JP4065246B2 - Powder adhesion measuring method and powder adhesion measuring device - Google Patents

Powder adhesion measuring method and powder adhesion measuring device Download PDF

Info

Publication number
JP4065246B2
JP4065246B2 JP2004107388A JP2004107388A JP4065246B2 JP 4065246 B2 JP4065246 B2 JP 4065246B2 JP 2004107388 A JP2004107388 A JP 2004107388A JP 2004107388 A JP2004107388 A JP 2004107388A JP 4065246 B2 JP4065246 B2 JP 4065246B2
Authority
JP
Japan
Prior art keywords
powder
substrate
layer
adhesion
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004107388A
Other languages
Japanese (ja)
Other versions
JP2005291920A (en
Inventor
治雄 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004107388A priority Critical patent/JP4065246B2/en
Publication of JP2005291920A publication Critical patent/JP2005291920A/en
Application granted granted Critical
Publication of JP4065246B2 publication Critical patent/JP4065246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、粉体の付着力測定方法及び粉体付着力測定装置に関し、特に、電子写真分野等の粉体を取り扱う分野に適用可能なトナー等の付着力測定に関するものである。   The present invention relates to a powder adhesion measuring method and a powder adhesion measuring apparatus, and more particularly to measuring adhesion of a toner or the like applicable to the field of handling powders such as electrophotography.

粉体を取り扱う分野では、粉体の様々な特性値を把握することが重要である。粉体の特性値の一つとして、粉体の付着力がある。粉体の付着力を測定する方法は、粉体の付着している物体から粉体を分離するのに必要な力を見積る方法が一般的である。粉体を分離させる方法としては、遠心力、振動、衝撃、空気圧、電界、磁界等を用いた方法が知られている。   In the field of handling powder, it is important to grasp various characteristic values of the powder. One characteristic value of the powder is the adhesion of the powder. As a method for measuring the adhesion force of the powder, a method for estimating the force necessary to separate the powder from the object to which the powder is adhered is generally used. As a method for separating powder, a method using centrifugal force, vibration, impact, air pressure, electric field, magnetic field or the like is known.

例えば、トナー粒子をAFMのカンチレバー先端に付着させ、感光体表面との付着力を測定する方法がある(例えば、非特許文献1参照)。また、遠心力を作用させて基板から粉体を分離する方法がある(例えば、特許文献1参照)。また、基板を振動させて粉体を基板から分離する方法がある(例えば、特許文献2参照)。また、基板と粉体捕集部材間に電界をかけて粉体を基板から分離する方法がある(例えば、特許文献3参照)。また、粉体に超音波を作用させて粉体を基板から分離する方法により、基板と粉体間の付着力を測定する方法がある(例えば、特許文献4参照)。   For example, there is a method in which toner particles are attached to the tip of an AFM cantilever and the adhesion force to the surface of the photoreceptor is measured (for example, see Non-Patent Document 1). Further, there is a method of separating powder from a substrate by applying a centrifugal force (see, for example, Patent Document 1). Further, there is a method of separating the powder from the substrate by vibrating the substrate (see, for example, Patent Document 2). In addition, there is a method in which an electric field is applied between the substrate and the powder collecting member to separate the powder from the substrate (see, for example, Patent Document 3). In addition, there is a method of measuring the adhesion force between the substrate and the powder by a method of separating the powder from the substrate by applying an ultrasonic wave to the powder (see, for example, Patent Document 4).

また、磁性粒子に付着した微粒子を機械的及び電界により磁性粒子から分離することにより、磁性粒子と微粒子間の付着力を測定する方法がある(例えば、特許文献5参照)。   Further, there is a method of measuring the adhesion force between magnetic particles and fine particles by separating the fine particles adhering to the magnetic particles from the magnetic particles mechanically and by an electric field (see, for example, Patent Document 5).

なお、粉体間の付着力を測定する方法として一般的に良く知られている方法として、粉体を分割可能な容器に充填し、この容器を分割する際の引張強度を測定する二分割セル法がある(例えば、非特許文献2参照)。   In addition, as a generally well-known method for measuring the adhesion between powders, a two-divided cell that fills powder into a separable container and measures the tensile strength when the container is divided There is a law (for example, see Non-Patent Document 2).

また、粉体間付着力測定で、粉体層を形成した基板に遠心力を作用させる方法で粉体間付着力を測定しているものがある(例えば、特許文献6参照)。   In addition, there is a technique in which the adhesion force between powders is measured by a method in which centrifugal force is applied to a substrate on which a powder layer is formed in the adhesion force between powders (for example, see Patent Document 6).

また、針先端に付着させた粉体粒子を、基板に付着させた粉体に接触させ、引き剥がす際の力を測定して粉体間の付着力を測定する方法がある(例えば、特許文献7参照)。
特開平10−267772号公報 特開平11−153538号公報 特開2001−228075号公報 特開2002−71484号公報 特開2003−98065号公報 特開平11−258081号公報 特開2001−183289号公報 Mary L.Ott,et al.,“Atomic force microscopy adhesion measurements of surface−modified toners for xerographic applications”、Colloids and Surfaces、Physicochemical and Engineering Aspects 87、1994、p.245−256 早川宗八郎編、粉体物性測定法、朝倉書店、1955、p.94
In addition, there is a method for measuring the adhesion force between powders by bringing the powder particles attached to the tip of the needle into contact with the powder attached to the substrate and measuring the force at the time of peeling (for example, patent document) 7).
Japanese Patent Application Laid-Open No. 10-276772 JP-A-11-153538 JP 2001-228075 A JP 2002-71484 A JP 2003-98065 A Japanese Patent Laid-Open No. 11-258081 JP 2001-183289 A Mary L. Ott, et al. , “Atomic force microscopy adhesion measurements of surface-modified toners for xerographic applications”, Colloids and Surfaces. 245-256 Edited by Hayakawa Souhachiro, Method for Measuring Physical Properties of Powder, Asakura Shoten, 1955, p. 94

なお、電子写真方式の画像形成プロセスにおいては、画像を形成する帯電粉体であるトナーが感光体等の画像形成部材間で付着・分離が繰り返されており、トナーと画像形成部材間の付着力は重要な特性値である。また、画像形成部材上に形成されたトナー像は、トナー粒子が2層以上重なっており、トナー粒子間の付着力がプロセスの特性に重要な影響を及ぼしている。特に、転写プロセスにおいては、転写チリや中抜け画像等の画像品質を劣化させる現象の発生要因がトナー間付着力と密接な関係にあり、トナー間付着力の制御が重要な課題となっている。   In the electrophotographic image forming process, the toner, which is a charged powder for forming an image, is repeatedly attached and separated between image forming members such as a photoconductor, and the adhesion force between the toner and the image forming member. Is an important characteristic value. Further, the toner image formed on the image forming member has two or more layers of toner particles, and the adhesion between the toner particles has an important influence on the characteristics of the process. In particular, in the transfer process, the cause of the phenomenon of deteriorating the image quality such as transfer dust and hollow image is closely related to the adhesion force between toners, and the control of the adhesion force between toners is an important issue. .

しかしながら、非特許文献1と特許文献1〜4との方法は、いずれも粉体と粉体が付着している物体間との付着力を測定する方法であるため、粉体間の付着力を測定するのが困難となる。   However, since the methods of Non-Patent Document 1 and Patent Documents 1 to 4 are methods for measuring the adhesion force between the powder and the object to which the powder is adhered, the adhesion force between the powders is measured. It becomes difficult to measure.

また、非特許文献2のように帯電した粉体間の付着力を測定する場合は、一度何らかの手段で帯電させた粉体を容器に充填させる必要がある。このため、電子写真プロセスにおいて画像形成部材上に形成されたトナー層のように、粉体層を物体に付着させた状態での粉体間付着力を測定することはできない。また、通常の粉体は粒径や帯電量に分布があり、粉体間付着力には分布があるが、この方法では粉体間の付着力分布を測定することができない。   Further, when the adhesion force between charged powders is measured as in Non-Patent Document 2, it is necessary to fill a container with powder once charged by some means. For this reason, it is not possible to measure the adhesion between powders in a state where the powder layer is adhered to an object like the toner layer formed on the image forming member in the electrophotographic process. Further, normal powder has a distribution in particle size and charge amount, and there is a distribution in the adhesion between powders, but this method cannot measure the adhesion distribution between powders.

また、特許文献6の方法は、粉体層を物体に付着させた状態での測定が可能で定量性も良いが、測定手順が多く、測定時間がかかるという問題点がある。また、粉体層からの分離粒子数が非常に多いため、分離した粒子同士が接触、又は積層してしまい、各粒子の粒径を計測することができないため、付着力の分布を測定することができないという問題点がある。   Further, the method of Patent Document 6 can measure in a state where the powder layer is attached to an object and has good quantitativeness, but has a problem that it takes many measurement procedures and takes a long measurement time. In addition, since the number of separated particles from the powder layer is very large, the separated particles are in contact with each other or stacked, and the particle size of each particle cannot be measured. There is a problem that can not be.

また、特許文献7の方法は、粉体間の付着力を正確に測定することができるが、粉体間付着力の平均値及び分布を得るには、多数の粉体粒子について測定を実施する必要があり、手間と時間がかかるという問題点がある。   Further, the method of Patent Document 7 can accurately measure the adhesion between powders, but in order to obtain the average value and distribution of the adhesion between powders, measurement is performed on a large number of powder particles. There is a problem that it is necessary and takes time and effort.

本発明は、上記事情に鑑みてなされたものであり、帯電した粉体間の付着力分布を定量的で容易に測定できる粉体の付着力測定方法及び粉体付着力測定装置を提供すること目的とするものである。   The present invention has been made in view of the above circumstances, and provides a powder adhesion measuring method and a powder adhesion measuring apparatus capable of quantitatively and easily measuring the adhesion distribution between charged powders. It is the purpose.

かかる目的を達成するために、本発明は以下の特徴を有する。   In order to achieve this object, the present invention has the following features.

本発明にかかる粉体付着力測定方法は、電極を有する第1の基板上に帯電した粉体粒子を二層以上付着し、第1の基板上に粉体層を形成し、電極を有する第2の基板を、粉体層に接触しないように対置し、第1の基板と、第2の基板と、の間に空気層を設け、第1の基板と、第2の基板と、の基板間に電位差を設け、第1の基板上に付着した一部の粒子を、第2の基板上に移動させ、第1の基板上の粉体重量m1と、第2の基板上の粉体重量m2と、を測定し、粉体重量比ηを式(1)より求め、粉体層の層厚をd2とし、粉体重量比ηに対応する粉体層分割位置Zsを式(2)より求め、粉体層分割位置Zsにおける電界E(Zs)を求め、粉体の帯電量分布の測定値と、電界E(Zs)と、から粉体間の付着力分布を求めることを特徴とするものである。これにより、帯電した粉体が基板上に付着した状態での測定を実施することが可能となるため、容易に粉体間の付着力分布を測定することが可能となる。

Figure 0004065246
Figure 0004065246
In the method for measuring powder adhesion according to the present invention, two or more layers of charged powder particles are deposited on a first substrate having electrodes, a powder layer is formed on the first substrate, and a first electrode having electrodes is formed. The two substrates are placed so as not to contact the powder layer, an air layer is provided between the first substrate and the second substrate, and the first substrate and the second substrate. A potential difference is provided between them, and some of the particles adhering to the first substrate are moved onto the second substrate, the powder weight m 1 on the first substrate and the powder on the second substrate The weight m 2 is measured, the powder weight ratio η is obtained from the equation (1), the layer thickness of the powder layer is d 2, and the powder layer division position Z s corresponding to the powder weight ratio η is represented by the equation From (2), the electric field E (Z s ) at the powder layer dividing position Z s is obtained, and the measured adhesion amount distribution of the powder and the electric field E (Z s ) are used to determine the adhesive force distribution between the powders. Characterized by seeking Than is. As a result, it is possible to perform measurement in a state where the charged powder adheres to the substrate, so that it is possible to easily measure the adhesion force distribution between the powders.
Figure 0004065246
Figure 0004065246

また、本発明にかかる粉体付着力測定方法は、電極を形成した基板が平板状で、第1の基板と第2の基板とが平行に対置していることを特徴とするものである。これにより、電界が基板に平行な面内で均一となるため、粉体の移動量も面内で均一となり、精度の高い測定が可能となる。   The powder adhesion measuring method according to the present invention is characterized in that the substrate on which the electrode is formed is a flat plate, and the first substrate and the second substrate face each other in parallel. As a result, the electric field becomes uniform in a plane parallel to the substrate, so that the amount of movement of the powder becomes uniform in the plane, and high-precision measurement is possible.

また、本発明にかかる粉体付着力測定方法は、第1の基板と、第2の基板との電極上部に絶縁層が設けられていることを特徴とするものである。これにより、両基板間での放電や接触によるリーク電流の発生が抑制され、粉体間付着力の値が得られ、定量性の高い安定した測定が可能となる。   Moreover, the powder adhesion measuring method according to the present invention is characterized in that an insulating layer is provided on the electrodes of the first substrate and the second substrate. As a result, the occurrence of leakage current due to discharge or contact between the two substrates is suppressed, the value of the adhesion between the powders is obtained, and stable measurement with high quantitativeness becomes possible.

また、本発明にかかる粉体付着力測定方法は、第1の基板上の絶縁層を層1、粉体層を層2、空気層を層3、第2の基板の絶縁層を層4とし、各層の比誘電率、層厚をそれぞれεi、di(i=1〜4(1〜4は、各層の番号)、Di=di/εi(i=1〜4)、各Diの和をD、ε0を真空の誘電率とし、粉体単位重量当たりの帯電量Q/M、粉体の真比重δ、粉体の嵩密度M/V、粉体粒子の誘電率εpを用いて、粉体層の電荷密度ρを式(3)より求め、粉体層の誘電率ε2を式(4)より求め、第1の基板の電極に電圧V1、第2の基板の電極に電圧V2を印加した場合の電界E(zs)を式(5)により求めることを特徴とするものである。このように、測定された粉体重量比から得られる粉体層分割位置と、粉体に関するパラメータ等を計算式に代入することで、定量性の高い粉体間付着力の値を得ることが可能となる。

Figure 0004065246
Figure 0004065246
Figure 0004065246
In addition, the method for measuring the adhesion of powder according to the present invention uses the insulating layer on the first substrate as layer 1, the powder layer as layer 2, the air layer as layer 3, and the insulating layer of the second substrate as layer 4. , I , d i (i = 1 to 4 (1 to 4 is the number of each layer)), D i = d i / ε i (i = 1 to 4), The sum of D i is D, ε 0 is the dielectric constant of vacuum, the charge amount Q / M per unit weight of powder, the true specific gravity δ of powder, the bulk density M / V of powder, the dielectric constant of powder particles Using ε p , the charge density ρ of the powder layer is obtained from Equation (3), the dielectric constant ε 2 of the powder layer is obtained from Equation (4), and the voltage V 1 and the second voltage are applied to the electrodes of the first substrate. The electric field E (z s ) when the voltage V 2 is applied to the electrode of the substrate is obtained by the equation (5), and thus the powder obtained from the measured powder weight ratio Body layer division position, parameters related to powder, etc. By substituting in the formula, it is possible to obtain high values of quantitativity powder adherence between.
Figure 0004065246
Figure 0004065246
Figure 0004065246

また、本発明にかかる粉体付着力測定方法は、粉体間の付着力の測定値として、粉体重量比ηが0.5以下に対応する測定値を用いることを特徴とするものである。このように、粉体が基板から分離しない範囲での測定値を用いることで、粉体と基板間の付着力の影響が無く、粉体間の付着力のみを測定可能となる。   The powder adhesion measuring method according to the present invention is characterized in that a measured value corresponding to a powder weight ratio η of 0.5 or less is used as a measured value of the adhesion between powders. . In this way, by using the measured value in the range where the powder does not separate from the substrate, it is possible to measure only the adhesion force between the powders without being affected by the adhesion force between the powder and the substrate.

また、本発明にかかる粉体付着力測定方法は、基板間の電位差、及び、基板間の距離を、基板間で放電が発生しない範囲内に設定したことを特徴とするものである。これにより、放電による測定への影響を回避することになるため、正確な測定が可能となる。   The powder adhesion measuring method according to the present invention is characterized in that the potential difference between the substrates and the distance between the substrates are set within a range where no discharge occurs between the substrates. As a result, the influence on the measurement due to the discharge is avoided, so that an accurate measurement is possible.

また、本発明にかかる粉体付着力測定方法は、粉体としてトナーを用い、第1の基板上にトナー層を形成する方法として、電子写真方式における現像方式を用いることを特徴とするものである。これにより、現像で形成されたトナー層におけるトナー間の付着力分布を測定することが可能となるため、電子写真プロセスやトナーの開発に寄与することが可能となる。   The powder adhesion measuring method according to the present invention is characterized in that a toner is used as a powder and a developing method in an electrophotographic method is used as a method for forming a toner layer on a first substrate. is there. This makes it possible to measure the adhesion distribution between the toners in the toner layer formed by development, thereby contributing to the development of electrophotographic processes and toners.

また、本発明にかかる粉体付着力測定装置は、電極を有する第1の基板上に帯電した粉体粒子を二層以上付着させ、第1の基板に粉体層を形成する粉体付着手段と、電極を有する第2の基板を第1の基板上に形成した粉体層に接触しないように、第1の基板に対置させ、第1の基板と第2の基板との両基板間に電位差を設け、第1の基板上に形成した粉体層の一部の粒子を、第2の基板に移動させる粉体移動手段と、第1の基板上の粉体重量m1と、第2の基板上の粉体重量m2と、を測定する重量測定手段と、粉体の帯電量分布を測定する帯電量分布測定手段と、粉体重量比ηを式(1)より求め、粉体層の層厚をd2とし、粉体重量比ηに対応する粉体層分割位置Zsを式(2)より求め、粉体層分割位置Zsにおける電界E(Zs)を求め、粉体の帯電量分布の測定値と、電界E(Zs)と、から粉体間の付着力分布を求める付着力分布計算手段と、を有することを特徴とするものである。これにより、帯電した粉体が基板上に付着した状態での測定を実施することが可能となるため、容易に粉体間の付着力分布を測定することが可能となる。

Figure 0004065246
Figure 0004065246
Moreover, the powder adhesion measuring apparatus according to the present invention is a powder adhesion means for adhering two or more charged powder particles on a first substrate having electrodes and forming a powder layer on the first substrate. And the second substrate having electrodes facing the first substrate so as not to contact the powder layer formed on the first substrate, and between the first substrate and the second substrate. A powder moving means for providing a potential difference and moving a part of particles of the powder layer formed on the first substrate to the second substrate, a powder weight m 1 on the first substrate, a second A weight measuring means for measuring the powder weight m 2 on the substrate, a charge amount distribution measuring means for measuring the charge amount distribution of the powder, and determining the powder weight ratio η from the formula (1), the layer thickness of the layer and d 2, the powder layer split position Z s corresponding to the powder weight ratio η determined from equation (2), determined the powder layer dividing position field in Z s E a (Z s) The measured value of the charge amount distribution of the powder, is characterized in that it has a field E (Z s), and adhesion distribution calculating means which calculates the adhesion distribution between powder from the. As a result, it is possible to perform measurement in a state where the charged powder adheres to the substrate, so that it is possible to easily measure the adhesion force distribution between the powders.
Figure 0004065246
Figure 0004065246

また、本発明にかかる粉体付着力測定装置は、電極を形成した基板が平板状で、第1の基板と第2の基板とが平行に対置していることを特徴とするものである。これにより、電界が基板に平行な面内で均一となるため、粉体の移動量も面内で均一となり、精度の高い測定が可能となる。   The powder adhesion measuring apparatus according to the present invention is characterized in that the substrate on which the electrode is formed is a flat plate, and the first substrate and the second substrate face each other in parallel. As a result, the electric field becomes uniform in a plane parallel to the substrate, so that the amount of movement of the powder becomes uniform in the plane, and high-precision measurement is possible.

また、本発明にかかる粉体付着力測定装置は、第1の基板と、第2の基板との電極上部に絶縁層が設けられていることを特徴とするものである。これにより、両基板間での放電や接触によるリーク電流の発生が抑制され、粉体間付着力の値が得られ、定量性の高い安定した測定が可能となる。   In addition, the powder adhesion measuring apparatus according to the present invention is characterized in that an insulating layer is provided on the electrodes of the first substrate and the second substrate. As a result, the occurrence of leakage current due to discharge or contact between the two substrates is suppressed, the value of the adhesion between the powders is obtained, and stable measurement with high quantitativeness becomes possible.

また、本発明にかかる粉体付着力測定装置は、第1の基板上の絶縁層を層1、粉体層を層2、空気層を層3、第2の基板の絶縁層を層4とし、各層の比誘電率、層厚をそれぞれεi、di(i=1〜4(1〜4は、各層の番号)、Di=di/εi(i=1〜4)、各Diの和をD、ε0を真空の誘電率とし、粉体単位重量当たりの帯電量Q/M、粉体の真比重δ、粉体の嵩密度M/V、粉体粒子の誘電率εpを用いて、粉体層の電荷密度ρを式(3)より求め、粉体層の誘電率ε2を式(4)より求め、第1の基板の電極に電圧V1、第2の基板の電極に電圧V2を印加した場合の電界E(zs)を式(5)により求める電界計算手段を有することを特徴とするものである。このように、測定された粉体重量比から得られる粉体層分割位置と、粉体に関するパラメータ等を計算式に代入することで、定量性の高い粉体間付着力の値を得ることが可能となる。

Figure 0004065246
Figure 0004065246
Figure 0004065246
In the powder adhesion measuring apparatus according to the present invention, the insulating layer on the first substrate is layer 1, the powder layer is layer 2, the air layer is layer 3, and the insulating layer of the second substrate is layer 4. , I , d i (i = 1 to 4 (1 to 4 is the number of each layer)), D i = d i / ε i (i = 1 to 4), The sum of D i is D, ε 0 is the dielectric constant of vacuum, the charge amount Q / M per unit weight of powder, the true specific gravity δ of powder, the bulk density M / V of powder, the dielectric constant of powder particles Using ε p , the charge density ρ of the powder layer is obtained from Equation (3), the dielectric constant ε 2 of the powder layer is obtained from Equation (4), and the voltage V 1 and the second voltage are applied to the electrodes of the first substrate. It is characterized by having an electric field calculation means for obtaining an electric field E (z s ) when the voltage V 2 is applied to the electrode of the substrate according to the equation (5). Powder layer division position obtained from the ratio and powder By substituting the formula and parameters related, it is possible to obtain high values of powder adherence between quantitativeness.
Figure 0004065246
Figure 0004065246
Figure 0004065246

また、本発明にかかる粉体付着力測定装置は、粉体としてトナーを用い、第1の基板上にトナー層を形成する手段として、電子写真方式における現像手段を用いることを特徴とするものである。これにより、現像で形成されたトナー層におけるトナー間の付着力分布を測定することが可能となるため、電子写真プロセスやトナーの開発に寄与することが可能となる。   The powder adhesion measuring apparatus according to the present invention is characterized in that toner is used as powder and a developing means in an electrophotographic system is used as means for forming a toner layer on the first substrate. is there. This makes it possible to measure the adhesion distribution between the toners in the toner layer formed by development, thereby contributing to the development of electrophotographic processes and toners.

本発明にかかる粉体の付着力測定方法及び粉体付着力測定装置は、電極を有する第1の基板上に帯電した粉体粒子を二層以上付着し、第1の基板上に粉体層を形成し、電極を有する第2の基板を、粉体層に接触しないように対置し、第1の基板と、第2の基板と、の間に空気層を設け、第1の基板と、第2の基板と、の基板間に電位差を設け、第1の基板上に付着した一部の粒子を、第2の基板上に移動させ、第1の基板上の粉体重量m1と、第2の基板上の粉体重量m2と、を測定し、粉体重量比ηを式(1)より求め、粉体層の層厚をd2とし、粉体重量比ηに対応する粉体層分割位置Zsを式(2)より求め、粉体層分割位置Zsにおける電界E(Zs)を求め、粉体の帯電量分布の測定値と、電界E(Zs)と、から粉体間の付着力分布を求めることで、帯電した粉体が基板上に付着した状態での測定を実施することが可能となるため、容易に粉体間の付着力分布を測定することが可能となる。

Figure 0004065246
Figure 0004065246
The powder adhesion measuring method and the powder adhesion measuring apparatus according to the present invention attach two or more layers of charged powder particles on a first substrate having electrodes, and the powder layer on the first substrate. The second substrate having electrodes is placed so as not to contact the powder layer, an air layer is provided between the first substrate and the second substrate, and the first substrate; A potential difference is provided between the substrate and the second substrate, and some particles attached on the first substrate are moved onto the second substrate, and the powder weight m 1 on the first substrate; The powder weight m 2 on the second substrate is measured, the powder weight ratio η is obtained from the formula (1), the layer thickness of the powder layer is d 2 , and the powder corresponding to the powder weight ratio η The body layer division position Z s is obtained from the equation (2), the electric field E (Z s ) at the powder layer division position Z s is obtained, the measured value of the charge amount distribution of the powder, the electric field E (Z s ), Adhesion between powder and powder By determining, charged powder can be measured since it is possible to carry out measurements in a state of adhering to the substrate, the adhesive force distribution between easily powder.
Figure 0004065246
Figure 0004065246

まず、図1、図2を参照しながら、本発明にかかる粉体の付着力測定方法及び粉体付着力測定装置の特徴について説明する。   First, the features of the powder adhesion measuring method and powder adhesion measuring apparatus according to the present invention will be described with reference to FIGS.

本発明にかかる本発明にかかる粉体の付着力測定方法及び粉体付着力測定装置は、電極を有する第1の基板(5、1)上に帯電した粉体粒子を二層以上付着し、第1の基板(5、1)上に粉体層(2)を形成し、電極を有する第2の基板(4、6)を、粉体層(2)に接触しないように対置し、第1の基板(5、1)と、第2の基板(4、6)と、の間に空気層(3)を設け、第1の基板(5、1)と、第2の基板(4、6)と、の基板間に電位差を設け、第1の基板(5、1)上に付着した一部の粒子を、第2の基板(4、6)上に移動させ、第1の基板(5、1)上の粉体重量m1と、第2の基板(4、6)上の粉体重量m2と、を測定し、粉体重量比ηを式(1)より求め、粉体層(2)の層厚をd2とし、粉体重量比ηに対応する粉体層分割位置Zsを式(2)より求め、粉体層分割位置Zsにおける電界E(Zs)を求め、粉体の帯電量分布の測定値と、電界E(Zs)と、から粉体間の付着力分布を求める。これにより、帯電した粉体が基板上に付着した状態での測定を実施することが可能となるため、容易に粉体間の付着力分布を測定することが可能となる。

Figure 0004065246
Figure 0004065246
The powder adhesion measuring method and the powder adhesion measuring device according to the present invention according to the present invention attach two or more charged powder particles on the first substrate (5, 1) having electrodes, The powder layer (2) is formed on the first substrate (5, 1), the second substrate (4, 6) having an electrode is placed so as not to contact the powder layer (2), An air layer (3) is provided between the first substrate (5, 1) and the second substrate (4, 6), and the first substrate (5, 1) and the second substrate (4, 6), a potential difference is provided between the first substrate (5, 1), and a part of the particles adhering to the first substrate (5, 1) is moved onto the second substrate (4, 6). 5, 1) The powder weight m 1 on the second substrate (4, 6) and the powder weight m 2 on the second substrate (4, 6) are measured, and the powder weight ratio η is obtained from the equation (1). The layer thickness of layer (2) is d 2 and the powder layer corresponds to the powder weight ratio η The division position Z s is obtained from equation (2), the electric field E (Z s ) at the powder layer division position Z s is obtained, and the measured value of the charge amount distribution of the powder and the electric field E (Z s ) Find the adhesion distribution between the bodies. As a result, it is possible to perform measurement in a state where the charged powder adheres to the substrate, so that it is possible to easily measure the adhesion force distribution between the powders.
Figure 0004065246
Figure 0004065246

以下、図面を参照しながら、本発明にかかる粉体の付着力測定方法及び粉体付着力測定装置の実施形態について詳細に説明する。   Hereinafter, embodiments of a powder adhesion measuring method and a powder adhesion measuring apparatus according to the present invention will be described in detail with reference to the drawings.

まず、図1を参照しながら本発明にかかる粉体付着力測定装置の具備する粉体移動手段について説明する。なお、図1は、本発明における粉体移動手段の一例を示唆する。   First, the powder moving means included in the powder adhesion measuring apparatus according to the present invention will be described with reference to FIG. FIG. 1 suggests an example of the powder moving means in the present invention.

平板状の金属板(5)上に絶縁膜(1)を形成した第1の基板(5、1)上に、帯電した粉体粒子が2層以上積層した粉体層(2)が付着した状態で、その第1の基板(5、1)と、平板状の金属板(6)上に絶縁膜(4)を形成した第2の基板(4、6)と、が平行となるように、基板保持部材(10)内に設置されている。   A powder layer (2) in which two or more charged powder particles are laminated is attached on a first substrate (5, 1) having an insulating film (1) formed on a flat metal plate (5). In this state, the first substrate (5, 1) and the second substrate (4, 6) in which the insulating film (4) is formed on the flat metal plate (6) are parallel to each other. Are installed in the substrate holding member (10).

なお、第1の基板(5、1)と第2の基板(4、6)との両基板間には、第1の基板(5、1)に積層した粉体層(2)が第2の基板(4、6)と接触しないような間隔を保つように絶縁性のスペーサ(7)が設置されている。このスペーサ(7)により、第1の基板(5、1)に積層された粉体層(2)と、第2の基板(4、6)との間には空気層(3)が設けられることになる。   Note that a powder layer (2) stacked on the first substrate (5, 1) is between the first substrate (5, 1) and the second substrate (4, 6). Insulating spacers (7) are provided so as to maintain an interval so as not to contact the substrates (4, 6). By this spacer (7), an air layer (3) is provided between the powder layer (2) laminated on the first substrate (5, 1) and the second substrate (4, 6). It will be.

なお、金属板(5)は、定電圧電源(8)と接続され、金属板(6)は、定電圧電源(9)と接続されており、粉体(2)が第1の基板(5、1)から第2の基板(4、6)へ移動するような電位差が基板間に印加されることになる。定電圧電源(8)の電圧をV1、定電圧電源(9)の電圧をV2とすると、帯電した粉体(2)の帯電極性が正の場合はV1>V2、逆に、帯電極性が負の場合はV1<V2となるように電圧を設定することになる。 The metal plate (5) is connected to the constant voltage power source (8), the metal plate (6) is connected to the constant voltage power source (9), and the powder (2) is the first substrate (5). A potential difference that moves from 1) to the second substrate (4, 6) is applied between the substrates. Assuming that the voltage of the constant voltage power source (8) is V 1 and the voltage of the constant voltage power source (9) is V 2 , if the charged polarity of the charged powder (2) is positive, V 1 > V 2 , When the charging polarity is negative, the voltage is set so that V 1 <V 2 .

なお、図1では、電源を2個用いているが、金属板(5、6)の一方を接地して、電源を1個で電圧を印加するように構築することも可能である。また、第1の基板(5、1)と第2の基板(4、6)を構成するものとして金属板(5、6)を用いているが、絶縁体に電極面を設けることで第1の基板と第2の基板とを構築することも可能である。   In FIG. 1, two power sources are used. However, it is also possible to construct such that one of the metal plates (5, 6) is grounded and a voltage is applied by one power source. Moreover, although the metal plate (5, 6) is used as what comprises the 1st board | substrate (5, 1) and the 2nd board | substrate (4, 6), 1st is provided by providing an electrode surface in an insulator. It is also possible to construct a second substrate and a second substrate.

次に、図2を参照しながら、第1の基板(5、1)に粉体粒子を2層以上付着した粉体層(2)に電圧を印加させた際の状態について説明する。なお、図2は、電圧を印加する前の粉体層(2)の拡大図を示唆する。   Next, a state when a voltage is applied to the powder layer (2) in which two or more powder particles are attached to the first substrate (5, 1) will be described with reference to FIG. FIG. 2 suggests an enlarged view of the powder layer (2) before voltage is applied.

図2に示唆する粉体層(2)に電圧を印加すると、粉体層(2)は、第2の基板(4、6)へ移動する粒子(2b)と第2の基板(4、6)に移動しない粒子(2a)に分離することになる。第2の基板(4、6)へ移動する粒子(2b)の重量をm2、第2の基板(4、6)に移動しない粒子(2a)の重量をm1とすると、粉体層(2)から移動した粒子の割合を示す粉体重量比ηを以下の式(1)で定義でき、粉体層(2)をηで表される重量比で分割するような分割平面を仮定することができることになる。 When a voltage is applied to the powder layer (2) suggested in FIG. 2, the powder layer (2) moves to the second substrate (4, 6) and the particles (2b) moving to the second substrate (4, 6). ) Will be separated into particles (2a) that do not move to. When the weight of the particles (2b) moving to the second substrate (4, 6) is m 2 and the weight of the particles (2a) not moving to the second substrate (4, 6) is m 1 , the powder layer ( The powder weight ratio η indicating the proportion of particles moved from 2) can be defined by the following equation (1), and a dividing plane is assumed that divides the powder layer (2) by the weight ratio represented by η. Will be able to.

図2に示唆するように、絶縁層(1)の表面から分割平面までの距離をZsとすると、zsは、式(1)により求まる粉体重量比ηを用いて式(2)のように表されることになる。なお、d2は、粉体層(2)の層厚を示唆する。 As suggested in FIG. 2, when the distance from the surface of the insulating layer (1) to the dividing plane is Z s , z s can be expressed by the equation (2) using the powder weight ratio η determined by the equation (1). It will be expressed as follows. D 2 indicates the layer thickness of the powder layer (2).

Figure 0004065246
Figure 0004065246

Figure 0004065246
Figure 0004065246

なお、粉体層分割面においては、粉体粒子を移動させる力として作用する電界によるクーロン力:Fと、粉体粒子を粉体層(2)に保持する力として作用する粉体間付着力と、が釣り合うことになる。電界によるクーロン力:Fは、粉体1粒子の帯電量qと粉体層分割面における電界E(zs)との積から計算される。なお、粉体間の付着力分布は、粉体の帯電量分布と、電界E(zs)と、から計算されるクーロン力:F=qE(zs)の分布から求めることができる。 Note that, on the powder layer splitting surface, the Coulomb force: F due to the electric field acting as a force for moving the powder particles and the inter-powder adhesion force acting as a force for holding the powder particles in the powder layer (2). Will be balanced. Coulomb force by electric field: F is calculated from the product of the charge amount q of one powder particle and the electric field E (z s ) at the powder layer dividing surface. The adhesion force distribution between the powders can be obtained from the distribution of the charge amount distribution of the powder and the Coulomb force calculated from the electric field E (z s ): F = qE (z s ).

粉体層分割面における電界E(zs)は、後述する式(3)〜式(5)により求めることができる。 The electric field E (z s ) at the powder layer dividing surface can be obtained by the following expressions (3) to (5).

なお、図1のような平行平板間の電界は、基板に平行な面内で一定なので、1次元のポワソン方程式を解くことにより計算することが可能となる。絶縁層(1)、粉体層(2)、空気層(3)、絶縁層(4)の層厚d及び比誘電率εを、それぞれd1、ε1、d2、ε2、d3、ε3、d4、ε4とし、Di=di/εi(i=1〜4)、各Diの和をD、粉体層(2)の体積電荷密度をρ、真空の誘電率をε0とすると、粉体層分割面における電界E(zs)は式(5)により算出することが可能となる。なお、1〜4の各番号は、層の番号を示唆する。 Since the electric field between the parallel plates as shown in FIG. 1 is constant in a plane parallel to the substrate, it can be calculated by solving a one-dimensional Poisson equation. The layer thickness d and relative dielectric constant ε of the insulating layer (1), the powder layer (2), the air layer (3), and the insulating layer (4) are d 1 , ε 1 , d 2 , ε 2 , d 3, respectively. , Ε 3 , d 4 , ε 4 , D i = d i / ε i (i = 1 to 4), the sum of D i is D, the volume charge density of the powder layer (2) is ρ, and vacuum When the dielectric constant is ε 0 , the electric field E (z s ) at the powder layer dividing surface can be calculated by the equation (5). In addition, each number of 1-4 suggests the number of a layer.

Figure 0004065246
Figure 0004065246

なお、粉体層(2)内は粉体粒子と空気とが混合しており、単位重量当たりの粉体帯電量をQ/M、粉体の真比重δ、粉体の嵩密度をM/V、粉体粒子の誘電率をεpとすると、粉体層(2)の体積電荷密度ρ及び比誘電率ε2は、それぞれ式(3)、式(4)から算出することが可能となる。 In the powder layer (2), powder particles and air are mixed. The powder charge amount per unit weight is Q / M, the true specific gravity δ of the powder, and the bulk density of the powder is M / M. When V and the dielectric constant of the powder particles are ε p , the volume charge density ρ and the relative dielectric constant ε 2 of the powder layer (2) can be calculated from the equations (3) and (4), respectively. Become.

Figure 0004065246
Figure 0004065246

Figure 0004065246
Figure 0004065246

このように、粉体間の付着力分布は、式(1)から算出される粉体重量比ηを基に、式(2)から算出される粉体分割位置zs、及び、印加電圧や粉体等に関するパラメータを、式(5)に代入し、電界E(zs)を算出し、その算出した電界E(zs)と、帯電量分布と、から算出されるクーロン力:F=qE(zs)の分布により求めることが可能となる。 Thus, the adhesion distribution between the powders is based on the powder weight ratio η calculated from the equation (1), the powder division position z s calculated from the equation (2), the applied voltage, By substituting parameters relating to powder and the like into the equation (5), the electric field E (z s ) is calculated, and the coulomb force calculated from the calculated electric field E (z s ) and the charge amount distribution: F = It can be obtained from the distribution of qE (z s ).

なお、粉体層(2)は、粉体粒子を2層以上積層しているが、粉体粒子が1層の場合は、粉体粒子が第1の基板(5、1)から分離するため、粉体粒子と第1の基板(5、1)間の付着力を測定することになり、粉体間の付着力を測定できないことになる。また、粉体粒子を2層以上積層している粉体層(2)においても、粉体間付着力のみを測定するには、第1の基板(5、1)から粉体粒子が分離しない範囲で測定する必要がある。   In the powder layer (2), two or more powder particles are laminated. However, when the powder particle is one layer, the powder particles are separated from the first substrate (5, 1). The adhesion force between the powder particles and the first substrate (5, 1) is measured, and the adhesion force between the powders cannot be measured. Also, in the powder layer (2) in which two or more powder particles are laminated, the powder particles are not separated from the first substrate (5, 1) in order to measure only the adhesion between powders. It is necessary to measure in the range.

粉体重量比ηが1に近いほど、第1の基板(5、1)から分離する粉体粒子が多いので、ηが一定の値以下となる条件で測定する必要がある。粉体粒子を2層積層した粉体層(2)の場合は、粉体重量比ηが1/2以下、3層積層した粉体層(2)の場合は、粉体重量比ηが2/3以下となり、層数が多いほど粉体重量比ηの上限が大きくなるが、粉体重量比ηが0.5以下であれば特に問題ない。このため、粉体間付着力の測定値として、粉体重量比ηが0.5以下に対応する測定値を用いることが好ましい。これにより、粉体と基板間の付着力の影響が無く、粉体間の付着力のみを測定することが可能となる。また、基板間の電位差、及び、基板間の距離を、基板間で放電が発生しない範囲内に設定することが好ましい。これにより、放電による測定への影響を回避できるため、正確な測定が可能となる。   The closer the powder weight ratio η is to 1, the more powder particles are separated from the first substrate (5, 1). In the case of the powder layer (2) in which two powder particles are laminated, the powder weight ratio η is ½ or less. In the case of the powder layer (2) in which three layers are laminated, the powder weight ratio η is 2 The upper limit of the powder weight ratio η increases as the number of layers increases, but there is no particular problem if the powder weight ratio η is 0.5 or less. For this reason, it is preferable to use a measured value corresponding to a powder weight ratio η of 0.5 or less as a measured value of the adhesion between powders. Thereby, there is no influence of the adhesive force between the powder and the substrate, and only the adhesive force between the powders can be measured. In addition, it is preferable to set the potential difference between the substrates and the distance between the substrates within a range in which no discharge occurs between the substrates. Thereby, since the influence on the measurement by discharge can be avoided, an accurate measurement becomes possible.

次に、図3を参照しながら、本発明の粉体付着力測定装置の具備する粉体付着手段について説明する。図3は、本発明における粉体付着手段の一例を示唆しており、電子写真方式の二成分現像方式による現像装置を示している。   Next, with reference to FIG. 3, the powder adhering means included in the powder adhering force measuring apparatus of the present invention will be described. FIG. 3 suggests an example of the powder adhering means in the present invention, and shows a developing apparatus using an electrophotographic two-component developing system.

図3に示唆するように、現像装置(21)内では、粉体の5〜10倍程度の粒径を有する磁性粒子と粉体とが保持され、スクリュー等により構成される撹拌装置(22)によって混合・撹拌されることになる。混合・撹拌された粉体は、摩擦帯電し、磁性粒子に付着した状態で現像スリーブ(23)に供給されることになる。現像スリーブ(23)内部には、磁石が備えられており、また、表面が回転できるように構成されている。また、現像スリーブ(23)は、表面に磁性粒子がチェーン状に穂立ちされて磁気ブラシが形成される。現像スリーブ(23)上に形成された磁気ブラシは、規制板(24)により、その高さが規制され、第1の基板(5、1)に近接する領域に搬送される。なお、図3に示唆する粉体付着手段は、現像スリーブ(23)と第1の基板(5、1)とが、一定の間隔を挟んで近接するように配置されて現像領域を形成し、第1の基板(5、1)に接続された電源(8)と、現像スリーブ(23)に接続された電源(25)と、から電圧が印加されると、粉体粒子が磁性粒子から分離し、第1の基板(5、1)に移動するような電界が発生することになる。   As suggested in FIG. 3, in the developing device (21), magnetic particles having a particle size about 5 to 10 times that of the powder and the powder are held, and the stirring device (22) configured by a screw or the like. Will be mixed and stirred. The mixed and stirred powder is triboelectrically charged and supplied to the developing sleeve (23) in a state of adhering to the magnetic particles. A magnet is provided inside the developing sleeve (23), and the surface can be rotated. The developing sleeve (23) has a magnetic brush formed on the surface thereof with magnetic particles spiked in a chain shape. The height of the magnetic brush formed on the developing sleeve (23) is regulated by the regulating plate (24), and the magnetic brush is conveyed to an area close to the first substrate (5, 1). Note that the powder adhering means suggested in FIG. 3 is arranged such that the developing sleeve (23) and the first substrate (5, 1) are close to each other with a certain distance therebetween to form a developing region, When a voltage is applied from the power source (8) connected to the first substrate (5, 1) and the power source (25) connected to the developing sleeve (23), the powder particles are separated from the magnetic particles. Then, an electric field that moves to the first substrate (5, 1) is generated.

第1の基板(5、1)は、移動機構により一定の速度で平行移動するため、現像領域を通過した第1の基板(5、1)の表面に、粉体粒子が付着し、第1の基板(5、1)に粉体層(2)が形成されることになる。なお、第1の基板(5、1)上の粉体付着量は、粉体や磁性粒子の量、粉体の帯電量、第1の基板(5、1)と現像スリーブ(23)と間の電位差、間隔、速度等により制御することができる。   Since the first substrate (5, 1) moves in parallel at a constant speed by the moving mechanism, the powder particles adhere to the surface of the first substrate (5, 1) that has passed through the development region, and the first substrate (5, 1) The powder layer (2) is formed on the substrate (5, 1). Note that the amount of powder adhering on the first substrate (5, 1) is the amount of powder or magnetic particles, the amount of charge of the powder, and between the first substrate (5, 1) and the developing sleeve (23). Can be controlled by the potential difference, interval, speed, and the like.

なお、本発明にかかる粉体付着力測定装置は、図3に示唆するように、粉体付着手段として二成分現像方式による現像装置を用いたが、磁性粉体を用いずに、粉体を現像スリーブから直接付着させる一成分現像方式による現像装置を適用することも可能である。また、粉体付着手段としては、電子写真方式に限らず、粉体粒子を2層以上均一に付着できれば特に限定しないものとする。   As suggested in FIG. 3, the powder adhesion measuring apparatus according to the present invention uses a two-component developing system as a powder adhesion means. It is also possible to apply a developing device using a one-component developing system that is directly attached from the developing sleeve. Further, the powder adhering means is not limited to the electrophotographic method, and is not particularly limited as long as two or more powder particles can be uniformly adhered.

また、本発明にかかる粉体付着力測定装置は、図1に示唆する粉体移動手段と、図3に示唆する粉体付着手段と、が独立した形態としたが、図4に示唆するように、粉体移動手段と粉体付着手段と、を1つの装置内に配置して、粉体層(2)を形成する第1の基板(5、1)が粉体付着手段から粉体移動手段へ自動的に移動できるよう構築することも可能である。なお、図4の場合は、第1の基板(5、1)と、第2の基板(4、6)との間隔を制御する手段として、ステージ(11)を用いている。   Further, the powder adhesion measuring apparatus according to the present invention has an independent form of the powder moving means suggested in FIG. 1 and the powder adhesion means suggested in FIG. 3, but as suggested in FIG. In addition, the powder moving means and the powder adhering means are arranged in one apparatus, and the first substrate (5, 1) for forming the powder layer (2) is moved from the powder adhering means to the powder moving means. It is also possible to construct it so that it can be moved automatically to the means. In the case of FIG. 4, the stage (11) is used as means for controlling the distance between the first substrate (5, 1) and the second substrate (4, 6).

次に、図5を参照しながら、本発明における粉体重量測定手段の一例について説明する。なお、図5は、粉体重量と共に粉体帯電量も測定できる装置の一部を示唆する。   Next, an example of the powder weight measuring means in the present invention will be described with reference to FIG. FIG. 5 suggests a part of an apparatus that can measure the powder charge amount as well as the powder weight.

本発明における粉体重量測定手段は、図5に示唆するように、部材(31)と、部材(32)と、から構成され、部材(31)は、粉体を吸引する吸引ノズル(33)と、粉体を導入する粉体導入部(34)と、導入された粉体の電荷量を測定するための電極(35)と、から構成される。また、部材(32)は、吸引された粉体を保持するフィルター(36)と、フィルター(36)を保持するために設置した金網(37)と、吸引ポンプに接続される吸引口(38)とから構成される。   As suggested in FIG. 5, the powder weight measuring means in the present invention comprises a member (31) and a member (32), and the member (31) is a suction nozzle (33) for sucking powder. And a powder introduction part (34) for introducing powder and an electrode (35) for measuring the charge amount of the introduced powder. The member (32) includes a filter (36) for holding the sucked powder, a wire mesh (37) installed to hold the filter (36), and a suction port (38) connected to the suction pump. It consists of.

本発明における粉体重量測定手段は、図5において、斜線部は金属、網点部はプラスチックで構成されており、2重の金属容器から構成されている。なお、内側の容器は、電極(35)を通して電荷測定装置に接続され、外側の容器は接地されることになる。   The powder weight measuring means in the present invention is composed of a double metal container in FIG. 5 where the hatched portion is made of metal and the halftone dot portion is made of plastic. The inner container is connected to the charge measuring device through the electrode (35), and the outer container is grounded.

本発明における粉体重量測定手段は、図5に示唆するように、部材(31)と部材(32)とを結合することで、吸引された粉体がフィルター(36)に付着して内側の容器内に保持されることになり、粉体の電荷量を測定することができることになる。このため、フィルター(36)は、測定毎に交換する必要がある。なお、基板に付着した粉体の重量は、粉体吸引後の部材(31)と部材(32)との重量を天秤で計測し、粉体吸引前の重量を差し引くことで測定できる。また、粉体吸引時に測定した粉体帯電量Qと粉体重量Mとから、単位重量当たりの粉体帯電量Q/Mを求めることができる。   As suggested in FIG. 5, the powder weight measuring means in the present invention combines the member (31) and the member (32), so that the sucked powder adheres to the filter (36) and the inner side. It will be held in the container and the charge amount of the powder can be measured. For this reason, the filter (36) needs to be replaced for each measurement. The weight of the powder adhering to the substrate can be measured by measuring the weight of the member (31) and the member (32) after powder suction with a balance and subtracting the weight before powder suction. Further, the powder charge amount Q / M per unit weight can be obtained from the powder charge amount Q and the powder weight M measured at the time of powder suction.

図5の例では、基板上の粉体を吸引して粉体重量を測定したが、粉体重量を測定は、基板上の粉体を粘着性テープ等へ付着させて測定することも可能であり、また、粉体を基板から除去することによる基板の重量変化から測定することも可能である。   In the example of FIG. 5, the powder weight is measured by sucking the powder on the substrate. However, the powder weight can be measured by attaching the powder on the substrate to an adhesive tape or the like. It is also possible to measure from the change in weight of the substrate by removing the powder from the substrate.

次に、本発明における帯電量分布測定手段について説明する。   Next, the charge amount distribution measuring means in the present invention will be described.

粉体の帯電量分布測定方法には様々なものがあるが、以下にその例を示す。   There are various methods for measuring the charge amount distribution of powder, and examples thereof are shown below.

まず、特開昭63−263475号公報に記載されている電界による作用を受けたトナーの落下位置から帯電量を求める方法がある。また、特開昭63−118634号公報に記載されている音波による振動と電界による作用を受けて運動する帯電粒子の位相遅れと偏向量をレーザドップラー法によって測定することにより、粒径と帯電量を同時に求めるレーザドップラー法がある。このレーザドップラー法を用いた測定装置はイースパートアナライザー((株)ホソカワミクロン)として商品化されている。   First, there is a method for obtaining an amount of charge from a toner dropping position which has been affected by an electric field, as described in JP-A-63-263475. Further, the particle size and the charge amount are measured by measuring the phase lag and the deflection amount of the charged particles moving under the action of the vibration of the sound wave and the electric field described in JP-A-63-118634 by the laser Doppler method. There is a laser Doppler method for simultaneously obtaining. A measuring apparatus using this laser Doppler method is commercialized as an espert analyzer (Hosokawa Micron Corporation).

次に、粉体間の付着力分布を測定する方法について図3、図4を基に説明する。   Next, a method for measuring the adhesion force distribution between powders will be described with reference to FIGS.

まず、図3に示唆するように、粉体と磁性粒子とを混合して、現像装置(21)内へ導入し、撹拌装置(22)で十分撹拌する。電源(8)と電源(25)とから電圧を印加し、第1の基板(5、1)と現像スリーブ(23)間に電位差を設け、現像スリーブ(23)の回転と第1の基板(5、1)の平行移動を行い、図4に示唆するように、第1の基板(5、1)上に粉体層(2)を形成する。粉体層(2)が形成された第1の基板(5、1)を第2の基板(4、6)と対置させ、電源(8)と電源(9)とから電圧を印加し、第1の基板(5、1)と第2の基板(4、6)と間に電位差を設け、粉体層(2)の一部を第2の基板(4、6)へ移動する。そして、第1の基板(5、1)上と第2の基板(4、6)上との粉体重量を測定する。第1の基板(5、1)上と第2の基板(4、6)上との粉体重量を式(1)に代入し、重量比ηを求める。   First, as suggested in FIG. 3, the powder and magnetic particles are mixed, introduced into the developing device (21), and sufficiently stirred by the stirring device (22). A voltage is applied from the power source (8) and the power source (25) to create a potential difference between the first substrate (5, 1) and the developing sleeve (23), and the rotation of the developing sleeve (23) and the first substrate ( 5 and 1), and a powder layer (2) is formed on the first substrate (5, 1) as suggested in FIG. The first substrate (5, 1) on which the powder layer (2) is formed is opposed to the second substrate (4, 6), voltage is applied from the power source (8) and the power source (9), A potential difference is provided between the first substrate (5, 1) and the second substrate (4, 6), and a part of the powder layer (2) is moved to the second substrate (4, 6). Then, the powder weights on the first substrate (5, 1) and the second substrate (4, 6) are measured. The weight ratio η is obtained by substituting the weight of the powder on the first substrate (5, 1) and the second substrate (4, 6) into the equation (1).

次に、重量比ηを式(2)に代入することで粉体層分割位置zsを求め、式(5)に各パラメータを代入することで電界E(zs)を求める。 Next, the powder layer division position z s is obtained by substituting the weight ratio η into the equation (2), and the electric field E (z s ) is obtained by substituting each parameter into the equation (5).

また、上記と同様にして第1の基板(5、1)上に粉体層(2)を形成し、第1の基板(5、1)を測定装置から取り外し、イースパートアナライザーの測定粒子取り入れ口上部に設置する。そして、第1の基板(5、1)上に形成した粉体層(2)に空気を吹き付けることで、粉体粒子を飛翔させ、測定粒子取り入れ口に粉体粒子を導入し、粉体の帯電量分布を測定する。帯電量分布における各帯電量qと電界E(zs)との積となるクーロン力F=qE(zs)の分布を求め、粉体間の付着力分布とする。 Further, in the same manner as described above, the powder layer (2) is formed on the first substrate (5, 1), the first substrate (5, 1) is removed from the measuring apparatus, and the measured particles of the e-part analyzer are taken in. Install in the upper mouth. Then, by blowing air to the powder layer (2) formed on the first substrate (5, 1), the powder particles fly, the powder particles are introduced into the measurement particle intake, Measure the charge distribution. The distribution of the Coulomb force F = qE (z s ), which is the product of each charge amount q and the electric field E (z s ) in the charge amount distribution, is obtained and used as the adhesive force distribution between the powders.

次に、式(5)に代入する各パラメータの測定方法について説明する。   Next, a method for measuring each parameter to be substituted into Expression (5) will be described.

粉体の真比重δは、液浸法(ピクノメータ法)や圧力比較法(ベックマン法)により測定できる。粉体層(2)の体積電荷密度ρは、Q/Mと嵩密度M/Vとを式(3)に代入することにより見積ることができる。なお、第1の基板(5、1)上に形成された粉体層(2)の嵩密度を直接測定することはできないのが、粉体の嵩密度はJIS規格で定められた方法により測定できる。   The true specific gravity δ of the powder can be measured by a liquid immersion method (Pycnometer method) or a pressure comparison method (Beckman method). The volume charge density ρ of the powder layer (2) can be estimated by substituting Q / M and bulk density M / V into equation (3). Although the bulk density of the powder layer (2) formed on the first substrate (5, 1) cannot be directly measured, the bulk density of the powder is measured by a method defined by JIS standards. it can.

粉体層(2)の比誘電率ε2は、M/V、δ、及び粉体粒子の比誘電率εpより、式(4)により見積ることができる。比誘電率は、LCRメータを用いた容量法等により測定できる。粉体層(2)の層厚d2は、高倍率で物体表面の3次元形状測定が可能な装置、例えばキーエンス社の超深度形状測定顕微鏡等により測定できる。絶縁層(1)や絶縁層(4)の層厚は、機械的、あるいは、光学的な厚み測定装置を用いて測定できる。空気層(3)の層厚としては、スペーサ(7)の厚みから粉体層(2)の層厚を差し引いた値を用いることができる。 The relative dielectric constant ε 2 of the powder layer (2) can be estimated by the formula (4) from M / V, δ, and the relative dielectric constant ε p of the powder particles. The relative dielectric constant can be measured by a capacitance method using an LCR meter. Thickness d 2 of the powder layer (2) is a high magnification which can three-dimensional shape measurement of the object surface in the apparatus, for example, be measured by Keyence Corporation ultradeep shape measuring microscope. The layer thickness of the insulating layer (1) or the insulating layer (4) can be measured using a mechanical or optical thickness measuring device. As the layer thickness of the air layer (3), a value obtained by subtracting the layer thickness of the powder layer (2) from the thickness of the spacer (7) can be used.

次に、上記の測定装置を用いた粉体間の付着力分布の測定例について説明する。   Next, an example of measuring the adhesion force distribution between powders using the above measuring apparatus will be described.

電子写真プロセスにおける転写プロセスとの対応を想定して、第1の基板(5、1)上に誘電率が感光体と同程度のポリカーボネート層を形成し、第2の基板(4、6)上に転写ベルトを導電性接着剤で貼り付け、測定を実施した。ポリカーボネート層は、比誘電率ε1が3.3、膜厚d1が6μmで、転写ベルトは、比誘電率ε4が11.1、膜厚d4が150μmである。 Assuming correspondence with the transfer process in the electrophotographic process, a polycarbonate layer having a dielectric constant similar to that of the photosensitive member is formed on the first substrate (5, 1), and then on the second substrate (4, 6). The transfer belt was affixed with a conductive adhesive to perform measurement. The polycarbonate layer has a relative dielectric constant ε 1 of 3.3 and a film thickness d 1 of 6 μm, and the transfer belt has a relative dielectric constant ε 4 of 11.1 and a film thickness d 4 of 150 μm.

リコー製のトナーとキャリアを用い、図4に示唆する装置で第1の基板(5、1)上にトナー層を形成した。トナー粒子の比誘電率εpは、3.2、真比重δは、1.25g/cm3、トナーの嵩密度M/Vは、0.455g/cm3で、式(4)よりトナー層の比誘電率ε2は、1.8である。トナー層のQ/Mは、−28μC/gで、式(3)よりトナー層の体積電荷密度ρは、−12.7C/m3である。また、トナー層の層厚d2は、12.2μmである。 Using a Ricoh toner and carrier, a toner layer was formed on the first substrate (5, 1) using the apparatus suggested in FIG. The relative dielectric constant epsilon p of the toner particles, 3.2, true specific gravity [delta], 1.25 g / cm 3, a bulk density of M / V of the toner, at 0.455 g / cm 3, the toner layer from the formula (4) The relative dielectric constant ε 2 is 1.8. The Q / M of the toner layer is −28 μC / g, and the volume charge density ρ of the toner layer is −12.7 C / m 3 from the formula (3). The layer thickness d 2 of the toner layer is 12.2 μm.

第1の基板(5、1)と第2の基板(4、6)との電位差(V2−V1)を700Vとし、基板間距離Zが150μm、100μm、75μmにおける重量比ηを測定した。各Zにおけるηと、トナー層の分割位置zsと、zsにおける電界E(zs)と、を図6に示唆する。図6に示唆する表から、E(zs)の平均値は、0.689MV/mとなった。 The potential difference (V 2 −V 1 ) between the first substrate (5, 1) and the second substrate (4, 6) was 700 V, and the weight ratio η was measured when the inter-substrate distance Z was 150 μm, 100 μm, and 75 μm. . Suggesting a η at each Z, a division position z s of the toner layer, an electric field E (z s) of z s, the Figure 6. From the table suggested in FIG. 6, the average value of E (z s ) was 0.689 MV / m.

また、図4に示唆する装置で、第1の基板(5、1)上に形成したトナー層の帯電量分布を測定し、帯電量分布における各帯電量qとE(zs)の平均値との積qE(zs)の分布を求め、粉体間付着力Fの分布とした。付着力分布の測定結果を図7に示唆する。なお、本測定では第1の基板(5、1)と第2の基板(4、6)との電位差を一定にして基板間距離Zを変更したが、Zを一定にして電位差を変更しても同様の結果が得られることになる。 4 is used to measure the charge amount distribution of the toner layer formed on the first substrate (5, 1), and to determine the average value of each charge amount q and E (z s ) in the charge amount distribution. The distribution of the product qE (z s ) is obtained as the distribution of the adhesion F between the powders. The measurement result of the adhesion distribution is suggested in FIG. In this measurement, the inter-substrate distance Z was changed with the potential difference between the first substrate (5, 1) and the second substrate (4, 6) constant, but the potential difference was changed with Z constant. Will give similar results.

なお、上述する実施例は、本発明の好適な実施例であり、上記実施例のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。   The above-described embodiment is a preferred embodiment of the present invention, and the scope of the present invention is not limited only to the above-described embodiment, and various modifications are made without departing from the gist of the present invention. Implementation is possible.

本発明における粉体移動手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the powder moving means in this invention. 本発明の粉体付着力測定方法を説明するための図である。It is a figure for demonstrating the powder adhesive force measuring method of this invention. 本発明の粉体付着手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the powder adhesion means of this invention. 本発明の粉体移動手段及び粉体付着手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the powder moving means and powder adhesion means of this invention. 本発明における粉体重量測定手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the powder weight measurement means in this invention. 基板間距離Zが150μm、100μm、75μmにおける重量比ηと、トナー層の分割位置zsと、zsにおける電界E(zs)と、を示唆する表である。Substrate distance Z is 150 [mu] m, 100 [mu] m, and the weight ratio η at 75 [mu] m, a division position z s of the toner layer, the electric field in the z s E (z s), is indicative table of. 本発明を用いて測定した粉体間の付着力分布の一例を示す図である。It is a figure which shows an example of the adhesive force distribution between the powders measured using this invention.

符号の説明Explanation of symbols

1 絶縁層
2 粉体層
3 空気層
4 絶縁層
5 金属平板
6 金属平板
7 スペーサ
8 電源
9 電源
10 基板保持部材
11 ステージ
21 現像装置
22 撹拌装置
23 現像スリーブ
24 規制板
25 電源
31 粉体吸引装置部材
32 粉体吸引装置部材
33 吸引ノズル
34 粉体導入部
35 電極
36 フィルター
37 金網
38 吸引口
(5、1) 第1の基板
(4、6) 第2の基板
DESCRIPTION OF SYMBOLS 1 Insulating layer 2 Powder layer 3 Air layer 4 Insulating layer 5 Metal flat plate 6 Metal flat plate 7 Spacer 8 Power source 9 Power source 10 Substrate holding member 11 Stage 21 Developing device 22 Stirring device 23 Developing sleeve 24 Restriction plate 25 Power source 31 Powder suction device Member 32 Powder suction device member 33 Suction nozzle 34 Powder introduction part 35 Electrode 36 Filter 37 Wire mesh 38 Suction port (5, 1) First substrate (4, 6) Second substrate

Claims (12)

電極を有する第1の基板上に帯電した粉体粒子を二層以上付着し、前記第1の基板上に粉体層を形成し、電極を有する第2の基板を、前記粉体層に接触しないように対置し、前記第1の基板と、前記第2の基板と、の間に空気層を設け、前記第1の基板と、前記第2の基板と、の基板間に電位差を設け、前記第1の基板上に付着した一部の粒子を、前記第2の基板上に移動させ、前記第1の基板上の粉体重量m1と、前記第2の基板上の粉体重量m2と、を測定し、粉体重量比ηを式(1)より求め、前記粉体層の層厚をd2とし、粉体重量比ηに対応する粉体層分割位置Zsを式(2)より求め、粉体層分割位置Zsにおける電界E(Zs)を求め、粉体の帯電量分布の測定値と、前記電界E(Zs)と、から粉体間の付着力分布を求めることを特徴とする粉体付着力測定方法。
Figure 0004065246
Figure 0004065246
Two or more charged powder particles are deposited on a first substrate having an electrode, a powder layer is formed on the first substrate, and a second substrate having an electrode is in contact with the powder layer Facing each other, providing an air layer between the first substrate and the second substrate, providing a potential difference between the first substrate and the second substrate, A part of the particles adhering to the first substrate is moved onto the second substrate, the powder weight m 1 on the first substrate, and the powder weight m on the second substrate. 2 , the powder weight ratio η is obtained from the formula (1), the layer thickness of the powder layer is d 2, and the powder layer division position Z s corresponding to the powder weight ratio η is represented by the formula ( 2) obtained from, obtains an electric field E (Z s) of the powder layer split position Z s, and the measured value of the charge amount distribution of the powder, the electric field E and (Z s), adhesive force distribution between the powder from Seeking Powder adhesion measurement method characterized.
Figure 0004065246
Figure 0004065246
前記電極を形成した基板が平板状で、前記第1の基板と前記第2の基板とが平行に対置していることを特徴とする請求項1記載の粉体付着力測定方法。   2. The powder adhesion measuring method according to claim 1, wherein the substrate on which the electrode is formed is a flat plate, and the first substrate and the second substrate face each other in parallel. 前記第1の基板と、前記第2の基板との電極上部に絶縁層が設けられていることを特徴とする請求項1記載の粉体付着力測定方法。   2. The method for measuring the adhesion of powder according to claim 1, wherein an insulating layer is provided on the electrodes of the first substrate and the second substrate. 前記第1の基板上の絶縁層を層1、前記粉体層を層2、空気層を層3、前記第2の基板の絶縁層を層4とし、前記各層の比誘電率、層厚をそれぞれεi、di(i=1〜4(1〜4は、各層の番号)、Di=di/εi(i=1〜4)、各Diの和をD、ε0を真空の誘電率とし、粉体単位重量当たりの帯電量Q/M、粉体の真比重δ、粉体の嵩密度M/V、粉体粒子の誘電率εpを用いて、前記粉体層の電荷密度ρを式(3)より求め、前記粉体層の誘電率ε2を式(4)より求め、前記第1の基板の電極に電圧V1、前記第2の基板の電極に電圧V2を印加した場合の前記電界E(zs)を式(5)により求めることを特徴とする請求項1から3のいずれか1項に記載の粉体付着力測定方法。
Figure 0004065246
Figure 0004065246
Figure 0004065246
The insulating layer on the first substrate is the layer 1, the powder layer is the layer 2, the air layer is the layer 3, the insulating layer of the second substrate is the layer 4, and the relative dielectric constant and the layer thickness of each layer are Ε i , d i (i = 1 to 4 (1 to 4 is the number of each layer)), D i = d i / ε i (i = 1 to 4), D is the sum of D i , and ε 0 is Using the dielectric constant of vacuum, the charge amount Q / M per unit weight of powder, the true specific gravity δ of powder, the bulk density M / V of powder, and the dielectric constant ε p of powder particles, the powder layer Is obtained from the equation (3), the dielectric constant ε 2 of the powder layer is obtained from the equation (4), the voltage V 1 is applied to the electrode of the first substrate, and the voltage is applied to the electrode of the second substrate. The method of measuring a powder adhesive force according to any one of claims 1 to 3, wherein the electric field E (z s ) when V 2 is applied is obtained by the equation (5).
Figure 0004065246
Figure 0004065246
Figure 0004065246
前記粉体間の付着力の測定値として、前記粉体重量比ηが0.5以下に対応する測定値を用いることを特徴とする請求項1記載の粉体付着力測定方法。   The method for measuring a powder adhesion force according to claim 1, wherein a measurement value corresponding to the powder weight ratio η of 0.5 or less is used as a measurement value of the adhesion force between the powders. 前記基板間の電位差、及び、前記基板間の距離を、前記基板間で放電が発生しない範囲内に設定したことを特徴とする請求項1記載の粉体付着力測定方法。   2. The method for measuring powder adhesion according to claim 1, wherein the potential difference between the substrates and the distance between the substrates are set within a range in which no discharge occurs between the substrates. 前記粉体としてトナーを用い、前記第1の基板上にトナー層を形成する方法として、電子写真方式における現像方式を用いることを特徴とする請求項1記載の粉体付着力測定方法。   2. The powder adhesion measuring method according to claim 1, wherein a toner is used as the powder, and a developing method in an electrophotographic method is used as a method of forming a toner layer on the first substrate. 電極を有する第1の基板上に帯電した粉体粒子を二層以上付着させ、前記第1の基板に粉体層を形成する粉体付着手段と、
電極を有する第2の基板を前記第1の基板上に形成した粉体層に接触しないように、前記第1の基板に対置させ、前記第1の基板と前記第2の基板との両基板間に電位差を設け、前記第1の基板上に形成した粉体層の一部の粒子を、前記第2の基板に移動させる粉体移動手段と、
前記第1の基板上の粉体重量m1と、前記第2の基板上の粉体重量m2と、を測定する重量測定手段と、
前記粉体の帯電量分布を測定する帯電量分布測定手段と、
粉体重量比ηを式(1)より求め、前記粉体層の層厚をd2とし、粉体重量比ηに対応する粉体層分割位置Zsを式(2)より求め、粉体層分割位置Zsにおける電界E(Zs)を求め、粉体の帯電量分布の測定値と、前記電界E(Zs)と、から粉体間の付着力分布を求める付着力分布計算手段と、
を有することを特徴とする粉体付着力測定装置。
Figure 0004065246
Figure 0004065246
Powder adhering means for adhering two or more charged powder particles on a first substrate having an electrode, and forming a powder layer on the first substrate;
A second substrate having an electrode is placed opposite to the first substrate so as not to contact the powder layer formed on the first substrate, and both the first substrate and the second substrate are disposed. A powder moving means for providing a potential difference therebetween and moving some particles of the powder layer formed on the first substrate to the second substrate;
The powder weight m 1 on the first substrate, the powder weight m 2 on the second substrate, and weight measuring means for measuring a,
A charge amount distribution measuring means for measuring the charge amount distribution of the powder;
The powder weight ratio η is obtained from the equation (1), the layer thickness of the powder layer is d 2, and the powder layer division position Z s corresponding to the powder weight ratio η is obtained from the equation (2). Adhesive force distribution calculating means for obtaining an electric field E (Z s ) at the layer division position Z s and obtaining an adhesive force distribution between the powders from the measured value of the charge amount distribution of the powder and the electric field E (Z s ). When,
A powder adhesion measuring device characterized by comprising:
Figure 0004065246
Figure 0004065246
前記電極を形成した基板が平板状で、前記第1の基板と前記第2の基板とが平行に対置していることを特徴とする請求項8記載の粉体付着力測定装置。   9. The powder adhesion measuring apparatus according to claim 8, wherein the substrate on which the electrode is formed is a flat plate, and the first substrate and the second substrate face each other in parallel. 前記第1の基板と、前記第2の基板との電極上部に絶縁層が設けられていることを特徴とする請求項8記載の粉体付着力測定装置。   9. The powder adhesion measuring apparatus according to claim 8, wherein an insulating layer is provided on the electrodes of the first substrate and the second substrate. 前記第1の基板上の絶縁層を層1、前記粉体層を層2、空気層を層3、前記第2の基板の絶縁層を層4とし、前記各層の比誘電率、層厚をそれぞれεi、di(i=1〜4(1〜4は、各層の番号)、Di=di/εi(i=1〜4)、各Diの和をD、ε0を真空の誘電率とし、粉体単位重量当たりの帯電量Q/M、粉体の真比重δ、粉体の嵩密度M/V、粉体粒子の誘電率εpを用いて、前記粉体層の電荷密度ρを式(3)より求め、前記粉体層の誘電率ε2を式(4)より求め、前記第1の基板の電極に電圧V1、前記第2の基板の電極に電圧V2を印加した場合の前記電界E(zs)を式(5)により求める電界計算手段を有することを特徴とする請求項8から10のいずれか1項に記載の粉体付着力測定装置。
Figure 0004065246
Figure 0004065246
Figure 0004065246
The insulating layer on the first substrate is the layer 1, the powder layer is the layer 2, the air layer is the layer 3, the insulating layer of the second substrate is the layer 4, and the relative dielectric constant and the layer thickness of each layer are Ε i , d i (i = 1 to 4 (1 to 4 is the number of each layer)), D i = d i / ε i (i = 1 to 4), D is the sum of D i , and ε 0 is Using the dielectric constant of vacuum, the charge amount Q / M per unit weight of powder, the true specific gravity δ of powder, the bulk density M / V of powder, and the dielectric constant ε p of powder particles, the powder layer Is obtained from the equation (3), the dielectric constant ε 2 of the powder layer is obtained from the equation (4), the voltage V 1 is applied to the electrode of the first substrate, and the voltage is applied to the electrode of the second substrate. The powder adhesive force measuring apparatus according to any one of claims 8 to 10, further comprising an electric field calculating means for obtaining the electric field E (z s ) when V 2 is applied by the equation (5). .
Figure 0004065246
Figure 0004065246
Figure 0004065246
前記粉体としてトナーを用い、前記第1の基板上にトナー層を形成する手段として、電子写真方式における現像手段を用いることを特徴とする請求項8記載の粉体付着力測定装置。   9. The powder adhesion measuring apparatus according to claim 8, wherein a toner is used as the powder, and an electrophotographic developing means is used as the means for forming a toner layer on the first substrate.
JP2004107388A 2004-03-31 2004-03-31 Powder adhesion measuring method and powder adhesion measuring device Expired - Fee Related JP4065246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107388A JP4065246B2 (en) 2004-03-31 2004-03-31 Powder adhesion measuring method and powder adhesion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107388A JP4065246B2 (en) 2004-03-31 2004-03-31 Powder adhesion measuring method and powder adhesion measuring device

Publications (2)

Publication Number Publication Date
JP2005291920A JP2005291920A (en) 2005-10-20
JP4065246B2 true JP4065246B2 (en) 2008-03-19

Family

ID=35325008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107388A Expired - Fee Related JP4065246B2 (en) 2004-03-31 2004-03-31 Powder adhesion measuring method and powder adhesion measuring device

Country Status (1)

Country Link
JP (1) JP4065246B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699921B2 (en) * 2006-03-09 2011-06-15 株式会社リコー Method for evaluating electrostatic charge developing toner and method for producing electrostatic charge developing toner

Also Published As

Publication number Publication date
JP2005291920A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
Takeuchi Adhesion forces of charged particles
JP6041206B2 (en) Adhesive force measuring apparatus and adhesive force measuring method
EP2743776A2 (en) Developing device and image forming apparatus
JP4065246B2 (en) Powder adhesion measuring method and powder adhesion measuring device
JP4282535B2 (en) Method and apparatus for measuring adhesion of powder
US7912386B2 (en) Systems and methods for determining a charge-to-mass ratio, and a concentration, of one component of a mixture
Yamaguchi et al. Measurement Technique for Electrostatic Charge on Single Toner Particles with Microelectromechanical-based Actuated Tweezers.
JPH11153538A (en) Method and apparatus for measurement of adhesion of powder as well as toner
JP3671579B2 (en) Developer carrying member and developing device using the same
JPH0979966A (en) Polymer toner and fluidity measuring method for toner
JP2003066716A (en) Developing device
JPH0412281A (en) Method for measuring distribution of electrostatically charged quantity of toner
JPH04118565A (en) Measuring device for charge quantity distribution
JPH0416775A (en) Apparatus for measuring charge quantity distribution of toner
JPH0511512A (en) Two-component magnetic brush developing method
JP2001117332A (en) Image forming device
JPH0415573A (en) Electrification quantity distribution measuring instrument for one-component compound toner
JPH02191974A (en) Developing device
JPH04152274A (en) Distribution measurement device for electrified unary system toner amount
JPH0412280A (en) Measuring instrument for electrification quantity distribution of one-component toner
JPH05281277A (en) Method for measuring specific charge distribution of toner
JPH04115170A (en) Apparatus for measuring charge quantity distribution of one-component type toner
JPH02212777A (en) Measuring method for charging amount of powdery substance
JPS60111265A (en) Method and device for development of copying machine
JPS60111269A (en) Method and device for development of copying machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees