JP2006220472A - Adhesion measuring device of powder - Google Patents

Adhesion measuring device of powder Download PDF

Info

Publication number
JP2006220472A
JP2006220472A JP2005032706A JP2005032706A JP2006220472A JP 2006220472 A JP2006220472 A JP 2006220472A JP 2005032706 A JP2005032706 A JP 2005032706A JP 2005032706 A JP2005032706 A JP 2005032706A JP 2006220472 A JP2006220472 A JP 2006220472A
Authority
JP
Japan
Prior art keywords
powder
adhesion
adhesive
sample substrate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005032706A
Other languages
Japanese (ja)
Inventor
Ayako Watanabe
亜矢子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005032706A priority Critical patent/JP2006220472A/en
Publication of JP2006220472A publication Critical patent/JP2006220472A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Centrifugal Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesion measuring device of powder capable of measuring non-electrostatic adhesion of different powder substances to each other by using a centrifugation method having a relatively simple principle and easy to quantify without limiting types of powder. <P>SOLUTION: This adhesion measuring device of powder is provided with a centrifuge having a rotor installable so that a vertical line of a sample surface of a sample substrate with one layer of particles of one kind of material to be attached uniformly fixed thereto is set vertical to its rotating shaft, and is used for measuring non-electrostatic powder-to-powder adhesion between powder comprising at least one kind of fine particles and the particles of the material to be attached on the sample substrate by centrifugal force generated by the rotation of the centrifuge. The adhesion measuring device is characteristically provided with a spin coat device for uniformly applying an adhesive for fixing the particles to be attached by rapidly rotating the sample substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粉体間の付着力を測定する粉体の付着力測定装置に関し、特に電子写真の分野で用いられるトナーやキャリア等の粉体の付着力測定装置に関するものである。   The present invention relates to a powder adhesion measuring apparatus for measuring the adhesion between powders, and more particularly to a powder adhesion measuring apparatus for toners and carriers used in the field of electrophotography.

粉体の様々な特性を把握することが電子写真法を用いた画像形成において重要である。粉体の特性には安息角・凝集度・分散度等、多数挙げられるが、特に電子写真プロセスにおいて付着力は高画質な画像形成に関与する重要な因子の1つであり、小粒径化が進む中で環境に影響を受け易い非静電的付着力の測定は重要視されてきている。一般に粉体の付着力を測定する方法には、例えば遠心分離法が公知である(例えば、特許文献1参照)。   Understanding various characteristics of powder is important in image formation using electrophotography. There are many characteristics of powder, such as repose angle, cohesion, and dispersion. Adhesion is one of the important factors involved in high-quality image formation, especially in the electrophotographic process. As the process progresses, the measurement of non-electrostatic adhesion that is sensitive to the environment has been regarded as important. In general, for example, a centrifugal separation method is known as a method for measuring the adhesion of powder (see, for example, Patent Document 1).

又、その他の手法としては1つに超音波の定在波を利用しているものがある(例えば、特許文献2参照)。   In addition, as another method, there is one using an ultrasonic standing wave (see, for example, Patent Document 2).

又、振動を利用して被付着体から分離させる手段を用いたものがある(例えば、特許文献3参照)。   In addition, there is one using a means for separating from an adherend using vibration (for example, see Patent Document 3).

又、電界を利用して被付着体から分離させる手段を用いたものがある(例えば、特許文献4参照)。   In addition, there is one using a means for separating from an adherend using an electric field (see, for example, Patent Document 4).

中でも遠心力を使用した方法は定量化が比較的他の方法に比べて容易である。   Among them, the method using centrifugal force is relatively easy to quantify as compared with other methods.

これらは主に粉体であるトナーと感光体、金属基板等との付着力に関するもので、トナーとキャリアの付着力に特化した測定手段に関するものもある(例えば、非特許文献1参照)。   These mainly relate to the adhesion between the toner, which is powder, and the photosensitive member, the metal substrate, and the like, and also relate to measurement means specialized in the adhesion between the toner and the carrier (for example, see Non-Patent Document 1).

この文献ではトナーとキャリア間の非静電的な付着力を測定する際に固定したキャリアの上にトナーを振り掛けて測定しているが、振り掛けるだけではトナー同士が凝集してしまい、トナー単体とキャリアの付着力を測定することはできず、トナーの凝集体とキャリアとの付着力になる恐れがある。又、ロータを回転させながらトナーのキャリアからの分離を観測することができれば正しくトナー粒径を観測することは可能であるが、分離後のトナーのみを観測すると凝集したまま分離したのか、それとも単体ごとに分離したのかが確認できなくなる。トナーの付着力の見積りは分離後のトナーの粒径から行っているために正確な分離時のトナー粒径の観測ができていない恐れがある。   In this document, the toner is sprinkled on a fixed carrier when measuring the non-electrostatic adhesion force between the toner and the carrier. Thus, the adhesion force of the carrier cannot be measured, and there is a fear that the adhesion force between the toner aggregate and the carrier may be obtained. In addition, if the separation of the toner from the carrier can be observed while rotating the rotor, it is possible to correctly observe the toner particle diameter. It becomes impossible to confirm whether it was separated every time. Since the estimation of the toner adhesion force is performed based on the particle size of the toner after separation, there is a possibility that the toner particle size at the time of separation cannot be accurately observed.

一方で、トナー粒子には、粒径や表面形状等にばらつきがあるために、トナーキャリア間に働く付着力には分布があることが予想される。こうした分布の広がりは画像形成に影響を与えるために、こうした情報を得られることがより好ましい。例えば、遠心法ではないが、特許文献3記載の付着力測定方法では微粒子の被付着体を振動させ、電界により捕集し、その質量から付着力を見積もる方法が示されているが、この方法においては、電極を振動させるため、電界が振動することによる付着力に対する影響や、微粒子量を質量として計測するため、平均的な解析に留まってしまい、トナー単体の付着力の分布を測定することができない恐れがある。   On the other hand, since the toner particles have variations in particle diameter, surface shape, and the like, it is expected that the adhesion force acting between the toner carriers is distributed. Since such distribution spread affects image formation, it is more preferable to obtain such information. For example, although it is not a centrifugal method, the method for measuring the adhesion force described in Patent Document 3 shows a method in which the adherend of fine particles is vibrated and collected by an electric field, and the adhesion force is estimated from its mass. In order to measure the influence of the electric field on the adhesion force due to the vibration of the electrode and the amount of fine particles as mass, the analysis is limited to the average analysis, and the distribution of the adhesion force of the toner alone is measured. There is a risk of not being able to.

これに対して一様な平面の被測定物担持面を有する被測定物担持体に、少なくとも1種の磁性粒子と1種以上の微粒子の混合物から成る粉体を磁気的に付着させ、この粉体に一定の電界を印加しながら担持体を担持面に対して垂直方向に高速移動させることにより、微粒子を磁性粒子から脱離させ、脱離前後の粒子数及び粒子質量を求めることにより粒子間の付着力を測定することを特徴とする微粒子間付着力測定方法というのもある(特許文献5参照)。   On the other hand, a powder comprising a mixture of at least one magnetic particle and one or more fine particles is magnetically attached to an object carrier having a uniform object-bearing surface. While applying a constant electric field to the body, the carrier is moved at high speed in the direction perpendicular to the carrying surface, the fine particles are desorbed from the magnetic particles, and the number of particles before and after desorption and the mass of the particles are obtained. There is also a method for measuring the adhesive force between fine particles, which is characterized by measuring the adhesive force (see Patent Document 5).

特開平10−267772号公報Japanese Patent Application Laid-Open No. 10-276772 特開2002−310892号公報JP 2002-310892 A 特開平11−153538号公報JP-A-11-153538 特開2001−228075号公報JP 2001-228075 A 特開2003−098065号公報JP 2003-098065 A 福地裕、外5名、「トナーの付着力に関与する因子」JapanHardCopy ‘97”論文集、電子写真学会、1997年7月9日 p.81−84Yutaka Fukuchi, 5 others, "Factors involved in toner adhesion" JapanHardCopy '97, Proceedings of the Electrophotographic Society, July 9, 1997, p.81-84

しかし、この場合は粒子の固定が磁気的に固定する方法であるため、キャリアのような磁性粒子に対してのみしか利用できず、磁性粒子以外の粒子に対してより汎用性の高い測定方法がより好ましい。   However, in this case, since the method of fixing particles is magnetically fixed, it can be used only for magnetic particles such as carriers, and there is a more versatile measurement method for particles other than magnetic particles. More preferred.

以上のことから原理も比較的簡単で定量化のし易い遠心法を使用した異なる粉体同士の非静電的付着力測定としては十分なものはなかった。   From the above, the principle is relatively simple, and there has been no sufficient measurement for non-electrostatic adhesion between different powders using a centrifugal method that is easy to quantify.

本発明は上記問題に鑑みてなされたもで、その目的とする処は、粉体の種類を限定することなく、原理も比較的簡単で定量化のし易い遠心法を使用して異なる粉体同士の非静電的付着力を測定することができる粉体の付着力測定装置を提供することにある。   The present invention has been made in view of the above-mentioned problems. The object of the present invention is not limited to the type of powder, and the powder is different using a centrifugal method that is relatively simple in principle and easy to quantify. An object of the present invention is to provide a powder adhesion measuring device capable of measuring the non-electrostatic adhesion between each other.

上記目的を達成するため、本発明は、1種類の被付着材粒子を均一に一層固定した前記試料基板の試料面の垂線が回転軸に対して垂直となるように設置できるロータを有する遠心分離装置を備え、前記遠心分離装置の回転により生ずる遠心力をもって少なくとも1種類以上の微粒子から成る粉体と前記試料基板上の被付着材粒子との粉体間の非静電的付着力を測定する粉体の付着力測装置において、前記試料基板を高速回転させ、前記被接着粒子を固定せしめる接着剤を均一に塗布するスピンコート装置を具備することを特徴とする。   In order to achieve the above object, the present invention provides a centrifugal separator having a rotor that can be installed so that a perpendicular to the sample surface of the sample substrate on which one kind of adherend particles are uniformly fixed is perpendicular to the rotation axis. A non-electrostatic adhesion force between the powder composed of at least one kind of fine particles and the adherend material particles on the sample substrate with a centrifugal force generated by the rotation of the centrifugal separator. The powder adhesion measuring apparatus is characterized by comprising a spin coater for uniformly applying an adhesive for rotating the sample substrate at a high speed and fixing the particles to be adhered.

本発明によれば、粉体の種類を限定することなく、原理も比較的簡単で定量化のし易い遠心法を使用して異なる粉体同士の非静電的付着力を測定することができる。   According to the present invention, the non-electrostatic adhesion force between different powders can be measured using a centrifugal method that is relatively simple in principle and easy to quantify without limiting the type of powder. .

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る付着力測定試料の概略図である。   FIG. 1 is a schematic view of an adhesive force measurement sample according to the present invention.

試料基板1に接着剤2が均一に塗布され、被付着材粒子3(以降 粒子3と呼ぶ)が一層均一に固定されており、その上に1種類以上の微粒子から成る粉体4が1粒子ごとに独立に付着している。図2はこの付着力測定試料の作成工程を示す図である。本実施の形態においては粒子3はキヤノン株式会社製カラー複合機iR C3200、粉体4は電子写真用カラートナーで色はシアンを用いた。   The adhesive 2 is uniformly applied to the sample substrate 1, and the adherend material particles 3 (hereinafter referred to as particles 3) are more uniformly fixed, and one particle or more of powder 4 composed of one or more kinds of fine particles is formed thereon. Each is attached independently. FIG. 2 is a diagram illustrating a process for preparing the adhesion force measurement sample. In this embodiment, the particle 3 is a color complex machine iRC3200 manufactured by Canon Inc., the powder 4 is a color toner for electrophotography, and the color is cyan.

試料作成工程には接着剤塗布工程5、被付着材固定工程6、粒子付着工程7がある。図3は接着剤塗布工程5を示した概略図である。   The sample preparation process includes an adhesive application process 5, an adherend fixing process 6, and a particle adhesion process 7. FIG. 3 is a schematic view showing the adhesive application step 5.

接着剤2を試料基板1にスピンコート装置8を用いて均一に塗布する。スピンコート装置8は台座9を回転させるモータ10と電源装置11及び接着剤の飛散防止のためのカバー12によって構成されるものである。接着剤2は、エポキシ樹脂系の接着剤で本実施の形態では「セメダイン ハイスーパー5」を使用した。使用する接着剤の引張せん断接着強さは使用する遠心分離装置の最大回転数が100000(rpm)であるとき、20(N/mm2 )以上とする。20N/mm2 以下では接着強度が十分でない場合遠心分離を行う際に試料基板から接着面ごと離れてしまうことから好ましくない。 The adhesive 2 is uniformly applied to the sample substrate 1 using the spin coater 8. The spin coater 8 is composed of a motor 10 for rotating a base 9, a power supply device 11, and a cover 12 for preventing the adhesive from scattering. Adhesive 2 is an epoxy resin adhesive, and “Cemedine High Super 5” was used in the present embodiment. The tensile shear bond strength of the adhesive used is 20 (N / mm 2 ) or more when the maximum rotational speed of the centrifugal separator used is 100,000 (rpm). When the adhesive strength is not sufficient at 20 N / mm 2 or less, it is not preferable because the entire adhesion surface is separated from the sample substrate when centrifugation is performed.

本実施の形態の接着剤の引張せん断接着強さは24.0(N/mm2 )であった。スピンコート装置の台座9に試料基板1を固定させ、高速回転をさせながら接着剤2を落とし、均一且つ薄い層を作製する。接着剤の厚みは粒子3の平均粒径よりも小さい値になるようにしなければ接着剤層に埋まってしまい測定できないため、回転時間や接着剤の粘性、接着剤の硬化時間については十分に注意を要する。 The tensile shear bond strength of the adhesive of the present embodiment was 24.0 (N / mm 2 ). The sample substrate 1 is fixed to the base 9 of the spin coater, and the adhesive 2 is dropped while rotating at a high speed to produce a uniform and thin layer. Adhesive thickness must be smaller than the average particle size of particles 3 and is buried in the adhesive layer and cannot be measured. Therefore, pay sufficient attention to rotation time, adhesive viscosity, and adhesive curing time. Cost.

本実施のの形態においては、主剤の粘度が150(Pa・S/20℃)で硬化剤は75(Pa・S/20℃)であり、10000rpm程度で回転させた場合は30秒で45μm、60秒で20〜25μmの膜厚になり、それ以上の時間を掛けても膜圧は殆ど変化していなかった。硬化時間が早過ぎるとスピンコートさせている間に硬化し始め、粒子3が完全に固定できなくなる。又、硬化開始までに時間が掛かり過ぎると生産性が落ちてしまう。本実施の形態においては、使用したキャリアは平均粒径35μmであり、接着剤の硬化については60秒間、およそ10000rpmで回転させ、約20μmの膜厚にしてキャリアを試料基板1に固定させた。   In the present embodiment, the viscosity of the main agent is 150 (Pa · S / 20 ° C.) and the curing agent is 75 (Pa · S / 20 ° C.). When rotated at about 10,000 rpm, 45 μm in 30 seconds, A film thickness of 20 to 25 μm was reached in 60 seconds, and the film pressure hardly changed even when a longer time was taken. If the curing time is too early, curing begins during spin coating, and the particles 3 cannot be completely fixed. In addition, if it takes too much time to start curing, the productivity is lowered. In the present embodiment, the carrier used has an average particle size of 35 μm, and the adhesive was cured by rotating at about 10,000 rpm for 60 seconds to a thickness of about 20 μm and fixing the carrier to the sample substrate 1.

接着剤の塗布後、被付着材固定工程6に移る。試料基板1を台座9から外し、接着剤が硬化しないうちに粒子3を接着剤層の上に振り掛ける。できるだけ山盛りにした状態で接着剤が完全に硬化する、つまり最大強度に到達するまで放置する。本実施の形態には24時間おいた。その後、図4に示すように、試料基板1を遠心分離用のロータ13に試料基板1の試料面の垂線が回転軸17に対して垂直になるようにフォルダ14の内部に入れ、又、試料基板1に平行になるようにスペーサ16のような中心部が空洞のものを介して受け基板15を設置し、ロータ13に十分な回転数を与える。この場合は使用する遠心分離機の最大回転数を与えるのが良い。   After applying the adhesive, the process proceeds to the adherend fixing process 6. The sample substrate 1 is removed from the base 9, and the particles 3 are sprinkled on the adhesive layer before the adhesive is cured. The adhesive is completely cured in a pile as much as possible, that is, until the maximum strength is reached. In this embodiment, 24 hours have passed. Thereafter, as shown in FIG. 4, the sample substrate 1 is placed in the folder 14 so that the perpendicular of the sample surface of the sample substrate 1 is perpendicular to the rotation axis 17 on the rotor 13 for centrifugation. A receiving substrate 15 is placed through a hollow central portion such as a spacer 16 so as to be parallel to the substrate 1, and a sufficient number of revolutions is given to the rotor 13. In this case, it is preferable to give the maximum rotation speed of the centrifuge to be used.

本実施のの形態に用いた遠心分離機は日立工機製CP100MX(最大回転速度:100000rpm、最大遠心加速度803,000×g)であり、ロータは日立工機製アングルロータP100AT(最大回転速度:100000rpm、最大遠心加速度803,000×g)を用いた。遠心分離から生じる遠心力によって接着剤2に接していない余分な粒子3を取り除くことが可能であり、粉体4を付着させて遠心分離を行う際に試料基板から分離してしまうことを防ぐことができる。   The centrifuge used in this embodiment is CP100MX manufactured by Hitachi Koki (maximum rotational speed: 100,000 rpm, maximum centrifugal acceleration 803,000 × g), and the rotor is an angle rotor P100AT manufactured by Hitachi Koki (maximum rotational speed: 100000 rpm, A maximum centrifugal acceleration of 803,000 × g) was used. It is possible to remove excess particles 3 that are not in contact with the adhesive 2 by the centrifugal force generated by the centrifugal separation, and prevent the powder 4 from adhering to the sample substrate when the centrifugal separation is performed. Can do.

遠心力の大きさの算出に関しては後述する。   Calculation of the magnitude of the centrifugal force will be described later.

余分な粒子3を取り除いた後、粒子付着工程7に至る。この工程では粒子3が十分に固定された試料基板1に粉体4を付着させる作業を行う。ここで注意しなければならないのは、求めたい付着力が粒子3と粉体4間の力であるため、粉体4が凝集していると遠心分離の際にトナーが単体で分離したのか凝集体で分離したのかによって粒径が異なり、分離時の様子が分からずに粒径を推測で決定してしまうと、求めたい値とは異なるものになってしまう可能性があることである。   After removing the excess particles 3, the particle adhesion step 7 is reached. In this step, an operation of attaching the powder 4 to the sample substrate 1 on which the particles 3 are sufficiently fixed is performed. It should be noted here that since the desired adhesion force is the force between the particles 3 and the powder 4, if the powder 4 is agglomerated, it is determined whether the toner is separated alone during the centrifugation. The particle size varies depending on whether the particles are separated, and if the particle size is determined by estimation without knowing the state of separation, the value may be different from the desired value.

そこで、粒子付着のために振動を利用して行う。図5は粒子付着工程7を模式化した図である。振動装置18の上に粉体4を置き、支柱19に粒子3を固定させた試料基板1を逆さにして貼り付けた固定台20を置き、振動を加える。振動を与えることで粉体4は僅かだがクラウド状態になり、個々が独立した状態になる。その状態のまま試料基板1に付着するので、粉体4が個々に独立した試料を作成することが可能になり、支柱19の高さ及び時間を調節することで付着量の調整ができる。尚、振動を長時間与えると帯電し易い粉体等は電荷を持ち易くなるので短時間に付着させなければならない。本実施の形態では、振動装置18には超音波発生装置を用い、1〜2分以内に付着させれば殆ど帯電しなかった。   Therefore, vibration is used for particle adhesion. FIG. 5 is a schematic view of the particle adhesion step 7. The powder 4 is placed on the vibration device 18, and the fixing base 20 on which the sample substrate 1 on which the particles 3 are fixed is attached upside down is placed on the support column 19, and vibration is applied. By applying vibration, the powder 4 is slightly in a cloud state, and becomes independent. Since it adheres to the sample substrate 1 in that state, it becomes possible to create a sample in which the powder 4 is individually independent, and the amount of adhesion can be adjusted by adjusting the height and time of the column 19. In addition, since the powder etc. which are easy to be charged will be easily charged when vibration is given for a long time, it must be attached in a short time. In the present embodiment, an ultrasonic generator is used as the vibration device 18 and is hardly charged if it adheres within 1 to 2 minutes.

以上が測定試料の作製成方法である。次に、遠心分離法を用いて付着力を算出する方法に入る。   The above is the method for producing the measurement sample. Next, the method for calculating the adhesive force using the centrifugal separation method is entered.

図6に粉体間の付着力算出方法についての作業工程を示す。粉体間の付着力測定方法は遠心分離工程21と画像採取工程22と画像解析工程23と付着力算出工程24がある。図4に示したように作製した測定試料である基板1と受け基板15をスペーサ16を介して遠心分離用のロータ13に試料基板1の試料面の垂線が回転軸17に対して垂直になるようにフォルダ14の内部に入れ、ロータ13に回転を加える。このとき、基板1及び受け基板15には予め1箇所印等を入れておき、フォルダ14に入れる際には向きを常に合わせるようにする。   FIG. 6 shows an operation process for a method for calculating the adhesion between powders. The method for measuring the adhesion force between powders includes a centrifugal separation step 21, an image collection step 22, an image analysis step 23, and an adhesion force calculation step 24. As shown in FIG. 4, the substrate 1 and the receiving substrate 15, which are the measurement samples prepared, are perpendicular to the rotation axis 17 with respect to the rotor 13 for centrifugation through the spacer 16. In this manner, the rotor 13 is rotated. At this time, a one-point mark or the like is put in advance on the substrate 1 and the receiving substrate 15 so that the orientation is always matched when the folder 1 is put.

又、受け基板15と測定試料基板との距離は近づける方が好ましい。本実施の形態では2mmとした。この理由は、遠心分離の際に粉体4が粒子3から分離した後、完全に垂直方向には行かずにやや回転方向とは逆方向に行く傾向があるからである。   Further, it is preferable to make the distance between the receiving substrate 15 and the measurement sample substrate closer. In this embodiment, it is 2 mm. This is because after the powder 4 is separated from the particles 3 during the centrifugal separation, the powder 4 does not go completely in the vertical direction but tends to go in the direction slightly opposite to the rotational direction.

遠心分離装置を駆動させロータを回転させると測定セル内の紛体はそれぞれの大きさや質量に応じた遠心力を受ける。概略図を図7に示す。Faは付着力(adhesive force)、Fcは遠心力(centrifugal
force )である。測定試料面上の粉体4は各回転数に応じた遠心力を受け、その粉体4に働く遠心力が測定試料面での付着力よりも大きくなった場合に測定試料面から受け基板15に粉体4は移動する。質量m(kg)の粒子の受ける遠心力は、ロータの回転数f(rpm)、回転軸17と測定試料基板の上の粉体4までの距離25のr(m)を用いて式(1)で求められる。
When the centrifuge is driven and the rotor is rotated, the powder in the measurement cell receives a centrifugal force corresponding to the size and mass of the powder. A schematic diagram is shown in FIG. Fa is adhesive force, Fc is centrifugal force (centrifugal
force). The powder 4 on the measurement sample surface receives a centrifugal force corresponding to the number of rotations, and when the centrifugal force acting on the powder 4 becomes larger than the adhesion force on the measurement sample surface, the receiving substrate 15 receives from the measurement sample surface. The powder 4 moves. The centrifugal force received by the particles of mass m (kg) is expressed by the equation (1) using the rotational speed f (rpm) of the rotor and the distance r (m) from the rotary shaft 17 to the powder 4 on the measurement sample substrate. ).

F=m×r×(2πf/60)2 … (1)
又、ここで粉体の質量m(kg)は真比重ρ(kg/m3 )、円相当径d(m)を用いて式(2)で求められる。
F = m × r × (2πf / 60) 2 (1)
Here, the mass m (kg) of the powder is obtained by the equation (2) using the true specific gravity ρ (kg / m 3) and the equivalent circle diameter d (m).

m=(4π/3)×ρ×(d/2)3 … (2)
遠心分離工程21では一定の回転数ごとに受け基板15を替える。このときの測定する試料のロータの回転数の決め方であるが、受け基板15上の粉体4の1粒ごとの大きさが確実に認識できるように、つまり、粉体4同士が重なったりしていないように独立した状態になるようにしなければならない。これは正確に粉体4の粒径を測定できないと付着力を見積もることができないからである。つまり、分離前では独立にあったものが、受け基板においては分離の際に受け基板に付着する間にトナーの移動で重なってしまう可能性があることから細かく回転区間を決め、そのたびに受け基板15を替えることが好ましい。
m = (4π / 3) × ρ × (d / 2) 3 (2)
In the centrifugal separation step 21, the receiving substrate 15 is changed at every constant rotation speed. In this case, the number of rotations of the rotor of the sample to be measured is determined so that the size of each particle of the powder 4 on the receiving substrate 15 can be reliably recognized, that is, the powders 4 overlap each other. Must be independent so that they do not. This is because the adhesive force cannot be estimated unless the particle size of the powder 4 can be measured accurately. In other words, since there was a possibility that toner that had been independent before separation would overlap due to toner movement while adhering to the receiving substrate at the time of separation, the rotation section was determined finely and received each time. It is preferable to change the substrate 15.

又、画像採取工程22及び画像解析工程23が行い易いようにするために表面が均一な材質のものを受け基板に貼り付けると好ましい。本測定ではキャストコート紙をしようした。アルミ等の金属では光の影響を受け易く、繊維の粗い紙ではトナーが繊維の中に入り込み画像がうまく取り込めないことから好適とは言えない。   In order to facilitate the image collection step 22 and the image analysis step 23, it is preferable to apply a material having a uniform surface to the substrate. In this measurement, cast coated paper was used. A metal such as aluminum is easily affected by light, and a paper having rough fibers is not preferable because toner enters the fibers and images cannot be captured well.

遠心分離工程21で低回転数から高回転数まで変えていき、受け基板15を各回転数で変えた後、画像採取工程22に入る。   The centrifugal separation step 21 changes the rotation number from a low rotation number to a high rotation number, and after changing the receiving substrate 15 at each rotation number, the image collection step 22 is entered.

画像採取工程22は、受け基板15上の粉体4画像を採取する工程である。粒子付着工程7で試料基板1に粉体4が独立して付着させることができるが、キャリアの影に入り込むトナー等もあり、正確に試料基板1の状態を把握することが難しいので付着量を試料基板1の変化から正確に定量化することは困難である。そこで、測定試料基板上の付着量の回転数ごとの変化から付着力を算出するのではなく、受け基板15の分離した粉体4から算出しなければならない。   The image collecting step 22 is a step of collecting the powder 4 image on the receiving substrate 15. The powder 4 can be independently attached to the sample substrate 1 in the particle attaching step 7, but there are toners or the like that enter the shadow of the carrier, and it is difficult to accurately grasp the state of the sample substrate 1, so the amount of attachment can be reduced. It is difficult to accurately quantify from changes in the sample substrate 1. Therefore, it is necessary to calculate the adhesion force from the separated powder 4 of the receiving substrate 15 instead of calculating the adhesion force from the change in the amount of adhesion on the measurement sample substrate for each rotation speed.

そこで、本測定方法では前述にもあったように試料基板1及び受け基板15に予め印を付け、向きを合わせて遠心分離することで受け基板15と測定試料基板は分離した粉体4が付着する場所が対応関係を結ぶために、粉体4の分離量を受け基板から得ることが可能になる。これは前述した受け基板15と測定試料基板との距離が近いほど正確な値になり、基板水平方向へのずれは殆ど無視できることとなる。   Therefore, in the present measurement method, as described above, the sample substrate 1 and the receiving substrate 15 are marked in advance, and the powder 4 is separated from the receiving substrate 15 and the measuring sample substrate by centrifuging them in the same direction. Since the locations to be connected have a corresponding relationship, it is possible to obtain the amount of separation of the powder 4 from the substrate. This becomes more accurate as the distance between the receiving substrate 15 and the measurement sample substrate is shorter, and the deviation in the horizontal direction of the substrate is almost negligible.

又、同測定を繰り返すことで再現性からより正確性を増すことは言うまでもない。   Needless to say, repeating the measurement increases the accuracy from the reproducibility.

画像採取においては光学顕微鏡と光学顕微鏡を通して得られる前記受け基板上の粉体の画像を撮影する撮影手段を用いて行う。その際、試料台には位置決め用の固定台等を設計しておき、受け基板15を固定台に載せて画像を取り込めば測定試料基板上の決まった位置からの分離した粉体4の画像を採取できる。   The image collection is performed using an optical microscope and a photographing means for photographing an image of the powder on the receiving substrate obtained through the optical microscope. At that time, if a sample fixing table or the like is designed for the sample table and the receiving substrate 15 is placed on the fixed table and the image is taken in, an image of the separated powder 4 from a predetermined position on the measurement sample substrate is obtained. Can be collected.

そして、各回転数ごとの受け基板全ての画像を取り込むことで画像採取工程22は終了になる。   And the image collection process 22 is complete | finished by taking in the image of all the receiving boards for each rotation speed.

次に、取り込んだ画像を用いて粉体4の情報を取り出す画像解析工程23を行う。ここでは取り込んだ画像を全て画像処理ソフトを用いて画像上の粉体4の円相当径を取り出す。殆どの画像処理ソフトには二値化若しくは色抽出等の機能があるので、さほど苦労せずに処理可能となる。その際に受け基板上に粗さ等が多く存在すると画像処理が比較的手間が掛かり、補正が必要となったりするので、前述したように表面が均一な材質のものを受け基板15に貼り付けると好ましい。本実施の形態では、画像処理ソフトWinRoofを用いてシアントナーを抽出し、それぞれのトナーの円相当径を求めた。   Next, an image analysis process 23 for extracting information on the powder 4 using the captured image is performed. Here, for all the captured images, the equivalent circle diameter of the powder 4 on the image is extracted using image processing software. Most image processing software has functions such as binarization or color extraction, so that it can be processed without much trouble. At this time, if there is a lot of roughness on the receiving substrate, the image processing is relatively time-consuming and correction is required. Therefore, the material having a uniform surface is attached to the receiving substrate 15 as described above. And preferred. In the present embodiment, cyan toner is extracted using image processing software WinRoof, and the equivalent circle diameter of each toner is obtained.

画像解析工程23で取り出した粉体の円相当径を用いて最後の付着力算出作業を行う。   The final adhesion calculation operation is performed using the equivalent circle diameter of the powder taken out in the image analysis step 23.

前述した式(1)及び式(2)に取り出した円相当径(m)とそのときの回転数(rpm)、更に粉体4の真比重ρを代入することで1粒当たりの粉体4の付着力を算出することができる。尚、本実施の形態では、付着力の値はトナーが分離した時の付着力測定におけるロータ13の回転数に対する遠心力の値とそれらのトナーが分離していない前回の付着力測定におけるロータ13の回転数に対する遠心力の値の平均値をトナーの付着力の値として定義した。以上が個々の粉体4の付着力算出手段になる。   By substituting the equivalent circle diameter (m) and the rotation speed (rpm) taken out in the above formulas (1) and (2) and the true specific gravity ρ of the powder 4, the powder 4 per grain Can be calculated. In this embodiment, the value of the adhesion force is the value of the centrifugal force with respect to the rotational speed of the rotor 13 in the adhesion force measurement when the toner is separated and the rotor 13 in the previous adhesion force measurement in which the toner is not separated. The average value of the centrifugal force with respect to the number of rotations was defined as the value of the adhesion force of the toner. The above is the means for calculating the adhesion force of each powder 4.

そこで、見積もった個々の付着力の常用対数値を取り付着力分布を作成する。図8は実施の形態での付着力の常用対数値から得られた分布図である。横軸に付着力、縦軸に頻度を取って個数分布表示した。付着力分布の結果から付着力には傾向があることが確認でき、広い範囲で分布していた。得られた付着力分布を統計処理して、平均付着力を算出した場合、2サンプル平均で非静電的付着力は約3.5nNと算出された。   Therefore, an adhesion distribution is created by taking the common logarithm values of the estimated individual adhesion forces. FIG. 8 is a distribution diagram obtained from common logarithmic values of the adhesive force in the embodiment. The number distribution is displayed with the adhesive force on the horizontal axis and the frequency on the vertical axis. From the result of the adhesive force distribution, it was confirmed that there was a tendency in the adhesive force, and it was distributed in a wide range. When the obtained adhesive force distribution was statistically processed to calculate the average adhesive force, the non-electrostatic adhesive force was calculated to be about 3.5 nN with an average of two samples.

以上の一連の作業を行うことで少なくとも1種類以上の微粒子から成る粉体と試料基板上の粒子間の非静電的付着力を測定することができる。   By performing the above-described series of operations, it is possible to measure the non-electrostatic adhesion force between the powder composed of at least one kind of fine particles and the particles on the sample substrate.

以上、実施の形態を述べながら、本発明を用いて電子写真用トナー及びキャリア間の非静電的な付着力を算出したが、これらの実施の形態に限定されるものではなく、様々な粉体間の非静電的な付着力を求めることができる。   As described above, the non-electrostatic adhesion force between the electrophotographic toner and the carrier was calculated using the present invention while describing the embodiment. However, the present invention is not limited to these embodiments, and various powders are used. Non-electrostatic adhesion between bodies can be determined.

本発明に係る付着力測定試料のイメージ図である。It is an image figure of the adhesive force measurement sample which concerns on this invention. 試料の作成工程を示す図である。It is a figure which shows the preparation process of a sample. 接着剤塗布工程を示した図である。It is the figure which showed the adhesive agent application process. 遠心分離装置のローター内部の模式図を示した図である。It is the figure which showed the schematic diagram inside the rotor of a centrifuge. 粒子付着工程を模式化した図である。It is the figure which modeled the particle adhesion process. 粉体間の付着力算出方法についての作業工程を示す図である。It is a figure which shows the operation | work process about the adhesive force calculation method between powder. 遠心分離法の原理の概略を示す図である。It is a figure which shows the outline of the principle of the centrifugation method. 実施例の付着力分布の結果を示す図である。It is a figure which shows the result of the adhesive force distribution of an Example.

符号の説明Explanation of symbols

1 試料基板
2 接着剤
3 被付着材粒子
4 一種類以上の微粒子から成る粉体
8 スピンコート装置
9 台座
10 モータ
11 電源装置
12 カバー
13 ロータ
14 フォルダ
15 受け基板
16 スペーサ
17 回転軸
18 振動装置
19 支柱
20 固定台
25 回転軸と測定試料基板上粉体までの距離
DESCRIPTION OF SYMBOLS 1 Sample board | substrate 2 Adhesive agent 3 Adhering material particle | grains 4 Powder which consists of one or more types of fine particles 8 Spin coat device 9 Base 10 Motor 11 Power supply device 12 Cover 13 Rotor 14 Folder 15 Receiving substrate 16 Spacer 17 Rotating shaft 18 Vibrating device 19 Strut 20 Fixing base 25 Distance between the rotating shaft and powder on the measurement sample substrate

Claims (7)

1種類の被付着材粒子を均一に一層固定した前記試料基板の試料面の垂線が回転軸に対して垂直となるように設置できるロータを有する遠心分離装置を備え、前記遠心分離装置の回転により生ずる遠心力をもって少なくとも1種類以上の微粒子から成る粉体と前記試料基板上の被付着材粒子との粉体間の非静電的付着力を測定する粉体の付着力測装置において、
前記試料基板を高速回転させ、前記被接着粒子を固定せしめる接着剤を均一に塗布するスピンコート装置を具備することを特徴とする粉体の付着力測定装置。
A centrifuge having a rotor that can be installed so that a perpendicular of the sample surface of the sample substrate on which one kind of adherent material particles are uniformly fixed is perpendicular to the rotation axis; and by rotating the centrifuge In a powder adhesion measuring apparatus for measuring a non-electrostatic adhesion force between a powder consisting of at least one kind of fine particles and a powder to be adhered on the sample substrate with a generated centrifugal force,
An apparatus for measuring adhesion of powder, comprising: a spin coater that uniformly rotates an adhesive that fixes the particles to be adhered by rotating the sample substrate at a high speed.
前記スピンコート装置において使用する1種類の粒子固定用の接着剤は、接着強度の引張せん断接着強さが20(N/mm2
)以上とすることを特徴とする請求項1記載の粉体の付着力測定。
One type of adhesive for fixing particles used in the spin coater has a tensile shear adhesive strength of 20 (N / mm 2).
2) Adhesive force measurement of powder according to claim 1.
前記接着剤においてはエポキシ樹脂系の接着剤を使用することを特徴とする請求項1又は2記載の粉体の付着力測定装置。   3. The powder adhesive force measuring apparatus according to claim 1, wherein an epoxy resin adhesive is used as the adhesive. 前記試料基板において1種類以上の微粒子から成る粉体を振動を用いて、粉体に電荷を持たせることなく非静電的に前記試料基板上の被付着材粒子に付着させることを特徴とする請求項1記載の粉体の付着力測定装置。   A powder composed of one or more kinds of fine particles on the sample substrate is non-electrostatically attached to the adherent material particles on the sample substrate by using vibration without causing the powder to have an electric charge. The powder adhesive force measuring apparatus according to claim 1. 前記遠心分離装置において遠心力により分離した前記試料基板上の少なくとも1種類以上の微粒子から成る粉体を受けることができ、前記試料基板に平行に設置できる受け基板を有し、該受け基板上の分離した粉体の粒径、比重及び前記試料基板からの分離時の前記ロータの回転数を用いて少なくとも1種類以上の微粒子から成る粉体の付着力を算出することを特徴とする請求項1記載の粉体の付着力測定装置。   A receiving substrate that can receive powder composed of at least one kind of fine particles on the sample substrate separated by centrifugal force in the centrifugal separator and can be placed in parallel with the sample substrate; 2. The adhesion force of the powder composed of at least one kind of fine particles is calculated using the particle size and specific gravity of the separated powder and the rotational speed of the rotor at the time of separation from the sample substrate. The powder adhesive force measuring apparatus as described. 前記試料基板から分離した少なくとも1種類以上の微粒子から成る粉体の付着力分布から平均付着力を算出することを特徴とする請求項1又は5記載の粉体の付着力測定装置。   6. The powder adhesive force measuring apparatus according to claim 1, wherein an average adhesive force is calculated from an adhesive force distribution of at least one kind of fine particles separated from the sample substrate. 光学顕微鏡と、光学顕微鏡を通して得られる前記受け基板上の粉体の画像を撮影する撮影手段と、前記粉体画像から粉体の粒径を求める画像処理手段と、を有することを特徴とする請求項5記載の粉体の付着力測定装置。   2. An optical microscope, a photographing means for photographing an image of the powder on the receiving substrate obtained through the optical microscope, and an image processing means for obtaining a particle diameter of the powder from the powder image. Item 6. The apparatus for measuring adhesion of powder according to Item 5.
JP2005032706A 2005-02-09 2005-02-09 Adhesion measuring device of powder Withdrawn JP2006220472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032706A JP2006220472A (en) 2005-02-09 2005-02-09 Adhesion measuring device of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032706A JP2006220472A (en) 2005-02-09 2005-02-09 Adhesion measuring device of powder

Publications (1)

Publication Number Publication Date
JP2006220472A true JP2006220472A (en) 2006-08-24

Family

ID=36982902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032706A Withdrawn JP2006220472A (en) 2005-02-09 2005-02-09 Adhesion measuring device of powder

Country Status (1)

Country Link
JP (1) JP2006220472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590372B2 (en) 2009-05-22 2013-11-26 Sharp Kabushiki Kaisha Device and method for measuring toner adhesion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590372B2 (en) 2009-05-22 2013-11-26 Sharp Kabushiki Kaisha Device and method for measuring toner adhesion

Similar Documents

Publication Publication Date Title
JP2006220472A (en) Adhesion measuring device of powder
JP3544093B2 (en) Powder adhesion measurement device and centrifugal separation adhesion measurement method
JP4326002B2 (en) Powder adhesion force measuring method and apparatus, and powder friction force measuring method and apparatus
CN110376103A (en) A kind of Surface Tension of Liquid Drops test device
US8590372B2 (en) Device and method for measuring toner adhesion
US20080152367A1 (en) Systems and methods for determining a charge-to-mass ratio, and a concentration, of one component of a mixture
JP3676046B2 (en) Powder adhesion measuring device and centrifugal adhesion measuring method
JPH11258081A (en) Inter-powder adhesion measuring device and inter-powder adhesion measuring method and image forming device and image forming method
JP3585714B2 (en) Powder adhesion measuring method and measuring device
CN104069955B (en) The detection of centrifuge MEMS static friction and screening system and method
JP3592513B2 (en) Method and apparatus for measuring powder adhesion
JPWO2018116445A1 (en) Field flow fractionation device
JPH11237328A (en) Method and device for measuring adhesion force of fine particle
JP4106042B2 (en) Powder adhesion measuring method and powder adhesion measuring device
JP3585715B2 (en) Powder adhesion measuring method and measuring device
CN110376102A (en) A kind of Surface Tension of Liquid Drops test method
JP4282535B2 (en) Method and apparatus for measuring adhesion of powder
JP3036036B2 (en) Apparatus and method for correcting imbalance of rotating body
CN102744191A (en) Coating method of coating and photosensitive drum
Boden et al. Development of a rotating camera for in-flight measurements of aircraft propeller deformation by means of IPCT
US8544351B2 (en) Method and apparatus for characterizing the flowability of toner particles
EP2261678A1 (en) Novel characterization tools for toner adhesion and adhesion distribution
JPH065610Y2 (en) Centrifugal sedimentation type particle size distribution measuring device
Zimon et al. Methods for determining adhesive force
JPH04118565A (en) Measuring device for charge quantity distribution

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513