WO2014041922A1 - Excavator - Google Patents

Excavator Download PDF

Info

Publication number
WO2014041922A1
WO2014041922A1 PCT/JP2013/071100 JP2013071100W WO2014041922A1 WO 2014041922 A1 WO2014041922 A1 WO 2014041922A1 JP 2013071100 W JP2013071100 W JP 2013071100W WO 2014041922 A1 WO2014041922 A1 WO 2014041922A1
Authority
WO
WIPO (PCT)
Prior art keywords
buck
power storage
storage circuit
power
converter
Prior art date
Application number
PCT/JP2013/071100
Other languages
French (fr)
Japanese (ja)
Inventor
英昭 湯浅
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2014535426A priority Critical patent/JP5951027B2/en
Publication of WO2014041922A1 publication Critical patent/WO2014041922A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans

Definitions

  • the present invention relates to an excavator that boosts an output voltage of a power storage device with a buck-boost converter and drives a working electric motor.
  • a hybrid work machine in which a part of the drive mechanism is electrified and an electric work machine in which all the drive mechanisms are electrified have been proposed.
  • the work machine includes an excavator such as an excavator.
  • an excavator such as an excavator.
  • electric power stored in a power storage device is boosted by a buck-boost converter, and the electric motor is driven by the output of the buck-boost converter.
  • a buck-boost converter usually includes a switching element and a reactor.
  • a switching element or a reactor of a buck-boost converter must also have a large rated current.
  • the cooling device for cooling these elements is also enlarged.
  • the cooling device used for the hybrid excavator is larger than the cooling device for the buck-boost converter used for the hybrid type general vehicle. In order to be mounted on a hybrid excavator, a step-up / down converter capable of efficiently cooling is desired.
  • An object of the present invention is to provide an excavator equipped with a step-up / down converter capable of using a switching element or a reactor having a small rated current.
  • a lower traveling body An upper revolving unit mounted on the lower traveling unit so as to be able to swivel;
  • Engine A generator driven by the power of the engine;
  • a storage circuit for storing electric power;
  • An inverter connecting the generator and the storage circuit; Driven by electric power supplied from the power storage circuit, and has a working electric motor for turning the upper turning body,
  • the storage circuit is A power storage device;
  • Each of the step-up / step-down converters includes a switching element and a reactor, and generates an induced electromotive force in the reactor by a switching operation of the switching element, thereby boosting a voltage of the power storage device to the working electric motor.
  • a supply excavator is provided.
  • FIG. 1 is a side view of an excavator according to an embodiment.
  • FIG. 2 is a block diagram of the excavator according to the embodiment.
  • FIG. 3 is a block diagram of a power storage circuit mounted on the excavator according to the embodiment.
  • FIG. 4 is an equivalent circuit diagram of the buck-boost converter included in the power storage circuit.
  • FIG. 5 is an equivalent circuit diagram of the inverter.
  • FIG. 6 is a cross-sectional view of a power conversion device that houses a buck-boost converter and an inverter.
  • FIG. 7 is a block diagram for explaining the operation of the storage circuit when one buck-boost converter has failed.
  • FIG. 8 is a block diagram showing a control flow of the working electric motor.
  • FIG. 1 is a side view of an excavator according to an embodiment.
  • FIG. 2 is a block diagram of the excavator according to the embodiment.
  • FIG. 3 is a block diagram of a power storage
  • FIG. 9 is an equivalent circuit diagram of a power storage circuit according to another embodiment.
  • 10A is an equivalent circuit diagram of a storage circuit according to still another embodiment and a block diagram of a control device
  • FIG. 10B is an analog value before and after A / D conversion of charge / discharge current by the control device shown in FIG. 10A. It is a graph which shows a response
  • 11A is an equivalent circuit diagram of a storage circuit according to a comparative example and a block diagram of a control device
  • FIG. 11B shows an analog value and a digital value before and after A / D conversion of charge / discharge current by the control device shown in FIG. 11A. It is a graph which shows correspondence of these.
  • FIG. 1 shows a side view of an excavator according to the embodiment.
  • An upper turning body 21 is mounted on the lower traveling body 20 so as to be turnable.
  • a boom 23 is connected to the upper swing body 21, an arm 25 is connected to the boom 23, and a bucket 27 is connected to the arm 25.
  • the boom cylinder 24 expands and contracts, the posture of the boom 23 changes.
  • the arm cylinder 26 expands and contracts, the posture of the arm 25 changes. Due to the expansion and contraction of the bucket cylinder 28, the posture of the bucket 27 changes.
  • the boom cylinder 24, the arm cylinder 26, and the bucket cylinder 28 are hydraulically driven.
  • the upper swing body 21 is equipped with a swing motor 22, an engine 30, a motor generator 31, a power storage circuit 40, and a power conversion device 50.
  • the motor generator 31 generates power with the power of the engine 30. The generated power is charged in the storage circuit 40.
  • the turning electric motor 22 is driven by the electric power from the power storage circuit 40 and turns the upper turning body 21.
  • the power conversion device 50 includes a step-up / down converter for performing charge / discharge control of the storage circuit 40, an inverter for driving the swing motor 22, and the like.
  • the motor generator 31 also operates as an electric motor and assists the engine 30.
  • the turning electric motor 22 also operates as a generator and generates regenerative power from the turning kinetic energy of the upper turning body 21.
  • FIG. 2 shows a block diagram of the excavator according to the first embodiment.
  • the mechanical power system is represented by a double line
  • the high-pressure hydraulic line is represented by a thick solid line
  • the electric control system is represented by a thin solid line
  • the pilot line is represented by a broken line.
  • the drive shaft of the engine 30 is connected to the input shaft of the torque transmission mechanism 32.
  • the engine 30 is an engine that generates a driving force by a fuel other than electricity, for example, an internal combustion engine such as a diesel engine.
  • the engine 30 is always driven during operation of the work machine.
  • the drive shaft of the motor generator 31 is connected to the other input shaft of the torque transmission mechanism 32.
  • the motor generator 31 can perform both the electric (assist) operation and the power generation operation.
  • an internal magnet embedded (IPM) motor in which a magnet is embedded in the rotor is used.
  • the torque transmission mechanism 32 has two input shafts and one output shaft.
  • the output shaft is connected to the drive shaft of the main pump 75.
  • the motor generator 31 When the load applied to the engine 30 is large, the motor generator 31 performs an assist operation, and the driving force of the motor generator 31 is transmitted to the main pump 75 via the torque transmission mechanism 32. Thereby, the load applied to the engine 30 is reduced. On the other hand, when the load applied to the engine 30 is small, the driving force of the engine 30 is transmitted to the motor generator 31 via the torque transmission mechanism 32, so that the motor generator 31 is operated for power generation.
  • the main pump 75 supplies hydraulic pressure to the control valve 77 via the high pressure hydraulic line 76.
  • the control valve 77 distributes hydraulic pressure to the hydraulic motors 29A and 29B, the boom cylinder 24, the arm cylinder 26, and the bucket cylinder 28 in accordance with a command from the driver.
  • the hydraulic motors 29A and 29B drive the two left and right crawlers provided in the lower traveling body 20 shown in FIG.
  • the three-phase AC wiring 60 connects the inverter 51 and the motor generator 31.
  • a DC wiring (bus line) 61 connects the inverter 51 and the storage circuit 40.
  • a three-phase AC wiring 62 connects the turning electric motor 22 and the inverter 52.
  • a DC wiring (bus line) 63 connects the inverter 52 and the storage circuit 40. Inverters 51 and 52 and power storage circuit 40 are controlled by control device 90.
  • the inverter 51 controls the operation of the motor generator 31 based on a command from the control device 90. Switching between the assist operation and the power generation operation of the motor generator 31 is performed by the inverter 51.
  • the turning motor 22 is AC driven by the inverter 52 and can perform both power running operation and regenerative operation.
  • an IPM motor is used for the swing motor 22.
  • electric power is supplied from the power storage circuit 40 to the swing motor 22 via the inverter 52.
  • the turning electric motor 22 turns the upper turning body 21 (FIG. 1) via the speed reducer 80.
  • the rotational motion of the upper swing body 21 is transmitted to the swing motor 22 via the speed reducer 80, so that the swing motor 22 generates regenerative power.
  • the generated regenerative power is supplied to the storage circuit 40 via the inverter 52. Thereby, the power storage device in the power storage circuit 40 is charged.
  • the resolver 81 detects the position of the rotating shaft of the turning electric motor 22 in the rotational direction.
  • the detection result of the resolver 81 is input to the control device 90.
  • the control device 90 By detecting the position of the rotating shaft in the rotational direction before and after the operation of the turning electric motor 22, the turning angle and the turning direction are derived.
  • the mechanical brake 82 is connected to the rotating shaft of the turning electric motor 22 and generates a mechanical braking force.
  • the braking state and the release state of the mechanical brake 82 are controlled by the control device 90 and switched by an electromagnetic switch.
  • the pilot pump 78 generates a pilot pressure necessary for the hydraulic operation system.
  • the generated pilot pressure is supplied to the operating device 83 via the pilot line 79.
  • the operation device 83 includes a lever and a pedal and is operated by a driver.
  • the operating device 83 converts the primary side hydraulic pressure supplied from the pilot line 79 into a secondary side hydraulic pressure in accordance with the operation of the driver.
  • the secondary side hydraulic pressure is transmitted to the control valve 77 via the hydraulic line 84 and to the pressure sensor 86 via the other hydraulic line 85.
  • the detection result of the pressure detected by the pressure sensor 86 is input to the control device 90.
  • the control apparatus 90 can detect the operation state of the lower traveling body 20, the turning electric motor 22, the boom 23, the arm 25, and the bucket 27 (FIG. 1).
  • FIG. 3 shows a block diagram of the storage circuit 40.
  • a plurality, for example, two step-up / down converters 41 are connected in parallel to each other.
  • a power storage device 45 is connected to an input terminal of the step-up / down converter 41 connected in parallel with each other through a disconnection circuit 35.
  • Isolation circuit 35 includes a relay 36 disposed corresponding to each of step-up / down converters 41.
  • the relay 36 is controlled by the control device 90.
  • buck-boost converter 41 is electrically disconnected from power storage device 45.
  • the step-up / down converters 41 connected in parallel to each other are electrically disconnected.
  • the voltmeter 56 measures the voltage between the terminals of the power storage device 45. The measurement result is input to the control device 90.
  • the output terminals of the step-up / down converter 41 connected in parallel to each other are connected to the DC bus line 55.
  • a voltmeter 57 and a capacitor 46 for smoothing voltage and current are connected between the power supply line of the DC bus line 55 and the ground line.
  • the voltmeter 57 measures the voltage between the output terminals of the buck-boost converter 41 (that is, the voltage of the DC bus line 55). The measurement result is input to the control device 90.
  • the output terminal of the step-up / down converter 41 is connected to the inverters 51 and 52 via DC wirings 61 and 63.
  • the step-up / down converter 41 controls charging / discharging of the power storage device 45 (FIG. 3).
  • the control device 90 monitors the normality of each operation state of the buck-boost converter 41.
  • the normality of the operation is performed, for example, by measuring a charge / discharge current flowing through the buck-boost converter 41.
  • the control device 90 controls the disconnection circuit 35 so that the step-up / step-down converter 41 whose operation state is determined to be abnormal is Disconnect from the pressure converter. Even after the abnormal step-up / down converter 41 is disconnected, the operation of the step-up / down converter having the normal operation state is continued. For this reason, even if one buck-boost converter 41 breaks down, excavation work can be continued.
  • FIG. 4 shows an equivalent circuit diagram of the buck-boost converter 41.
  • a series circuit of a step-up switching element 42A and a step-down switching element 42B is connected.
  • IGBT insulated gate bipolar transistors
  • the emitter of the step-up IGBT 42A is connected to the negative output terminal, and the collector of the step-down IGBT 42B is connected to the positive output terminal.
  • An interconnection point between the step-up IGBT 42 ⁇ / b> A and the step-down IGBT 42 ⁇ / b> B is connected to the positive input terminal via the reactor 44. Both the negative output terminal and the negative input terminal are grounded.
  • a parallel circuit of the relay 48 and the resistor 49 is connected to the reactor 44 in series.
  • the control device 90 performs on / off control of the relay 48. During normal operation, the relay 48 is on.
  • Commutation diodes (free wheel diodes) 43A and 43B are connected in parallel to the step-up IGBT 42A and the step-down IGBT 42B, respectively, with the direction from the emitter toward the collector being the forward direction.
  • the control device 90 applies a control pulse width modulation (PWM) signal to the gate electrodes of the step-up IGBT 42A and the step-down IGBT 42B.
  • PWM pulse width modulation
  • the switching elements 42A and 42B and the commutation diodes 43A and 43B are modularized to form the switching module 42.
  • the ammeter 38 measures the charge / discharge current flowing through the reactor 44.
  • the measurement result is input to the control device 90.
  • the control device 90 determines the normality of the operation of the buck-boost converter 41 based on the measurement result of the ammeter 38.
  • a PWM voltage is applied to the gate electrode of the boosting IGBT 42A.
  • the inter-terminal voltage of the power storage device 45 is boosted by the induced electromotive force generated in the reactor 44, and the discharge current flows out from the output terminal via the commutation diode 43B.
  • a PWM voltage is applied to the gate electrode of the step-down IGBT 42B.
  • the power storage device 45 (FIG. 3) is charged via the commutation diode 43A by the induced electromotive force generated in the reactor 44 during the switching operation of the step-down IGBT 42B.
  • the control device 90 synchronously controls the plurality of step-up / down converters 41 based on the measurement results of the voltmeters 56 and 57 (FIG. 3). That is, the plurality of step-up / down converters 41 are synchronously controlled based on the same input information. Specifically, the pulse width of the PWM voltage applied to the gate electrodes of the switching elements 42A and 42B is changed under the condition that the pulse widths of the PWM voltages applied to the plurality of buck-boost converters 41 are equal.
  • the control of the plurality of step-up / down converters 41 is performed independently of the control of the inverters 51 and 52.
  • the phase of the PWM voltage applied to the plurality of step-up / down converters 41 may be shifted. By shifting the phase of the PWM voltage, the ripple of the voltage output from the plurality of step-up / down converters 41 to the DC bus line 55 (FIG. 3) can be reduced.
  • n buck-boost converters 41 it is preferable to shift the phase of the PWM voltage applied to the n buck-boost converters 41 by 360 ° / n.
  • two buck-boost converters 41 are connected in parallel, it is preferable to shift the phase of the PWM voltage by 180 °.
  • the three buck-boost converters 41 are connected in parallel, it is preferable that the phases of the PWM voltages are shifted from each other by 120 °.
  • the relay 48 When the voltage between the output terminals of the buck-boost converter 41 is lower than the voltage between the input terminals, that is, the voltage between the terminals of the power storage device 45 (FIG. 3), the relay 48 is turned off. At this time, the power storage device 45 is discharged via the resistor 49, the reactor 44, and the commutation diode 43B, and a discharge current flows out from the output terminal. The resistor 49 prevents an excessive discharge current from flowing.
  • the step-down IGBT 42B is not necessary. Further, the commutation diode 43A connected in parallel to the boosting IGBT 42A is not necessary.
  • FIG. 5 shows an equivalent circuit diagram of the inverter 52 (FIG. 2) for the swing motor 22.
  • the inverter 51 for the motor generator 31 has the same configuration as the inverter 52 for the swing motor 22.
  • a U-phase switching module 53U, a V-phase switching module 53V, and a W-phase switching module 53W are inserted in parallel.
  • Each of these switching modules includes two IGBTs connected in series, and a commutation diode inserted in parallel with each of the IGBTs.
  • the interconnection points of the two IGBTs are connected to the U-phase, V-phase, and W-phase terminals of the swing electric motor 22, respectively.
  • a control signal subjected to pulse width modulation (PWM) is applied from the control device 90 to the gate electrode of each IGBT.
  • PWM pulse width modulation
  • FIG. 6A shows a cross-sectional view of the power conversion device 50 (FIG. 1).
  • the housing 65 includes a side wall 66, a partition wall 67, a first lid 68, and a second lid 69.
  • the flat cross section of the side wall 66 is, for example, a rectangle, and its top and bottom are open.
  • the upper and lower open portions of the side wall 66 are closed with a first lid 68 and a second lid 69, respectively.
  • a partition wall 67 is provided at substantially the center of the side wall 66 in the height direction.
  • the partition wall 67 is orthogonal to the height direction of the side wall 66 and partitions the internal space of the housing 65 into two spaces. Of the two spaces partitioned by the partition wall 67, the space on the first lid 68 side is referred to as a “first space” 91, and the space on the second lid 69 side is referred to as a “second space” 92. And
  • a flow path (cooling mechanism) 94 is formed inside the partition wall 67.
  • the cooling medium flowing through the flow path 94 cools the partition wall 67.
  • the partition plate 67 partitions the space in the housing 65 and also functions as a cooling plate.
  • the switching module 42 of the buck-boost converter 41 (FIG. 3), the U-phase switching module 53U, the V-phase switching module 53V, and the W-phase switching module 53W of the inverter 52 (FIG. 4). Contained.
  • the switching modules 42, 53 U, 53 V, and 53 W are mounted on the surface of the partition wall 67 on the first space 91 side and are thermally coupled to the partition plate 67. For this reason, the switching modules 42, 53 U, 53 V, and 53 W are cooled by the cooling medium flowing through the flow path 94.
  • the reactor 44, the relay 48, and the resistor 49 of the step-up / down converter 41 are accommodated.
  • the reactor 44, the relay 48, and the resistor 49 are mounted on the surface of the partition wall 67 on the second space 92 side, and are thermally coupled to the partition plate 67. For this reason, the reactor 44, the relay 48, and the resistor 49 are cooled by the cooling medium flowing through the flow path 94.
  • Openings 95 and 96 are formed in the partition wall 67.
  • the smoothing capacitor 46 is accommodated in the housing 65 so as to penetrate the opening 96.
  • the capacitor 46 for example, an electrolytic capacitor is used.
  • the outer shape of the electrolytic capacitor is generally larger than that of the switching modules 42, 53U, 53V, 53W, the reactor 44, and the like. For this reason, when the capacitor 46 is accommodated only in one of the first space 91 and the second space 92, the space for accommodating the capacitor 46 must be enlarged.
  • By disposing the capacitor 46 so as to pass through the opening 96 formed in the partition wall 67 an increase in the size of the housing 65 can be avoided.
  • the partition wall 67 that partitions the space in the housing 65 into the first space 91 and the second space 92, the overall rigidity of the power conversion device 50 can be increased.
  • the capacitor 46 is supported by the partition wall 67 through the tray 97.
  • the tray 97 is attached to the partition wall 67 so as to close the opening 96 from the second space 92 side. By adjusting the depth of the tray 97, a sufficient space for wiring or the like can be secured between the capacitor 46 and the first lid 68.
  • the condenser 46 is thermally coupled to the partition plate 67 via the tray 97 and is cooled via the tray 97 by the cooling medium flowing through the flow path 94.
  • the connector 98 is attached to the side wall 66.
  • the switching module 42, the reactor 44, the relay 48, the resistor 49, and the connector 98 are connected to each other by a wiring 99.
  • Some of the wirings 99 connect the components in the first space 91 and the components in the second space 92 through the opening 95.
  • FIG. 6B is a plan sectional view taken along one-dot chain line 6B-6B in FIG. 6A.
  • Switching modules 42, 53 U, 53 V, and 53 W are mounted on the partition wall 67.
  • the switching modules 54U, 54V, 54W constituting the inverter 51 (FIG. 2) are also mounted on the surface of the partition wall 67 on the first space 91 (FIG. 5A) side.
  • the switching module 47 of another step-up / down converter 41 (FIG. 3) different from the step-up / down converter 41 including the switching module 42 is also mounted on the surface of the partition wall 67 on the first space 91 (FIG. 5A) side.
  • a capacitor 46 is disposed in the opening 96.
  • a plurality of connectors 98 are attached to the side wall 66.
  • a cooling medium flow path 94 is formed in the partition wall 67.
  • the flow path 94 advances in a direction orthogonal to the direction from the opening 95 toward the opening 96 as a whole while meandering between the opening 95 and the opening 96. Both ends of the flow path 94 are open to the outer surface of the same side surface of the side wall 66 as the surface to which the connector 98 is attached.
  • the channel 94 overlaps the switching modules 53U, 53V, 53W, 54U, 54V, 54W, 42, and 47 in plan view. Thereby, a switching module etc. can be cooled efficiently.
  • the power converter 50 can be installed more freely than in a configuration in which both are disposed on different surfaces. The degree increases. In addition, maintenance inspection and repair of the power conversion device 50 can be easily performed.
  • the outer surface of the outer wall cannot be used for cooling the switching module or the like.
  • both surfaces of the partition wall 67 can be used for cooling the switching module or the like. For this reason, the mounting density of components to be cooled can be increased. In other words, the power conversion device 50 can be downsized.
  • Semiconductor elements such as switching modules 42, 47, 53U, 53V, and 53W are accommodated in the first space 91, and passive elements such as the reactor 44 and the resistor 49 are accommodated in the second space 92.
  • Semiconductor elements are more prone to failure than passive elements. Since components that are relatively susceptible to failure are collectively stored in the first space 91, it is possible to perform repair by removing the first lid 68 when the semiconductor element fails. It is preferable that the power converter 50 is mounted on the excavator so that the maintenance person can access the first lid 68 more easily than the second lid 69. Thereby, maintenance inspection work and repair can be performed easily.
  • the switching module 42 and the reactor 44 (FIG. 4).
  • a configuration in which a plurality of step-up / step-down converters 41 are connected in parallel is employed, more switching is used than when a single step-up / step-down converter having a large rated current is used.
  • the configuration in which two buck-boost converters 41 are connected in parallel includes two switching modules 42 and 47 (FIG. 6B).
  • FIG. 7 shows a block diagram of the storage circuit 40 when one of the two buck-boost converters 41 fails.
  • the failed buck-boost converter 41F is disconnected from the normal buck-boost converter 41.
  • the control device 90 turns off the relay 36 corresponding to the failed buck-boost converter 41F.
  • the relay 36 corresponding to the normal step-up / down converter 41 is turned on. Only normal buck-boost converter 41 is operated to charge / discharge power storage device 45.
  • FIG. 8 is a block diagram for explaining the flow of control of the turning electric motor 22.
  • the operating device 83 is operated by the driver.
  • the pressure sensor 86 detects the operation amount of the lever or the like of the operation device 83.
  • the detected lever operation amount is input to the control device 90.
  • the case where the turning operation of the upper turning body 21 (FIG. 1) is performed will be described.
  • the amount of operation of the lever of the operating device 83 corresponds to the required value of the turning speed of the turning electric motor 22.
  • the amount of operation of the turning lever is referred to as “requested output value Preq” for the turning electric motor 22.
  • the control device 90 generates an output control value Pcon based on the output request value Preq.
  • the control device 90 sends a control signal to the inverter 52 so that the turning electric motor 22 outputs power corresponding to the output control value Pcon.
  • the signs of the output control value Pcon and the output request value Preq indicate the rotation direction of the turning electric motor 22. For example, the positive output control value Pcon and the output request value Preq represent a right turn, and the negative output control value Pcon and the output request value Preq represent a left turn.
  • the output control value Pcon is equal to the output request value Preq.
  • the maximum absolute value of the output control value Pcon is limited by Pmax0.
  • the maximum absolute value of the output control value Pcon is Pmax1 which is smaller than the normal maximum value Pmax0. Limited.
  • the maximum value Pmax1 of the output control value Pcon is limited to be smaller than the maximum value Pmax0 at normal time, whereby the step-up / down converter 41 operating normally Therefore, it is possible to prevent an excessive discharge current from flowing.
  • the storage circuit 40 is composed of three or more buck-boost converters 41, it is preferable to vary the maximum value Pmax1 of the output control value Pcon according to the number of failed buck-boost converters 41.
  • one buck-boost converter 41 may be stopped and only the other buck-boost converter 41 may be operated. For example, when the control device 90 detects that the electrical load of the power storage circuit 40 has become less than the reference value, control for stopping some of the step-up / down converters 41 may be performed.
  • FIG. 9 shows an equivalent circuit diagram of a storage circuit according to another embodiment.
  • differences from the embodiment shown in FIGS. 3 to 6 will be described, and description of the same configuration will be omitted.
  • the power storage circuit 40 includes two buck-boost converters 41 connected in parallel to each other. However, in the embodiment shown in FIG. 9, only one buck-boost converter 41 stores power. It is connected between the device 45 and the DC bus line 55.
  • the inductance for generating the induced electromotive force is constituted by one reactor 44.
  • the inductance for generating the induced electromotive force is constituted by a plurality of reactors 44 connected in parallel to each other.
  • FIG. 9 shows an example in which two reactors 44 are connected in parallel.
  • the reactor 44 Since a plurality of reactors 44 are connected in parallel, the current flowing through each reactor 44 is reduced as compared with the case where one reactor is used. For this reason, the reactor 44 having a small rated current can be used. As the reactor 44, a reactor having an inductance such that the combined inductance of a plurality of reactors 44 connected in parallel has a desired value is selected.
  • a reactor with a small rated current is accommodated in a flat package rather than a reactor with a large rated current.
  • the area can be increased. For this reason, the cooling efficiency of the reactor 44 can be improved.
  • the electrical storage circuit 40 by another Example is demonstrated.
  • differences from the power storage circuit 40 illustrated in FIGS. 3 and 4 will be described, and description of the same configuration will be omitted.
  • FIG. 10A shows a block diagram of the storage circuit 40.
  • FIG. 10A shows one buck-boost converter 41, a plurality of buck-boost converters 41 may be connected in parallel as shown in FIG.
  • one ammeter 38 is arranged in one charge / discharge current path.
  • a bidirectional ammeter is used as the ammeter 38, and the ammeter 38 can measure the discharge current and the charging current.
  • two unidirectional ammeters 38A and 38B are arranged in one charge / discharge current path.
  • One ammeter 38A measures the discharge current
  • the other ammeter 38B measures the charging current.
  • the outputs of the ammeters 38A and 38B are respectively input to the analog input terminals of the A / D converter 93 of the control device 90 via operational amplifiers.
  • the A / D converter 93 has a plurality of analog input terminals, converts an analog signal input to one selected analog input terminal into a digital signal, and outputs the digital signal.
  • an analog terminal to which an output signal from the discharge ammeter 38A is input is selected.
  • the analog terminal to which the output signal from the charging ammeter 38B is input is selected.
  • FIG. 10B shows the correspondence between the analog value Ia and the digital value Id before and after the A / D conversion of the charge / discharge current.
  • the horizontal axis represents the analog value Ia of the charge / discharge current, and the vertical axis represents the digital value Id of the charge / discharge current.
  • the analog value Ia when the analog input terminal to which the output of the charging ammeter 38B is input is selected is defined as negative.
  • a case where the A / D converter 93 has a resolution of 12 bits will be described. For each of the discharge current and the charge current, 12-bit resolution, that is, 4096-level resolution from 0 to 4095 can be ensured.
  • FIG. 11A shows a block diagram of a power storage circuit 40 according to a comparative example.
  • a bidirectional ammeter 38 is used.
  • the output of the ammeter 38 is input to one input terminal of the comparator, and the output of the comparator is input to the analog input terminal of the A / D converter 93.
  • a reference voltage Ref is applied to the other input terminal of the comparator.
  • the reference voltage Ref corresponds to the output of the ammeter 38 when the maximum charging current is flowing.
  • FIG. 11B shows the correspondence between the analog value Ia and the digital value Id before and after the A / D conversion of the charge / discharge current.
  • the horizontal axis represents the analog value Ia of the charge / discharge current, and the vertical axis represents the digital value Id of the charge / discharge current.
  • the range from the maximum value of the discharge current to the negative maximum value of the charge current is digitally converted with a resolution of 12 bits. Therefore, for each of the discharge current and the charge current, only 12-bit resolution, that is, 2048 resolutions from 0 to 2047 can be ensured.
  • a discharge ammeter 30A and a charge ammeter 30B are arranged in the charge / discharge current path. Further, the output of the discharging ammeter 38A and the output of the charging ammeter 38B are input to different analog input terminals. For this reason, each of the discharge current and the charging current can be converted into a digital value with the maximum resolution of the A / D converter 93. Thereby, the precision of various control based on charging / discharging electric current can be raised.
  • the discharge ammeter 38 ⁇ / b> A and the charge ammeter 38 ⁇ / b> B may be disposed corresponding to each of the buck-boost converters 41 illustrated in FIG. 3, or may be disposed corresponding to the power storage device 45.

Abstract

An engine drives a generator, the electricity generated by the generator is stored in a power storage circuit, and a work-use electric motor is driven by electricity supplied from the power storage circuit. The work-use electric motor causes an upper rotating body to rotate. The power storage circuit has a power storage device and multiple buck-boost converters which are parallel-connected to each other. Each buck-boost converter contains a switching element and a reactor. Induced electromotive force is generated in the reactors by the switching of the switching elements, thereby boosting the voltage of the power storage device, which is then supplied to the work-use electric motor.

Description

掘削機Excavator
 本発明は、蓄電装置の出力電圧を昇降圧コンバータで昇圧して、作業用電動機を駆動する掘削機に関する。 The present invention relates to an excavator that boosts an output voltage of a power storage device with a buck-boost converter and drives a working electric motor.
 駆動機構の一部を電動化したハイブリッド型作業機械や、すべての駆動機構を電動化した電動作業機械が提案されている。作業機械には、ショベル等の掘削機が含まれる。ハイブリッド型作業機械や電動作業機械においては、一般に、蓄電装置に蓄積されている電力を昇降圧コンバータで昇圧し、昇降圧コンバータの出力によって電動機が駆動される。 A hybrid work machine in which a part of the drive mechanism is electrified and an electric work machine in which all the drive mechanisms are electrified have been proposed. The work machine includes an excavator such as an excavator. In a hybrid work machine or an electric work machine, generally, electric power stored in a power storage device is boosted by a buck-boost converter, and the electric motor is driven by the output of the buck-boost converter.
特開2010-124568号公報JP 2010-124568 A
 昇降圧コンバータは、通常、スイッチング素子及びリアクトルを含む。最大出力の大きな電動機を用いる場合、昇降圧コンバータのスイッチング素子やリアクトルにも、定格電流の大きなものを用いなければならない。定格電流の大きな素子を用いると、これらの素子を冷却するための冷却装置も大型化する。さらに、ハイブリッド型掘削機においては、ブームが取り付けられた旋回体の回転の加減速が頻繁に行われるため、蓄電装置の充放電が頻繁に切り替わり、発熱量も大きくなる。このため、ハイブリッド型の一般車両に用いられる昇降圧コンバータ用冷却装置に比べて、ハイブリッド型掘削機に用いられる冷却装置が大型化する。ハイブリッド型掘削機に搭載するために、効率的に冷却することが可能な昇降圧コンバータが望まれている。 A buck-boost converter usually includes a switching element and a reactor. When using a motor with a large maximum output, a switching element or a reactor of a buck-boost converter must also have a large rated current. When elements having a large rated current are used, the cooling device for cooling these elements is also enlarged. Further, in the hybrid excavator, since the rotation of the revolving body to which the boom is attached is frequently accelerated / decelerated, charging / discharging of the power storage device is frequently switched, and the amount of generated heat is also increased. For this reason, the cooling device used for the hybrid excavator is larger than the cooling device for the buck-boost converter used for the hybrid type general vehicle. In order to be mounted on a hybrid excavator, a step-up / down converter capable of efficiently cooling is desired.
 本発明の目的は、スイッチング素子やリアクトルに、定格電流の小さなものを用いることが可能な昇降圧コンバータを搭載した掘削機を提供することである。 An object of the present invention is to provide an excavator equipped with a step-up / down converter capable of using a switching element or a reactor having a small rated current.
 本発明の一観点によると、
 下部走行体と、
 前記下部走行体に旋回可能に搭載された上部旋回体と、
 エンジンと、
 前記エンジンの動力によって駆動される発電機と、
 電力を蓄電する蓄電回路と、
 前記発電機と前記蓄電回路とを接続するインバータと、
 前記蓄電回路から供給される電力によって駆動され、前記上部旋回体を旋回させる作業用電動機と
を有し、
 前記蓄電回路は、
 蓄電装置と、
 相互に並列に接続された複数の昇降圧コンバータと
を有し、
 前記昇降圧コンバータの各々は、スイッチング素子とリアクトルとを含み、前記スイッチング素子のスイッチング動作によって、前記リアクトルに誘導起電力を発生させることにより、前記蓄電装置の電圧を昇圧して前記作業用電動機に供給する掘削機が提供される。
According to one aspect of the invention,
A lower traveling body,
An upper revolving unit mounted on the lower traveling unit so as to be able to swivel;
Engine,
A generator driven by the power of the engine;
A storage circuit for storing electric power;
An inverter connecting the generator and the storage circuit;
Driven by electric power supplied from the power storage circuit, and has a working electric motor for turning the upper turning body,
The storage circuit is
A power storage device;
A plurality of buck-boost converters connected in parallel to each other;
Each of the step-up / step-down converters includes a switching element and a reactor, and generates an induced electromotive force in the reactor by a switching operation of the switching element, thereby boosting a voltage of the power storage device to the working electric motor. A supply excavator is provided.
 複数の昇降圧コンバータが相互に並列に接続されているため、1台の昇降圧コンバータに流れる電流が少なくなる。これにより、スイッチング素子やリアクトルに、定格電流の小さなものを用いることが可能になる。個々のスイッチング素子及びリアクトルの発熱量が少なくなるため、効率的な冷却が可能である。 Since multiple buck-boost converters are connected in parallel with each other, the current flowing through one buck-boost converter is reduced. As a result, it is possible to use a switching element or a reactor having a small rated current. Since the amount of heat generated by each switching element and reactor is reduced, efficient cooling is possible.
図1は、実施例による掘削機の側面図である。FIG. 1 is a side view of an excavator according to an embodiment. 図2は、実施例による掘削機のブロック図である。FIG. 2 is a block diagram of the excavator according to the embodiment. 図3は、実施例による掘削機に搭載された蓄電回路のブロック図である。FIG. 3 is a block diagram of a power storage circuit mounted on the excavator according to the embodiment. 図4は、蓄電回路に含まれる昇降圧コンバータの等価回路図である。FIG. 4 is an equivalent circuit diagram of the buck-boost converter included in the power storage circuit. 図5は、インバータの等価回路図である。FIG. 5 is an equivalent circuit diagram of the inverter. 図6は、昇降圧コンバータ及びインバータを収容した電力変換装置の断面図である。FIG. 6 is a cross-sectional view of a power conversion device that houses a buck-boost converter and an inverter. 図7は、1つの昇降圧コンバータが故障しているときの蓄電回路の動作を説明するブロック図である。FIG. 7 is a block diagram for explaining the operation of the storage circuit when one buck-boost converter has failed. 図8は、作業用電動機の制御の流れを示すブロック図である。FIG. 8 is a block diagram showing a control flow of the working electric motor. 図9は、他の実施例による蓄電回路の等価回路図である。FIG. 9 is an equivalent circuit diagram of a power storage circuit according to another embodiment. 図10Aは、さらに他の実施例による蓄電回路の等価回路図と制御装置のブロック図であり、図10Bは、図10Aに示した制御装置による充放電電流のA/D変換の前後のアナログ値とデジタル値との対応を示すグラフである。10A is an equivalent circuit diagram of a storage circuit according to still another embodiment and a block diagram of a control device, and FIG. 10B is an analog value before and after A / D conversion of charge / discharge current by the control device shown in FIG. 10A. It is a graph which shows a response | compatibility with a digital value. 図11Aは、比較例による蓄電回路の等価回路図と制御装置のブロック図であり、図11Bは、図11Aに示した制御装置による充放電電流のA/D変換前後のアナログ値とデジタル値との対応を示すグラフである。11A is an equivalent circuit diagram of a storage circuit according to a comparative example and a block diagram of a control device, and FIG. 11B shows an analog value and a digital value before and after A / D conversion of charge / discharge current by the control device shown in FIG. 11A. It is a graph which shows correspondence of these.
 図1に、実施例による掘削機の側面図を示す。下部走行体20に、上部旋回体21が旋回可能に搭載されている。上部旋回体21にブーム23が連結され、ブーム23にアーム25が連結され、アーム25にバケット27が連結されている。ブームシリンダ24の伸縮により、ブーム23の姿勢が変化する。アームシリンダ26の伸縮により、アーム25の姿勢が変化する。バケットシリンダ28の伸縮により、バケット27の姿勢が変化する。ブームシリンダ24、アームシリンダ26、及びバケットシリンダ28は、油圧駆動される。 FIG. 1 shows a side view of an excavator according to the embodiment. An upper turning body 21 is mounted on the lower traveling body 20 so as to be turnable. A boom 23 is connected to the upper swing body 21, an arm 25 is connected to the boom 23, and a bucket 27 is connected to the arm 25. As the boom cylinder 24 expands and contracts, the posture of the boom 23 changes. As the arm cylinder 26 expands and contracts, the posture of the arm 25 changes. Due to the expansion and contraction of the bucket cylinder 28, the posture of the bucket 27 changes. The boom cylinder 24, the arm cylinder 26, and the bucket cylinder 28 are hydraulically driven.
 上部旋回体21に、旋回電動機22、エンジン30、電動発電機31、蓄電回路40、及び電力変換装置50が搭載されている。エンジン30の動力によって電動発電機31が発電を行う。発電された電力が、蓄電回路40に充電される。旋回電動機22は、蓄電回路40からの電力によって駆動され、上部旋回体21を旋回させる。電力変換装置50は、蓄電回路40の充放電制御を行うための昇降圧コンバータ、旋回電動機22を駆動するためのインバータ等を含む。電動発電機31は、電動機としても動作し、エンジン30のアシストを行う。旋回電動機22は、発電機としても動作し、上部旋回体21の旋回運動エネルギから回生電力を発生する。 The upper swing body 21 is equipped with a swing motor 22, an engine 30, a motor generator 31, a power storage circuit 40, and a power conversion device 50. The motor generator 31 generates power with the power of the engine 30. The generated power is charged in the storage circuit 40. The turning electric motor 22 is driven by the electric power from the power storage circuit 40 and turns the upper turning body 21. The power conversion device 50 includes a step-up / down converter for performing charge / discharge control of the storage circuit 40, an inverter for driving the swing motor 22, and the like. The motor generator 31 also operates as an electric motor and assists the engine 30. The turning electric motor 22 also operates as a generator and generates regenerative power from the turning kinetic energy of the upper turning body 21.
 図2に、実施例1による掘削機のブロック図を示す。図2において、機械的動力系を二重線で表し、高圧油圧ラインを太い実線で表し、電気制御系を細い実線で表し、パイロットラインを破線で表す。 FIG. 2 shows a block diagram of the excavator according to the first embodiment. In FIG. 2, the mechanical power system is represented by a double line, the high-pressure hydraulic line is represented by a thick solid line, the electric control system is represented by a thin solid line, and the pilot line is represented by a broken line.
 エンジン30の駆動軸がトルク伝達機構32の入力軸に連結されている。エンジン30には、電気以外の燃料によって駆動力を発生するエンジン、例えばディーゼルエンジン等の内燃機関が用いられる。エンジン30は、作業機械の運転中は、常時駆動されている。 The drive shaft of the engine 30 is connected to the input shaft of the torque transmission mechanism 32. The engine 30 is an engine that generates a driving force by a fuel other than electricity, for example, an internal combustion engine such as a diesel engine. The engine 30 is always driven during operation of the work machine.
 電動発電機31の駆動軸が、トルク伝達機構32の他の入力軸に連結されている。電動発電機31は、電動(アシスト)運転と、発電運転との双方の運転動作を行うことができる。電動発電機31には、例えば磁石がロータ内部に埋め込まれた内部磁石埋込型(IPM)モータが用いられる。 The drive shaft of the motor generator 31 is connected to the other input shaft of the torque transmission mechanism 32. The motor generator 31 can perform both the electric (assist) operation and the power generation operation. As the motor generator 31, for example, an internal magnet embedded (IPM) motor in which a magnet is embedded in the rotor is used.
 トルク伝達機構32は、2つの入力軸と1つの出力軸とを有する。この出力軸には、メインポンプ75の駆動軸が連結されている。 The torque transmission mechanism 32 has two input shafts and one output shaft. The output shaft is connected to the drive shaft of the main pump 75.
 エンジン30に加わる負荷が大きい場合には、電動発電機31がアシスト運転を行い、電動発電機31の駆動力がトルク伝達機構32を介してメインポンプ75に伝達される。これにより、エンジン30に加わる負荷が軽減される。一方、エンジン30に加わる負荷が小さい場合には、エンジン30の駆動力がトルク伝達機構32を介して電動発電機31に伝達されることにより、電動発電機31が発電運転される。 When the load applied to the engine 30 is large, the motor generator 31 performs an assist operation, and the driving force of the motor generator 31 is transmitted to the main pump 75 via the torque transmission mechanism 32. Thereby, the load applied to the engine 30 is reduced. On the other hand, when the load applied to the engine 30 is small, the driving force of the engine 30 is transmitted to the motor generator 31 via the torque transmission mechanism 32, so that the motor generator 31 is operated for power generation.
 メインポンプ75は、高圧油圧ライン76を介して、コントロールバルブ77に油圧を供給する。コントロールバルブ77は、運転者からの指令により、油圧モータ29A、29B、ブームシリンダ24、アームシリンダ26、及びバケットシリンダ28に油圧を分配する。油圧モータ29A及び29Bは、それぞれ図1に示した下部走行体20に備えられた左右の2本のクローラを駆動する。 The main pump 75 supplies hydraulic pressure to the control valve 77 via the high pressure hydraulic line 76. The control valve 77 distributes hydraulic pressure to the hydraulic motors 29A and 29B, the boom cylinder 24, the arm cylinder 26, and the bucket cylinder 28 in accordance with a command from the driver. The hydraulic motors 29A and 29B drive the two left and right crawlers provided in the lower traveling body 20 shown in FIG.
 三相交流配線60が、インバータ51と電動発電機31とを接続する。直流配線(バスライン)61が、インバータ51と蓄電回路40とを接続する。三相交流配線62が、旋回電動機22とインバータ52とを接続する。直流配線(バスライン)63が、インバータ52と蓄電回路40とを接続する。インバータ51、52、及び蓄電回路40は、制御装置90により制御される。 The three-phase AC wiring 60 connects the inverter 51 and the motor generator 31. A DC wiring (bus line) 61 connects the inverter 51 and the storage circuit 40. A three-phase AC wiring 62 connects the turning electric motor 22 and the inverter 52. A DC wiring (bus line) 63 connects the inverter 52 and the storage circuit 40. Inverters 51 and 52 and power storage circuit 40 are controlled by control device 90.
 インバータ51は、制御装置90からの指令に基づき、電動発電機31の運転制御を行う。電動発電機31のアシスト運転と発電運転との切り替えが、インバータ51により行われる。 The inverter 51 controls the operation of the motor generator 31 based on a command from the control device 90. Switching between the assist operation and the power generation operation of the motor generator 31 is performed by the inverter 51.
 電動発電機31がアシスト運転されている期間は、必要な電力が、蓄電回路40からインバータ51を通して電動発電機31に供給される。電動発電機31が発電運転されている期間は、電動発電機31によって発電された電力が、インバータ51を通して蓄電回路40に供給される。これにより、蓄電回路40内の蓄電装置が充電される。 During the period in which the motor generator 31 is assisted, necessary power is supplied from the power storage circuit 40 to the motor generator 31 through the inverter 51. During the period in which the motor generator 31 is generating, the electric power generated by the motor generator 31 is supplied to the storage circuit 40 through the inverter 51. Thereby, the power storage device in the power storage circuit 40 is charged.
 旋回電動機22は、インバータ52によって交流駆動され、力行動作及び回生動作の双方の運転を行うことができる。旋回電動機22には、例えばIPMモータが用いられる。旋回電動機22の力行動作中は、蓄電回路40からインバータ52を介して旋回電動機22に電力が供給される。旋回電動機22が、減速機80を介して、上部旋回体21(図1)を旋回させる。回生運転時には、上部旋回体21の回転運動が、減速機80を介して旋回電動機22に伝達されることにより、旋回電動機22が回生電力を発生する。発生した回生電力は、インバータ52を介して蓄電回路40に供給される。これにより、蓄電回路40内の蓄電装置が充電される。 The turning motor 22 is AC driven by the inverter 52 and can perform both power running operation and regenerative operation. For example, an IPM motor is used for the swing motor 22. During the power running operation of the swing motor 22, electric power is supplied from the power storage circuit 40 to the swing motor 22 via the inverter 52. The turning electric motor 22 turns the upper turning body 21 (FIG. 1) via the speed reducer 80. During the regenerative operation, the rotational motion of the upper swing body 21 is transmitted to the swing motor 22 via the speed reducer 80, so that the swing motor 22 generates regenerative power. The generated regenerative power is supplied to the storage circuit 40 via the inverter 52. Thereby, the power storage device in the power storage circuit 40 is charged.
 レゾルバ81が、旋回電動機22の回転軸の回転方向の位置を検出する。レゾルバ81の検出結果が、制御装置90に入力される。旋回電動機22の運転前と運転後における回転軸の回転方向の位置を検出することにより、旋回角度及び旋回方向が導出される。 The resolver 81 detects the position of the rotating shaft of the turning electric motor 22 in the rotational direction. The detection result of the resolver 81 is input to the control device 90. By detecting the position of the rotating shaft in the rotational direction before and after the operation of the turning electric motor 22, the turning angle and the turning direction are derived.
 メカニカルブレーキ82が、旋回電動機22の回転軸に連結されており、機械的な制動力を発生する。メカニカルブレーキ82の制動状態と解除状態とは、制御装置90からの制御を受け、電磁的スイッチにより切り替えられる。 The mechanical brake 82 is connected to the rotating shaft of the turning electric motor 22 and generates a mechanical braking force. The braking state and the release state of the mechanical brake 82 are controlled by the control device 90 and switched by an electromagnetic switch.
 パイロットポンプ78が、油圧操作系に必要なパイロット圧を発生する。発生したパイロット圧は、パイロットライン79を介して操作装置83に供給される。操作装置83は、レバーやペダルを含み、運転者によって操作される。操作装置83は、パイロットライン79から供給される1次側の油圧を、運転者の操作に応じて、2次側の油圧に変換する。2次側の油圧は、油圧ライン84を介してコントロールバルブ77に伝達されると共に、他の油圧ライン85を介して圧力センサ86に伝達される。 The pilot pump 78 generates a pilot pressure necessary for the hydraulic operation system. The generated pilot pressure is supplied to the operating device 83 via the pilot line 79. The operation device 83 includes a lever and a pedal and is operated by a driver. The operating device 83 converts the primary side hydraulic pressure supplied from the pilot line 79 into a secondary side hydraulic pressure in accordance with the operation of the driver. The secondary side hydraulic pressure is transmitted to the control valve 77 via the hydraulic line 84 and to the pressure sensor 86 via the other hydraulic line 85.
 圧力センサ86で検出された圧力の検出結果が、制御装置90に入力される。これにより、制御装置90は、下部走行体20、旋回電動機22、ブーム23、アーム25、及びバケット27(図1)の操作の状況を検知することができる。 The detection result of the pressure detected by the pressure sensor 86 is input to the control device 90. Thereby, the control apparatus 90 can detect the operation state of the lower traveling body 20, the turning electric motor 22, the boom 23, the arm 25, and the bucket 27 (FIG. 1).
 図3に、蓄電回路40のブロック図を示す。複数、例えば2個の昇降圧コンバータ41が相互に並列に接続されている。相互に並列接続された昇降圧コンバータ41の入力端子に、切り離し回路35を介して蓄電装置45が接続されている。蓄電装置45には、例えば電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン二次電池等が用いられる。切り離し回路35は、昇降圧コンバータ41の各々に対応して配置されたリレー36を含む。リレー36は、制御装置90によって制御される。リレー36をオフにすると、昇降圧コンバータ41が蓄電装置45から電気的に切り離される。また、相互に並列接続された昇降圧コンバータ41同士が電気的に切り離される。蓄電装置45の端子間電圧を、電圧計56が計測する。計測結果が制御装置90に入力される。 FIG. 3 shows a block diagram of the storage circuit 40. A plurality, for example, two step-up / down converters 41 are connected in parallel to each other. A power storage device 45 is connected to an input terminal of the step-up / down converter 41 connected in parallel with each other through a disconnection circuit 35. For the power storage device 45, for example, an electric double layer capacitor, a lithium ion capacitor, a lithium ion secondary battery, or the like is used. Isolation circuit 35 includes a relay 36 disposed corresponding to each of step-up / down converters 41. The relay 36 is controlled by the control device 90. When relay 36 is turned off, buck-boost converter 41 is electrically disconnected from power storage device 45. Further, the step-up / down converters 41 connected in parallel to each other are electrically disconnected. The voltmeter 56 measures the voltage between the terminals of the power storage device 45. The measurement result is input to the control device 90.
 相互に並列接続された昇降圧コンバータ41の出力端子が、DCバスライン55に接続されている。電圧計57、及び電圧及び電流を平滑化するためのコンデンサ46が、DCバスライン55の電源線と接地線との間に接続されている。電圧計57は、昇降圧コンバータ41の出力端子間の電圧(すなわち、DCバスライン55の電圧)を計測する。計測結果が制御装置90に入力される。昇降圧コンバータ41の出力端子は、直流配線61、63を介してインバータ51、52に接続されている。昇降圧コンバータ41は、蓄電装置45(図3)の充放電の制御を行う。 The output terminals of the step-up / down converter 41 connected in parallel to each other are connected to the DC bus line 55. A voltmeter 57 and a capacitor 46 for smoothing voltage and current are connected between the power supply line of the DC bus line 55 and the ground line. The voltmeter 57 measures the voltage between the output terminals of the buck-boost converter 41 (that is, the voltage of the DC bus line 55). The measurement result is input to the control device 90. The output terminal of the step-up / down converter 41 is connected to the inverters 51 and 52 via DC wirings 61 and 63. The step-up / down converter 41 controls charging / discharging of the power storage device 45 (FIG. 3).
 制御装置90が、昇降圧コンバータ41の各々の動作状態の正常性を監視する。動作の正常性は、例えば昇降圧コンバータ41を流れる充放電電流を計測することにより行われる。少なくとも1つの昇降圧コンバータの動作状態が異常と判定された場合、制御装置90は、切り離し回路35を制御して、動作状態が異常と判定された昇降圧コンバータ41を、動作状態が正常の昇降圧コンバータから切り離す。異常の昇降圧コンバータ41が切り離された後も、動作状態が正常の昇降圧コンバータの動作は継続される。このため、1つの昇降圧コンバータ41が故障しても、掘削作業を継続することができる。 The control device 90 monitors the normality of each operation state of the buck-boost converter 41. The normality of the operation is performed, for example, by measuring a charge / discharge current flowing through the buck-boost converter 41. When it is determined that the operation state of at least one step-up / down converter is abnormal, the control device 90 controls the disconnection circuit 35 so that the step-up / step-down converter 41 whose operation state is determined to be abnormal is Disconnect from the pressure converter. Even after the abnormal step-up / down converter 41 is disconnected, the operation of the step-up / down converter having the normal operation state is continued. For this reason, even if one buck-boost converter 41 breaks down, excavation work can be continued.
 図4に、昇降圧コンバータ41の等価回路図を示す。昇降圧コンバータ41の出力端子の間に、昇圧用のスイッチング素子42Aと降圧用のスイッチング素子42Bとの直列回路が接続されている。スイッチング素子42A、42Bには、例えば絶縁ゲートバイポーラトランジスタ(IGBT)が用いられる。昇圧用IGBT42Aのエミッタが負極の出力端子に接続され、降圧用IGBT42Bのコレクタが、正極の出力端子に接続されている。昇圧用IGBT42Aと降圧用IGBT42Bの相互接続点が、リアクトル44を介して、正極入力端子に接続されている。負極出力端子及び負極入力端子は、共に接地されている。リレー48と抵抗器49との並列回路が、リアクトル44に直列に接続されている。制御装置90が、リレー48のオンオフ制御を行う。通常動作中は、リレー48はオン状態にされている。 FIG. 4 shows an equivalent circuit diagram of the buck-boost converter 41. Between the output terminals of the step-up / down converter 41, a series circuit of a step-up switching element 42A and a step-down switching element 42B is connected. For example, insulated gate bipolar transistors (IGBT) are used as the switching elements 42A and 42B. The emitter of the step-up IGBT 42A is connected to the negative output terminal, and the collector of the step-down IGBT 42B is connected to the positive output terminal. An interconnection point between the step-up IGBT 42 </ b> A and the step-down IGBT 42 </ b> B is connected to the positive input terminal via the reactor 44. Both the negative output terminal and the negative input terminal are grounded. A parallel circuit of the relay 48 and the resistor 49 is connected to the reactor 44 in series. The control device 90 performs on / off control of the relay 48. During normal operation, the relay 48 is on.
 昇圧用IGBT42A及び降圧用IGBT42Bに、それぞれ転流ダイオード(フリーホイールダイオード)43A、43Bが、エミッタからコレクタに向かう向きが順方向になる向きで並列接続されている。制御装置90が、昇圧用IGBT42A及び降圧用IGBT42Bのゲート電極に、制御用のパルス幅変調(PWM)信号を印加する。一般的に、スイッチング素子42A、42B及び転流ダイオード43A、43Bは、モジュール化されてスイッチングモジュール42を構成する。 Commutation diodes (free wheel diodes) 43A and 43B are connected in parallel to the step-up IGBT 42A and the step-down IGBT 42B, respectively, with the direction from the emitter toward the collector being the forward direction. The control device 90 applies a control pulse width modulation (PWM) signal to the gate electrodes of the step-up IGBT 42A and the step-down IGBT 42B. Generally, the switching elements 42A and 42B and the commutation diodes 43A and 43B are modularized to form the switching module 42.
 電流計38が、リアクトル44を流れる充放電電流を計測する。計測結果が制御装置90に入力される。制御装置90は、電流計38の計測結果に基づいて、昇降圧コンバータ41の動作の正常性を判定する。 The ammeter 38 measures the charge / discharge current flowing through the reactor 44. The measurement result is input to the control device 90. The control device 90 determines the normality of the operation of the buck-boost converter 41 based on the measurement result of the ammeter 38.
 以下、昇圧動作(放電動作)について説明する。昇圧用IGBT42Aのゲート電極にPWM電圧を印加する。昇圧用IGBT42Aのスイッチング動作時に、リアクトル44に発生する誘導起電力によって、蓄電装置45の端子間電圧が昇圧され、転流ダイオード43Bを経由して出力端子から放電電流が流出する。 Hereinafter, the boosting operation (discharging operation) will be described. A PWM voltage is applied to the gate electrode of the boosting IGBT 42A. During the switching operation of the boosting IGBT 42A, the inter-terminal voltage of the power storage device 45 is boosted by the induced electromotive force generated in the reactor 44, and the discharge current flows out from the output terminal via the commutation diode 43B.
 次に、降圧動作(充電動作)について説明する。降圧用IGBT42Bのゲート電極に、PWM電圧を印加する。降圧用IGBT42Bのスイッチング動作時に、リアクトル44に発生する誘導起電力により、転流ダイオード43Aを経由して、蓄電装置45(図3)が充電される。 Next, the step-down operation (charging operation) will be described. A PWM voltage is applied to the gate electrode of the step-down IGBT 42B. The power storage device 45 (FIG. 3) is charged via the commutation diode 43A by the induced electromotive force generated in the reactor 44 during the switching operation of the step-down IGBT 42B.
 制御装置90は、電圧計56、57(図3)の計測結果に基づいて、複数の昇降圧コンバータ41を、同期制御する。すなわち、複数の昇降圧コンバータ41が、同一の入力情報に基づいて同期制御される。具体的には、複数の昇降圧コンバータ41に与えるPWM電圧のパルス幅が等しくなる条件の下で、スイッチング素子42A、42Bのゲート電極に印加するPWM電圧のパルス幅を変化させる。複数の昇降圧コンバータ41の制御は、インバータ51、52の制御とは独立して行われる。 The control device 90 synchronously controls the plurality of step-up / down converters 41 based on the measurement results of the voltmeters 56 and 57 (FIG. 3). That is, the plurality of step-up / down converters 41 are synchronously controlled based on the same input information. Specifically, the pulse width of the PWM voltage applied to the gate electrodes of the switching elements 42A and 42B is changed under the condition that the pulse widths of the PWM voltages applied to the plurality of buck-boost converters 41 are equal. The control of the plurality of step-up / down converters 41 is performed independently of the control of the inverters 51 and 52.
 複数の昇降圧コンバータ41に与えるPWM電圧の位相をずらしてもよい。PWM電圧の位相をずらすことにより、複数の昇降圧コンバータ41からDCバスライン55(図3)に出力される電圧のリップルを低減することができる。n個の昇降圧コンバータ41が接続されている場合、n個の昇降圧コンバータ41に与えるPWM電圧の位相を360°/nずつずらすことが好ましい。例えば、2つの昇降圧コンバータ41が並列接続されている場合には、PWM電圧の位相を相互に180°ずらすことが好ましい。3つの昇降圧コンバータ41が並列接続されている場合には、PWM電圧の位相を相互に120°ずらすことが好ましい。 The phase of the PWM voltage applied to the plurality of step-up / down converters 41 may be shifted. By shifting the phase of the PWM voltage, the ripple of the voltage output from the plurality of step-up / down converters 41 to the DC bus line 55 (FIG. 3) can be reduced. When n buck-boost converters 41 are connected, it is preferable to shift the phase of the PWM voltage applied to the n buck-boost converters 41 by 360 ° / n. For example, when two buck-boost converters 41 are connected in parallel, it is preferable to shift the phase of the PWM voltage by 180 °. When the three buck-boost converters 41 are connected in parallel, it is preferable that the phases of the PWM voltages are shifted from each other by 120 °.
 昇降圧コンバータ41の出力端子間の電圧が、入力端子間の電圧、すなわち蓄電装置45(図3)の端子間電圧よりも低いとき、リレー48がオフにされる。このとき、抵抗器49、リアクトル44、転流ダイオード43Bを介して、蓄電装置45が放電され、出力端子から放電電流が流出する。抵抗器49は、過大な放電電流が流れることを防止する。 When the voltage between the output terminals of the buck-boost converter 41 is lower than the voltage between the input terminals, that is, the voltage between the terminals of the power storage device 45 (FIG. 3), the relay 48 is turned off. At this time, the power storage device 45 is discharged via the resistor 49, the reactor 44, and the commutation diode 43B, and a discharge current flows out from the output terminal. The resistor 49 prevents an excessive discharge current from flowing.
 蓄電装置45に一次電池が用いられ、蓄電装置45の放電制御のみを行う場合には、降圧用IGBT42Bは不要である。さらに、昇圧用IGBT42Aに並列に接続された転流ダイオード43Aも不要である。 When the primary battery is used for the power storage device 45 and only the discharge control of the power storage device 45 is performed, the step-down IGBT 42B is not necessary. Further, the commutation diode 43A connected in parallel to the boosting IGBT 42A is not necessary.
 図5に、旋回電動機22用のインバータ52(図2)の等価回路図を示す。電動発電機31用のインバータ51も、旋回電動機22用のインバータ52と同様の構成を有する。 FIG. 5 shows an equivalent circuit diagram of the inverter 52 (FIG. 2) for the swing motor 22. The inverter 51 for the motor generator 31 has the same configuration as the inverter 52 for the swing motor 22.
 直流配線63の間に、U相用スイッチングモジュール53U、V相用スイッチングモジュール53V、及びW相用スイッチングモジュール53Wが並列に挿入されている。これらスイッチングモジュールの各々は、直列接続された2つのIGBT、及びIGBTの各々に並列に挿入された転流ダイオードを含む。2つのIGBTの相互接続点が、それぞれ旋回電動機22のU相、V相、W相の端子に接続される。各IGBTのゲート電極には、制御装置90からパルス幅変調(PWM)された制御信号が印加される。 Between the DC wiring 63, a U-phase switching module 53U, a V-phase switching module 53V, and a W-phase switching module 53W are inserted in parallel. Each of these switching modules includes two IGBTs connected in series, and a commutation diode inserted in parallel with each of the IGBTs. The interconnection points of the two IGBTs are connected to the U-phase, V-phase, and W-phase terminals of the swing electric motor 22, respectively. A control signal subjected to pulse width modulation (PWM) is applied from the control device 90 to the gate electrode of each IGBT.
 図6Aに、電力変換装置50(図1)の断面図を示す。筐体65内に、図3に示した昇降圧コンバータ41、図2に示したインバータ51、52等が収容されている。筐体65は、側壁66、仕切り壁67、第1の蓋68、及び第2の蓋69を含む。側壁66の平断面は、例えば長方形であり、その上下は開放されている。側壁66の上下の開放部が、それぞれ第1の蓋68及び第2の蓋69で塞がれている。側壁66の高さ方向のほぼ中央に、仕切り壁67が設けられている。仕切り壁67は、側壁66の高さ方向と直交し、筐体65の内部空間を2つの空間に仕切る。仕切り壁67で仕切られた2つの空間のうち、第1の蓋68側の空間を「第1の空間」91といい、第2の蓋69側の空間を「第2の空間」92ということとする。 FIG. 6A shows a cross-sectional view of the power conversion device 50 (FIG. 1). In the housing 65, the step-up / down converter 41 shown in FIG. 3, the inverters 51, 52 shown in FIG. The housing 65 includes a side wall 66, a partition wall 67, a first lid 68, and a second lid 69. The flat cross section of the side wall 66 is, for example, a rectangle, and its top and bottom are open. The upper and lower open portions of the side wall 66 are closed with a first lid 68 and a second lid 69, respectively. A partition wall 67 is provided at substantially the center of the side wall 66 in the height direction. The partition wall 67 is orthogonal to the height direction of the side wall 66 and partitions the internal space of the housing 65 into two spaces. Of the two spaces partitioned by the partition wall 67, the space on the first lid 68 side is referred to as a “first space” 91, and the space on the second lid 69 side is referred to as a “second space” 92. And
 仕切り壁67の内部に、流路(冷却機構)94が形成されている。流路94を流れる冷却媒体が仕切り壁67を冷却する。仕切り板67は、筐体65内の空間を仕切るとともに、冷却板としても機能する。 A flow path (cooling mechanism) 94 is formed inside the partition wall 67. The cooling medium flowing through the flow path 94 cools the partition wall 67. The partition plate 67 partitions the space in the housing 65 and also functions as a cooling plate.
 第1の空間91内に、昇降圧コンバータ41(図3)のスイッチングモジュール42、インバータ52(図4)のU相用スイッチングモジュール53U、V相用スイッチングモジュール53V、及びW相用スイッチングモジュール53Wが収容されている。スイッチングモジュール42、53U、53V、53Wは、仕切り壁67の、第1の空間91側の表面に搭載され、仕切り板67に熱的に結合している。このため、スイッチングモジュール42、53U、53V、53Wは、流路94を流れる冷却媒体によって冷却される。 In the first space 91, the switching module 42 of the buck-boost converter 41 (FIG. 3), the U-phase switching module 53U, the V-phase switching module 53V, and the W-phase switching module 53W of the inverter 52 (FIG. 4). Contained. The switching modules 42, 53 U, 53 V, and 53 W are mounted on the surface of the partition wall 67 on the first space 91 side and are thermally coupled to the partition plate 67. For this reason, the switching modules 42, 53 U, 53 V, and 53 W are cooled by the cooling medium flowing through the flow path 94.
 第2の空間92内に、昇降圧コンバータ41(図3)のリアクトル44、リレー48、及び抵抗器49が収容されている。具体的には、リアクトル44、リレー48、及び抵抗器49は、仕切り壁67の、第2の空間92側の表面に搭載され、仕切り板67に熱的に結合している。このため、リアクトル44、リレー48、及び抵抗器49は、流路94を流れる冷却媒体によって冷却される。 In the second space 92, the reactor 44, the relay 48, and the resistor 49 of the step-up / down converter 41 (FIG. 3) are accommodated. Specifically, the reactor 44, the relay 48, and the resistor 49 are mounted on the surface of the partition wall 67 on the second space 92 side, and are thermally coupled to the partition plate 67. For this reason, the reactor 44, the relay 48, and the resistor 49 are cooled by the cooling medium flowing through the flow path 94.
 仕切り壁67に、開口95、96が形成されている。平滑化用のコンデンサ46が、開口96を貫通するように、筐体65内に収容されている。コンデンサ46として、例えば電解コンデンサが用いられる。電解コンデンサの外形は、一般的に、スイッチングモジュール42、53U、53V、53W、リアクトル44等に比べて大きい。このため、コンデンサ46を第1の空間91または第2の空間92の一方にのみ収容する場合には、コンデンサ46を収容する方の空間を大きくしなければならない。仕切り壁67に形成された開口96を貫通するようにコンデンサ46を配置することにより、筐体65の寸法の増大を回避することができる。さらに、筐体65内の空間を第1の空間91と第2の空間92とに仕切る仕切り壁67を設けることで、電力変換装置50の全体の剛性を高めることができる。 Openings 95 and 96 are formed in the partition wall 67. The smoothing capacitor 46 is accommodated in the housing 65 so as to penetrate the opening 96. As the capacitor 46, for example, an electrolytic capacitor is used. The outer shape of the electrolytic capacitor is generally larger than that of the switching modules 42, 53U, 53V, 53W, the reactor 44, and the like. For this reason, when the capacitor 46 is accommodated only in one of the first space 91 and the second space 92, the space for accommodating the capacitor 46 must be enlarged. By disposing the capacitor 46 so as to pass through the opening 96 formed in the partition wall 67, an increase in the size of the housing 65 can be avoided. Furthermore, by providing the partition wall 67 that partitions the space in the housing 65 into the first space 91 and the second space 92, the overall rigidity of the power conversion device 50 can be increased.
 コンデンサ46は、受皿97を介して仕切り壁67に支持される。受皿97は、開口96を第2の空間92側から塞ぐように、仕切り壁67に取り付けられている。受皿97の深さを調節することにより、コンデンサ46と第1の蓋68との間に、配線等のための十分な空間を確保することができる。コンデンサ46は、受皿97を介して仕切り板67に熱的に結合し、流路94を流れる冷却媒体により、受皿97を介して冷却される。 The capacitor 46 is supported by the partition wall 67 through the tray 97. The tray 97 is attached to the partition wall 67 so as to close the opening 96 from the second space 92 side. By adjusting the depth of the tray 97, a sufficient space for wiring or the like can be secured between the capacitor 46 and the first lid 68. The condenser 46 is thermally coupled to the partition plate 67 via the tray 97 and is cooled via the tray 97 by the cooling medium flowing through the flow path 94.
 コネクタ98が側壁66に取り付けられている。スイッチングモジュール42、リアクトル44、リレー48、抵抗器49、コネクタ98が、相互に配線99で接続されている。一部の配線99は、開口95を通って、第1の空間91内の部品と第2の空間92内の部品とを接続している。 The connector 98 is attached to the side wall 66. The switching module 42, the reactor 44, the relay 48, the resistor 49, and the connector 98 are connected to each other by a wiring 99. Some of the wirings 99 connect the components in the first space 91 and the components in the second space 92 through the opening 95.
 図6Bに、図6Aの一点鎖線6B-6Bにおける平断面図を示す。仕切り壁67に、スイッチングモジュール42、53U、53V、53Wが実装されている。さらに、インバータ51(図2)を構成するスイッチングモジュール54U、54V、54Wも、仕切り壁67の、第1の空間91(図5A)側の表面に実装されている。さらに、スイッチングモジュール42を含む昇降圧コンバータ41とは異なるもう一つの昇降圧コンバータ41(図3)のスイッチングモジュール47も、仕切り壁67の、第1の空間91(図5A)側の表面に実装されている。開口96内に、コンデンサ46が配置されている。側壁66に、複数のコネクタ98が取り付けられている。 FIG. 6B is a plan sectional view taken along one-dot chain line 6B-6B in FIG. 6A. Switching modules 42, 53 U, 53 V, and 53 W are mounted on the partition wall 67. Furthermore, the switching modules 54U, 54V, 54W constituting the inverter 51 (FIG. 2) are also mounted on the surface of the partition wall 67 on the first space 91 (FIG. 5A) side. Further, the switching module 47 of another step-up / down converter 41 (FIG. 3) different from the step-up / down converter 41 including the switching module 42 is also mounted on the surface of the partition wall 67 on the first space 91 (FIG. 5A) side. Has been. A capacitor 46 is disposed in the opening 96. A plurality of connectors 98 are attached to the side wall 66.
 仕切り壁67内に、冷却媒体用の流路94が形成されている。流路94は、開口95と開口96との間を蛇行しながら、全体として、開口95から開口96に向かう方向と直交する方向に進んでいる。流路94の両端は、側壁66のうち、コネクタ98が取り付けられている面と同一の面の外側の表面に開口している。流路94は、平面視において、スイッチングモジュール53U、53V、53W、54U、54V、54W、42、47と重なっている。これにより、スイッチングモジュール等を効率的に冷却することができる。コネクタ98と、流路94の両端の開口部とが、側壁66の同一の面に配置されているため、両者が異なる面に配置されている構成と比べて、電力変換装置50の設置の自由度が高まる。また、電力変換装置50の保守点検、修理等を容易に行うことができる。 A cooling medium flow path 94 is formed in the partition wall 67. The flow path 94 advances in a direction orthogonal to the direction from the opening 95 toward the opening 96 as a whole while meandering between the opening 95 and the opening 96. Both ends of the flow path 94 are open to the outer surface of the same side surface of the side wall 66 as the surface to which the connector 98 is attached. The channel 94 overlaps the switching modules 53U, 53V, 53W, 54U, 54V, 54W, 42, and 47 in plan view. Thereby, a switching module etc. can be cooled efficiently. Since the connector 98 and the openings at both ends of the flow path 94 are disposed on the same surface of the side wall 66, the power converter 50 can be installed more freely than in a configuration in which both are disposed on different surfaces. The degree increases. In addition, maintenance inspection and repair of the power conversion device 50 can be easily performed.
 筐体65の外壁の内部に流路94を配置した構成では、外壁の外側の表面を、スイッチングモジュール等の冷却に利用することができない。実施例では、筐体65の内部空間に配置した仕切り壁67内に流路94を配置しているため、仕切り壁67の両面をスイッチングモジュール等の冷却に利用することができる。このため、冷却対象部品の実装密度を高めることができる。言い換えると、電力変換装置50の小型化を図ることができる。 In the configuration in which the flow path 94 is disposed inside the outer wall of the housing 65, the outer surface of the outer wall cannot be used for cooling the switching module or the like. In the embodiment, since the flow path 94 is disposed in the partition wall 67 disposed in the internal space of the housing 65, both surfaces of the partition wall 67 can be used for cooling the switching module or the like. For this reason, the mounting density of components to be cooled can be increased. In other words, the power conversion device 50 can be downsized.
 スイッチングモジュール42、47、53U、53V、53W等の半導体素子を第1の空間91内に収容し、リアクトル44、抵抗器49等の受動素子を第2の空間92に収容している。半導体素子は、受動素子に比べて故障し易い。相対的に故障し易い部品を第1の空間91にまとめて収容しているため、半導体素子の故障時には、第1の蓋68を取り外すことによって、修理を行うことが可能になる。保守者が、第2の蓋69よりも第1の蓋68にアクセスし易い姿勢で、電力変換装置50を掘削機に搭載することが好ましい。これにより、保守点検作業や修理を容易に行うことができる。 Semiconductor elements such as switching modules 42, 47, 53U, 53V, and 53W are accommodated in the first space 91, and passive elements such as the reactor 44 and the resistor 49 are accommodated in the second space 92. Semiconductor elements are more prone to failure than passive elements. Since components that are relatively susceptible to failure are collectively stored in the first space 91, it is possible to perform repair by removing the first lid 68 when the semiconductor element fails. It is preferable that the power converter 50 is mounted on the excavator so that the maintenance person can access the first lid 68 more easily than the second lid 69. Thereby, maintenance inspection work and repair can be performed easily.
 複数の昇降圧コンバータ41が相互に並列に接続されているため、1つの昇降圧コンバータ41に流れる電流が小さくなる。このため、スイッチングモジュール42、リアクトル44(図4)として、電流容量の小さいものを用いることができる。複数の昇降圧コンバータ41を並列に接続した構成を採用すると、定格電流の大きな1つの昇降圧コンバータを用いる場合に比べて、多くのスイッチングが用いられる。例えば、図3に示したように、2つの昇降圧コンバータ41を並列に接続した構成は、2個のスイッチングモジュール42、47(図6B)を含む。スイッチングモジュールの個数が増えることにより、冷却板として作用する仕切り壁67とスイッチングモジュールとの合計の接触面積が大きくなる。このため、スイッチングモジュールの冷却効率を高めることができる。同様に、リアクトル44(図4、図6A)の冷却効率を高めることができる。 Since a plurality of buck-boost converters 41 are connected in parallel to each other, the current flowing through one buck-boost converter 41 is reduced. For this reason, the thing with small current capacity can be used as the switching module 42 and the reactor 44 (FIG. 4). When a configuration in which a plurality of step-up / step-down converters 41 are connected in parallel is employed, more switching is used than when a single step-up / step-down converter having a large rated current is used. For example, as shown in FIG. 3, the configuration in which two buck-boost converters 41 are connected in parallel includes two switching modules 42 and 47 (FIG. 6B). As the number of switching modules increases, the total contact area between the partition wall 67 acting as a cooling plate and the switching modules increases. For this reason, the cooling efficiency of a switching module can be improved. Similarly, the cooling efficiency of the reactor 44 (FIG. 4, FIG. 6A) can be improved.
 図7に、2つの昇降圧コンバータ41のうち1つが故障したときの蓄電回路40のブロック図を示す。故障している昇降圧コンバータ41Fが、正常な昇降圧コンバータ41から切り離されている。具体的には、制御装置90が、故障している昇降圧コンバータ41Fに対応するリレー36をオフにする。正常な昇降圧コンバータ41に対応するリレー36はオンにされている。正常な昇降圧コンバータ41のみを動作させて、蓄電装置45の充放電が行われる。 FIG. 7 shows a block diagram of the storage circuit 40 when one of the two buck-boost converters 41 fails. The failed buck-boost converter 41F is disconnected from the normal buck-boost converter 41. Specifically, the control device 90 turns off the relay 36 corresponding to the failed buck-boost converter 41F. The relay 36 corresponding to the normal step-up / down converter 41 is turned on. Only normal buck-boost converter 41 is operated to charge / discharge power storage device 45.
 図8に、旋回電動機22の制御の流れを説明するためのブロック図を示す。運転者によって操作装置83が操作される。圧力センサ86が、操作装置83のレバー等の操作量を検出する。検出されたレバーの操作量が、制御装置90に入力される。上部旋回体21(図1)の旋回操作が行われた場合について説明する。操作装置83のレバーの操作量が、旋回電動機22の旋回の速さの要求値に対応する。旋回動作用のレバーの操作量を、旋回電動機22に対する「出力要求値Preq」ということとする。 FIG. 8 is a block diagram for explaining the flow of control of the turning electric motor 22. The operating device 83 is operated by the driver. The pressure sensor 86 detects the operation amount of the lever or the like of the operation device 83. The detected lever operation amount is input to the control device 90. The case where the turning operation of the upper turning body 21 (FIG. 1) is performed will be described. The amount of operation of the lever of the operating device 83 corresponds to the required value of the turning speed of the turning electric motor 22. The amount of operation of the turning lever is referred to as “requested output value Preq” for the turning electric motor 22.
 制御装置90は、出力要求値Preqに基づいて、出力制御値Pconを生成する。旋回電動機22が出力制御値Pconに相当する動力を出力するように、制御装置90がインバータ52に制御信号を送出する。出力制御値Pcon及び出力要求値Preqの符号は、旋回電動機22の回転方向を示す。例えば、正の出力制御値Pcon及び出力要求値Preqが右旋回を表し、負の出力制御値Pcon及び出力要求値Preqが左旋回を表す。 The control device 90 generates an output control value Pcon based on the output request value Preq. The control device 90 sends a control signal to the inverter 52 so that the turning electric motor 22 outputs power corresponding to the output control value Pcon. The signs of the output control value Pcon and the output request value Preq indicate the rotation direction of the turning electric motor 22. For example, the positive output control value Pcon and the output request value Preq represent a right turn, and the negative output control value Pcon and the output request value Preq represent a left turn.
 2台の昇降圧コンバータ41が正常に動作しているとき、出力制御値Pconは出力要求値Preqと等しい。ただし、出力制御値Pconの絶対値の最大値が、Pmax0で制限される。1台の昇降圧コンバータ41が故障しており、1台のみの昇降圧コンバータ41が動作しているとき、出力制御値Pconの絶対値の最大値が、正常時の最大値Pmax0より小さいPmax1で制限される。 When the two buck-boost converters 41 are operating normally, the output control value Pcon is equal to the output request value Preq. However, the maximum absolute value of the output control value Pcon is limited by Pmax0. When one buck-boost converter 41 is out of order and only one buck-boost converter 41 is operating, the maximum absolute value of the output control value Pcon is Pmax1 which is smaller than the normal maximum value Pmax0. Limited.
 少なくとも1台の昇降圧コンバータ41が故障しているときに、出力制御値Pconの最大値Pmax1を、正常時の最大値Pmax0よりも小さく制限することにより、正常に動作している昇降圧コンバータ41に過大な放電電流が流れることを防止できる。 When at least one step-up / down converter 41 is out of order, the maximum value Pmax1 of the output control value Pcon is limited to be smaller than the maximum value Pmax0 at normal time, whereby the step-up / down converter 41 operating normally Therefore, it is possible to prevent an excessive discharge current from flowing.
 蓄電回路40が3個以上の昇降圧コンバータ41で構成されている場合には、故障している昇降圧コンバータ41の台数に応じて、出力制御値Pconの最大値Pmax1を異ならせることが好ましい。 When the storage circuit 40 is composed of three or more buck-boost converters 41, it is preferable to vary the maximum value Pmax1 of the output control value Pcon according to the number of failed buck-boost converters 41.
 昇降圧コンバータ41の故障時に限らず、蓄電回路40の電気的負荷が軽いときにも、一方の昇降圧コンバータ41を停止させ、他方の昇降圧コンバータ41のみを動作させてもよい。例えば、蓄電回路40の電気的負荷が基準値未満になったことを制御装置90が検出したときに、一部の昇降圧コンバータ41を停止させる制御を行なってもよい。 Not only when the buck-boost converter 41 fails, but also when the electrical load of the storage circuit 40 is light, one buck-boost converter 41 may be stopped and only the other buck-boost converter 41 may be operated. For example, when the control device 90 detects that the electrical load of the power storage circuit 40 has become less than the reference value, control for stopping some of the step-up / down converters 41 may be performed.
 図9を参照して、他の実施例による蓄電回路について説明する。図9は、他の実施例による蓄電回路の等価回路図を示す。以下、図3~図6に示した実施例との相違点について説明し、同一の構成については説明を省略する。 With reference to FIG. 9, a power storage circuit according to another embodiment will be described. FIG. 9 shows an equivalent circuit diagram of a storage circuit according to another embodiment. Hereinafter, differences from the embodiment shown in FIGS. 3 to 6 will be described, and description of the same configuration will be omitted.
 図3に示した実施例による蓄電回路40は、相互に並列に接続された2つの昇降圧コンバータ41を含んでいたが、図9に示した実施例では、1つの昇降圧コンバータ41のみが蓄電装置45とDCバスライン55との間に接続されている。図3に示した実施例の昇降圧コンバータ41では、誘導起電力を発生するためのインダクタンスが、1つのリアクトル44で構成されていた。図9に示した実施例では、誘導起電力を発生するためのインダクタンスが、相互に並列に接続された複数のリアクトル44で構成されている。図9では、2つのリアクトル44が並列に接続された例を示している。 The power storage circuit 40 according to the embodiment shown in FIG. 3 includes two buck-boost converters 41 connected in parallel to each other. However, in the embodiment shown in FIG. 9, only one buck-boost converter 41 stores power. It is connected between the device 45 and the DC bus line 55. In the buck-boost converter 41 of the embodiment shown in FIG. 3, the inductance for generating the induced electromotive force is constituted by one reactor 44. In the embodiment shown in FIG. 9, the inductance for generating the induced electromotive force is constituted by a plurality of reactors 44 connected in parallel to each other. FIG. 9 shows an example in which two reactors 44 are connected in parallel.
 複数のリアクトル44が並列に接続されているため、1つのリアクトルを用いた場合に比べて、各リアクトル44に流れる電流が少なくなる。このため、リアクトル44として、定格電流の小さなものを用いることができる。なお、リアクトル44として、並列に接続された複数のリアクトル44の合成インダクタンスが所望の値になるようなインダクタンスを有するものが選択されている。 Since a plurality of reactors 44 are connected in parallel, the current flowing through each reactor 44 is reduced as compared with the case where one reactor is used. For this reason, the reactor 44 having a small rated current can be used. As the reactor 44, a reactor having an inductance such that the combined inductance of a plurality of reactors 44 connected in parallel has a desired value is selected.
 一般に、定格電流の小さなリアクトルは、定格電流の大きなリアクトルよりも、扁平なパッケージに収容されている。図6Aに示した仕切り壁67に定格電流の大きな1つのリアクトル44を搭載する場合のリアクトル44と仕切り壁67との接触面積に比べて、定格電流の小さな2つのリアクトル44を搭載する場合の接触面積を大きくすることができる。このため、リアクトル44の冷却効率を高めることができる。 Generally, a reactor with a small rated current is accommodated in a flat package rather than a reactor with a large rated current. Contact when two reactors 44 having a small rated current are mounted compared to the contact area between the reactor 44 and the partition wall 67 when one reactor 44 having a large rated current is mounted on the partition wall 67 shown in FIG. 6A. The area can be increased. For this reason, the cooling efficiency of the reactor 44 can be improved.
 図10A及び図10Bを参照して、さらに他の実施例による蓄電回路40について説明する。以下、図3及び図4に示した蓄電回路40との相違点について説明し、同一の構成については説明を省略する。 With reference to FIG. 10A and FIG. 10B, the electrical storage circuit 40 by another Example is demonstrated. Hereinafter, differences from the power storage circuit 40 illustrated in FIGS. 3 and 4 will be described, and description of the same configuration will be omitted.
 図10Aに、蓄電回路40のブロック図を示す。図10Aでは、1つの昇降圧コンバータ41を示しているが、図3に示したように、複数の昇降圧コンバータ41を並列に接続してもよい。図3及び図4に示した構成では、1つの充放電電流路に1つの電流計38が配置されていた。電流計38として双方向性電流計が用いられ、電流計38は、放電電流及び充電電流を測定することができる。 FIG. 10A shows a block diagram of the storage circuit 40. Although FIG. 10A shows one buck-boost converter 41, a plurality of buck-boost converters 41 may be connected in parallel as shown in FIG. In the configuration shown in FIGS. 3 and 4, one ammeter 38 is arranged in one charge / discharge current path. A bidirectional ammeter is used as the ammeter 38, and the ammeter 38 can measure the discharge current and the charging current.
 図10Aに示した例では、1つの充放電電流路に、単方向性の2つの電流計38A及び38Bが配置されている。一方の電流計38Aは放電電流を測定し、他方の電流計38Bは充電電流を測定する。電流計38A及び38Bの出力が、それぞれオペアンプを介して制御装置90のA/Dコンバータ93のアナログ入力端子に入力される。 In the example shown in FIG. 10A, two unidirectional ammeters 38A and 38B are arranged in one charge / discharge current path. One ammeter 38A measures the discharge current, and the other ammeter 38B measures the charging current. The outputs of the ammeters 38A and 38B are respectively input to the analog input terminals of the A / D converter 93 of the control device 90 via operational amplifiers.
 A/Dコンバータ93は、複数のアナログ入力端子を有し、選択された1つのアナログ入力端子に入力されているアナログ信号をデジタル信号に変換して出力する。蓄電装置45が放電されている時には、放電用の電流計38Aからの出力信号が入力されているアナログ端子が選択される。蓄電装置45が充電されている時には、充電用の電流計38Bからの出力信号が入力されているアナログ端子が選択される。 The A / D converter 93 has a plurality of analog input terminals, converts an analog signal input to one selected analog input terminal into a digital signal, and outputs the digital signal. When the power storage device 45 is discharged, an analog terminal to which an output signal from the discharge ammeter 38A is input is selected. When the power storage device 45 is charged, the analog terminal to which the output signal from the charging ammeter 38B is input is selected.
 図10Bに、充放電電流のA/D変換の前後のアナログ値Iaとデジタル値Idとの対応を示す。横軸は、充放電電流のアナログ値Iaを表し、縦軸は充放電電流のデジタル値Idを表す。充電用の電流計38Bの出力が入力されているアナログ入力端子が選択されている時のアナログ値Iaを負と定義した。A/Dコンバータ93が12ビットの分解能を有する場合について説明する。放電電流及び充電電流の各々について、12ビットの分解能、すなわち0から4095までの4096段階の分解能を確保することができる。 FIG. 10B shows the correspondence between the analog value Ia and the digital value Id before and after the A / D conversion of the charge / discharge current. The horizontal axis represents the analog value Ia of the charge / discharge current, and the vertical axis represents the digital value Id of the charge / discharge current. The analog value Ia when the analog input terminal to which the output of the charging ammeter 38B is input is selected is defined as negative. A case where the A / D converter 93 has a resolution of 12 bits will be described. For each of the discharge current and the charge current, 12-bit resolution, that is, 4096-level resolution from 0 to 4095 can be ensured.
 図11Aに、比較例による蓄電回路40のブロック図を示す。比較例では、双方向電流計38が用いられている。電流計38の出力が比較器の一方の入力端子に入力され、比較器の出力がA/Dコンバータ93のアナログ入力端子に入力される。比較器の他方の入力端子には、参照電圧Refが与えられている。参照電圧Refは、最大の充電電流が流れている時の電流計38の出力に相当する。 FIG. 11A shows a block diagram of a power storage circuit 40 according to a comparative example. In the comparative example, a bidirectional ammeter 38 is used. The output of the ammeter 38 is input to one input terminal of the comparator, and the output of the comparator is input to the analog input terminal of the A / D converter 93. A reference voltage Ref is applied to the other input terminal of the comparator. The reference voltage Ref corresponds to the output of the ammeter 38 when the maximum charging current is flowing.
 図11Bに、充放電電流のA/D変換の前後のアナログ値Iaとデジタル値Idとの対応を示す。横軸は、充放電電流のアナログ値Iaを表し、縦軸は充放電電流のデジタル値Idを表す。放電電流の最大値から、充電電流の負の最大値までの範囲が、12ビットの分解能でデジタル変換される。このため、放電電流及び充電電流の各々について、12ビットの分解能、すなわち0から2047までの2048段階の分解能しか確保することができない。 FIG. 11B shows the correspondence between the analog value Ia and the digital value Id before and after the A / D conversion of the charge / discharge current. The horizontal axis represents the analog value Ia of the charge / discharge current, and the vertical axis represents the digital value Id of the charge / discharge current. The range from the maximum value of the discharge current to the negative maximum value of the charge current is digitally converted with a resolution of 12 bits. Therefore, for each of the discharge current and the charge current, only 12-bit resolution, that is, 2048 resolutions from 0 to 2047 can be ensured.
 図10Aに示した実施例では、充放電電流路に、放電用の電流計30Aと充電用の電流計30Bを配置されている。さらに、放電用の電流計38Aの出力と、充電用の電流計38Bの出力とが、異なるアナログ入力端子に入力されている。このため、放電電流及び充電電流の各々を、A/Dコンバータ93の最大の分解能でデジタル値に変換することができる。これにより、充放電電流に基づく種々の制御の精度を高めることができる。 In the embodiment shown in FIG. 10A, a discharge ammeter 30A and a charge ammeter 30B are arranged in the charge / discharge current path. Further, the output of the discharging ammeter 38A and the output of the charging ammeter 38B are input to different analog input terminals. For this reason, each of the discharge current and the charging current can be converted into a digital value with the maximum resolution of the A / D converter 93. Thereby, the precision of various control based on charging / discharging electric current can be raised.
 放電用の電流計38A及び充電用の電流計38Bは、図3に示した昇降圧コンバータ41の各々に対応して配置してもよいし、蓄電装置45に対応して配置してもよい。 The discharge ammeter 38 </ b> A and the charge ammeter 38 </ b> B may be disposed corresponding to each of the buck-boost converters 41 illustrated in FIG. 3, or may be disposed corresponding to the power storage device 45.
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
20 下部走行体
21 上部旋回体
22 旋回電動機(作業用電動機)
23 ブーム
24 ブームシリンダ
25 アーム
26 アームシリンダ
27 バケット
28 バケットシリンダ
29A、28B 油圧モータ
30 エンジン
31 電動発電機
32 トルク伝達機構
35 切り離し回路
36 リレー
38 電流計
38A 放電用の電流計
38B 充電用の電流計
40 蓄電回路
41 昇降圧コンバータ
42 スイッチングモジュール
42A 昇圧用スイッチング素子
42B 降圧用スイッチング素子
43A、43B 転流ダイオード
44 リアクトル
45 蓄電装置
46 コンデンサ
47 スイッチングモジュール
48 リレー
49 抵抗器
50 電力変換装置
51、52 インバータ
53U、54U U相用スイッチングモジュール
53V、54V V相用スイッチングモジュール
53W、54W W相用スイッチングモジュール
55 DCバスライン
56、57 電圧計
60 三相交流配線
61 直流配線
62 三相交流配線
63 直流配線
65 筐体
66 側壁
67 仕切り壁
68 第1の蓋
69 第2の蓋
75 メインポンプ
76 高圧油圧ライン
77 コントロールバルブ
78 パイロットポンプ
79 パイロットライン
80 減速機
81 レゾルバ
82 メカニカルブレーキ
83 操作装置
84、85 油圧ライン
86 圧力センサ
90 制御装置
91 第1の空間
92 第2の空間
93 A/Dコンバータ
94 流路
95、96 開口
97 受皿
98 コネクタ
99 配線
20 Lower traveling body 21 Upper revolving body 22 Swing motor (working motor)
23 Boom 24 Boom cylinder 25 Arm 26 Arm cylinder 27 Bucket 28 Bucket cylinder 29A, 28B Hydraulic motor 30 Engine 31 Motor generator 32 Torque transmission mechanism 35 Disconnect circuit 36 Relay 38 Ammeter 38A Discharge ammeter 38B Charging ammeter 40 power storage circuit 41 step-up / down converter 42 switching module 42A step-up switching element 42B step-down switching element 43A, 43B commutation diode 44 reactor 45 power storage device 46 capacitor 47 switching module 48 relay 49 resistor 50 power conversion device 51, 52 inverter 53U , 54U U-phase switching module 53V, 54V V- phase switching module 53W, 54W W-phase switching module 55 DC bus line 56 57 Voltmeter 60 Three-phase AC wiring 61 DC wiring 62 Three-phase AC wiring 63 DC wiring 65 Housing 66 Side wall 67 Partition wall 68 First lid 69 Second lid 75 Main pump 76 High-pressure hydraulic line 77 Control valve 78 Pilot pump 79 Pilot line 80 Reducer 81 Resolver 82 Mechanical brake 83 Operating device 84, 85 Hydraulic line 86 Pressure sensor 90 Control device 91 First space 92 Second space 93 A / D converter 94 Flow path 95, 96 Opening 97 Receptacle 98 Connector 99 Wiring

Claims (10)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載された上部旋回体と、
     エンジンと、
     前記エンジンの動力によって駆動される発電機と、
     電力を蓄電する蓄電回路と、
     前記発電機と前記蓄電回路とを接続するインバータと、
     前記蓄電回路から供給される電力によって駆動され、前記上部旋回体を旋回させる作業用電動機と
    を有し、
     前記蓄電回路は、
     蓄電装置と、
     相互に並列に接続された複数の昇降圧コンバータと
    を有し、
     前記昇降圧コンバータの各々は、スイッチング素子とリアクトルとを含み、前記スイッチング素子のスイッチング動作によって、前記リアクトルに誘導起電力を発生させることにより、前記蓄電装置の電圧を昇圧して前記作業用電動機に供給する掘削機。
    A lower traveling body,
    An upper revolving unit mounted on the lower traveling unit so as to be able to swivel;
    Engine,
    A generator driven by the power of the engine;
    A storage circuit for storing electric power;
    An inverter connecting the generator and the storage circuit;
    Driven by electric power supplied from the power storage circuit, and has a working electric motor for turning the upper turning body,
    The storage circuit is
    A power storage device;
    A plurality of buck-boost converters connected in parallel to each other;
    Each of the step-up / step-down converters includes a switching element and a reactor, and generates an induced electromotive force in the reactor by a switching operation of the switching element, thereby boosting a voltage of the power storage device to the working electric motor. Excavator to supply.
  2.  前記昇降圧コンバータは、前記発電機で発電された電力を、前記蓄電装置に供給することにより充電を行う請求項1に記載の掘削機。 The excavator according to claim 1, wherein the step-up / step-down converter is charged by supplying electric power generated by the generator to the power storage device.
  3.  さらに、前記複数の昇降圧コンバータの各々の前記スイッチング素子に熱的に結合し、前記スイッチング素子を冷却する冷却板を有する請求項2に記載の掘削機。 The excavator according to claim 2, further comprising a cooling plate that is thermally coupled to each switching element of each of the plurality of step-up / step-down converters and cools the switching element.
  4.  さらに、前記複数の昇降圧コンバータ同士を電気的に切り離す切り離し回路を有する請求項2または3に記載の掘削機。 The excavator according to claim 2 or 3, further comprising a separation circuit for electrically separating the plurality of step-up / down converters.
  5.  さらに、前記昇降圧コンバータの各々の動作状態の正常性を監視する制御装置を有し、
     前記制御装置は、少なくとも1つの昇降圧コンバータの動作状態が異常と判定された場合、前記切り離し回路を制御して、動作状態が異常と判定された前記昇降圧コンバータを、動作状態が正常の昇降圧コンバータから切り離す請求項4に記載の掘削機。
    And a control device for monitoring the normality of each operating state of the buck-boost converter,
    When the operation state of at least one step-up / step-down converter is determined to be abnormal, the control device controls the disconnection circuit so that the step-up / down converter whose operation state is determined to be abnormal is The excavator according to claim 4, wherein the excavator is separated from the pressure converter.
  6.  前記制御装置は、動作状態が異常と判定された昇降圧コンバータを動作状態が正常の昇降圧コンバータから切り離した後、動作状態が正常の昇降圧コンバータの動作を継続させる請求項5に記載の掘削機。 6. The excavation according to claim 5, wherein the control device continues the operation of the buck-boost converter whose operation state is normal after disconnecting the buck-boost converter whose operation state is determined to be abnormal from the buck-boost converter whose operation state is normal. Machine.
  7.  前記制御装置は、前記複数の昇降圧コンバータのうち少なくとも1つの昇降圧コンバータの動作状態が異常と判定されたとき、前記作業用電動機の出力の最大値を、前記複数の昇降圧コンバータの動作状態が正常であるときの前記作業用電動機の出力の最大値よりも小さくする請求項5または6に記載の掘削機。 When the operation state of at least one of the plurality of step-up / step-down converters is determined to be abnormal among the plurality of step-up / step-down converters, the control device determines the maximum value of the output of the working motor as the operation state of the plurality of step-up / down converters. The excavator according to claim 5 or 6, wherein the excavator is made smaller than a maximum value of the output of the working electric motor when the power is normal.
  8.  前記制御装置は、前記複数の昇降圧コンバータを同期制御し、前記インバータを、前記昇降圧コンバータの制御とは独立に制御する請求項5乃至7のいずれか1項に記載の掘削機。 The excavator according to any one of claims 5 to 7, wherein the control device synchronously controls the plurality of buck-boost converters and controls the inverter independently of the control of the buck-boost converter.
  9.  前記蓄電回路は、
     前記蓄電装置の充放電電流路に配置され、放電電流を測定する放電用の電流計と、
     前記蓄電装置の充放電電流路に配置され、充電電流を測定する充電用の電流計と
    を含み、
     さらに、前記放電用の電流計からの出力が入力されるアナログ入力端子、及び前記充電用の電流計からの出力が入力される他のアナログ入力端子を持つA/Dコンバータを有する請求項1乃至8のいずれか1項に記載の掘削機。
    信号
    The storage circuit is
    An ammeter for discharge that is disposed in a charge / discharge current path of the power storage device and measures a discharge current;
    An ammeter for charging that is disposed in a charging / discharging current path of the power storage device and measures a charging current;
    2. An A / D converter having an analog input terminal to which an output from the discharging ammeter is input and another analog input terminal to which an output from the charging ammeter is input. The excavator according to any one of 8.
    signal
  10.  下部走行体と、
     前記下部走行体に旋回可能に搭載された上部旋回体と、
     エンジンと、
     前記エンジンの動力によって駆動される発電機と、
     電力を蓄電する蓄電回路と、
     前記発電機と前記蓄電回路とを接続するインバータと、
     前記蓄電回路から供給される電力によって駆動され、前記上部旋回体を旋回させる作業用電動機と
    を有し、
     前記蓄電回路は、
     蓄電装置と、
     昇降圧コンバータと
    を有し、
     前記昇降圧コンバータは、スイッチング素子と、相互に並列に接続された複数のリアクトルとを含み、前記スイッチング素子のスイッチング動作によって、前記リアクトルに誘導起電力を発生させることにより、前記蓄電装置の電圧を昇圧して前記作業用電動機に供給する掘削機。
    A lower traveling body,
    An upper revolving unit mounted on the lower traveling unit so as to be able to swivel;
    Engine,
    A generator driven by the power of the engine;
    A storage circuit for storing electric power;
    An inverter connecting the generator and the storage circuit;
    Driven by electric power supplied from the power storage circuit, and has a working electric motor for turning the upper turning body,
    The storage circuit is
    A power storage device;
    A buck-boost converter,
    The step-up / down converter includes a switching element and a plurality of reactors connected in parallel to each other, and generates an induced electromotive force in the reactor by a switching operation of the switching element, thereby generating a voltage of the power storage device. An excavator that pressurizes and supplies the work electric motor.
PCT/JP2013/071100 2012-09-14 2013-08-05 Excavator WO2014041922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535426A JP5951027B2 (en) 2012-09-14 2013-08-05 Excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-202691 2012-09-14
JP2012202691 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014041922A1 true WO2014041922A1 (en) 2014-03-20

Family

ID=50278048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071100 WO2014041922A1 (en) 2012-09-14 2013-08-05 Excavator

Country Status (2)

Country Link
JP (1) JP5951027B2 (en)
WO (1) WO2014041922A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521989A (en) * 2014-11-26 2017-08-03 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Device and method for controlling the operation of a power module comprising a switch
JP2018088724A (en) * 2016-11-28 2018-06-07 住友重機械工業株式会社 Work machine and electric power conversion system
JP2018093643A (en) * 2016-12-05 2018-06-14 住友重機械工業株式会社 Work machine and power conversion apparatus
JP2018196272A (en) * 2017-05-19 2018-12-06 三菱電機株式会社 Inverter device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238675A (en) * 2005-02-28 2006-09-07 Tdk Corp Power conversion apparatus and method of setting overheat protection temperature therefor
JP2008029126A (en) * 2006-07-21 2008-02-07 Fujitsu Ten Ltd Voltage booster circuit, motor driving circuit and electric power steering controller
JP2009027867A (en) * 2007-07-20 2009-02-05 Sumitomo Heavy Ind Ltd Drive controller of step-up/down converter and step-up/down converter
JP2009293322A (en) * 2008-06-06 2009-12-17 Sumitomo Heavy Ind Ltd Drive controller for step-up/down converter and hybrid construction machinery including it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238675A (en) * 2005-02-28 2006-09-07 Tdk Corp Power conversion apparatus and method of setting overheat protection temperature therefor
JP2008029126A (en) * 2006-07-21 2008-02-07 Fujitsu Ten Ltd Voltage booster circuit, motor driving circuit and electric power steering controller
JP2009027867A (en) * 2007-07-20 2009-02-05 Sumitomo Heavy Ind Ltd Drive controller of step-up/down converter and step-up/down converter
JP2009293322A (en) * 2008-06-06 2009-12-17 Sumitomo Heavy Ind Ltd Drive controller for step-up/down converter and hybrid construction machinery including it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521989A (en) * 2014-11-26 2017-08-03 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Device and method for controlling the operation of a power module comprising a switch
US10707744B2 (en) 2014-11-26 2020-07-07 Mitsubishi Electric Corporation Device and method for controlling operation of power module composed of switches
JP2018088724A (en) * 2016-11-28 2018-06-07 住友重機械工業株式会社 Work machine and electric power conversion system
JP2018093643A (en) * 2016-12-05 2018-06-14 住友重機械工業株式会社 Work machine and power conversion apparatus
JP2018196272A (en) * 2017-05-19 2018-12-06 三菱電機株式会社 Inverter device

Also Published As

Publication number Publication date
JP5951027B2 (en) 2016-07-13
JPWO2014041922A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP4674722B2 (en) Electric vehicle power supply device
JP4446970B2 (en) Secondary battery device for hybrid railway vehicles
US7759817B2 (en) Power supply system for driving vehicle
JP5769386B2 (en) Electric propulsion device and electric vehicle equipped with the same
WO2008001949A1 (en) Motor drive device
WO2012120630A1 (en) Cooling system for vehicle
JP5951027B2 (en) Excavator
JP4949288B2 (en) Hybrid construction machine
JP5550788B2 (en) Diesel hybrid vehicle system
JP5968228B2 (en) Excavator
US9007003B2 (en) Method for controlling an inverter for driving a swing motor
US20110316332A1 (en) Transport vehicle with a plurality of electrical machines
JP6213974B2 (en) Work machine
JP6365054B2 (en) Electric vehicle
WO2011135691A1 (en) Control device for hybrid construction machine
JP4518852B2 (en) Hybrid vehicle and hybrid drive system
JP5178666B2 (en) Hybrid drilling machine
JP5122548B2 (en) Hybrid construction machine
JP5777544B2 (en) Power converter and work machine
KR20150040232A (en) Power conversion system for electric vehicle
JP6004853B2 (en) Work machine
JP2019037065A (en) Vehicle control system
JP6059530B2 (en) Excavator with power converter
JP2014128132A (en) Shovel with electric power conversion system
JP2012235591A (en) Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837556

Country of ref document: EP

Kind code of ref document: A1