるのに対し、鉄道車両
では数10秒程度必要であり、バッテリにとっては大電流を長時間充放電するこ
とが要求される。このため、バッテリの温度が上昇し、電気的性能の変化やバッ
テリ自体の劣化を招いたり、更にバッテリ内部に引火性材料を用いている場合、
安全上の問題も発生する。
In the system described in Patent Document 1, a battery is further connected to the output side (input side of the inverter device) of the converter device that converts the engine generator output into DC power,
The battery is made up for transient changes in power.
When a battery is similarly used in a railway vehicle, 10% of the electric vehicle is used.
Since about twice as much power is required, a plurality of battery modules are required, resulting in an increase in size of the apparatus.
In addition, while an electric vehicle has a charge / discharge time of about several seconds, a railway vehicle requires about several tens of seconds, and a battery is required to charge and discharge a large current for a long time. For this reason, when the temperature of the battery rises, causing a change in electrical performance or deterioration of the battery itself, and further using a flammable material inside the battery,
There are also safety issues.

本発明の課題は、ハイブリッド型の鉄道車両に適用する大容量のバッテリ装置
を小型に実現すると共に、冷却効率及び安全性を向上するに好適なハイブリッド
鉄道車両用二次電池装置を提供することにある。
An object of the present invention is to provide a secondary battery device for a hybrid railway vehicle that is suitable for improving the cooling efficiency and safety while realizing a small-sized battery device having a large capacity applied to a hybrid railway vehicle. is there.

上記課題を解決するため、エンジンの動力を利用して直流電力を発生する電源
装置と、電源装置から出力される直流電力を可変電圧、可変周波数の交流電力に
変換し、交流電力を車両を駆動する交流電動機に供給するインバータ装置と、電
源装置の出力と並列に接続され、インバータ装置に対して直流電力を供給する二
次電池装置とを備えたハイブリッド鉄道車両において、二次電池装置は、電圧約
7Vの単位バッテリを108本直列接続して鉄道車両における実用レベルの約7
50Vの電圧を得る。
In order to solve the above-mentioned problems, a power supply device that generates DC power using engine power, and converts DC power output from the power supply device into AC power of variable voltage and variable frequency to drive the AC power to the vehicle In a hybrid railway vehicle including an inverter device supplied to an AC motor and a secondary battery device connected in parallel with the output of the power supply device and supplying DC power to the inverter device, the secondary battery device 108 unit batteries of about 7V are connected in series and about 7 levels of practical use in railway vehicles
A voltage of 50V is obtained.

本発明によれば、ハイブリッド型の鉄道車両に適用する大容量のバッテリ装置
を小型に実現できると共に、冷却効率を向上することができる。
また、隣接する単位バッテリが互いに逆極性となるように配置し、プレート端
面で全単位バッテリが直列となるように配線することにより、最短の配線長で大
容量のバッテリ装置を構成することができる。
ADVANTAGE OF THE INVENTION According to this invention, while being able to implement | achieve small-sized the large capacity battery apparatus applied to a hybrid type railway vehicle, cooling efficiency can be improved.
In addition, by arranging adjacent unit batteries so that their polarities are opposite to each other, and wiring so that all unit batteries are in series on the end face of the plate, a battery device with a large capacity can be configured with the shortest wiring length. .

以下、本発明の最良の形態を図1〜図8を用いて説明する。   Hereinafter, the best mode of the present invention will be described with reference to FIGS.

まず、図1を用いて本発明の一実施形態の構成を説明する。
図1において、エンジン1及びエンジン1に軸で直結された発電機2は、U,
V,W3相の交流電力を発生し、コンバータ装置3は、この交流電力を直流電力
に変換して出力する。インバータ装置4は、コンバータ装置3から出力される直
流電力を可変電圧、可変周波数の3相交流電力に変換し、誘導電動機5に供給す
る。バッテリ装置6は、コンバータ装置3の出力に並列に接続され、後述のよう
に車両の起動時等に電力を補給する。平滑コンデンサ7は、インバータ装置4の
入力に並列に接続され、インバータ入力電圧の変動を抑制する。
一方、制御部10は、電流検出器9aで検出したコンバータ出力電流Isと電
圧検出器8で検出した平滑コンデンサ電圧Ecf、及び発電機回転周波数Frg
によりコンバータ制御演算を実行し、コンバータ装置3に対してコンバータPW
M制御信号Sgcを出力する。
また、制御部10は、電流検出器9b,9c,9dで検出した電動機電流Iu,
Iv,Iwと電圧検出器8で検出した平滑コンデンサ電圧Ecf、及び電動機回
転周波数(鉄道車両用電動機では通常2Hz/1回転)Frmによりインバータ
制御演算を実行し、インバータ装置4に対してインバータPWM制御信号Sgi
を出力する。
更に、制御部10は、バッテリ装置6から出力されるバッテリ電流Ib1〜I
bn,バッテリ電圧Vb1〜Vbn,バッテリ温度Tb11〜Tbnmによりバ
ッテリの稼動状態を判断し、バッテリの充放電制御信号Sb1〜Sbnを出力す
る。
First, the configuration of an embodiment of the present invention will be described with reference to FIG.
In FIG. 1, an engine 1 and a generator 2 directly connected to the engine 1 by a shaft are represented by U,
V and W three-phase AC power is generated, and the converter device 3 converts this AC power into DC power and outputs it. The inverter device 4 converts the DC power output from the converter device 3 into a three-phase AC power having a variable voltage and a variable frequency, and supplies it to the induction motor 5. The battery device 6 is connected in parallel to the output of the converter device 3 and replenishes power when the vehicle is started, as will be described later. The smoothing capacitor 7 is connected in parallel to the input of the inverter device 4 and suppresses fluctuations in the inverter input voltage.
On the other hand, the controller 10 converts the converter output current Is detected by the current detector 9a, the smoothing capacitor voltage Ecf detected by the voltage detector 8, and the generator rotation frequency Frg.
The converter control calculation is executed by the
The M control signal Sgc is output.
In addition, the control unit 10 detects the motor current Iu, detected by the current detectors 9b, 9c, 9d.
Inverter control calculation is executed based on Iv, Iw and the smoothing capacitor voltage Ecf detected by the voltage detector 8 and the motor rotation frequency (normally 2 Hz / 1 rotation in a motor for a railway vehicle) Frm, and inverter PWM control is performed on the inverter device 4. Signal Sgi
Is output.
Further, the control unit 10 outputs battery currents Ib1 to Ib output from the battery device 6.
The battery operating state is determined based on bn, battery voltages Vb1 to Vbn, and battery temperatures Tb11 to Tbnm, and battery charge / discharge control signals Sb1 to Sbn are output.

次に、本実施形態のバッテリ装置6の構成を図2により説明する。
バッテリユニット61は、バッテリ691と、バッテリ691に直列に接続さ
れた半導体スイッチ素子631,651と、この半導体スイッチ素子631,6
51にそれぞれ並列に接続されたダイオード641,661と、バッテリ691
と半導体スイッチ素子631,651に直列に接続されたスイッチ611と、ス
イッチ611に並列に接続された抵抗器621と、バッテリ691の入出力電流
を検出する電流検出器671、及び直列接続されたバッテリ691の全電圧を検
出する電圧検出器681で構成される。
バッテリ装置6は、このような複数のバッテリユニット61〜6nを並列接続
して構成し、半導体スイッチ素子631〜63n,651〜65nをON/OF
F制御する充放電制御信号Sb1〜Sbnを入力として、各ユニットのバッテリ
電流Ib〜Inとバッテリ電圧Vb1〜Vbn及び各バッテリの温度Tb1〜T
bnを出力する。
なお、本実施形態において、最初にバッテリ装置6を構築する場合、複数のバ
ッテリユニット61〜6nを下記の手順で並列接続することにより、バッテリ間
に流れる電流を抑制し、更にバッテリの劣化防止と作業の安全性を確保すること
ができる。
(1)スイッチ611〜61nを開放、半導体スイッチ素子631〜63n,
651〜65nをオフ。
(2)各ユニットを並列に接続。
(3)半導体スイッチ素子631〜63n,651〜65nをオン。
(4)スイッチ611〜61nを投入。
Next, the configuration of the battery device 6 of the present embodiment will be described with reference to FIG.
The battery unit 61 includes a battery 691, semiconductor switch elements 631, 651 connected in series to the battery 691, and the semiconductor switch elements 631, 6
51, diodes 641, 661 respectively connected in parallel, and a battery 691
A switch 611 connected in series to the semiconductor switch elements 631 and 651, a resistor 621 connected in parallel to the switch 611, a current detector 671 for detecting the input / output current of the battery 691, and a battery connected in series The voltage detector 681 detects all the voltages 691.
The battery device 6 is configured by connecting a plurality of such battery units 61 to 6n in parallel, and the semiconductor switch elements 631 to 63n and 651 to 65n are turned on / off.
F charge / discharge control signals Sb1 to Sbn to be F-controlled are input, and battery currents Ib to In, battery voltages Vb1 to Vbn of each unit, and temperatures Tb1 to Tb of each battery.
bn is output.
In the present embodiment, when the battery device 6 is first constructed, a plurality of battery units 61 to 6n are connected in parallel by the following procedure, thereby suppressing the current flowing between the batteries and further preventing the deterioration of the battery. Work safety can be ensured.
(1) Open switches 611-61n, semiconductor switch elements 631-63n,
Turn off 651-65n.
(2) Connect each unit in parallel.
(3) The semiconductor switch elements 631 to 63n and 651 to 65n are turned on.
(4) Turn on the switches 611 to 61n.

以下、本実施形態の動作について説明する。
制御部10は、バッテリ電流Ib1〜Ibn,バッテリ電圧Vb1〜Vbn,
バッテリ温度Tb1〜Tbnに基づき、図3及び数1に示すような、バッテリ6
91〜69nの充電状態を示す充電率(上限電圧を100%、下限電圧を0%と
したときの割合)SOCと異常の有無を示すエラー情報ERRを作成する。
SOC≒((バッテリ電圧−下限電圧)/(上限電圧−下限電圧))
×100(%) (数1)
制御部10は、この充電率SOCとエラー情報ERRに基づき、半導体スイッ
チ素子631〜63n,651〜65nをON/OFF制御する充放電制御信号
Sb1〜Sbnを出力する。
また、制御部10は、電動機電流Iu,Iv,Iwと平滑コンデンサ電圧Ec
f及び電動機回転周波数Frmに基づいてインバータ装置4を駆動するためのP
WMパルス信号Sgiを出力する。
更に、制御部10は、コンバータ出力電流Isと平滑コンデンサ電圧Ecf及
び発電機回転周波数Frgに基づいてコンバータ装置3を駆動するためのPWM
パルス信号Sgcを出力する。
制御部10は、通常バッテリの充電率SOCが常に図4の斜線部内になるよう
に半導体スイッチ素子を制御する。ここで、充電率最大値SOCmaxは、バッ
テリが十分充電された状態であり、図示の充電限界を示す。また、充電率最小値
SOCminは、バッテリが十分放電しきった状態であり、図示の放電限界を示
す。
例えば、電動機回転周波数Frmが0付近の低速域は、回生エネルギーを吸収
するよりも力行エネルギーを確保するため、矢印1(丸印)に示すように斜線部
下限値から放電限界まで放電余力を確保し、電動機回転周波数FrmがFrm2
以上の高速域は、力行エネルギーを確保するよりも回生エネルギーを吸収するた
め、矢印4(丸印)に示すように斜線部上限値から充電限界までの充電余力を確
保する。また、電動機回転周波数FrmがFrm1の中速域では、矢印2(丸印)
に示す放電余力と矢印3(丸印)に示す充電余力を速度に応じてバランスよく確
保する。
上記のような制御を行うなかで、万が一バッテリの充電率SOCが充電限界を
超えた場合、制御部10は、該当するバッテリを含むユニットの充電電流を阻止
する半導体スイッチ素子をOFFするような充放電制御信号Sb1〜Sbnを出
力すると共に、回生運転時にインバータ装置4から出力される回生エネルギーを
エンジン1、発電機2及びコンバータ装置3で吸収するように制御する。
また、逆にバッテリの充電率SOCが放電限界を超えた場合、制御部10は、
該当するバッテリを含むユニットの放電電流を阻止する半導体スイッチ素子をO
FFするような充放電制御信号Sb1〜Sbnを出力すると共に、力行運転時に
不足する電力を補うため、コンバータ装置3の出力を増加するように制御する。
また、制御部10は、エラー情報ERRによりバッテリの異常を検知すると、
該当するユニットの半導体スイッチ素子を全てOFFするような充放電制御信号
Sb1〜Sbnを出力してユニットを切り離すと共に、不足する電力を補うよう
にエンジン1、発電機2及びコンバータ装置3を制御する。
Hereinafter, the operation of this embodiment will be described.
The control unit 10 includes battery currents Ib1 to Ibn, battery voltages Vb1 to Vbn,
Based on the battery temperatures Tb1 to Tbn, the battery 6 as shown in FIG.
The charging rate (the ratio when the upper limit voltage is 100% and the lower limit voltage is 0%) SOC and the error information ERR indicating the presence / absence of an abnormality are created.
SOC≈ ((battery voltage−lower limit voltage) / (upper limit voltage−lower limit voltage))
× 100 (%) (Equation 1)
The control unit 10 outputs charge / discharge control signals Sb1 to Sbn for ON / OFF control of the semiconductor switch elements 631 to 63n and 651 to 65n based on the charging rate SOC and the error information ERR.
Further, the control unit 10 controls the motor currents Iu, Iv, Iw and the smoothing capacitor voltage Ec.
P for driving the inverter device 4 based on f and the motor rotation frequency Frm
The WM pulse signal Sgi is output.
Further, the control unit 10 performs PWM for driving the converter device 3 based on the converter output current Is, the smoothing capacitor voltage Ecf, and the generator rotational frequency Frg.
The pulse signal Sgc is output.
The control unit 10 controls the semiconductor switch element so that the charging rate SOC of the normal battery is always within the hatched portion in FIG. Here, the maximum charging rate SOCmax is a state in which the battery is sufficiently charged, and indicates the illustrated charging limit. Further, the minimum charge rate SOCmin is a state in which the battery is fully discharged, and indicates the illustrated discharge limit.
For example, in the low speed range where the motor rotation frequency Frm is near 0, the remaining power is ensured from the hatched lower limit value to the discharge limit as shown by the arrow 1 (circle) in order to secure powering energy rather than absorbing regenerative energy. The motor rotation frequency Frm is Frm2.
Since the above high-speed region absorbs regenerative energy rather than securing powering energy, as shown by the arrow 4 (circle), the remaining charge capacity from the hatched portion upper limit value to the charge limit is secured. Further, when the motor rotation frequency Frm is in the middle speed range of Frm1, an arrow 2 (circle)
And the remaining charge capacity indicated by the arrow 3 (circle) are ensured in a well-balanced manner according to the speed.
If the charging rate SOC of the battery exceeds the charging limit during the above control, the control unit 10 turns off the semiconductor switching element that blocks the charging current of the unit including the corresponding battery. The discharge control signals Sb1 to Sbn are output, and the regenerative energy output from the inverter device 4 during the regenerative operation is controlled to be absorbed by the engine 1, the generator 2, and the converter device 3.
Conversely, when the battery charge rate SOC exceeds the discharge limit, the control unit 10
A semiconductor switch element that prevents the discharge current of the unit including the corresponding battery is O
The charge / discharge control signals Sb <b> 1 to Sbn that perform FF are output, and control is performed to increase the output of the converter device 3 in order to compensate for the power shortage during the power running operation.
Further, when the control unit 10 detects a battery abnormality based on the error information ERR,
The charge / discharge control signals Sb1 to Sbn that turn off all the semiconductor switch elements of the corresponding unit are output to disconnect the unit, and the engine 1, the generator 2, and the converter device 3 are controlled to compensate for the insufficient power.

図5に、本実施形態のバッテリ691の構成を示す。
蜂の巣状に穴を設けた2枚の絶縁体プレート6911a,6911bを対向し
て配置し、この間に円筒状の単位バッテリ69121〜6912nを隣接する単
位バッテリが互いに逆極性となるように配置する。更に、蜂の巣状に設けた穴の
中心部は図示のように風通し穴6913として確保する。
単位バッテリ69121〜6912nを互いに逆極性に配置し、隣接するもの
どおしを配線6914で接続することにより、左上の単位バッテリ69121か
ら右下の単位バッテリ6912nまでを最短の配線で直列に接続する。本実施形
態では、電圧約7Vの単位バッテリを108本用いることにより、鉄道車両にお
いても実用レベルの約750Vの電圧を得る。
FIG. 5 shows the configuration of the battery 691 of this embodiment.
Two insulator plates 6911a and 6911b provided with holes in a honeycomb shape are arranged to face each other, and cylindrical unit batteries 69121 to 6912n are arranged so that adjacent unit batteries have opposite polarities. Further, the central portion of the hole provided in a honeycomb shape is secured as a vent hole 6913 as shown in the figure.
Unit batteries 69121 to 6912n are arranged in opposite polarities, and adjacent ones are connected by wiring 6914, so that unit battery 69121 at the upper left to unit battery 6912n at the lower right are connected in series with the shortest wiring. . In the present embodiment, by using 108 unit batteries having a voltage of about 7V, a voltage of about 750V, which is a practical level, is obtained even in a railway vehicle.

図6に、本バッテリ691の実装形態を示す。
図示のように、車体20の床下の車輪21a,21bの間にコンバータ装置3,
インバータ装置4とバッテリ691を実装し、更にバッテリ691はコンバータ
装置3,インバータ装置4より車体20の内側に実装し、これによりバッテリ6
91が走行風を受けやすい配置とする。
以上、本実施形態によれば、大容量のバッテリ装置を小型に実現できると共に、
走行風を有効に利用することにより、冷却効率を向上することができる。
FIG. 6 shows a mounting form of the battery 691.
As shown, the converter device 3 is interposed between the wheels 21a and 21b under the floor of the vehicle body 20.
The inverter device 4 and the battery 691 are mounted. Further, the battery 691 is mounted inside the vehicle body 20 from the converter device 3 and the inverter device 4.
91 is arranged to be easily subjected to traveling wind.
As described above, according to the present embodiment, a large-capacity battery device can be realized in a small size,
The cooling efficiency can be improved by effectively using the traveling wind.

図7は、本発明の他のバッテリ691の構成を示す。
本実施形態では、プレート6911c,6911dの風通し穴を無くすると共
に、バッテリ固定穴及び配線を絶縁一体化してバッテリホルダ6915を構成し、
更に、このバッテリホルダ6915と各プレート6911c,6911dを一体
化した。
このプレート6911c,6911dの間に図5の実施形態と同様、単位バッ
テリ69121〜6912nを配置することにより、バッテリ691を構成する。
FIG. 7 shows the configuration of another battery 691 of the present invention.
In the present embodiment, the air holes of the plates 6911c and 6911d are eliminated, and the battery fixing hole and the wiring are insulated and integrated to constitute the battery holder 6915.
Further, the battery holder 6915 and the plates 6911c and 6911d are integrated.
Similar to the embodiment of FIG. 5, unit batteries 69121 to 6912n are arranged between the plates 6911c and 6911d to constitute a battery 691.

図8に、本発明の他のバッテリ691の実装形態を示す。
図5の実施形態と同様に、車体20の床下の車輪21a,21bの間にコンバ
ータ装置3,インバータ装置4とバッテリ691を実装し、更にバッテリ691
はコンバータ装置3,インバータ装置4より車体20の内側に実装する。このと
き、バッテリ691のプレート面を走行方向に対して垂直に配置し、これにより、
単位バッテリ69121〜6912nが直接走行風を受けやすくする。
以上、本実施形態によれば、大容量のバッテリ装置を小型に実現できると共に、
走行風を有効に利用することにより、冷却効率を向上することができる。更に、
本実施形態によれば、単位バッテリの電極が絶縁カバーされている上に、配線が
不要なため、安全性、作業性が向上する。
FIG. 8 shows another embodiment of the battery 691 according to the present invention.
Similar to the embodiment of FIG. 5, the converter device 3, the inverter device 4, and the battery 691 are mounted between the wheels 21 a and 21 b under the floor of the vehicle body 20, and the battery 691 is further mounted.
Is mounted inside the vehicle body 20 from the converter device 3 and the inverter device 4. At this time, the plate surface of the battery 691 is arranged perpendicular to the traveling direction,
The unit batteries 69121 to 6912n are easily subjected to the traveling wind.
As described above, according to the present embodiment, a large-capacity battery device can be realized in a small size,
The cooling efficiency can be improved by effectively using the traveling wind. Furthermore,
According to the present embodiment, the electrodes of the unit battery are covered with insulation and no wiring is required, so safety and workability are improved.

本発明は、ハイブリッド型の鉄道車両に適用する大容量のバッテリ装置を小型
に実現し、冷却効率が向上する。
また、隣接する単位バッテリが互いに逆極性となるように配置し、プレート端
面で全単位バッテリが直列となるように配線することにより、最短の配線長で大
容量のバッテリ装置が構成される。
The present invention realizes a large-capacity battery device applied to a hybrid railway vehicle in a small size, and improves cooling efficiency.
Further, by arranging adjacent unit batteries so that their polarities are opposite to each other, and wiring so that all unit batteries are in series on the end face of the plate, a battery device having a large capacity with the shortest wiring length is configured.

本発明の一実施形態を示す構成図The block diagram which shows one Embodiment of this invention 本発明のバッテリ装置の構成を示す図The figure which shows the structure of the battery apparatus of this invention 本発明の充電率及びエラー情報の説明図Explanatory diagram of charging rate and error information of the present invention 本発明の制御部の運転モードの説明図Explanatory drawing of the operation mode of the control part of this invention 本発明のバッテリの構成図Configuration diagram of the battery of the present invention 図5に示すバッテリの実装形態図Battery mounting diagram shown in FIG. 本発明の他のバッテリの構成図Configuration of another battery of the present invention 図7に示す他のバッテリの実装形態図FIG. 7 shows another battery mounting form.

符号の説明Explanation of symbols

1…エンジン、2…発電機、3…コンバータ装置、4…インバータ装置、5…誘
導電動機、6…バッテリ装置、7…平滑コンデンサ、8…電圧検出器、9a,9
b,9c,9d…電流検出器、10…制御部、691…バッテリ、69121〜
6912n…単位バッテリ、6911a〜6911d…プレート、6914…配
線、6915…バッテリホルダ、Ib1〜Ibn…バッテリ電流、Vb1〜Vb
n…バッテリ電圧、Tb11〜Tbnm…バッテリ温度、Sb1〜Sbn…半導
体スイッチ素子ON/OFF信号、Iu,Iv,Iw…誘導電動機の相電流、S
gc…コンバータPWM制御信号、Sgi…インバータPWM制御信号、Ecf
…平滑コンデンサ電圧、Is…コンバータ出力電流、Frm…電動機回転周波数、
Frg…発電機回転周波数

DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Generator, 3 ... Converter apparatus, 4 ... Inverter apparatus, 5 ... Induction motor, 6 ... Battery apparatus, 7 ... Smoothing capacitor, 8 ... Voltage detector, 9a, 9
b, 9c, 9d ... current detector, 10 ... control unit, 691 ... battery, 69121-
6912n: Unit battery, 6911a to 6911d ... Plate, 6914 ... Wiring, 6915 ... Battery holder, Ib1-Ibn ... Battery current, Vb1-Vb
n ... battery voltage, Tb11-Tbnm ... battery temperature, Sb1-Sbn ... semiconductor switch element ON / OFF signal, Iu, Iv, Iw ... phase current of induction motor, S
gc: converter PWM control signal, Sgi: inverter PWM control signal, Ecf
... smoothing capacitor voltage, Is ... converter output current, Frm ... motor rotation frequency,
Frg: Generator rotation frequency

Claims (1)

エンジンの動力を利用して直流電力を発生する電源装置と、該電源装置から出
力される直流電力を可変電圧、可変周波数の交流電力に変換し、該交流電力を車
両を駆動する交流電動機に供給するインバータ装置と、前記電源装置の出力と並
列に接続され、前記インバータ装置に対して直流電力を供給する二次電池装置と
を備えたハイブリッド鉄道車両において、
前記二次電池装置は、電圧約7Vの単位バッテリを108本直列接続して鉄道
車両における実用レベルの約750Vの電圧を得ることを特徴とするハイブリッ
ド鉄道車両用二次電池装置。

A power supply device that generates DC power using the power of the engine, and converts the DC power output from the power supply device into AC power of variable voltage and variable frequency, and supplies the AC power to an AC motor that drives the vehicle In a hybrid railway vehicle comprising: an inverter device, and a secondary battery device connected in parallel with the output of the power supply device and supplying DC power to the inverter device,
The secondary battery device is a secondary battery device for a hybrid railway vehicle, wherein 108 unit batteries having a voltage of about 7V are connected in series to obtain a voltage of about 750V, which is a practical level in a railway vehicle.

JP2006057747A 2003-02-14 2006-03-03 Secondary battery device for hybrid railway vehicles Expired - Fee Related JP4907197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057747A JP4907197B2 (en) 2003-02-14 2006-03-03 Secondary battery device for hybrid railway vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003036111A JP3811894B2 (en) 2003-02-14 2003-02-14 Secondary battery device for hybrid railway vehicles
JP2006057747A JP4907197B2 (en) 2003-02-14 2006-03-03 Secondary battery device for hybrid railway vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003036111A Division JP3811894B2 (en) 2003-02-14 2003-02-14 Secondary battery device for hybrid railway vehicles

Publications (2)

Publication Number Publication Date
JP2006222087A true JP2006222087A (en) 2006-08-24
JP4907197B2 JP4907197B2 (en) 2012-03-28

Family

ID=33021303

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2003036111A Expired - Fee Related JP3811894B2 (en) 2003-02-14 2003-02-14 Secondary battery device for hybrid railway vehicles
JP2006057822A Expired - Fee Related JP4446970B2 (en) 2003-02-14 2006-03-03 Secondary battery device for hybrid railway vehicles
JP2006057747A Expired - Fee Related JP4907197B2 (en) 2003-02-14 2006-03-03 Secondary battery device for hybrid railway vehicles
JP2006057790A Expired - Fee Related JP4373407B2 (en) 2003-02-14 2006-03-03 Hybrid railway vehicle

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2003036111A Expired - Fee Related JP3811894B2 (en) 2003-02-14 2003-02-14 Secondary battery device for hybrid railway vehicles
JP2006057822A Expired - Fee Related JP4446970B2 (en) 2003-02-14 2006-03-03 Secondary battery device for hybrid railway vehicles

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006057790A Expired - Fee Related JP4373407B2 (en) 2003-02-14 2006-03-03 Hybrid railway vehicle

Country Status (1)

Country Link
JP (4) JP3811894B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099461A (en) * 2006-10-13 2008-04-24 Hitachi Ltd Power controller and rolling stock using the same
JP2010028963A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electric vehicle system
US8450006B2 (en) 2009-09-30 2013-05-28 Samsung Sdi Co., Ltd. Rechargeable battery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830448B2 (en) * 2005-10-28 2011-12-07 株式会社日立製作所 Vehicle drive system
JP4845515B2 (en) * 2006-01-19 2011-12-28 株式会社日立製作所 Railway vehicle drive system
JP4907262B2 (en) * 2006-08-23 2012-03-28 株式会社日立製作所 Electric vehicle control device
JP4772718B2 (en) * 2007-03-13 2011-09-14 株式会社日立製作所 Railway vehicle drive system
JP5328124B2 (en) * 2007-09-25 2013-10-30 近畿車輌株式会社 Railway vehicles equipped with power storage devices
JP4713615B2 (en) * 2008-06-19 2011-06-29 株式会社日立製作所 Battery box and railway vehicle equipped with the same
JP4576465B2 (en) 2009-03-06 2010-11-10 三菱重工業株式会社 Charging method and charging system for overhead line-less traffic vehicle
CN102472799B (en) * 2009-07-31 2015-04-08 本田技研工业株式会社 Apparatus for managing electricity storage capacity
WO2012011237A1 (en) * 2010-07-23 2012-01-26 三洋電機株式会社 Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
CN102700422B (en) * 2012-06-26 2014-06-25 唐山轨道客车有限责任公司 Power supply device and power supply system of hybrid railway vehicle, and railway vehicle
JP6072912B2 (en) 2013-07-01 2017-02-01 三菱電機株式会社 Hybrid drive system
JP6138351B2 (en) * 2014-04-08 2017-05-31 株式会社日立製作所 Moving vehicle
JP2017045700A (en) * 2015-08-28 2017-03-02 株式会社Ihi Battery device and railway vehicle
US10479220B2 (en) * 2017-04-11 2019-11-19 GM Global Technology Operations LLC Hybrid powertrain with dual energy storage devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350308A (en) * 1999-06-03 2000-12-15 Central Japan Railway Co Hybrid railroad car
JP2001006644A (en) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Set battery
JP2001345082A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Electric power supply device
JP2002199509A (en) * 2000-12-25 2002-07-12 Fuji Electric Co Ltd Driving method of hybrid vehicle
JP2003007271A (en) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd Battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350308A (en) * 1999-06-03 2000-12-15 Central Japan Railway Co Hybrid railroad car
JP2001006644A (en) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Set battery
JP2001345082A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Electric power supply device
JP2002199509A (en) * 2000-12-25 2002-07-12 Fuji Electric Co Ltd Driving method of hybrid vehicle
JP2003007271A (en) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd Battery pack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099461A (en) * 2006-10-13 2008-04-24 Hitachi Ltd Power controller and rolling stock using the same
JP2010028963A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electric vehicle system
US8450006B2 (en) 2009-09-30 2013-05-28 Samsung Sdi Co., Ltd. Rechargeable battery

Also Published As

Publication number Publication date
JP4373407B2 (en) 2009-11-25
JP2004243908A (en) 2004-09-02
JP4907197B2 (en) 2012-03-28
JP4446970B2 (en) 2010-04-07
JP2006219128A (en) 2006-08-24
JP3811894B2 (en) 2006-08-23
JP2006193154A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4907197B2 (en) Secondary battery device for hybrid railway vehicles
JP5014518B2 (en) Electric vehicle propulsion control device and railway vehicle system
JP4440936B2 (en) Electric vehicle control device
AU2008247961B2 (en) Propulsion system
AU2008247963B2 (en) Electric drive vehicle retrofit system and associated method
JP5774919B2 (en) Electric apparatus for driving mechanical equipment and method related thereto
US9073448B2 (en) Method of operating propulsion system
US8110948B2 (en) Power conversion apparatus and method
US8047317B2 (en) System, vehicle, and method
JP5274723B1 (en) Electric vehicle control device
JP4593081B2 (en) Railway vehicle power converter
JPWO2013021486A1 (en) Diesel hybrid vehicle system
KR100946472B1 (en) Fuel cell hybrid system
JP2022502998A (en) Multi-phase inverters for multiple sources in the vehicle, and associated high voltage topologies
JPH089511A (en) Hybrid power source for motor-driven vehicle
WO2014041922A1 (en) Excavator
JP2004336833A (en) Controller of electric power transformer for rolling stock
AU2014246607B2 (en) Method of operating propulsion system
JP2005348578A (en) Power supply device and vehicle equipped with it
JP2023121223A (en) Railroad vehicle driving device and method therefor
JP4648431B2 (en) Railway vehicle drive system and railway vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees